mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-06 08:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
22
Documentation/hwmon/ab8500
Normal file
22
Documentation/hwmon/ab8500
Normal file
|
@ -0,0 +1,22 @@
|
|||
Kernel driver ab8500
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* ST-Ericsson AB8500
|
||||
Prefix: 'ab8500'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.stericsson.com/developers/documentation.jsp
|
||||
|
||||
Authors:
|
||||
Martin Persson <martin.persson@stericsson.com>
|
||||
Hongbo Zhang <hongbo.zhang@linaro.org>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
See also Documentation/hwmon/abx500. This is the ST-Ericsson AB8500 specific
|
||||
driver.
|
||||
|
||||
Currently only the AB8500 internal sensor and one external sensor for battery
|
||||
temperature are monitored. Other GPADC channels can also be monitored if needed
|
||||
in future.
|
92
Documentation/hwmon/abituguru
Normal file
92
Documentation/hwmon/abituguru
Normal file
|
@ -0,0 +1,92 @@
|
|||
Kernel driver abituguru
|
||||
=======================
|
||||
|
||||
Supported chips:
|
||||
* Abit uGuru revision 1 & 2 (Hardware Monitor part only)
|
||||
Prefix: 'abituguru'
|
||||
Addresses scanned: ISA 0x0E0
|
||||
Datasheet: Not available, this driver is based on reverse engineering.
|
||||
A "Datasheet" has been written based on the reverse engineering it
|
||||
should be available in the same dir as this file under the name
|
||||
abituguru-datasheet.
|
||||
Note:
|
||||
The uGuru is a microcontroller with onboard firmware which programs
|
||||
it to behave as a hwmon IC. There are many different revisions of the
|
||||
firmware and thus effectivly many different revisions of the uGuru.
|
||||
Below is an incomplete list with which revisions are used for which
|
||||
Motherboards:
|
||||
uGuru 1.00 ~ 1.24 (AI7, KV8-MAX3, AN7) (1)
|
||||
uGuru 2.0.0.0 ~ 2.0.4.2 (KV8-PRO)
|
||||
uGuru 2.1.0.0 ~ 2.1.2.8 (AS8, AV8, AA8, AG8, AA8XE, AX8)
|
||||
uGuru 2.2.0.0 ~ 2.2.0.6 (AA8 Fatal1ty)
|
||||
uGuru 2.3.0.0 ~ 2.3.0.9 (AN8)
|
||||
uGuru 3.0.0.0 ~ 3.0.x.x (AW8, AL8, AT8, NI8 SLI, AT8 32X, AN8 32X,
|
||||
AW9D-MAX) (2)
|
||||
1) For revisions 2 and 3 uGuru's the driver can autodetect the
|
||||
sensortype (Volt or Temp) for bank1 sensors, for revision 1 uGuru's
|
||||
this doesnot always work. For these uGuru's the autodection can
|
||||
be overriden with the bank1_types module param. For all 3 known
|
||||
revison 1 motherboards the correct use of this param is:
|
||||
bank1_types=1,1,0,0,0,0,0,2,0,0,0,0,2,0,0,1
|
||||
You may also need to specify the fan_sensors option for these boards
|
||||
fan_sensors=5
|
||||
2) There is a separate abituguru3 driver for these motherboards,
|
||||
the abituguru (without the 3 !) driver will not work on these
|
||||
motherboards (and visa versa)!
|
||||
|
||||
Authors:
|
||||
Hans de Goede <j.w.r.degoede@hhs.nl>,
|
||||
(Initial reverse engineering done by Olle Sandberg
|
||||
<ollebull@gmail.com>)
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* force: bool Force detection. Note this parameter only causes the
|
||||
detection to be skipped, and thus the insmod to
|
||||
succeed. If the uGuru can't be read the actual hwmon
|
||||
driver will not load and thus no hwmon device will get
|
||||
registered.
|
||||
* bank1_types: int[] Bank1 sensortype autodetection override:
|
||||
-1 autodetect (default)
|
||||
0 volt sensor
|
||||
1 temp sensor
|
||||
2 not connected
|
||||
* fan_sensors: int Tell the driver how many fan speed sensors there are
|
||||
on your motherboard. Default: 0 (autodetect).
