bug fixes, better logging and seperation of ai, update docs for ai
This commit is contained in:
parent
995f61b0b9
commit
f43fcd470f
6 changed files with 129 additions and 61 deletions
|
@ -6,7 +6,9 @@ botSource = "https://github.com/ABOCN/TelegramBot"
|
|||
botToken = ""
|
||||
|
||||
# ai features
|
||||
ollamaEnabled = false
|
||||
# ollamaApi = "http://ollama:11434"
|
||||
# handlerTimeout = "600_000" # set higher if you expect to download larger models
|
||||
|
||||
# misc (botAdmins isnt a array here!)
|
||||
maxRetries = 9999
|
||||
|
|
17
README.md
17
README.md
|
@ -10,12 +10,6 @@ Kowalski is a a simple Telegram bot made in Node.js.
|
|||
|
||||
- You can find Kowalski at [@KowalskiNodeBot](https://t.me/KowalskiNodeBot) on Telegram.
|
||||
|
||||
## Translations
|
||||
|
||||
<a href="https://weblate.librecloud.cc/engage/kowalski/">
|
||||
<img src="https://weblate.librecloud.cc/widget/kowalski/multi-auto.svg" alt="Translation status" />
|
||||
</a>
|
||||
|
||||
## Self-host requirements
|
||||
|
||||
> [!IMPORTANT]
|
||||
|
@ -26,7 +20,10 @@ Kowalski is a a simple Telegram bot made in Node.js.
|
|||
- FFmpeg (only for the `/yt` command)
|
||||
- Docker and Docker Compose (only required for Docker setup)
|
||||
|
||||
_AI features require a higher-end system with a CPU/GPU_
|
||||
### AI Requirements
|
||||
|
||||
- High-end CPU *or* GPU (~ 6GB vRAM)
|
||||
- If using CPU, enough RAM to load the models (~6GB w/ defaults)
|
||||
|
||||
## Running locally (non-Docker setup)
|
||||
|
||||
|
@ -60,7 +57,7 @@ You can also run Kowalski using Docker, which simplifies the setup process. Make
|
|||
1. **Copy compose file**
|
||||
|
||||
_Without AI (Ollama)_
|
||||
|
||||
|
||||
```bash
|
||||
mv docker-compose.yml.example docker-compose.yml
|
||||
```
|
||||
|
@ -70,7 +67,7 @@ You can also run Kowalski using Docker, which simplifies the setup process. Make
|
|||
```bash
|
||||
mv docker-compose.yml.ai.example docker-compose.yml
|
||||
```
|
||||
|
||||
|
||||
2. **Make sure to setup your `.env` file first!**
|
||||
|
||||
3. **Run the container**
|
||||
|
@ -109,7 +106,9 @@ If you prefer to use Docker directly, you can use these instructions instead.
|
|||
- **botPrivacy**: Put the link to your bot privacy policy.
|
||||
- **maxRetries**: Maximum number of retries for a failing command on Kowalski. Default is 5. If the limit is hit, the bot will crash past this number.
|
||||
- **botToken**: Put your bot token that you created at [@BotFather](https://t.me/botfather).
|
||||
- **ollamaEnabled** (optional): Enables/disables AI features
|
||||
- **ollamaApi** (optional): Ollama API endpoint for various AI features, will be disabled if not set
|
||||
- **handlerTimeout** (default: `600_000`): How long handlers will wait before timing out. Set this high if using large AI models.
|
||||
- **botAdmins**: Put the ID of the people responsible for managing the bot. They can use some administrative + exclusive commands on any group.
|
||||
- **lastKey**: Last.fm API key, for use on `lastfm.js` functions, like see who is listening to what song and etc.
|
||||
- **weatherKey**: Weather.com API key, used for the `/weather` command.
