Fixed MTP to work with TWRP

This commit is contained in:
awab228 2018-06-19 23:16:04 +02:00
commit f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions

View file

@ -0,0 +1,38 @@
TB10x Top Level Interrupt Controller
====================================
The Abilis TB10x SOC contains a custom interrupt controller. It performs
one-to-one mapping of external interrupt sources to CPU interrupts and
provides support for reconfigurable trigger modes.
Required properties
-------------------
- compatible: Should be "abilis,tb10x-ictl"
- reg: specifies physical base address and size of register range.
- interrupt-congroller: Identifies the node as an interrupt controller.
- #interrupt cells: Specifies the number of cells used to encode an interrupt
source connected to this controller. The value shall be 2.
- interrupt-parent: Specifies the parent interrupt controller.
- interrupts: Specifies the list of interrupt lines which are handled by
the interrupt controller in the parent controller's notation. Interrupts
are mapped one-to-one to parent interrupts.
Example
-------
intc: interrupt-controller { /* Parent interrupt controller */
interrupt-controller;
#interrupt-cells = <1>; /* For example below */
/* ... */
};
tb10x_ictl: pic@2000 { /* TB10x interrupt controller */
compatible = "abilis,tb10x-ictl";
reg = <0x2000 0x20>;
interrupt-controller;
#interrupt-cells = <2>;
interrupt-parent = <&intc>;
interrupts = <5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29 30 31>;
};

View file

@ -0,0 +1,18 @@
Allwinner Sunxi Interrupt Controller
Required properties:
- compatible : should be "allwinner,sun4i-a10-ic"
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 1.
Example:
intc: interrupt-controller {
compatible = "allwinner,sun4i-a10-ic";
reg = <0x01c20400 0x400>;
interrupt-controller;
#interrupt-cells = <1>;
};

View file

@ -0,0 +1,27 @@
Allwinner Sunxi NMI Controller
==============================
Required properties:
- compatible : should be "allwinner,sun7i-a20-sc-nmi" or
"allwinner,sun6i-a31-sc-nmi"
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 2. The first cell is the IRQ number, the
second cell the trigger type as defined in interrupt.txt in this directory.
- interrupt-parent: Specifies the parent interrupt controller.
- interrupts: Specifies the interrupt line (NMI) which is handled by
the interrupt controller in the parent controller's notation. This value
shall be the NMI.
Example:
sc-nmi-intc@01c00030 {
compatible = "allwinner,sun7i-a20-sc-nmi";
interrupt-controller;
#interrupt-cells = <2>;
reg = <0x01c00030 0x0c>;
interrupt-parent = <&gic>;
interrupts = <0 0 4>;
};

View file

@ -0,0 +1,42 @@
* Advanced Interrupt Controller (AIC)
Required properties:
- compatible: Should be "atmel,<chip>-aic"
<chip> can be "at91rm9200", "sama5d3" or "sama5d4"
- interrupt-controller: Identifies the node as an interrupt controller.
- interrupt-parent: For single AIC system, it is an empty property.
- #interrupt-cells: The number of cells to define the interrupts. It should be 3.
The first cell is the IRQ number (aka "Peripheral IDentifier" on datasheet).
The second cell is used to specify flags:
bits[3:0] trigger type and level flags:
1 = low-to-high edge triggered.
2 = high-to-low edge triggered.
4 = active high level-sensitive.
8 = active low level-sensitive.
Valid combinations are 1, 2, 3, 4, 8.
Default flag for internal sources should be set to 4 (active high).
The third cell is used to specify the irq priority from 0 (lowest) to 7
(highest).
- reg: Should contain AIC registers location and length
- atmel,external-irqs: u32 array of external irqs.
Examples:
/*
* AIC
*/
aic: interrupt-controller@fffff000 {
compatible = "atmel,at91rm9200-aic";
interrupt-controller;
interrupt-parent;
#interrupt-cells = <3>;
reg = <0xfffff000 0x200>;
};
/*
* An interrupt generating device that is wired to an AIC.
*/
dma: dma-controller@ffffec00 {
compatible = "atmel,at91sam9g45-dma";
reg = <0xffffec00 0x200>;
interrupts = <21 4 5>;
};

