mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-06 08:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
192
Documentation/gpio/driver.txt
Normal file
192
Documentation/gpio/driver.txt
Normal file
|
@ -0,0 +1,192 @@
|
|||
GPIO Descriptor Driver Interface
|
||||
================================
|
||||
|
||||
This document serves as a guide for GPIO chip drivers writers. Note that it
|
||||
describes the new descriptor-based interface. For a description of the
|
||||
deprecated integer-based GPIO interface please refer to gpio-legacy.txt.
|
||||
|
||||
Each GPIO controller driver needs to include the following header, which defines
|
||||
the structures used to define a GPIO driver:
|
||||
|
||||
#include <linux/gpio/driver.h>
|
||||
|
||||
|
||||
Internal Representation of GPIOs
|
||||
================================
|
||||
|
||||
Inside a GPIO driver, individual GPIOs are identified by their hardware number,
|
||||
which is a unique number between 0 and n, n being the number of GPIOs managed by
|
||||
the chip. This number is purely internal: the hardware number of a particular
|
||||
GPIO descriptor is never made visible outside of the driver.
|
||||
|
||||
On top of this internal number, each GPIO also need to have a global number in
|
||||
the integer GPIO namespace so that it can be used with the legacy GPIO
|
||||
interface. Each chip must thus have a "base" number (which can be automatically
|
||||
assigned), and for each GPIO the global number will be (base + hardware number).
|
||||
Although the integer representation is considered deprecated, it still has many
|
||||
users and thus needs to be maintained.
|
||||
|
||||
So for example one platform could use numbers 32-159 for GPIOs, with a
|
||||
controller defining 128 GPIOs at a "base" of 32 ; while another platform uses
|
||||
numbers 0..63 with one set of GPIO controllers, 64-79 with another type of GPIO
|
||||
controller, and on one particular board 80-95 with an FPGA. The numbers need not
|
||||
be contiguous; either of those platforms could also use numbers 2000-2063 to
|
||||
identify GPIOs in a bank of I2C GPIO expanders.
|
||||
|
||||
|
||||
Controller Drivers: gpio_chip
|
||||
=============================
|
||||
|
||||
In the gpiolib framework each GPIO controller is packaged as a "struct
|
||||
gpio_chip" (see linux/gpio/driver.h for its complete definition) with members
|
||||
common to each controller of that type:
|
||||
|
||||
- methods to establish GPIO direction
|
||||
- methods used to access GPIO values
|
||||
- method to return the IRQ number associated to a given GPIO
|
||||
- flag saying whether calls to its methods may sleep
|
||||
- optional debugfs dump method (showing extra state like pullup config)
|
||||
- optional base number (will be automatically assigned if omitted)
|
||||
- label for diagnostics and GPIOs mapping using platform data
|
||||
|
||||
The code implementing a gpio_chip should support multiple instances of the
|
||||
controller, possibly using the driver model. That code will configure each
|
||||
gpio_chip and issue gpiochip_add(). Removing a GPIO controller should be rare;
|
||||
use gpiochip_remove() when it is unavoidable.
|
||||
|
||||
Most often a gpio_chip is part of an instance-specific structure with state not
|
||||
exposed by the GPIO interfaces, such as addressing, power management, and more.
|
||||
Chips such as codecs will have complex non-GPIO state.
|
||||
|
||||
Any debugfs dump method should normally ignore signals which haven't been
|
||||
requested as GPIOs. They can use gpiochip_is_requested(), which returns either
|
||||
NULL or the label associated with that GPIO when it was requested.
|
||||
|
||||
|
||||
GPIO drivers providing IRQs
|
||||
---------------------------
|
||||
It is custom that GPIO drivers (GPIO chips) are also providing interrupts,
|
||||
most often cascaded off a parent interrupt controller, and in some special
|
||||
cases the GPIO logic is melded with a SoC's primary interrupt controller.
|
||||
|
||||
The IRQ portions of the GPIO block are implemented using an irqchip, using
|
||||
the header <linux/irq.h>. So basically such a driver is utilizing two sub-
|
||||
systems simultaneously: gpio and irq.
|
||||
|
||||
GPIO irqchips usually fall in one of two categories:
|
||||
|
||||
* CHAINED GPIO irqchips: these are usually the type that is embedded on
|
||||
an SoC. This means that there is a fast IRQ handler for the GPIOs that
|
||||
gets called in a chain from the parent IRQ handler, most typically the
|
||||
system interrupt controller. This means the GPIO irqchip is registered
|
||||
using irq_set_chained_handler() or the corresponding
|
||||
gpiochip_set_chained_irqchip() helper function, and the GPIO irqchip
|
||||
handler will be called immediately from the parent irqchip, while
|
||||
holding the IRQs disabled. The GPIO irqchip will then end up calling
|
||||
something like this sequence in its interrupt handler:
|
||||
|
||||
static irqreturn_t tc3589x_gpio_irq(int irq, void *data)
|
||||
chained_irq_enter(...);
|
||||
generic_handle_irq(...);
|
||||
chained_irq_exit(...);
|
||||
|
||||
Chained GPIO irqchips typically can NOT set the .can_sleep flag on
|
||||
struct gpio_chip, as everything happens directly in the callbacks.
