mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-07 08:48:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
230
Documentation/devicetree/bindings/media/video-interfaces.txt
Normal file
230
Documentation/devicetree/bindings/media/video-interfaces.txt
Normal file
|
@ -0,0 +1,230 @@
|
|||
Common bindings for video receiver and transmitter interfaces
|
||||
|
||||
General concept
|
||||
---------------
|
||||
|
||||
Video data pipelines usually consist of external devices, e.g. camera sensors,
|
||||
controlled over an I2C, SPI or UART bus, and SoC internal IP blocks, including
|
||||
video DMA engines and video data processors.
|
||||
|
||||
SoC internal blocks are described by DT nodes, placed similarly to other SoC
|
||||
blocks. External devices are represented as child nodes of their respective
|
||||
bus controller nodes, e.g. I2C.
|
||||
|
||||
Data interfaces on all video devices are described by their child 'port' nodes.
|
||||
Configuration of a port depends on other devices participating in the data
|
||||
transfer and is described by 'endpoint' subnodes.
|
||||
|
||||
device {
|
||||
...
|
||||
ports {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@0 {
|
||||
...
|
||||
endpoint@0 { ... };
|
||||
endpoint@1 { ... };
|
||||
};
|
||||
port@1 { ... };
|
||||
};
|
||||
};
|
||||
|
||||
If a port can be configured to work with more than one remote device on the same
|
||||
bus, an 'endpoint' child node must be provided for each of them. If more than
|
||||
one port is present in a device node or there is more than one endpoint at a
|
||||
port, or port node needs to be associated with a selected hardware interface,
|
||||
a common scheme using '#address-cells', '#size-cells' and 'reg' properties is
|
||||
used.
|
||||
|
||||
All 'port' nodes can be grouped under optional 'ports' node, which allows to
|
||||
specify #address-cells, #size-cells properties independently for the 'port'
|
||||
and 'endpoint' nodes and any child device nodes a device might have.
|
||||
|
||||
Two 'endpoint' nodes are linked with each other through their 'remote-endpoint'
|
||||
phandles. An endpoint subnode of a device contains all properties needed for
|
||||
configuration of this device for data exchange with other device. In most
|
||||
cases properties at the peer 'endpoint' nodes will be identical, however they
|
||||
might need to be different when there is any signal modifications on the bus
|
||||
between two devices, e.g. there are logic signal inverters on the lines.
|
||||
|
||||
It is allowed for multiple endpoints at a port to be active simultaneously,
|
||||
where supported by a device. For example, in case where a data interface of
|
||||
a device is partitioned into multiple data busses, e.g. 16-bit input port
|
||||
divided into two separate ITU-R BT.656 8-bit busses. In such case bus-width
|
||||
and data-shift properties can be used to assign physical data lines to each
|
||||
endpoint node (logical bus).
|
||||
|
||||
|
||||
Required properties
|
||||
-------------------
|
||||
|
||||
If there is more than one 'port' or more than one 'endpoint' node or 'reg'
|
||||
property is present in port and/or endpoint nodes the following properties
|
||||
are required in a relevant parent node:
|
||||
|
||||
- #address-cells : number of cells required to define port/endpoint
|
||||
identifier, should be 1.
|
||||
- #size-cells : should be zero.
|
||||
|
||||
Optional endpoint properties
|
||||
----------------------------
|
||||
|
||||
- remote-endpoint: phandle to an 'endpoint' subnode of a remote device node.
|
||||
- slave-mode: a boolean property indicating that the link is run in slave mode.
|
||||
The default when this property is not specified is master mode. In the slave
|
||||
mode horizontal and vertical synchronization signals are provided to the
|
||||
slave device (data source) by the master device (data sink). In the master
|
||||
mode the data source device is also the source of the synchronization signals.
|
||||
- bus-width: number of data lines actively used, valid for the parallel busses.
|
||||
- data-shift: on the parallel data busses, if bus-width is used to specify the
|
||||
number of data lines, data-shift can be used to specify which data lines are
|
||||
used, e.g. "bus-width=<8>; data-shift=<2>;" means, that lines 9:2 are used.
|
||||
- hsync-active: active state of the HSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||
- vsync-active: active state of the VSYNC signal, 0/1 for LOW/HIGH respectively.
|
||||
Note, that if HSYNC and VSYNC polarities are not specified, embedded
|
||||
synchronization may be required, where supported.
|
||||
- data-active: similar to HSYNC and VSYNC, specifies data line polarity.
|
||||
- field-even-active: field signal level during the even field data transmission.
|
||||
- pclk-sample: sample data on rising (1) or falling (0) edge of the pixel clock
|
||||
signal.
|
||||
- sync-on-green-active: active state of Sync-on-green (SoG) signal, 0/1 for
|
||||
LOW/HIGH respectively.
|
||||
- data-lanes: an array of physical data lane indexes. Position of an entry
|
||||
determines the logical lane number, while the value of an entry indicates
|
||||
physical lane, e.g. for 2-lane MIPI CSI-2 bus we could have
|
||||
"data-lanes = <1 2>;", assuming the clock lane is on hardware lane 0.
|
||||
This property is valid for serial busses only (e.g. MIPI CSI-2).
|
||||
- clock-lanes: an array of physical clock lane indexes. Position of an entry
|
||||
determines the logical lane number, while the value of an entry indicates
|
||||
physical lane, e.g. for a MIPI CSI-2 bus we could have "clock-lanes = <0>;",
|
||||
which places the clock lane on hardware lane 0. This property is valid for
|
||||
serial busses only (e.g. MIPI CSI-2). Note that for the MIPI CSI-2 bus this
|
||||
array contains only one entry.
|
||||
- clock-noncontinuous: a boolean property to allow MIPI CSI-2 non-continuous
|
||||
clock mode.
|
||||
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
The example snippet below describes two data pipelines. ov772x and imx074 are
|
||||
camera sensors with a parallel and serial (MIPI CSI-2) video bus respectively.
|
||||
Both sensors are on the I2C control bus corresponding to the i2c0 controller
|
||||
node. ov772x sensor is linked directly to the ceu0 video host interface.
|
||||
imx074 is linked to ceu0 through the MIPI CSI-2 receiver (csi2). ceu0 has a
|
||||
(single) DMA engine writing captured data to memory. ceu0 node has a single
|
||||
'port' node which may indicate that at any time only one of the following data
|
||||
pipelines can be active: ov772x -> ceu0 or imx074 -> csi2 -> ceu0.
|
||||
|
||||
ceu0: ceu@0xfe910000 {
|
||||
compatible = "renesas,sh-mobile-ceu";
|
||||
reg = <0xfe910000 0xa0>;
|
||||
interrupts = <0x880>;
|
||||
|
||||
mclk: master_clock {
|
||||
compatible = "renesas,ceu-clock";
|
||||
#clock-cells = <1>;
|
||||
clock-frequency = <50000000>; /* Max clock frequency */
|
||||
clock-output-names = "mclk";
|
||||
};
|
||||
|
||||
port {
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
/* Parallel bus endpoint */
|
||||
ceu0_1: endpoint@1 {
|
||||
reg = <1>; /* Local endpoint # */
|
||||
remote = <&ov772x_1_1>; /* Remote phandle */
|
||||
bus-width = <8>; /* Used data lines */
|
||||
data-shift = <2>; /* Lines 9:2 are used */
|
||||
|
||||
/* If hsync-active/vsync-active are missing,
|
||||
embedded BT.656 sync is used */
|
||||
hsync-active = <0>; /* Active low */
|
||||
vsync-active = <0>; /* Active low */
|
||||
data-active = <1>; /* Active high */
|
||||
pclk-sample = <1>; /* Rising */
|
||||
};
|
||||
|
||||
/* MIPI CSI-2 bus endpoint */
|
||||
ceu0_0: endpoint@0 {
|
||||
reg = <0>;
|
||||
remote = <&csi2_2>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
i2c0: i2c@0xfff20000 {
|
||||
...
|
||||
ov772x_1: camera@0x21 {
|
||||
compatible = "omnivision,ov772x";
|
||||
reg = <0x21>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <20000000>;
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "xclk";
|
||||
|
||||
port {
|
||||
/* With 1 endpoint per port no need for addresses. */
|
||||
ov772x_1_1: endpoint {
|
||||
bus-width = <8>;
|
||||
remote-endpoint = <&ceu0_1>;
|
||||
hsync-active = <1>;
|
||||
vsync-active = <0>; /* Who came up with an
|
||||
inverter here ?... */
|
||||
data-active = <1>;
|
||||
pclk-sample = <1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
imx074: camera@0x1a {
|
||||
compatible = "sony,imx074";
|
||||
reg = <0x1a>;
|
||||
vddio-supply = <®ulator1>;
|
||||
vddcore-supply = <®ulator2>;
|
||||
|
||||
clock-frequency = <30000000>; /* Shared clock with ov772x_1 */
|
||||
clocks = <&mclk 0>;
|
||||
clock-names = "sysclk"; /* Assuming this is the
|
||||
name in the datasheet */
|
||||
port {
|
||||
imx074_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <1 2>;
|
||||
remote-endpoint = <&csi2_1>;
|
||||
};
|
||||
};
|
||||
};
|
||||
};
|
||||
|
||||
csi2: csi2@0xffc90000 {
|
||||
compatible = "renesas,sh-mobile-csi2";
|
||||
reg = <0xffc90000 0x1000>;
|
||||
interrupts = <0x17a0>;
|
||||
#address-cells = <1>;
|
||||
#size-cells = <0>;
|
||||
|
||||
port@1 {
|
||||
compatible = "renesas,csi2c"; /* One of CSI2I and CSI2C. */
|
||||
reg = <1>; /* CSI-2 PHY #1 of 2: PHY_S,
|
||||
PHY_M has port address 0,
|
||||
is unused. */
|
||||
csi2_1: endpoint {
|
||||
clock-lanes = <0>;
|
||||
data-lanes = <2 1>;
|
||||
remote-endpoint = <&imx074_1>;
|
||||
};
|
||||
};
|
||||
port@2 {
|
||||
reg = <2>; /* port 2: link to the CEU */
|
||||
|
||||
csi2_2: endpoint {
|
||||
remote-endpoint = <&ceu0_0>;
|
||||
};
|
||||
};
|
||||
};
|
Loading…
Add table
Add a link
Reference in a new issue