View file

@ -0,0 +1,110 @@
BCM2835 Top-Level ("ARMCTRL") Interrupt Controller
The BCM2835 contains a custom top-level interrupt controller, which supports
72 interrupt sources using a 2-level register scheme. The interrupt
controller, or the HW block containing it, is referred to occasionally
as "armctrl" in the SoC documentation, hence naming of this binding.
Required properties:
- compatible : should be "brcm,bcm2835-armctrl-ic"
- reg : Specifies base physical address and size of the registers.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 2.
The 1st cell is the interrupt bank; 0 for interrupts in the "IRQ basic
pending" register, or 1/2 respectively for interrupts in the "IRQ pending
1/2" register.
The 2nd cell contains the interrupt number within the bank. Valid values
are 0..7 for bank 0, and 0..31 for bank 1.
The interrupt sources are as follows:
Bank 0:
0: ARM_TIMER
1: ARM_MAILBOX
2: ARM_DOORBELL_0
3: ARM_DOORBELL_1
4: VPU0_HALTED
5: VPU1_HALTED
6: ILLEGAL_TYPE0
7: ILLEGAL_TYPE1
Bank 1:
0: TIMER0
1: TIMER1
2: TIMER2
3: TIMER3
4: CODEC0
5: CODEC1
6: CODEC2
7: VC_JPEG
8: ISP
9: VC_USB
10: VC_3D
11: TRANSPOSER
12: MULTICORESYNC0
13: MULTICORESYNC1
14: MULTICORESYNC2
15: MULTICORESYNC3
16: DMA0
17: DMA1
18: VC_DMA2
19: VC_DMA3
20: DMA4
21: DMA5
22: DMA6
23: DMA7
24: DMA8
25: DMA9
26: DMA10
27: DMA11
28: DMA12
29: AUX
30: ARM
31: VPUDMA
Bank 2:
0: HOSTPORT
1: VIDEOSCALER
2: CCP2TX
3: SDC
4: DSI0
5: AVE
6: CAM0
7: CAM1
8: HDMI0
9: HDMI1
10: PIXELVALVE1
11: I2CSPISLV
12: DSI1
13: PWA0
14: PWA1
15: CPR
16: SMI
17: GPIO0
18: GPIO1
19: GPIO2
20: GPIO3
21: VC_I2C
22: VC_SPI
23: VC_I2SPCM
24: VC_SDIO
25: VC_UART
26: SLIMBUS
27: VEC
28: CPG
29: RNG
30: VC_ARASANSDIO
31: AVSPMON
Example:
intc: interrupt-controller {
compatible = "brcm,bcm2835-armctrl-ic";
reg = <0x7e00b200 0x200>;
interrupt-controller;
#interrupt-cells = <2>;
};

View file

@ -0,0 +1,86 @@
Broadcom BCM7120-style Level 2 interrupt controller
This interrupt controller hardware is a second level interrupt controller that
is hooked to a parent interrupt controller: e.g: ARM GIC for ARM-based
platforms. It can be found on BCM7xxx products starting with BCM7120.
Such an interrupt controller has the following hardware design:
- outputs multiple interrupts signals towards its interrupt controller parent
- controls how some of the interrupts will be flowing, whether they will
directly output an interrupt signal towards the interrupt controller parent,
or if they will output an interrupt signal at this 2nd level interrupt
controller, in particular for UARTs
- not all 32-bits within the interrupt controller actually map to an interrupt
The typical hardware layout for this controller is represented below:
2nd level interrupt line Outputs for the parent controller (e.g: ARM GIC)
0 -----[ MUX ] ------------|==========> GIC interrupt 75
\-----------\
|
1 -----[ MUX ] --------)---|==========> GIC interrupt 76
\------------|
|
2 -----[ MUX ] --------)---|==========> GIC interrupt 77
\------------|
|
3 ---------------------|
4 ---------------------|
5 ---------------------|
7 ---------------------|---|===========> GIC interrupt 66
9 ---------------------|
10 --------------------|
11 --------------------/
6 ------------------------\
|===========> GIC interrupt 64
8 ------------------------/
12 ........................ X
13 ........................ X (not connected)
..
31 ........................ X
Required properties:
- compatible: should be "brcm,bcm7120-l2-intc"
- reg: specifies the base physical address and size of the registers
- interrupt-controller: identifies the node as an interrupt controller
- #interrupt-cells: specifies the number of cells needed to encode an interrupt
source, should be 1.
- interrupt-parent: specifies the phandle to the parent interrupt controller
this one is cascaded from
- interrupts: specifies the interrupt line(s) in the interrupt-parent controller
node, valid values depend on the type of parent interrupt controller
- brcm,int-map-mask: 32-bits bit mask describing how many and which interrupts
are wired to this 2nd level interrupt controller, and how they match their
respective interrupt parents. Should match exactly the number of interrupts
specified in the 'interrupts' property.
Optional properties:
- brcm,irq-can-wake: if present, this means the L2 controller can be used as a
wakeup source for system suspend/resume.
- brcm,int-fwd-mask: if present, a 32-bits bit mask to configure for the
interrupts which have a mux gate, typically UARTs. Setting these bits will
make their respective interrupts outputs bypass this 2nd level interrupt
controller completely, it completely transparent for the interrupt controller
parent
Example:
irq0_intc: interrupt-controller@f0406800 {
compatible = "brcm,bcm7120-l2-intc";
interrupt-parent = <&intc>;
#interrupt-cells = <1>;
reg = <0xf0406800 0x8>;
interrupt-controller;
interrupts = <0x0 0x42 0x0>, <0x0 0x40 0x0>;
brcm,int-map-mask = <0xeb8>, <0x140>;
brcm,int-fwd-mask = <0x7>;
};

