mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-06 16:28:04 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
270
Documentation/filesystems/nilfs2.txt
Normal file
270
Documentation/filesystems/nilfs2.txt
Normal file
|
@ -0,0 +1,270 @@
|
|||
NILFS2
|
||||
------
|
||||
|
||||
NILFS2 is a log-structured file system (LFS) supporting continuous
|
||||
snapshotting. In addition to versioning capability of the entire file
|
||||
system, users can even restore files mistakenly overwritten or
|
||||
destroyed just a few seconds ago. Since NILFS2 can keep consistency
|
||||
like conventional LFS, it achieves quick recovery after system
|
||||
crashes.
|
||||
|
||||
NILFS2 creates a number of checkpoints every few seconds or per
|
||||
synchronous write basis (unless there is no change). Users can select
|
||||
significant versions among continuously created checkpoints, and can
|
||||
change them into snapshots which will be preserved until they are
|
||||
changed back to checkpoints.
|
||||
|
||||
There is no limit on the number of snapshots until the volume gets
|
||||
full. Each snapshot is mountable as a read-only file system
|
||||
concurrently with its writable mount, and this feature is convenient
|
||||
for online backup.
|
||||
|
||||
The userland tools are included in nilfs-utils package, which is
|
||||
available from the following download page. At least "mkfs.nilfs2",
|
||||
"mount.nilfs2", "umount.nilfs2", and "nilfs_cleanerd" (so called
|
||||
cleaner or garbage collector) are required. Details on the tools are
|
||||
described in the man pages included in the package.
|
||||
|
||||
Project web page: http://nilfs.sourceforge.net/
|
||||
Download page: http://nilfs.sourceforge.net/en/download.html
|
||||
List info: http://vger.kernel.org/vger-lists.html#linux-nilfs
|
||||
|
||||
Caveats
|
||||
=======
|
||||
|
||||
Features which NILFS2 does not support yet:
|
||||
|
||||
- atime
|
||||
- extended attributes
|
||||
- POSIX ACLs
|
||||
- quotas
|
||||
- fsck
|
||||
- defragmentation
|
||||
|
||||
Mount options
|
||||
=============
|
||||
|
||||
NILFS2 supports the following mount options:
|
||||
(*) == default
|
||||
|
||||
barrier(*) This enables/disables the use of write barriers. This
|
||||
nobarrier requires an IO stack which can support barriers, and
|
||||
if nilfs gets an error on a barrier write, it will
|
||||
disable again with a warning.
|
||||
errors=continue Keep going on a filesystem error.
|
||||
errors=remount-ro(*) Remount the filesystem read-only on an error.
|
||||
errors=panic Panic and halt the machine if an error occurs.
|
||||
cp=n Specify the checkpoint-number of the snapshot to be
|
||||
mounted. Checkpoints and snapshots are listed by lscp
|
||||
user command. Only the checkpoints marked as snapshot
|
||||
are mountable with this option. Snapshot is read-only,
|
||||
so a read-only mount option must be specified together.
|
||||
order=relaxed(*) Apply relaxed order semantics that allows modified data
|
||||
blocks to be written to disk without making a
|
||||
checkpoint if no metadata update is going. This mode
|
||||
is equivalent to the ordered data mode of the ext3
|
||||
filesystem except for the updates on data blocks still
|
||||
conserve atomicity. This will improve synchronous
|
||||
write performance for overwriting.
|
||||
order=strict Apply strict in-order semantics that preserves sequence
|
||||
of all file operations including overwriting of data
|
||||
blocks. That means, it is guaranteed that no
|
||||
overtaking of events occurs in the recovered file
|
||||
system after a crash.
|
||||
norecovery Disable recovery of the filesystem on mount.
|
||||
This disables every write access on the device for
|
||||
read-only mounts or snapshots. This option will fail
|
||||
for r/w mounts on an unclean volume.
|
||||
discard This enables/disables the use of discard/TRIM commands.
|
||||
nodiscard(*) The discard/TRIM commands are sent to the underlying
|
||||
block device when blocks are freed. This is useful
|
||||
for SSD devices and sparse/thinly-provisioned LUNs.
|
||||
|
||||
Ioctls
|
||||
======
|
||||
|
||||
There is some NILFS2 specific functionality which can be accessed by applications
|
||||
through the system call interfaces. The list of all NILFS2 specific ioctls are
|
||||
shown in the table below.