|
||||
* pwms: int Tell the driver how many fan speed controls (fan
|
||||
pwms) your motherboard has. Default: 0 (autodetect).
|
||||
* verbose: int How verbose should the driver be? (0-3):
|
||||
0 normal output
|
||||
1 + verbose error reporting
|
||||
2 + sensors type probing info (default)
|
||||
3 + retryable error reporting
|
||||
Default: 2 (the driver is still in the testing phase)
|
||||
|
||||
Notice if you need any of the first three options above please insmod the
|
||||
driver with verbose set to 3 and mail me <j.w.r.degoede@hhs.nl> the output of:
|
||||
dmesg | grep abituguru
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports the hardware monitoring features of the first and
|
||||
second revision of the Abit uGuru chip found on Abit uGuru featuring
|
||||
motherboards (most modern Abit motherboards).
|
||||
|
||||
The first and second revision of the uGuru chip in reality is a Winbond
|
||||
W83L950D in disguise (despite Abit claiming it is "a new microprocessor
|
||||
designed by the ABIT Engineers"). Unfortunately this doesn't help since the
|
||||
W83L950D is a generic microcontroller with a custom Abit application running
|
||||
on it.
|
||||
|
||||
Despite Abit not releasing any information regarding the uGuru, Olle
|
||||
Sandberg <ollebull@gmail.com> has managed to reverse engineer the sensor part
|
||||
of the uGuru. Without his work this driver would not have been possible.
|
||||
|
||||
Known Issues
|
||||
------------
|
||||
|
||||
The voltage and frequency control parts of the Abit uGuru are not supported.
|
312
Documentation/hwmon/abituguru-datasheet
Normal file
312
Documentation/hwmon/abituguru-datasheet
Normal file
|
@ -0,0 +1,312 @@
|
|||
uGuru datasheet
|
||||
===============
|
||||
|
||||
First of all, what I know about uGuru is no fact based on any help, hints or
|
||||
datasheet from Abit. The data I have got on uGuru have I assembled through
|
||||
my weak knowledge in "backwards engineering".
|
||||
And just for the record, you may have noticed uGuru isn't a chip developed by
|
||||
Abit, as they claim it to be. It's really just an microprocessor (uC) created by
|
||||
Winbond (W83L950D). And no, reading the manual for this specific uC or
|
||||
mailing Windbond for help won't give any useful data about uGuru, as it is
|
||||
the program inside the uC that is responding to calls.
|
||||
|
||||
Olle Sandberg <ollebull@gmail.com>, 2005-05-25
|
||||
|
||||
|
||||
Original version by Olle Sandberg who did the heavy lifting of the initial
|
||||
reverse engineering. This version has been almost fully rewritten for clarity
|
||||
and extended with write support and info on more databanks, the write support
|
||||
is once again reverse engineered by Olle the additional databanks have been
|
||||
reverse engineered by me. I would like to express my thanks to Olle, this
|
||||
document and the Linux driver could not have been written without his efforts.
|
||||
|
||||
Note: because of the lack of specs only the sensors part of the uGuru is
|
||||
described here and not the CPU / RAM / etc voltage & frequency control.
|
||||
|
||||
Hans de Goede <j.w.r.degoede@hhs.nl>, 28-01-2006
|
||||
|
||||
|
||||
Detection
|
||||
=========
|
||||
|
||||
As far as known the uGuru is always placed at and using the (ISA) I/O-ports
|
||||
0xE0 and 0xE4, so we don't have to scan any port-range, just check what the two
|
||||
ports are holding for detection. We will refer to 0xE0 as CMD (command-port)
|
||||
and 0xE4 as DATA because Abit refers to them with these names.
|
||||
|
||||
If DATA holds 0x00 or 0x08 and CMD holds 0x00 or 0xAC an uGuru could be
|
||||
present. We have to check for two different values at data-port, because
|
||||
after a reboot uGuru will hold 0x00 here, but if the driver is removed and
|
||||
later on attached again data-port will hold 0x08, more about this later.