|
||||
|
|
15
src/bot.ts
15
src/bot.ts
|
@ -4,6 +4,7 @@ import fs from 'fs';
|
|||
import { isOnSpamWatch } from './spamwatch/spamwatch';
|
||||
import '@dotenvx/dotenvx';
|
||||
import './plugins/ytDlpWrapper';
|
||||
import { preChecks } from './commands/ai';
|
||||
|
||||
// Ensures bot token is set, and not default value
|
||||
if (!process.env.botToken || process.env.botToken === 'InsertYourBotTokenHere') {
|
||||
|
@ -11,7 +12,17 @@ if (!process.env.botToken || process.env.botToken === 'InsertYourBotTokenHere')
|
|||
process.exit(1)
|
||||
}
|
||||
|
||||
const bot = new Telegraf(process.env.botToken);
|
||||
// Detect AI and run pre-checks
|
||||
if (process.env.ollamaEnabled === "true") {
|
||||
if (!(await preChecks())) {
|
||||
process.exit(1)
|
||||
}
|
||||
}
|
||||
|
||||
const bot = new Telegraf(
|
||||
process.env.botToken,
|
||||
{ handlerTimeout: Number(process.env.handlerTimeout) || 600_000 }
|
||||
);
|
||||
const maxRetries = process.env.maxRetries || 5;
|
||||
let restartCount = 0;
|
||||
|
||||
|
@ -21,7 +32,7 @@ const loadCommands = () => {
|
|||
try {
|
||||
const files = fs.readdirSync(commandsPath)
|
||||
.filter(file => file.endsWith('.ts') || file.endsWith('.js'));
|
||||
|
||||
|
||||
files.forEach((file) => {
|
||||
try {
|
||||
const commandPath = path.join(commandsPath, file);
|
||||
|
|
|
@ -40,8 +40,8 @@ import { rateLimiter } from "../utils/rate-limiter"
|
|||
import { logger } from "../utils/log"
|
||||
|
||||
const spamwatchMiddleware = spamwatchMiddlewareModule(isOnSpamWatch)
|
||||
//const model = "qwen3:0.6b"
|
||||
const model = "deepseek-r1:1.5b"
|
||||
export const flash_model = "gemma3:4b"
|
||||
export const thinking_model = "deepseek-r1:1.5b"
|
||||
|
||||
type TextContext = Context & { message: Message.TextMessage }
|
||||
|
||||
|
@ -54,7 +54,22 @@ export function sanitizeForJson(text: string): string {
|
|||
.replace(/\t/g, '\\t')
|
||||
}
|
||||
|
||||
async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Message) {
|
||||
export async function preChecks() {
|
||||
const envs = [
|
||||
"ollamaApi",
|
||||
]
|
||||
|
||||
for (const env of envs) {
|
||||
if (!process.env[env]) {
|
||||
console.error(`[✨ AI | !] ❌ ${env} not set!`)
|
||||
return false
|
||||
}
|
||||
}
|
||||
console.log("[✨ AI] Pre-checks passed\n")
|
||||
return true
|
||||
}
|
||||
|
||||
async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Message, model: string) {
|
||||
const Strings = getStrings(languageCode(ctx))
|
||||
|
||||
if (!ctx.chat) return {
|
||||
|
@ -74,23 +89,50 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
let fullResponse = ""
|
||||
let thoughts = ""
|
||||
let lastUpdate = Date.now()
|
||||
|
||||
|
||||
for await (const chunk of aiResponse.data) {
|
||||
const lines = chunk.toString().split('\n')
|
||||
for (const line of lines) {
|
||||
if (!line.trim()) continue
|
||||
let ln = JSON.parse(line)
|
||||
|
||||
if (ln.response.includes("<think>")) { logger.logThinking(true) } else if (ln.response.includes("</think>")) { logger.logThinking(false) }
|
||||
|
||||
if (model === thinking_model && ln.response.includes('<think>')) {
|
||||
const thinkMatch = ln.response.match(/<think>([\s\S]*?)<\/think>/)
|
||||
if (thinkMatch) {
|
||||
const innerContent = thinkMatch[1]
|
||||
if (innerContent.trim().length > 0) {
|
||||
logger.logThinking(ctx.chat.id, replyGenerating.message_id, true)
|
||||
}
|
||||
} else {
|
||||
logger.logThinking(ctx.chat.id, replyGenerating.message_id, true)
|
||||
}
|
||||
} else if (model === thinking_model && ln.response.includes('</think>')) {
|
||||
logger.logThinking(ctx.chat.id, replyGenerating.message_id, false)
|
||||
}
|
||||
|
||||
try {
|
||||
const now = Date.now()
|
||||
|
||||
if (ln.response) {
|