|
||||
|
||||
Table of NILFS2 specific ioctls
|
||||
..............................................................................
|
||||
Ioctl Description
|
||||
NILFS_IOCTL_CHANGE_CPMODE Change mode of given checkpoint between
|
||||
checkpoint and snapshot state. This ioctl is
|
||||
used in chcp and mkcp utilities.
|
||||
|
||||
NILFS_IOCTL_DELETE_CHECKPOINT Remove checkpoint from NILFS2 file system.
|
||||
This ioctl is used in rmcp utility.
|
||||
|
||||
NILFS_IOCTL_GET_CPINFO Return info about requested checkpoints. This
|
||||
ioctl is used in lscp utility and by
|
||||
nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_GET_CPSTAT Return checkpoints statistics. This ioctl is
|
||||
used by lscp, rmcp utilities and by
|
||||
nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_GET_SUINFO Return segment usage info about requested
|
||||
segments. This ioctl is used in lssu,
|
||||
nilfs_resize utilities and by nilfs_cleanerd
|
||||
daemon.
|
||||
|
||||
NILFS_IOCTL_SET_SUINFO Modify segment usage info of requested
|
||||
segments. This ioctl is used by
|
||||
nilfs_cleanerd daemon to skip unnecessary
|
||||
cleaning operation of segments and reduce
|
||||
performance penalty or wear of flash device
|
||||
due to redundant move of in-use blocks.
|
||||
|
||||
NILFS_IOCTL_GET_SUSTAT Return segment usage statistics. This ioctl
|
||||
is used in lssu, nilfs_resize utilities and
|
||||
by nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_GET_VINFO Return information on virtual block addresses.
|
||||
This ioctl is used by nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_GET_BDESCS Return information about descriptors of disk
|
||||
block numbers. This ioctl is used by
|
||||
nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_CLEAN_SEGMENTS Do garbage collection operation in the
|
||||
environment of requested parameters from
|
||||
userspace. This ioctl is used by
|
||||
nilfs_cleanerd daemon.
|
||||
|
||||
NILFS_IOCTL_SYNC Make a checkpoint. This ioctl is used in
|
||||
mkcp utility.
|
||||
|
||||
NILFS_IOCTL_RESIZE Resize NILFS2 volume. This ioctl is used
|
||||
by nilfs_resize utility.
|
||||
|
||||
NILFS_IOCTL_SET_ALLOC_RANGE Define lower limit of segments in bytes and
|
||||
upper limit of segments in bytes. This ioctl
|
||||
is used by nilfs_resize utility.
|
||||
|
||||
NILFS2 usage
|
||||
============
|
||||
|
||||
To use nilfs2 as a local file system, simply:
|
||||
|
||||
# mkfs -t nilfs2 /dev/block_device
|
||||
# mount -t nilfs2 /dev/block_device /dir
|
||||
|
||||
This will also invoke the cleaner through the mount helper program
|
||||
(mount.nilfs2).
|
||||
|
||||
Checkpoints and snapshots are managed by the following commands.
|
||||
Their manpages are included in the nilfs-utils package above.
|
||||
|
||||
lscp list checkpoints or snapshots.
|
||||
mkcp make a checkpoint or a snapshot.
|
||||
chcp change an existing checkpoint to a snapshot or vice versa.
|
||||
rmcp invalidate specified checkpoint(s).
|
||||
|
||||
To mount a snapshot,
|
||||
|
||||
# mount -t nilfs2 -r -o cp=<cno> /dev/block_device /snap_dir
|
||||
|
||||
where <cno> is the checkpoint number of the snapshot.
|
||||
|
||||
To unmount the NILFS2 mount point or snapshot, simply:
|
||||
|
||||
# umount /dir
|
||||
|
||||
Then, the cleaner daemon is automatically shut down by the umount
|
||||
helper program (umount.nilfs2).