|
||||
|
||||
After wider testing of the Linux kernel driver some variants of the uGuru have
|
||||
turned up which will hold 0x00 instead of 0xAC at the CMD port, thus we also
|
||||
have to test CMD for two different values. On these uGuru's DATA will initially
|
||||
hold 0x09 and will only hold 0x08 after reading CMD first, so CMD must be read
|
||||
first!
|
||||
|
||||
To be really sure an uGuru is present a test read of one or more register
|
||||
sets should be done.
|
||||
|
||||
|
||||
Reading / Writing
|
||||
=================
|
||||
|
||||
Addressing
|
||||
----------
|
||||
|
||||
The uGuru has a number of different addressing levels. The first addressing
|
||||
level we will call banks. A bank holds data for one or more sensors. The data
|
||||
in a bank for a sensor is one or more bytes large.
|
||||
|
||||
The number of bytes is fixed for a given bank, you should always read or write
|
||||
that many bytes, reading / writing more will fail, the results when writing
|
||||
less then the number of bytes for a given bank are undetermined.
|
||||
|
||||
See below for all known bank addresses, numbers of sensors in that bank,
|
||||
number of bytes data per sensor and contents/meaning of those bytes.
|
||||
|
||||
Although both this document and the kernel driver have kept the sensor
|
||||
terminoligy for the addressing within a bank this is not 100% correct, in
|
||||
bank 0x24 for example the addressing within the bank selects a PWM output not
|
||||
a sensor.
|
||||
|
||||
Notice that some banks have both a read and a write address this is how the
|
||||
uGuru determines if a read from or a write to the bank is taking place, thus
|
||||
when reading you should always use the read address and when writing the
|
||||
write address. The write address is always one (1) more than the read address.
|
||||
|
||||
|
||||
uGuru ready
|
||||
-----------
|
||||
|
||||
Before you can read from or write to the uGuru you must first put the uGuru
|
||||
in "ready" mode.
|
||||
|
||||
To put the uGuru in ready mode first write 0x00 to DATA and then wait for DATA
|
||||
to hold 0x09, DATA should read 0x09 within 250 read cycles.
|
||||
|
||||
Next CMD _must_ be read and should hold 0xAC, usually CMD will hold 0xAC the
|
||||
first read but sometimes it takes a while before CMD holds 0xAC and thus it
|
||||
has to be read a number of times (max 50).
|
||||
|
||||
After reading CMD, DATA should hold 0x08 which means that the uGuru is ready
|
||||
for input. As above DATA will usually hold 0x08 the first read but not always.
|
||||
This step can be skipped, but it is undetermined what happens if the uGuru has
|
||||
not yet reported 0x08 at DATA and you proceed with writing a bank address.
|
||||
|
||||
|
||||
Sending bank and sensor addresses to the uGuru
|
||||
----------------------------------------------
|
||||
|
||||
First the uGuru must be in "ready" mode as described above, DATA should hold
|
||||
0x08 indicating that the uGuru wants input, in this case the bank address.
|
||||
|
||||
Next write the bank address to DATA. After the bank address has been written
|
||||
wait for to DATA to hold 0x08 again indicating that it wants / is ready for
|
||||
more input (max 250 reads).
|
||||
|
||||
Once DATA holds 0x08 again write the sensor address to CMD.
|
||||
|
||||
|
||||
Reading
|
||||
-------
|
||||
|
||||
First send the bank and sensor addresses as described above.
|
||||
Then for each byte of data you want to read wait for DATA to hold 0x01
|
||||
which indicates that the uGuru is ready to be read (max 250 reads) and once
|
||||
DATA holds 0x01 read the byte from CMD.
|
||||
|
||||
Once all bytes have been read data will hold 0x09, but there is no reason to
|
||||
test for this. Notice that the number of bytes is bank address dependent see
|
||||
above and below.
|
||||
|
||||
After completing a successful read it is advised to put the uGuru back in
|
||||
ready mode, so that it is ready for the next read / write cycle. This way
|
||||
if your program / driver is unloaded and later loaded again the detection
|
||||
algorithm described above will still work.