View file

@ -0,0 +1,29 @@
Broadcom Generic Level 2 Interrupt Controller
Required properties:
- compatible: should be "brcm,l2-intc"
- reg: specifies the base physical address and size of the registers
- interrupt-controller: identifies the node as an interrupt controller
- #interrupt-cells: specifies the number of cells needed to encode an
interrupt source. Should be 1.
- interrupt-parent: specifies the phandle to the parent interrupt controller
this controller is cacaded from
- interrupts: specifies the interrupt line in the interrupt-parent irq space
to be used for cascading
Optional properties:
- brcm,irq-can-wake: If present, this means the L2 controller can be used as a
wakeup source for system suspend/resume.
Example:
hif_intr2_intc: interrupt-controller@f0441000 {
compatible = "brcm,l2-intc";
reg = <0xf0441000 0x30>;
interrupt-controller;
#interrupt-cells = <1>;
interrupt-parent = <&intc>;
interrupts = <0x0 0x20 0x0>;
};

View file

@ -0,0 +1,41 @@
Cirrus Logic CLPS711X Interrupt Controller
Required properties:
- compatible: Should be "cirrus,clps711x-intc".
- reg: Specifies base physical address of the registers set.
- interrupt-controller: Identifies the node as an interrupt controller.
- #interrupt-cells: Specifies the number of cells needed to encode an
interrupt source. The value shall be 1.
The interrupt sources are as follows:
ID Name Description
---------------------------
1: BLINT Battery low (FIQ)
3: MCINT Media changed (FIQ)
4: CSINT CODEC sound
5: EINT1 External 1
6: EINT2 External 2
7: EINT3 External 3
8: TC1OI TC1 under flow
9: TC2OI TC2 under flow
10: RTCMI RTC compare match
11: TINT 64Hz tick
12: UTXINT1 UART1 transmit FIFO half empty
13: URXINT1 UART1 receive FIFO half full
14: UMSINT UART1 modem status changed
15: SSEOTI SSI1 end of transfer
16: KBDINT Keyboard
17: SS2RX SSI2 receive FIFO half or greater full
18: SS2TX SSI2 transmit FIFO less than half empty
28: UTXINT2 UART2 transmit FIFO half empty
29: URXINT2 UART2 receive FIFO half full
32: DAIINT DAI interface (FIQ)
Example:
intc: interrupt-controller {
compatible = "cirrus,clps711x-intc";
reg = <0x80000000 0x4000>;
interrupt-controller;
#interrupt-cells = <1>;
};