||||
const patchedThoughts = ln.response.replace("<think>", "`Thinking...`").replace("</think>", "`Finished thinking`")
|
||||
thoughts += patchedThoughts
|
||||
fullResponse += patchedThoughts
|
||||
|
||||
if (ln.response) {
|
||||
if (model === thinking_model) {
|
||||
let patchedThoughts = ln.response
|
||||
// TODO: hide blank thinking chunks
|
||||
const thinkTagRx = /<think>([\s\S]*?)<\/think>/g
|
||||
patchedThoughts = patchedThoughts.replace(thinkTagRx, (match, p1) => {
|
||||
if (p1.trim().length > 0) {
|
||||
console.log(p1)
|
||||
return '`Thinking...`' + p1 + '`Finished thinking`'
|
||||
} else {
|
||||
return ''
|
||||
}
|
||||
})
|
||||
patchedThoughts = patchedThoughts.replace(/<think>/g, '`Thinking...`')
|
||||
patchedThoughts = patchedThoughts.replace(/<\/think>/g, '`Finished thinking`')
|
||||
thoughts += patchedThoughts
|
||||
fullResponse += patchedThoughts
|
||||
} else {
|
||||
fullResponse += ln.response
|
||||
}
|
||||
if (now - lastUpdate >= 1000) {
|
||||
await rateLimiter.editMessageWithRetry(
|
||||
ctx,
|
||||
|
@ -103,7 +145,7 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
}
|
||||
}
|
||||
} catch (e) {
|
||||
console.error("Error parsing chunk:", e)
|
||||
console.error("[✨ AI | !] Error parsing chunk:", e)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -119,7 +161,7 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
if (error.response.data.error.includes(`model '${model}' not found`) || error.status === 404) {
|
||||
shouldPullModel = true
|
||||
} else {
|
||||
console.error("[!] 1", error.response.data.error)
|
||||
console.error("[✨ AI | !] Error zone 1:", error.response.data.error)
|
||||
return {
|
||||
"success": false,
|
||||
"error": error.response.data.error,
|
||||
|
@ -130,23 +172,25 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
}
|
||||
|
||||
if (shouldPullModel) {
|
||||
ctx.telegram.editMessageText(ctx.chat.id, replyGenerating.message_id, undefined, `🔄 Pulling ${model} from ollama...`)
|
||||
console.log(`[i] Pulling ${model} from ollama...`)
|
||||
ctx.telegram.editMessageText(ctx.chat.id, replyGenerating.message_id, undefined, `🔄 Pulling ${model} from ollama...\n\nThis may take a few minutes...`)
|
||||
console.log(`[✨ AI | i] Pulling ${model} from ollama...`)
|
||||
let pullModelStream: any
|
||||
|
||||
const pullModelStream = await axios.post(`${process.env.ollamaApi}/api/pull`, {
|
||||
model: model,
|
||||
stream: false,
|
||||
})
|
||||
|
||||
if (pullModelStream.data.status !== ("success")) {
|
||||
console.error("[!] Something went wrong:", pullModelStream.data)
|
||||
try {
|
||||
pullModelStream = await axios.post(`${process.env.ollamaApi}/api/pull`, {
|
||||
model: model,
|
||||
stream: false,
|
||||
timeout: process.env.ollamaApiTimeout || 10000,
|
||||
})
|
||||
} catch (e: any) {
|
||||
console.error("[✨ AI | !] Something went wrong:", e.response.data.error)
|
||||
return {
|
||||
"success": false,
|
||||
"error": `❌ Something went wrong while pulling ${model}, please try your command again!`,
|
||||
}
|
||||
}
|
||||
|
||||
console.log("[i] Model pulled successfully")
|
||||
console.log(`[✨ AI | i] ${model} pulled successfully`)
|
||||
return {
|
||||
"success": true,
|
||||
"response": `✅ Pulled ${model} successfully, please retry the command.`,
|
||||
|
@ -154,7 +198,7 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
}
|
||||
|
||||
if (error.response) {
|
||||
console.error("[!] 2", error.response)
|
||||
console.error("[✨ AI | !] Error zone 2:", error.response)
|
||||
return {
|
||||
"success": false,
|
||||
"error": error.response,
|
||||
|
@ -162,7 +206,7 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
}
|
||||
|
||||
if (error.statusText) {
|
||||
console.error("[!] 3", error.statusText)