|
||||
|
||||
|
||||
|
||||
Writing
|
||||
-------
|
||||
|
||||
First send the bank and sensor addresses as described above.
|
||||
Then for each byte of data you want to write wait for DATA to hold 0x00
|
||||
which indicates that the uGuru is ready to be written (max 250 reads) and
|
||||
once DATA holds 0x00 write the byte to CMD.
|
||||
|
||||
Once all bytes have been written wait for DATA to hold 0x01 (max 250 reads)
|
||||
don't ask why this is the way it is.
|
||||
|
||||
Once DATA holds 0x01 read CMD it should hold 0xAC now.
|
||||
|
||||
After completing a successful write it is advised to put the uGuru back in
|
||||
ready mode, so that it is ready for the next read / write cycle. This way
|
||||
if your program / driver is unloaded and later loaded again the detection
|
||||
algorithm described above will still work.
|
||||
|
||||
|
||||
Gotchas
|
||||
-------
|
||||
|
||||
After wider testing of the Linux kernel driver some variants of the uGuru have
|
||||
turned up which do not hold 0x08 at DATA within 250 reads after writing the
|
||||
bank address. With these versions this happens quite frequent, using larger
|
||||
timeouts doesn't help, they just go offline for a second or 2, doing some
|
||||
internal callibration or whatever. Your code should be prepared to handle
|
||||
this and in case of no response in this specific case just goto sleep for a
|
||||
while and then retry.
|
||||
|
||||
|
||||
Address Map
|
||||
===========
|
||||
|
||||
Bank 0x20 Alarms (R)
|
||||
--------------------
|
||||
This bank contains 0 sensors, iow the sensor address is ignored (but must be
|
||||
written) just use 0. Bank 0x20 contains 3 bytes:
|
||||
|
||||
Byte 0:
|
||||
This byte holds the alarm flags for sensor 0-7 of Sensor Bank1, with bit 0
|
||||
corresponding to sensor 0, 1 to 1, etc.
|
||||
|
||||
Byte 1:
|
||||
This byte holds the alarm flags for sensor 8-15 of Sensor Bank1, with bit 0
|
||||
corresponding to sensor 8, 1 to 9, etc.
|
||||
|
||||
Byte 2:
|
||||
This byte holds the alarm flags for sensor 0-5 of Sensor Bank2, with bit 0
|
||||
corresponding to sensor 0, 1 to 1, etc.
|
||||
|
||||
|
||||
Bank 0x21 Sensor Bank1 Values / Readings (R)
|
||||
--------------------------------------------
|
||||
This bank contains 16 sensors, for each sensor it contains 1 byte.
|
||||
So far the following sensors are known to be available on all motherboards:
|
||||
Sensor 0 CPU temp
|
||||
Sensor 1 SYS temp
|
||||
Sensor 3 CPU core volt
|
||||
Sensor 4 DDR volt
|
||||
Sensor 10 DDR Vtt volt
|
||||
Sensor 15 PWM temp
|
||||
|
||||
Byte 0:
|
||||
This byte holds the reading from the sensor. Sensors in Bank1 can be both
|
||||
volt and temp sensors, this is motherboard specific. The uGuru however does
|
||||
seem to know (be programmed with) what kindoff sensor is attached see Sensor
|
||||
Bank1 Settings description.
|
||||
|
||||
Volt sensors use a linear scale, a reading 0 corresponds with 0 volt and a
|
||||
reading of 255 with 3494 mV. The sensors for higher voltages however are
|
||||
connected through a division circuit. The currently known division circuits
|
||||
in use result in ranges of: 0-4361mV, 0-6248mV or 0-14510mV. 3.3 volt sources
|
||||
use the 0-4361mV range, 5 volt the 0-6248mV and 12 volt the 0-14510mV .
|
||||
|
||||
Temp sensors also use a linear scale, a reading of 0 corresponds with 0 degree
|
||||
Celsius and a reading of 255 with a reading of 255 degrees Celsius.
|
||||
|
||||
|
||||
Bank 0x22 Sensor Bank1 Settings (R)
|
||||
Bank 0x23 Sensor Bank1 Settings (W)
|
||||
-----------------------------------
|
||||
|
||||
This bank contains 16 sensors, for each sensor it contains 3 bytes. Each
|
||||
set of 3 bytes contains the settings for the sensor with the same sensor
|
||||
address in Bank 0x21 .