View file

@ -0,0 +1,110 @@
Specifying interrupt information for devices
============================================
1) Interrupt client nodes
-------------------------
Nodes that describe devices which generate interrupts must contain an
"interrupts" property, an "interrupts-extended" property, or both. If both are
present, the latter should take precedence; the former may be provided simply
for compatibility with software that does not recognize the latter. These
properties contain a list of interrupt specifiers, one per output interrupt. The
format of the interrupt specifier is determined by the interrupt controller to
which the interrupts are routed; see section 2 below for details.
Example:
interrupt-parent = <&intc1>;
interrupts = <5 0>, <6 0>;
The "interrupt-parent" property is used to specify the controller to which
interrupts are routed and contains a single phandle referring to the interrupt
controller node. This property is inherited, so it may be specified in an
interrupt client node or in any of its parent nodes. Interrupts listed in the
"interrupts" property are always in reference to the node's interrupt parent.
The "interrupts-extended" property is a special form for use when a node needs
to reference multiple interrupt parents. Each entry in this property contains
both the parent phandle and the interrupt specifier. "interrupts-extended"
should only be used when a device has multiple interrupt parents.
Example:
interrupts-extended = <&intc1 5 1>, <&intc2 1 0>;
2) Interrupt controller nodes
-----------------------------
A device is marked as an interrupt controller with the "interrupt-controller"
property. This is a empty, boolean property. An additional "#interrupt-cells"
property defines the number of cells needed to specify a single interrupt.
It is the responsibility of the interrupt controller's binding to define the
length and format of the interrupt specifier. The following two variants are
commonly used:
a) one cell
-----------
The #interrupt-cells property is set to 1 and the single cell defines the
index of the interrupt within the controller.
Example:
vic: intc@10140000 {
compatible = "arm,versatile-vic";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x10140000 0x1000>;
};
sic: intc@10003000 {
compatible = "arm,versatile-sic";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x10003000 0x1000>;
interrupt-parent = <&vic>;
interrupts = <31>; /* Cascaded to vic */
};
b) two cells
------------
The #interrupt-cells property is set to 2 and the first cell defines the
index of the interrupt within the controller, while the second cell is used
to specify any of the following flags:
- bits[3:0] trigger type and level flags
1 = low-to-high edge triggered
2 = high-to-low edge triggered
4 = active high level-sensitive
8 = active low level-sensitive
Example:
i2c@7000c000 {
gpioext: gpio-adnp@41 {
compatible = "ad,gpio-adnp";
reg = <0x41>;
interrupt-parent = <&gpio>;
interrupts = <160 1>;
gpio-controller;
#gpio-cells = <1>;
interrupt-controller;
#interrupt-cells = <2>;
nr-gpios = <64>;
};
sx8634@2b {
compatible = "smtc,sx8634";
reg = <0x2b>;
interrupt-parent = <&gpioext>;
interrupts = <3 0x8>;
#address-cells = <1>;
#size-cells = <0>;
threshold = <0x40>;
sensitivity = <7>;
};
};

View file

@ -0,0 +1,18 @@
TI-NSPIRE interrupt controller
Required properties:
- compatible: Compatible property value should be "lsi,zevio-intc".
- reg: Physical base address of the controller and length of memory mapped
region.
- interrupt-controller : Identifies the node as an interrupt controller
Example:
interrupt-controller {
compatible = "lsi,zevio-intc";
interrupt-controller;
reg = <0xDC000000 0x1000>;
#interrupt-cells = <1>;
};

View file

@ -0,0 +1,38 @@
Marvell Armada 370, 375, 38x, XP Interrupt Controller
-----------------------------------------------------
Required properties:
- compatible: Should be "marvell,mpic"
- interrupt-controller: Identifies the node as an interrupt controller.
- msi-controller: Identifies the node as an PCI Message Signaled
Interrupt controller.
- #interrupt-cells: The number of cells to define the interrupts. Should be 1.
The cell is the IRQ number
- reg: Should contain PMIC registers location and length. First pair
for the main interrupt registers, second pair for the per-CPU
interrupt registers. For this last pair, to be compliant with SMP
support, the "virtual" must be use (For the record, these registers
automatically map to the interrupt controller registers of the
current CPU)
Optional properties:
- interrupts: If defined, then it indicates that this MPIC is
connected as a slave to another interrupt controller. This is
typically the case on Armada 375 and Armada 38x, where the MPIC is
connected as a slave to the Cortex-A9 GIC. The provided interrupt
indicate to which GIC interrupt the MPIC output is connected.
Example:
mpic: interrupt-controller@d0020000 {
compatible = "marvell,mpic";
#interrupt-cells = <1>;
#address-cells = <1>;
#size-cells = <1>;
interrupt-controller;
msi-controller;
reg = <0xd0020a00 0x1d0>,
<0xd0021070 0x58>;
};