|
||||
console.error("[✨ AI | !] Error zone 3:", error.statusText)
|
||||
return {
|
||||
"success": false,
|
||||
"error": error.statusText,
|
||||
|
@ -177,15 +221,24 @@ async function getResponse(prompt: string, ctx: TextContext, replyGenerating: Me
|
|||
}
|
||||
|
||||
export default (bot: Telegraf<Context>) => {
|
||||
bot.command("ask", spamwatchMiddleware, async (ctx) => {
|
||||
const botName = bot.botInfo?.first_name && bot.botInfo?.last_name ? `${bot.botInfo.first_name} ${bot.botInfo.last_name}` : "Kowalski"
|
||||
|
||||
bot.command(["ask", "think"], spamwatchMiddleware, async (ctx) => {
|
||||
if (!ctx.message || !('text' in ctx.message)) return;
|
||||
const isAsk = ctx.message.text.startsWith("/ask")
|
||||
const model = isAsk ? flash_model : thinking_model
|
||||
console.log(model)
|
||||
console.log(ctx.message.text)
|
||||
const textCtx = ctx as TextContext;
|
||||
const reply_to_message_id = replyToMessageId(textCtx)
|
||||
const Strings = getStrings(languageCode(textCtx))
|
||||
const message = textCtx.message.text
|
||||
const author = ("@" + ctx.from?.username) || ctx.from?.first_name
|
||||
|
||||
logger.logCmdStart(author)
|
||||
logger.logCmdStart(
|
||||
author,
|
||||
model === flash_model ? "ask" : "think"
|
||||
)
|
||||
|
||||
if (!process.env.ollamaApi) {
|
||||
await ctx.reply(Strings.aiDisabled, {
|
||||
|
@ -212,12 +265,14 @@ export default (bot: Telegraf<Context>) => {
|
|||
logger.logPrompt(fixedMsg)
|
||||
|
||||
const prompt = sanitizeForJson(
|
||||
`You are a helpful assistant named Kowalski, who has been given a message from a user.
|
||||
`You are a helpful assistant called ${botName}.
|
||||
Current Date/Time (UTC): ${new Date().toLocaleString()}
|
||||
|
||||
The message is:
|
||||
---
|
||||
|
||||
Respond to the user's message:
|
||||
${fixedMsg}`)
|
||||
const aiResponse = await getResponse(prompt, textCtx, replyGenerating)
|
||||
const aiResponse = await getResponse(prompt, textCtx, replyGenerating, model)
|
||||
if (!aiResponse) return
|
||||
|
||||
if (aiResponse.success && aiResponse.response) {
|
||||
|
@ -239,7 +294,6 @@ ${fixedMsg}`)
|
|||
error,
|
||||
{ parse_mode: 'Markdown' }
|
||||
)
|
||||
console.error("[!] Error sending response:", aiResponse.error)
|
||||
}
|
||||
})
|
||||
}
|
|
@ -28,6 +28,8 @@
|
|||
//
|
||||
// For more information, please refer to <https://unlicense.org/>
|
||||
|
||||
import { flash_model, thinking_model } from "../commands/ai"
|
||||
|
||||
class Logger {
|
||||
private static instance: Logger
|
||||
private thinking: boolean = false
|
||||
|
@ -41,42 +43,42 @@ class Logger {
|
|||
return Logger.instance
|
||||
}
|
||||
|
||||
logCmdStart(user: string): void {
|
||||
console.log(`[START] Received /ask from ${user}`)
|
||||
logCmdStart(user: string, type: "ask" | "think"): void {
|
||||
console.log(`\n[✨ AI | START] Received /${type} for model ${type === "ask" ? flash_model : thinking_model} from ${user}`)
|
||||
}
|
||||
|
||||
logThinking(thinking: boolean): void {
|
||||
logThinking(chatId: number, messageId: number, thinking: boolean): void {
|
||||
if (thinking) {
|
||||
console.log("[THINKING] Started")
|
||||
console.log(`[✨ AI | THINKING | ${chatId}:${messageId}] Model started thinking`)
|
||||
} else {
|
||||
console.log("[THINKING] Ended")
|
||||
console.log(`[✨ AI | THINKING | ${chatId}:${messageId}] Model stopped thinking`)
|
||||
}
|
||||
}
|
||||
|
||||
logChunk(chatId: number, messageId: number, text: string, isOverflow: boolean = false): void {
|
||||
const prefix = isOverflow ? "[OVERFLOW]" : "[CHUNK]"
|
||||
console.log(`${prefix} [${chatId}:${messageId}] ${text.length} chars`)
|
||||
const prefix = isOverflow ? "[✨ AI | OVERFLOW]" : "[✨ AI | CHUNK]"
|
||||