|
||||
|
||||
Byte 0:
|
||||
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
|
||||
Bit 0: Give an alarm if measured temp is over the warning threshold (RW) *
|
||||
Bit 1: Give an alarm if measured volt is over the max threshold (RW) **
|
||||
Bit 2: Give an alarm if measured volt is under the min threshold (RW) **
|
||||
Bit 3: Beep if alarm (RW)
|
||||
Bit 4: 1 if alarm cause measured temp is over the warning threshold (R)
|
||||
Bit 5: 1 if alarm cause measured volt is over the max threshold (R)
|
||||
Bit 6: 1 if alarm cause measured volt is under the min threshold (R)
|
||||
Bit 7: Volt sensor: Shutdown if alarm persist for more than 4 seconds (RW)
|
||||
Temp sensor: Shutdown if temp is over the shutdown threshold (RW)
|
||||
|
||||
* This bit is only honored/used by the uGuru if a temp sensor is connected
|
||||
** This bit is only honored/used by the uGuru if a volt sensor is connected
|
||||
Note with some trickery this can be used to find out what kinda sensor is
|
||||
detected see the Linux kernel driver for an example with many comments on
|
||||
how todo this.
|
||||
|
||||
Byte 1:
|
||||
Temp sensor: warning threshold (scale as bank 0x21)
|
||||
Volt sensor: min threshold (scale as bank 0x21)
|
||||
|
||||
Byte 2:
|
||||
Temp sensor: shutdown threshold (scale as bank 0x21)
|
||||
Volt sensor: max threshold (scale as bank 0x21)
|
||||
|
||||
|
||||
Bank 0x24 PWM outputs for FAN's (R)
|
||||
Bank 0x25 PWM outputs for FAN's (W)
|
||||
-----------------------------------
|
||||
|
||||
This bank contains 3 "sensors", for each sensor it contains 5 bytes.
|
||||
Sensor 0 usually controls the CPU fan
|
||||
Sensor 1 usually controls the NB (or chipset for single chip) fan
|
||||
Sensor 2 usually controls the System fan
|
||||
|
||||
Byte 0:
|
||||
Flag 0x80 to enable control, Fan runs at 100% when disabled.
|
||||
low nibble (temp)sensor address at bank 0x21 used for control.
|
||||
|
||||
Byte 1:
|
||||
0-255 = 0-12v (linear), specify voltage at which fan will rotate when under
|
||||
low threshold temp (specified in byte 3)
|
||||
|
||||
Byte 2:
|
||||
0-255 = 0-12v (linear), specify voltage at which fan will rotate when above
|
||||
high threshold temp (specified in byte 4)
|
||||
|
||||
Byte 3:
|
||||
Low threshold temp (scale as bank 0x21)
|
||||
|
||||
byte 4:
|
||||
High threshold temp (scale as bank 0x21)
|
||||
|
||||
|
||||
Bank 0x26 Sensors Bank2 Values / Readings (R)
|
||||
---------------------------------------------
|
||||
|
||||
This bank contains 6 sensors (AFAIK), for each sensor it contains 1 byte.
|
||||
So far the following sensors are known to be available on all motherboards:
|
||||
Sensor 0: CPU fan speed
|
||||
Sensor 1: NB (or chipset for single chip) fan speed
|
||||
Sensor 2: SYS fan speed
|
||||
|
||||
Byte 0:
|
||||
This byte holds the reading from the sensor. 0-255 = 0-15300 (linear)
|
||||
|
||||
|
||||
Bank 0x27 Sensors Bank2 Settings (R)
|
||||
Bank 0x28 Sensors Bank2 Settings (W)
|
||||
------------------------------------
|
||||
|
||||
This bank contains 6 sensors (AFAIK), for each sensor it contains 2 bytes.
|
||||
|
||||
Byte 0:
|
||||
Alarm behaviour for the selected sensor. A 1 enables the described behaviour.