View file

@ -0,0 +1,48 @@
Marvell Orion SoC interrupt controllers
* Main interrupt controller
Required properties:
- compatible: shall be "marvell,orion-intc"
- reg: base address(es) of interrupt registers starting with CAUSE register
- interrupt-controller: identifies the node as an interrupt controller
- #interrupt-cells: number of cells to encode an interrupt source, shall be 1
The interrupt sources map to the corresponding bits in the interrupt
registers, i.e.
- 0 maps to bit 0 of first base address,
- 1 maps to bit 1 of first base address,
- 32 maps to bit 0 of second base address, and so on.
Example:
intc: interrupt-controller {
compatible = "marvell,orion-intc";
interrupt-controller;
#interrupt-cells = <1>;
/* Dove has 64 first level interrupts */
reg = <0x20200 0x10>, <0x20210 0x10>;
};
* Bridge interrupt controller
Required properties:
- compatible: shall be "marvell,orion-bridge-intc"
- reg: base address of bridge interrupt registers starting with CAUSE register
- interrupts: bridge interrupt of the main interrupt controller
- interrupt-controller: identifies the node as an interrupt controller
- #interrupt-cells: number of cells to encode an interrupt source, shall be 1
Optional properties:
- marvell,#interrupts: number of interrupts provided by bridge interrupt
controller, defaults to 32 if not set
Example:
bridge_intc: interrupt-controller {
compatible = "marvell,orion-bridge-intc";
interrupt-controller;
#interrupt-cells = <1>;
reg = <0x20110 0x8>;
interrupts = <0>;
/* Dove bridge provides 5 interrupts */
marvell,#interrupts = <5>;
};

View file

@ -0,0 +1,23 @@
OpenRISC 1000 Programmable Interrupt Controller
Required properties:
- compatible : should be "opencores,or1k-pic-level" for variants with
level triggered interrupt lines, "opencores,or1k-pic-edge" for variants with
edge triggered interrupt lines or "opencores,or1200-pic" for machines
with the non-spec compliant or1200 type implementation.
"opencores,or1k-pic" is also provided as an alias to "opencores,or1200-pic",
but this is only for backwards compatibility.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 1.
Example:
intc: interrupt-controller {
compatible = "opencores,or1k-pic-level";
interrupt-controller;
#interrupt-cells = <1>;
};

View file

@ -0,0 +1,22 @@
DT bindings for the R-/SH-Mobile irqpin controller
Required properties:
- compatible: has to be "renesas,intc-irqpin-<soctype>", "renesas,intc-irqpin"
as fallback.
Examples with soctypes are:
- "renesas,intc-irqpin-r8a7740" (R-Mobile A1)
- "renesas,intc-irqpin-r8a7778" (R-Car M1A)
- "renesas,intc-irqpin-r8a7779" (R-Car H1)
- "renesas,intc-irqpin-sh73a0" (SH-Mobile AG5)
- #interrupt-cells: has to be <2>: an interrupt index and flags, as defined in
interrupts.txt in this directory
Optional properties:
- any properties, listed in interrupts.txt, and any standard resource allocation
properties
- sense-bitfield-width: width of a single sense bitfield in the SENSE register,
if different from the default 4 bits
- control-parent: disable and enable interrupts on the parent interrupt
controller, needed for some broken implementations

View file

@ -0,0 +1,32 @@
DT bindings for the R-Mobile/R-Car interrupt controller
Required properties:
- compatible: has to be "renesas,irqc-<soctype>", "renesas,irqc" as fallback.
Examples with soctypes are:
- "renesas,irqc-r8a73a4" (R-Mobile AP6)
- "renesas,irqc-r8a7790" (R-Car H2)
- "renesas,irqc-r8a7791" (R-Car M2-W)
- "renesas,irqc-r8a7792" (R-Car V2H)
- "renesas,irqc-r8a7793" (R-Car M2-N)
- "renesas,irqc-r8a7794" (R-Car E2)
- #interrupt-cells: has to be <2>: an interrupt index and flags, as defined in
interrupts.txt in this directory
Optional properties:
- any properties, listed in interrupts.txt, and any standard resource allocation
properties
Example:
irqc0: interrupt-controller@e61c0000 {
compatible = "renesas,irqc-r8a7790", "renesas,irqc";
#interrupt-cells = <2>;
interrupt-controller;
reg = <0 0xe61c0000 0 0x200>;
interrupts = <0 0 IRQ_TYPE_LEVEL_HIGH>,
<0 1 IRQ_TYPE_LEVEL_HIGH>,
<0 2 IRQ_TYPE_LEVEL_HIGH>,
<0 3 IRQ_TYPE_LEVEL_HIGH>;
};

View file

@ -0,0 +1,53 @@
Samsung S3C24XX Interrupt Controllers
The S3C24XX SoCs contain a custom set of interrupt controllers providing a
varying number of interrupt sources. The set consists of a main- and sub-
controller and on newer SoCs even a second main controller.
Required properties:
- compatible: Compatible property value should be "samsung,s3c2410-irq"
for machines before s3c2416 and "samsung,s3c2416-irq" for s3c2416 and later.
- reg: Physical base address of the controller and length of memory mapped
region.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode an
interrupt source. The value shall be 4 and interrupt descriptor shall
have the following format:
<ctrl_num parent_irq ctrl_irq type>
ctrl_num contains the controller to use:
- 0 ... main controller
- 1 ... sub controller
- 2 ... second main controller on s3c2416 and s3c2450
parent_irq contains the parent bit in the main controller and will be
ignored in main controllers
ctrl_irq contains the interrupt bit of the controller
type contains the trigger type to use
Example:
interrupt-controller@4a000000 {
compatible = "samsung,s3c2410-irq";
reg = <0x4a000000 0x100>;
interrupt-controller;
#interrupt-cells=<4>;
};
[...]
serial@50000000 {
compatible = "samsung,s3c2410-uart";
reg = <0x50000000 0x4000>;
interrupt-parent = <&subintc>;
interrupts = <1 28 0 4>, <1 28 1 4>;
};
rtc@57000000 {
compatible = "samsung,s3c2410-rtc";
reg = <0x57000000 0x100>;
interrupt-parent = <&intc>;
interrupts = <0 30 0 3>, <0 8 0 3>;
};

View file

@ -0,0 +1,32 @@
Synopsys DesignWare APB interrupt controller (dw_apb_ictl)
Synopsys DesignWare provides interrupt controller IP for APB known as
dw_apb_ictl. The IP is used as secondary interrupt controller in some SoCs with
APB bus, e.g. Marvell Armada 1500.
Required properties:
- compatible: shall be "snps,dw-apb-ictl"
- reg: physical base address of the controller and length of memory mapped
region starting with ENABLE_LOW register
- interrupt-controller: identifies the node as an interrupt controller
- #interrupt-cells: number of cells to encode an interrupt-specifier, shall be 1
- interrupts: interrupt reference to primary interrupt controller
- interrupt-parent: (optional) reference specific primary interrupt controller
The interrupt sources map to the corresponding bits in the interrupt
registers, i.e.
- 0 maps to bit 0 of low interrupts,
- 1 maps to bit 1 of low interrupts,
- 32 maps to bit 0 of high interrupts,
- 33 maps to bit 1 of high interrupts,
- (optional) fast interrupts start at 64.
Example:
aic: interrupt-controller@3000 {
compatible = "snps,dw-apb-ictl";
reg = <0x3000 0xc00>;
interrupt-controller;
#interrupt-cells = <1>;
interrupt-parent = <&gic>;
interrupts = <GIC_SPI 3 IRQ_TYPE_LEVEL_HIGH>;
};

View file

@ -0,0 +1,36 @@
Keystone 2 IRQ controller IP
On Keystone SOCs, DSP cores can send interrupts to ARM
host using the IRQ controller IP. It provides 28 IRQ signals to ARM.
The IRQ handler running on HOST OS can identify DSP signal source by
analyzing SRCCx bits in IPCARx registers. This is one of the component
used by the IPC mechanism used on Keystone SOCs.
Required Properties:
- compatible: should be "ti,keystone-irq"
- ti,syscon-dev : phandle and offset pair. The phandle to syscon used to
access device control registers and the offset inside
device control registers range.
- interrupt-controller : Identifies the node as an interrupt controller
- #interrupt-cells : Specifies the number of cells needed to encode interrupt
source should be 1.
- interrupts: interrupt reference to primary interrupt controller
Please refer to interrupts.txt in this directory for details of the common
Interrupt Controllers bindings used by client devices.
Example:
kirq0: keystone_irq0@026202a0 {
compatible = "ti,keystone-irq";
ti,syscon-dev = <&devctrl 0x2a0>;
interrupts = <GIC_SPI 4 IRQ_TYPE_EDGE_RISING>;
interrupt-controller;
#interrupt-cells = <1>;
};
dsp0: dsp0 {
compatible = "linux,rproc-user";
...
interrupt-parent = <&kirq0>;
interrupts = <10 2>;
};