|
||||
|
||||
* NESTED THREADED GPIO irqchips: these are off-chip GPIO expanders and any
|
||||
other GPIO irqchip residing on the other side of a sleeping bus. Of course
|
||||
such drivers that need slow bus traffic to read out IRQ status and similar,
|
||||
traffic which may in turn incur other IRQs to happen, cannot be handled
|
||||
in a quick IRQ handler with IRQs disabled. Instead they need to spawn a
|
||||
thread and then mask the parent IRQ line until the interrupt is handled
|
||||
by the driver. The hallmark of this driver is to call something like
|
||||
this in its interrupt handler:
|
||||
|
||||
static irqreturn_t tc3589x_gpio_irq(int irq, void *data)
|
||||
...
|
||||
handle_nested_irq(irq);
|
||||
|
||||
The hallmark of threaded GPIO irqchips is that they set the .can_sleep
|
||||
flag on struct gpio_chip to true, indicating that this chip may sleep
|
||||
when accessing the GPIOs.
|
||||
|
||||
To help out in handling the set-up and management of GPIO irqchips and the
|
||||
associated irqdomain and resource allocation callbacks, the gpiolib has
|
||||
some helpers that can be enabled by selecting the GPIOLIB_IRQCHIP Kconfig
|
||||
symbol:
|
||||
|
||||
* gpiochip_irqchip_add(): adds an irqchip to a gpiochip. It will pass
|
||||
the struct gpio_chip* for the chip to all IRQ callbacks, so the callbacks
|
||||
need to embed the gpio_chip in its state container and obtain a pointer
|
||||
to the container using container_of().
|
||||
(See Documentation/driver-model/design-patterns.txt)
|
||||
|
||||
* gpiochip_set_chained_irqchip(): sets up a chained irq handler for a
|
||||
gpio_chip from a parent IRQ and passes the struct gpio_chip* as handler
|
||||
data. (Notice handler data, since the irqchip data is likely used by the
|
||||
parent irqchip!) This is for the chained type of chip. This is also used
|
||||
to set up a nested irqchip if NULL is passed as handler.
|
||||
|
||||
To use the helpers please keep the following in mind:
|
||||
|
||||
- Make sure to assign all relevant members of the struct gpio_chip so that
|
||||
the irqchip can initialize. E.g. .dev and .can_sleep shall be set up
|
||||
properly.
|
||||
|
||||
It is legal for any IRQ consumer to request an IRQ from any irqchip no matter
|
||||
if that is a combined GPIO+IRQ driver. The basic premise is that gpio_chip and
|
||||
irq_chip are orthogonal, and offering their services independent of each
|
||||
other.
|
||||
|
||||
gpiod_to_irq() is just a convenience function to figure out the IRQ for a
|
||||
certain GPIO line and should not be relied upon to have been called before
|
||||
the IRQ is used.
|
||||
|
||||
So always prepare the hardware and make it ready for action in respective
|
||||
callbacks from the GPIO and irqchip APIs. Do not rely on gpiod_to_irq() having
|
||||
been called first.
|
||||
|
||||
This orthogonality leads to ambiguities that we need to solve: if there is
|
||||
competition inside the subsystem which side is using the resource (a certain
|
||||
GPIO line and register for example) it needs to deny certain operations and
|
||||
keep track of usage inside of the gpiolib subsystem. This is why the API
|
||||
below exists.
|
||||
|
||||
|
||||
Locking IRQ usage
|
||||
-----------------
|
||||
Input GPIOs can be used as IRQ signals. When this happens, a driver is requested
|
||||
to mark the GPIO as being used as an IRQ:
|
||||
|
||||
int gpio_lock_as_irq(struct gpio_chip *chip, unsigned int offset)
|
||||
|
||||
This will prevent the use of non-irq related GPIO APIs until the GPIO IRQ lock
|
||||
is released:
|
||||
|
||||
void gpio_unlock_as_irq(struct gpio_chip *chip, unsigned int offset)
|
||||
|
||||
When implementing an irqchip inside a GPIO driver, these two functions should
|
||||
typically be called in the .startup() and .shutdown() callbacks from the
|
||||
irqchip.
|
||||
|
||||
|
||||
Requesting self-owned GPIO pins
|
||||
-------------------------------
|
||||
|
||||
Sometimes it is useful to allow a GPIO chip driver to request its own GPIO
|
||||
descriptors through the gpiolib API. Using gpio_request() for this purpose
|
||||
does not help since it pins the module to the kernel forever (it calls
|
||||
try_module_get()). A GPIO driver can use the following functions instead
|
||||
to request and free descriptors without being pinned to the kernel forever.
|
||||
|
||||
struct gpio_desc *gpiochip_request_own_desc(struct gpio_desc *desc,
|
||||
const char *label)
|
||||
|
||||
void gpiochip_free_own_desc(struct gpio_desc *desc)
|
||||
|
||||
Descriptors requested with gpiochip_request_own_desc() must be released with
|
||||
gpiochip_free_own_desc().
|
||||
|
||||
These functions must be used with care since they do not affect module use
|
||||
count. Do not use the functions to request gpio descriptors not owned by the
|
||||
calling driver.
|
Loading…
Add table
Add a link
Reference in a new issue