console.log(`${prefix} [${chatId}:${messageId}] ${text.length} chars pushed to Telegram`)
|
||||
}
|
||||
|
||||
logPrompt(prompt: string): void {
|
||||
console.log(`[PROMPT] ${prompt.length} chars: ${prompt.substring(0, 50)}${prompt.length > 50 ? "..." : ""}`)
|
||||
console.log(`[✨ AI | PROMPT] ${prompt.length} chars: ${prompt.substring(0, 50)}${prompt.length > 50 ? "..." : ""}`)
|
||||
}
|
||||
|
||||
logError(error: any): void {
|
||||
if (error.response?.error_code === 429) {
|
||||
const retryAfter = error.response.parameters?.retry_after || 1
|
||||
console.error(`[RATE_LIMIT] Too Many Requests - retry after ${retryAfter}s`)
|
||||
console.error(`[✨ AI | RATE_LIMIT] Too Many Requests - retry after ${retryAfter}s`)
|
||||
} else if (error.response?.error_code === 400 && error.response?.description?.includes("can't parse entities")) {
|
||||
console.error("[PARSE_ERROR] Markdown parsing failed, retrying with plain text")
|
||||
console.error("[✨ AI | PARSE_ERROR] Markdown parsing failed, retrying with plain text")
|
||||
} else {
|
||||
const errorDetails = {
|
||||
code: error.response?.error_code,
|
||||
description: error.response?.description,
|
||||
method: error.on?.method
|
||||
}
|
||||
console.error("[ERROR]", JSON.stringify(errorDetails, null, 2))
|
||||
console.error("[✨ AI | ERROR]", JSON.stringify(errorDetails, null, 2))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
export const logger = Logger.getInstance()
|
||||
export const logger = Logger.getInstance()
|
|
@ -80,7 +80,7 @@ class RateLimiter {
|
|||
const timeout = setTimeout(() => {
|
||||
this.processUpdate(ctx, chatId, messageId, options)
|
||||
}, this.minInterval - timeSinceLastEdit)
|
||||
|
||||
|
||||
this.updateQueue.set(messageKey, timeout)
|
||||
return
|
||||
}
|
||||
|
@ -124,7 +124,7 @@ class RateLimiter {
|
|||
|
||||
const firstChunk = chunks[0]
|
||||
logger.logChunk(chatId, messageId, firstChunk)
|
||||
|
||||
|
||||
try {
|
||||
await ctx.telegram.editMessageText(chatId, messageId, undefined, firstChunk, options)
|
||||
} catch (error: any) {
|
||||
|
@ -136,11 +136,11 @@ class RateLimiter {
|
|||
for (let i = 1; i < chunks.length; i++) {
|
||||
const chunk = chunks[i]
|
||||
const overflowMessageId = this.overflowMessages.get(messageKey)
|
||||
|
||||
|
||||
if (overflowMessageId) {
|
||||
logger.logChunk(chatId, overflowMessageId, chunk, true)
|
||||
try {
|
||||
await ctx.telegram.editMessageText(chatId, overflowMessageId, undefined, chunk, options)
|
||||
logger.logChunk(chatId, overflowMessageId, chunk, true)
|
||||
} catch (error: any) {
|
||||
if (!error.response?.description?.includes("message is not modified")) {
|
||||
throw error
|
||||
|
@ -166,7 +166,7 @@ class RateLimiter {
|
|||
} else {
|
||||
const sanitizedText = latestText
|
||||
logger.logChunk(chatId, messageId, sanitizedText)
|
||||
|
||||
|
||||
try {
|
||||
await ctx.telegram.editMessageText(chatId, messageId, undefined, sanitizedText, options)
|
||||
} catch (error: any) {
|
||||
|
@ -184,7 +184,7 @@ class RateLimiter {
|
|||
const retryAfter = error.response.parameters?.retry_after || 1
|
||||
this.isRateLimited = true
|
||||
this.rateLimitEndTime = Date.now() + (retryAfter * 1000)
|
||||
|
||||
|
||||
const existingTimeout = this.updateQueue.get(messageKey)
|
||||
if (existingTimeout) {
|
||||
clearTimeout(existingTimeout)
|
||||
|
@ -193,7 +193,7 @@ class RateLimiter {
|
|||
const timeout = setTimeout(() => {
|
||||
this.processUpdate(ctx, chatId, messageId, options)
|
||||
}, retryAfter * 1000)
|
||||
|
||||
|
||||
this.updateQueue.set(messageKey, timeout)
|
||||
} else if (error.response?.error_code === 400) {
|
||||
if (error.response?.description?.includes("can't parse entities")) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue