mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-07 08:48:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
362
Documentation/arm/OMAP/DSS
Normal file
362
Documentation/arm/OMAP/DSS
Normal file
|
@ -0,0 +1,362 @@
|
|||
OMAP2/3 Display Subsystem
|
||||
-------------------------
|
||||
|
||||
This is an almost total rewrite of the OMAP FB driver in drivers/video/omap
|
||||
(let's call it DSS1). The main differences between DSS1 and DSS2 are DSI,
|
||||
TV-out and multiple display support, but there are lots of small improvements
|
||||
also.
|
||||
|
||||
The DSS2 driver (omapdss module) is in arch/arm/plat-omap/dss/, and the FB,
|
||||
panel and controller drivers are in drivers/video/omap2/. DSS1 and DSS2 live
|
||||
currently side by side, you can choose which one to use.
|
||||
|
||||
Features
|
||||
--------
|
||||
|
||||
Working and tested features include:
|
||||
|
||||
- MIPI DPI (parallel) output
|
||||
- MIPI DSI output in command mode
|
||||
- MIPI DBI (RFBI) output
|
||||
- SDI output
|
||||
- TV output
|
||||
- All pieces can be compiled as a module or inside kernel
|
||||
- Use DISPC to update any of the outputs
|
||||
- Use CPU to update RFBI or DSI output
|
||||
- OMAP DISPC planes
|
||||
- RGB16, RGB24 packed, RGB24 unpacked
|
||||
- YUV2, UYVY
|
||||
- Scaling
|
||||
- Adjusting DSS FCK to find a good pixel clock
|
||||
- Use DSI DPLL to create DSS FCK
|
||||
|
||||
Tested boards include:
|
||||
- OMAP3 SDP board
|
||||
- Beagle board
|
||||
- N810
|
||||
|
||||
omapdss driver
|
||||
--------------
|
||||
|
||||
The DSS driver does not itself have any support for Linux framebuffer, V4L or
|
||||
such like the current ones, but it has an internal kernel API that upper level
|
||||
drivers can use.
|
||||
|
||||
The DSS driver models OMAP's overlays, overlay managers and displays in a
|
||||
flexible way to enable non-common multi-display configuration. In addition to
|
||||
modelling the hardware overlays, omapdss supports virtual overlays and overlay
|
||||
managers. These can be used when updating a display with CPU or system DMA.
|
||||
|
||||
omapdss driver support for audio
|
||||
--------------------------------
|
||||
There exist several display technologies and standards that support audio as
|
||||
well. Hence, it is relevant to update the DSS device driver to provide an audio
|
||||
interface that may be used by an audio driver or any other driver interested in
|
||||
the functionality.
|
||||
|
||||
The audio_enable function is intended to prepare the relevant
|
||||
IP for playback (e.g., enabling an audio FIFO, taking in/out of reset
|
||||
some IP, enabling companion chips, etc). It is intended to be called before
|
||||
audio_start. The audio_disable function performs the reverse operation and is
|
||||
intended to be called after audio_stop.
|
||||
|
||||
While a given DSS device driver may support audio, it is possible that for
|
||||
certain configurations audio is not supported (e.g., an HDMI display using a
|
||||
VESA video timing). The audio_supported function is intended to query whether
|
||||
the current configuration of the display supports audio.
|
||||
|
||||
The audio_config function is intended to configure all the relevant audio
|
||||
parameters of the display. In order to make the function independent of any
|
||||
specific DSS device driver, a struct omap_dss_audio is defined. Its purpose
|
||||
is to contain all the required parameters for audio configuration. At the
|
||||
moment, such structure contains pointers to IEC-60958 channel status word
|
||||
and CEA-861 audio infoframe structures. This should be enough to support
|
||||
HDMI and DisplayPort, as both are based on CEA-861 and IEC-60958.
|
||||
|
||||
The audio_enable/disable, audio_config and audio_supported functions could be
|
||||
implemented as functions that may sleep. Hence, they should not be called
|
||||
while holding a spinlock or a readlock.
|
||||
|
||||
The audio_start/audio_stop function is intended to effectively start/stop audio
|
||||
playback after the configuration has taken place. These functions are designed
|
||||
to be used in an atomic context. Hence, audio_start should return quickly and be
|
||||
called only after all the needed resources for audio playback (audio FIFOs,
|
||||
DMA channels, companion chips, etc) have been enabled to begin data transfers.
|
||||
audio_stop is designed to only stop the audio transfers. The resources used
|
||||
for playback are released using audio_disable.
|
||||
|
||||
The enum omap_dss_audio_state may be used to help the implementations of
|
||||
the interface to keep track of the audio state. The initial state is _DISABLED;
|
||||
then, the state transitions to _CONFIGURED, and then, when it is ready to
|
||||
play audio, to _ENABLED. The state _PLAYING is used when the audio is being
|
||||
rendered.
|
||||
|
||||
|
||||
Panel and controller drivers
|
||||
----------------------------
|
||||
|
||||
The drivers implement panel or controller specific functionality and are not
|
||||
usually visible to users except through omapfb driver. They register
|
||||
themselves to the DSS driver.
|
||||
|
||||
omapfb driver
|
||||
-------------
|
||||
|
||||
The omapfb driver implements arbitrary number of standard linux framebuffers.
|
||||
These framebuffers can be routed flexibly to any overlays, thus allowing very
|
||||
dynamic display architecture.
|
||||
|
||||
The driver exports some omapfb specific ioctls, which are compatible with the
|
||||
ioctls in the old driver.
|
||||
|
||||
The rest of the non standard features are exported via sysfs. Whether the final
|
||||
implementation will use sysfs, or ioctls, is still open.
|
||||
|
||||
V4L2 drivers
|
||||
------------
|
||||
|
||||
V4L2 is being implemented in TI.
|
||||
|
||||
From omapdss point of view the V4L2 drivers should be similar to framebuffer
|
||||
driver.
|
||||
|
||||
Architecture
|
||||
--------------------
|
||||
|
||||
Some clarification what the different components do:
|
||||
|
||||
- Framebuffer is a memory area inside OMAP's SRAM/SDRAM that contains the
|
||||
pixel data for the image. Framebuffer has width and height and color
|
||||
depth.
|
||||
- Overlay defines where the pixels are read from and where they go on the
|
||||
screen. The overlay may be smaller than framebuffer, thus displaying only
|
||||
part of the framebuffer. The position of the overlay may be changed if
|
||||
the overlay is smaller than the display.
|
||||
- Overlay manager combines the overlays in to one image and feeds them to
|
||||
display.
|
||||
- Display is the actual physical display device.
|
||||
|
||||
A framebuffer can be connected to multiple overlays to show the same pixel data
|
||||
on all of the overlays. Note that in this case the overlay input sizes must be
|
||||
the same, but, in case of video overlays, the output size can be different. Any
|
||||
framebuffer can be connected to any overlay.
|
||||
|
||||
An overlay can be connected to one overlay manager. Also DISPC overlays can be
|
||||
connected only to DISPC overlay managers, and virtual overlays can be only
|
||||
connected to virtual overlays.
|
||||
|
||||
An overlay manager can be connected to one display. There are certain
|
||||
restrictions which kinds of displays an overlay manager can be connected:
|
||||
|
||||
- DISPC TV overlay manager can be only connected to TV display.
|
||||
- Virtual overlay managers can only be connected to DBI or DSI displays.
|
||||
- DISPC LCD overlay manager can be connected to all displays, except TV
|
||||
display.
|
||||
|
||||
Sysfs
|
||||
-----
|
||||
The sysfs interface is mainly used for testing. I don't think sysfs
|
||||
interface is the best for this in the final version, but I don't quite know
|
||||
what would be the best interfaces for these things.
|
||||
|
||||
The sysfs interface is divided to two parts: DSS and FB.
|
||||
|
||||
/sys/class/graphics/fb? directory:
|
||||
mirror 0=off, 1=on
|
||||
rotate Rotation 0-3 for 0, 90, 180, 270 degrees
|
||||
rotate_type 0 = DMA rotation, 1 = VRFB rotation
|
||||
overlays List of overlay numbers to which framebuffer pixels go
|
||||
phys_addr Physical address of the framebuffer
|
||||
virt_addr Virtual address of the framebuffer
|
||||
size Size of the framebuffer
|
||||
|
||||
/sys/devices/platform/omapdss/overlay? directory:
|
||||
enabled 0=off, 1=on
|
||||
input_size width,height (ie. the framebuffer size)
|
||||
manager Destination overlay manager name
|
||||
name
|
||||
output_size width,height
|
||||
position x,y
|
||||
screen_width width
|
||||
global_alpha global alpha 0-255 0=transparent 255=opaque
|
||||
|
||||
/sys/devices/platform/omapdss/manager? directory:
|
||||
display Destination display
|
||||
name
|
||||
alpha_blending_enabled 0=off, 1=on
|
||||
trans_key_enabled 0=off, 1=on
|
||||
trans_key_type gfx-destination, video-source
|
||||
trans_key_value transparency color key (RGB24)
|
||||
default_color default background color (RGB24)
|
||||
|
||||
/sys/devices/platform/omapdss/display? directory:
|
||||
ctrl_name Controller name
|
||||
mirror 0=off, 1=on
|
||||
update_mode 0=off, 1=auto, 2=manual
|
||||
enabled 0=off, 1=on
|
||||
name
|
||||
rotate Rotation 0-3 for 0, 90, 180, 270 degrees
|
||||
timings Display timings (pixclock,xres/hfp/hbp/hsw,yres/vfp/vbp/vsw)
|
||||
When writing, two special timings are accepted for tv-out:
|
||||
"pal" and "ntsc"
|
||||
panel_name
|
||||
tear_elim Tearing elimination 0=off, 1=on
|
||||
output_type Output type (video encoder only): "composite" or "svideo"
|
||||
|
||||
There are also some debugfs files at <debugfs>/omapdss/ which show information
|
||||
about clocks and registers.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
The following definitions have been made for the examples below:
|
||||
|
||||
ovl0=/sys/devices/platform/omapdss/overlay0
|
||||
ovl1=/sys/devices/platform/omapdss/overlay1
|
||||
ovl2=/sys/devices/platform/omapdss/overlay2
|
||||
|
||||
mgr0=/sys/devices/platform/omapdss/manager0
|
||||
mgr1=/sys/devices/platform/omapdss/manager1
|
||||
|
||||
lcd=/sys/devices/platform/omapdss/display0
|
||||
dvi=/sys/devices/platform/omapdss/display1
|
||||
tv=/sys/devices/platform/omapdss/display2
|
||||
|
||||
fb0=/sys/class/graphics/fb0
|
||||
fb1=/sys/class/graphics/fb1
|
||||
fb2=/sys/class/graphics/fb2
|
||||
|
||||
Default setup on OMAP3 SDP
|
||||
--------------------------
|
||||
|
||||
Here's the default setup on OMAP3 SDP board. All planes go to LCD. DVI
|
||||
and TV-out are not in use. The columns from left to right are:
|
||||
framebuffers, overlays, overlay managers, displays. Framebuffers are
|
||||
handled by omapfb, and the rest by the DSS.
|
||||
|
||||
FB0 --- GFX -\ DVI
|
||||
FB1 --- VID1 --+- LCD ---- LCD
|
||||
FB2 --- VID2 -/ TV ----- TV
|
||||
|
||||
Example: Switch from LCD to DVI
|
||||
----------------------
|
||||
|
||||
w=`cat $dvi/timings | cut -d "," -f 2 | cut -d "/" -f 1`
|
||||
h=`cat $dvi/timings | cut -d "," -f 3 | cut -d "/" -f 1`
|
||||
|
||||
echo "0" > $lcd/enabled
|
||||
echo "" > $mgr0/display
|
||||
fbset -fb /dev/fb0 -xres $w -yres $h -vxres $w -vyres $h
|
||||
# at this point you have to switch the dvi/lcd dip-switch from the omap board
|
||||
echo "dvi" > $mgr0/display
|
||||
echo "1" > $dvi/enabled
|
||||
|
||||
After this the configuration looks like:
|
||||
|
||||
FB0 --- GFX -\ -- DVI
|
||||
FB1 --- VID1 --+- LCD -/ LCD
|
||||
FB2 --- VID2 -/ TV ----- TV
|
||||
|
||||
Example: Clone GFX overlay to LCD and TV
|
||||
-------------------------------
|
||||
|
||||
w=`cat $tv/timings | cut -d "," -f 2 | cut -d "/" -f 1`
|
||||
h=`cat $tv/timings | cut -d "," -f 3 | cut -d "/" -f 1`
|
||||
|
||||
echo "0" > $ovl0/enabled
|
||||
echo "0" > $ovl1/enabled
|
||||
|
||||
echo "" > $fb1/overlays
|
||||
echo "0,1" > $fb0/overlays
|
||||
|
||||
echo "$w,$h" > $ovl1/output_size
|
||||
echo "tv" > $ovl1/manager
|
||||
|
||||
echo "1" > $ovl0/enabled
|
||||
echo "1" > $ovl1/enabled
|
||||
|
||||
echo "1" > $tv/enabled
|
||||
|
||||
After this the configuration looks like (only relevant parts shown):
|
||||
|
||||
FB0 +-- GFX ---- LCD ---- LCD
|
||||
\- VID1 ---- TV ---- TV
|
||||
|
||||
Misc notes
|
||||
----------
|
||||
|
||||
OMAP FB allocates the framebuffer memory using the standard dma allocator. You
|
||||
can enable Contiguous Memory Allocator (CONFIG_CMA) to improve the dma
|
||||
allocator, and if CMA is enabled, you use "cma=" kernel parameter to increase
|
||||
the global memory area for CMA.
|
||||
|
||||
Using DSI DPLL to generate pixel clock it is possible produce the pixel clock
|
||||
of 86.5MHz (max possible), and with that you get 1280x1024@57 output from DVI.
|
||||
|
||||
Rotation and mirroring currently only supports RGB565 and RGB8888 modes. VRFB
|
||||
does not support mirroring.
|
||||
|
||||
VRFB rotation requires much more memory than non-rotated framebuffer, so you
|
||||
probably need to increase your vram setting before using VRFB rotation. Also,
|
||||
many applications may not work with VRFB if they do not pay attention to all
|
||||
framebuffer parameters.
|
||||
|
||||
Kernel boot arguments
|
||||
---------------------
|
||||
|
||||
omapfb.mode=<display>:<mode>[,...]
|
||||
- Default video mode for specified displays. For example,
|
||||
"dvi:800x400MR-24@60". See drivers/video/modedb.c.
|
||||
There are also two special modes: "pal" and "ntsc" that
|
||||
can be used to tv out.
|
||||
|
||||
omapfb.vram=<fbnum>:<size>[@<physaddr>][,...]
|
||||
- VRAM allocated for a framebuffer. Normally omapfb allocates vram
|
||||
depending on the display size. With this you can manually allocate
|
||||
more or define the physical address of each framebuffer. For example,
|
||||
"1:4M" to allocate 4M for fb1.
|
||||
|
||||
omapfb.debug=<y|n>
|
||||
- Enable debug printing. You have to have OMAPFB debug support enabled
|
||||
in kernel config.
|
||||
|
||||
omapfb.test=<y|n>
|
||||
- Draw test pattern to framebuffer whenever framebuffer settings change.
|
||||
You need to have OMAPFB debug support enabled in kernel config.
|
||||
|
||||
omapfb.vrfb=<y|n>
|
||||
- Use VRFB rotation for all framebuffers.
|
||||
|
||||
omapfb.rotate=<angle>
|
||||
- Default rotation applied to all framebuffers.
|
||||
0 - 0 degree rotation
|
||||
1 - 90 degree rotation
|
||||
2 - 180 degree rotation
|
||||
3 - 270 degree rotation
|
||||
|
||||
omapfb.mirror=<y|n>
|
||||
- Default mirror for all framebuffers. Only works with DMA rotation.
|
||||
|
||||
omapdss.def_disp=<display>
|
||||
- Name of default display, to which all overlays will be connected.
|
||||
Common examples are "lcd" or "tv".
|
||||
|
||||
omapdss.debug=<y|n>
|
||||
- Enable debug printing. You have to have DSS debug support enabled in
|
||||
kernel config.
|
||||
|
||||
TODO
|
||||
----
|
||||
|
||||
DSS locking
|
||||
|
||||
Error checking
|
||||
- Lots of checks are missing or implemented just as BUG()
|
||||
|
||||
System DMA update for DSI
|
||||
- Can be used for RGB16 and RGB24P modes. Probably not for RGB24U (how
|
||||
to skip the empty byte?)
|
||||
|
||||
OMAP1 support
|
||||
- Not sure if needed
|
||||
|
154
Documentation/arm/OMAP/omap_pm
Normal file
154
Documentation/arm/OMAP/omap_pm
Normal file
|
@ -0,0 +1,154 @@
|
|||
|
||||
The OMAP PM interface
|
||||
=====================
|
||||
|
||||
This document describes the temporary OMAP PM interface. Driver
|
||||
authors use these functions to communicate minimum latency or
|
||||
throughput constraints to the kernel power management code.
|
||||
Over time, the intention is to merge features from the OMAP PM
|
||||
interface into the Linux PM QoS code.
|
||||
|
||||
Drivers need to express PM parameters which:
|
||||
|
||||
- support the range of power management parameters present in the TI SRF;
|
||||
|
||||
- separate the drivers from the underlying PM parameter
|
||||
implementation, whether it is the TI SRF or Linux PM QoS or Linux
|
||||
latency framework or something else;
|
||||
|
||||
- specify PM parameters in terms of fundamental units, such as
|
||||
latency and throughput, rather than units which are specific to OMAP
|
||||
or to particular OMAP variants;
|
||||
|
||||
- allow drivers which are shared with other architectures (e.g.,
|
||||
DaVinci) to add these constraints in a way which won't affect non-OMAP
|
||||
systems,
|
||||
|
||||
- can be implemented immediately with minimal disruption of other
|
||||
architectures.
|
||||
|
||||
|
||||
This document proposes the OMAP PM interface, including the following
|
||||
five power management functions for driver code:
|
||||
|
||||
1. Set the maximum MPU wakeup latency:
|
||||
(*pdata->set_max_mpu_wakeup_lat)(struct device *dev, unsigned long t)
|
||||
|
||||
2. Set the maximum device wakeup latency:
|
||||
(*pdata->set_max_dev_wakeup_lat)(struct device *dev, unsigned long t)
|
||||
|
||||
3. Set the maximum system DMA transfer start latency (CORE pwrdm):
|
||||
(*pdata->set_max_sdma_lat)(struct device *dev, long t)
|
||||
|
||||
4. Set the minimum bus throughput needed by a device:
|
||||
(*pdata->set_min_bus_tput)(struct device *dev, u8 agent_id, unsigned long r)
|
||||
|
||||
5. Return the number of times the device has lost context
|
||||
(*pdata->get_dev_context_loss_count)(struct device *dev)
|
||||
|
||||
|
||||
Further documentation for all OMAP PM interface functions can be
|
||||
found in arch/arm/plat-omap/include/mach/omap-pm.h.
|
||||
|
||||
|
||||
The OMAP PM layer is intended to be temporary
|
||||
---------------------------------------------
|
||||
|
||||
The intention is that eventually the Linux PM QoS layer should support
|
||||
the range of power management features present in OMAP3. As this
|
||||
happens, existing drivers using the OMAP PM interface can be modified
|
||||
to use the Linux PM QoS code; and the OMAP PM interface can disappear.
|
||||
|
||||
|
||||
Driver usage of the OMAP PM functions
|
||||
-------------------------------------
|
||||
|
||||
As the 'pdata' in the above examples indicates, these functions are
|
||||
exposed to drivers through function pointers in driver .platform_data
|
||||
structures. The function pointers are initialized by the board-*.c
|
||||
files to point to the corresponding OMAP PM functions:
|
||||
.set_max_dev_wakeup_lat will point to
|
||||
omap_pm_set_max_dev_wakeup_lat(), etc. Other architectures which do
|
||||
not support these functions should leave these function pointers set
|
||||
to NULL. Drivers should use the following idiom:
|
||||
|
||||
if (pdata->set_max_dev_wakeup_lat)
|
||||
(*pdata->set_max_dev_wakeup_lat)(dev, t);
|
||||
|
||||
The most common usage of these functions will probably be to specify
|
||||
the maximum time from when an interrupt occurs, to when the device
|
||||
becomes accessible. To accomplish this, driver writers should use the
|
||||
set_max_mpu_wakeup_lat() function to constrain the MPU wakeup
|
||||
latency, and the set_max_dev_wakeup_lat() function to constrain the
|
||||
device wakeup latency (from clk_enable() to accessibility). For
|
||||
example,
|
||||
|
||||
/* Limit MPU wakeup latency */
|
||||
if (pdata->set_max_mpu_wakeup_lat)
|
||||
(*pdata->set_max_mpu_wakeup_lat)(dev, tc);
|
||||
|
||||
/* Limit device powerdomain wakeup latency */
|
||||
if (pdata->set_max_dev_wakeup_lat)
|
||||
(*pdata->set_max_dev_wakeup_lat)(dev, td);
|
||||
|
||||
/* total wakeup latency in this example: (tc + td) */
|
||||
|
||||
The PM parameters can be overwritten by calling the function again
|
||||
with the new value. The settings can be removed by calling the
|
||||
function with a t argument of -1 (except in the case of
|
||||
set_max_bus_tput(), which should be called with an r argument of 0).
|
||||
|
||||
The fifth function above, omap_pm_get_dev_context_loss_count(),
|
||||
is intended as an optimization to allow drivers to determine whether the
|
||||
device has lost its internal context. If context has been lost, the
|
||||
driver must restore its internal context before proceeding.
|
||||
|
||||
|
||||
Other specialized interface functions
|
||||
-------------------------------------
|
||||
|
||||
The five functions listed above are intended to be usable by any
|
||||
device driver. DSPBridge and CPUFreq have a few special requirements.
|
||||
DSPBridge expresses target DSP performance levels in terms of OPP IDs.
|
||||
CPUFreq expresses target MPU performance levels in terms of MPU
|
||||
frequency. The OMAP PM interface contains functions for these
|
||||
specialized cases to convert that input information (OPPs/MPU
|
||||
frequency) into the form that the underlying power management
|
||||
implementation needs:
|
||||
|
||||
6. (*pdata->dsp_get_opp_table)(void)
|
||||
|
||||
7. (*pdata->dsp_set_min_opp)(u8 opp_id)
|
||||
|
||||
8. (*pdata->dsp_get_opp)(void)
|
||||
|
||||
9. (*pdata->cpu_get_freq_table)(void)
|
||||
|
||||
10. (*pdata->cpu_set_freq)(unsigned long f)
|
||||
|
||||
11. (*pdata->cpu_get_freq)(void)
|
||||
|
||||
Customizing OPP for platform
|
||||
============================
|
||||
Defining CONFIG_PM should enable OPP layer for the silicon
|
||||
and the registration of OPP table should take place automatically.
|
||||
However, in special cases, the default OPP table may need to be
|
||||
tweaked, for e.g.:
|
||||
* enable default OPPs which are disabled by default, but which
|
||||
could be enabled on a platform
|
||||
* Disable an unsupported OPP on the platform
|
||||
* Define and add a custom opp table entry
|
||||
in these cases, the board file needs to do additional steps as follows:
|
||||
arch/arm/mach-omapx/board-xyz.c
|
||||
#include "pm.h"
|
||||
....
|
||||
static void __init omap_xyz_init_irq(void)
|
||||
{
|
||||
....
|
||||
/* Initialize the default table */
|
||||
omapx_opp_init();
|
||||
/* Do customization to the defaults */
|
||||
....
|
||||
}
|
||||
NOTE: omapx_opp_init will be omap3_opp_init or as required
|
||||
based on the omap family.
|
Loading…
Add table
Add a link
Reference in a new issue