|
||||
Bit 0: Give an alarm if measured rpm is under the min threshold (RW)
|
||||
Bit 3: Beep if alarm (RW)
|
||||
Bit 7: Shutdown if alarm persist for more than 4 seconds (RW)
|
||||
|
||||
Byte 1:
|
||||
min threshold (scale as bank 0x26)
|
||||
|
||||
|
||||
Warning for the adventurous
|
||||
===========================
|
||||
|
||||
A word of caution to those who want to experiment and see if they can figure
|
||||
the voltage / clock programming out, I tried reading and only reading banks
|
||||
0-0x30 with the reading code used for the sensor banks (0x20-0x28) and this
|
||||
resulted in a _permanent_ reprogramming of the voltages, luckily I had the
|
||||
sensors part configured so that it would shutdown my system on any out of spec
|
||||
voltages which proprably safed my computer (after a reboot I managed to
|
||||
immediately enter the bios and reload the defaults). This probably means that
|
||||
the read/write cycle for the non sensor part is different from the sensor part.
|
65
Documentation/hwmon/abituguru3
Normal file
65
Documentation/hwmon/abituguru3
Normal file
|
@ -0,0 +1,65 @@
|
|||
Kernel driver abituguru3
|
||||
========================
|
||||
|
||||
Supported chips:
|
||||
* Abit uGuru revision 3 (Hardware Monitor part, reading only)
|
||||
Prefix: 'abituguru3'
|
||||
Addresses scanned: ISA 0x0E0
|
||||
Datasheet: Not available, this driver is based on reverse engineering.
|
||||
Note:
|
||||
The uGuru is a microcontroller with onboard firmware which programs
|
||||
it to behave as a hwmon IC. There are many different revisions of the
|
||||
firmware and thus effectivly many different revisions of the uGuru.
|
||||
Below is an incomplete list with which revisions are used for which
|
||||
Motherboards:
|
||||
uGuru 1.00 ~ 1.24 (AI7, KV8-MAX3, AN7)
|
||||
uGuru 2.0.0.0 ~ 2.0.4.2 (KV8-PRO)
|
||||
uGuru 2.1.0.0 ~ 2.1.2.8 (AS8, AV8, AA8, AG8, AA8XE, AX8)
|
||||
uGuru 2.3.0.0 ~ 2.3.0.9 (AN8)
|
||||
uGuru 3.0.0.0 ~ 3.0.x.x (AW8, AL8, AT8, NI8 SLI, AT8 32X, AN8 32X,
|
||||
AW9D-MAX)
|
||||
The abituguru3 driver is only for revison 3.0.x.x motherboards,
|
||||
this driver will not work on older motherboards. For older
|
||||
motherboards use the abituguru (without the 3 !) driver.
|
||||
|
||||
Authors:
|
||||
Hans de Goede <j.w.r.degoede@hhs.nl>,
|
||||
(Initial reverse engineering done by Louis Kruger)
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* force: bool Force detection. Note this parameter only causes the
|
||||
detection to be skipped, and thus the insmod to
|
||||
succeed. If the uGuru can't be read the actual hwmon
|
||||
driver will not load and thus no hwmon device will get
|
||||
registered.
|
||||
* verbose: bool Should the driver be verbose?
|
||||
0/off/false normal output
|
||||
1/on/true + verbose error reporting (default)
|
||||
Default: 1 (the driver is still in the testing phase)
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports the hardware monitoring features of the third revision of
|
||||
the Abit uGuru chip, found on recent Abit uGuru featuring motherboards.
|
||||
|
||||
The 3rd revision of the uGuru chip in reality is a Winbond W83L951G.
|
||||
Unfortunately this doesn't help since the W83L951G is a generic microcontroller
|
||||
with a custom Abit application running on it.
|
||||
|
||||
Despite Abit not releasing any information regarding the uGuru revision 3,
|
||||
Louis Kruger has managed to reverse engineer the sensor part of the uGuru.
|
||||
Without his work this driver would not have been possible.