|
||||
|
||||
Disk format
|
||||
===========
|
||||
|
||||
A nilfs2 volume is equally divided into a number of segments except
|
||||
for the super block (SB) and segment #0. A segment is the container
|
||||
of logs. Each log is composed of summary information blocks, payload
|
||||
blocks, and an optional super root block (SR):
|
||||
|
||||
______________________________________________________
|
||||
| |SB| | Segment | Segment | Segment | ... | Segment | |
|
||||
|_|__|_|____0____|____1____|____2____|_____|____N____|_|
|
||||
0 +1K +4K +8M +16M +24M +(8MB x N)
|
||||
. . (Typical offsets for 4KB-block)
|
||||
. .
|
||||
.______________________.
|
||||
| log | log |... | log |
|
||||
|__1__|__2__|____|__m__|
|
||||
. .
|
||||
. .
|
||||
. .
|
||||
.______________________________.
|
||||
| Summary | Payload blocks |SR|
|
||||
|_blocks__|_________________|__|
|
||||
|
||||
The payload blocks are organized per file, and each file consists of
|
||||
data blocks and B-tree node blocks:
|
||||
|
||||
|<--- File-A --->|<--- File-B --->|
|
||||
_______________________________________________________________
|
||||
| Data blocks | B-tree blocks | Data blocks | B-tree blocks | ...
|
||||
_|_____________|_______________|_____________|_______________|_
|
||||
|
||||
|
||||
Since only the modified blocks are written in the log, it may have
|
||||
files without data blocks or B-tree node blocks.
|
||||
|
||||
The organization of the blocks is recorded in the summary information
|
||||
blocks, which contains a header structure (nilfs_segment_summary), per
|
||||
file structures (nilfs_finfo), and per block structures (nilfs_binfo):
|
||||
|
||||
_________________________________________________________________________
|
||||
| Summary | finfo | binfo | ... | binfo | finfo | binfo | ... | binfo |...
|
||||
|_blocks__|___A___|_(A,1)_|_____|(A,Na)_|___B___|_(B,1)_|_____|(B,Nb)_|___
|
||||
|
||||
|
||||
The logs include regular files, directory files, symbolic link files
|
||||
and several meta data files. The mata data files are the files used
|
||||
to maintain file system meta data. The current version of NILFS2 uses
|
||||
the following meta data files:
|
||||
|
||||
1) Inode file (ifile) -- Stores on-disk inodes
|
||||
2) Checkpoint file (cpfile) -- Stores checkpoints
|
||||
3) Segment usage file (sufile) -- Stores allocation state of segments
|
||||
4) Data address translation file -- Maps virtual block numbers to usual
|
||||
(DAT) block numbers. This file serves to
|
||||
make on-disk blocks relocatable.
|
||||
|
||||
The following figure shows a typical organization of the logs:
|
||||
|
||||
_________________________________________________________________________
|
||||
| Summary | regular file | file | ... | ifile | cpfile | sufile | DAT |SR|
|
||||
|_blocks__|_or_directory_|_______|_____|_______|________|________|_____|__|
|
||||
|
||||
|
||||
To stride over segment boundaries, this sequence of files may be split
|
||||
into multiple logs. The sequence of logs that should be treated as
|
||||
logically one log, is delimited with flags marked in the segment
|
||||
summary. The recovery code of nilfs2 looks this boundary information
|
||||
to ensure atomicity of updates.
|
||||
|
||||
The super root block is inserted for every checkpoints. It includes
|
||||
three special inodes, inodes for the DAT, cpfile, and sufile. Inodes
|
||||
of regular files, directories, symlinks and other special files, are
|
||||
included in the ifile. The inode of ifile itself is included in the
|
||||
corresponding checkpoint entry in the cpfile. Thus, the hierarchy
|
||||
among NILFS2 files can be depicted as follows:
|
||||
|
||||
Super block (SB)
|
||||
|
|
||||
v
|
||||
Super root block (the latest cno=xx)
|
||||
|-- DAT
|
||||
|-- sufile
|
||||
`-- cpfile
|
||||
|-- ifile (cno=c1)
|
||||
|-- ifile (cno=c2) ---- file (ino=i1)
|
||||
: : |-- file (ino=i2)
|
||||
`-- ifile (cno=xx) |-- file (ino=i3)
|
||||
: :
|
||||
`-- file (ino=yy)
|
||||
( regular file, directory, or symlink )
|
||||
|
||||
For detail on the format of each file, please see include/linux/nilfs2_fs.h.
|
Loading…
Add table
Add a link
Reference in a new issue