|
||||
|
||||
Known Issues
|
||||
------------
|
||||
|
||||
The voltage and frequency control parts of the Abit uGuru are not supported,
|
||||
neither is writing any of the sensor settings and writing / reading the
|
||||
fanspeed control registers (FanEQ)
|
||||
|
||||
If you encounter any problems please mail me <j.w.r.degoede@hhs.nl> and
|
||||
include the output of: "dmesg | grep abituguru"
|
28
Documentation/hwmon/abx500
Normal file
28
Documentation/hwmon/abx500
Normal file
|
@ -0,0 +1,28 @@
|
|||
Kernel driver abx500
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* ST-Ericsson ABx500 series
|
||||
Prefix: 'abx500'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.stericsson.com/developers/documentation.jsp
|
||||
|
||||
Authors:
|
||||
Martin Persson <martin.persson@stericsson.com>
|
||||
Hongbo Zhang <hongbo.zhang@linaro.org>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
Every ST-Ericsson Ux500 SOC consists of both ABx500 and DBx500 physically,
|
||||
this is kernel hwmon driver for ABx500.
|
||||
|
||||
There are some GPADCs inside ABx500 which are designed for connecting to
|
||||
thermal sensors, and there is also a thermal sensor inside ABx500 too, which
|
||||
raises interrupt when critical temperature reached.
|
||||
|
||||
This abx500 is a common layer which can monitor all of the sensors, every
|
||||
specific abx500 chip has its special configurations in its own file, e.g. some
|
||||
sensors can be configured invisible if they are not available on that chip, and
|
||||
the corresponding gpadc_addr should be set to 0, thus this sensor won't be
|
||||
polled.
|
51
Documentation/hwmon/acpi_power_meter
Normal file
51
Documentation/hwmon/acpi_power_meter
Normal file
|
@ -0,0 +1,51 @@
|
|||
Kernel driver power_meter
|
||||
=========================
|
||||
|
||||
This driver talks to ACPI 4.0 power meters.
|
||||
|
||||
Supported systems:
|
||||
* Any recent system with ACPI 4.0.
|
||||
Prefix: 'power_meter'
|
||||
Datasheet: http://acpi.info/, section 10.4.
|
||||
|
||||
Author: Darrick J. Wong
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements sensor reading support for the power meters exposed in
|
||||
the ACPI 4.0 spec (Chapter 10.4). These devices have a simple set of
|
||||
features--a power meter that returns average power use over a configurable
|
||||
interval, an optional capping mechanism, and a couple of trip points. The
|
||||
sysfs interface conforms with the specification outlined in the "Power" section
|
||||
of Documentation/hwmon/sysfs-interface.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The power[1-*]_is_battery knob indicates if the power supply is a battery.
|
||||
Both power[1-*]_average_{min,max} must be set before the trip points will work.
|
||||
When both of them are set, an ACPI event will be broadcast on the ACPI netlink
|
||||
socket and a poll notification will be sent to the appropriate
|
||||
power[1-*]_average sysfs file.
|
||||
|
||||
The power[1-*]_{model_number, serial_number, oem_info} fields display arbitrary
|
||||
strings that ACPI provides with the meter. The measures/ directory contains
|
||||
symlinks to the devices that this meter measures.
|
||||
|
||||
Some computers have the ability to enforce a power cap in hardware. If this is
|
||||
the case, the power[1-*]_cap and related sysfs files will appear. When the
|
||||
average power consumption exceeds the cap, an ACPI event will be broadcast on
|
||||
the netlink event socket and a poll notification will be sent to the
|
||||
appropriate power[1-*]_alarm file to indicate that capping has begun, and the
|
||||
hardware has taken action to reduce power consumption. Most likely this will
|
||||
result in reduced performance.
|
||||
|
||||
There are a few other ACPI notifications that can be sent by the firmware. In
|
||||
all cases the ACPI event will be broadcast on the ACPI netlink event socket as
|
||||
well as sent as a poll notification to a sysfs file. The events are as
|
||||
follows:
|
||||
|
||||
power[1-*]_cap will be notified if the firmware changes the power cap.
|
||||
power[1-*]_interval will be notified if the firmware changes the averaging
|
||||
interval.
|
25
Documentation/hwmon/ad7314
Normal file
25
Documentation/hwmon/ad7314
Normal file
|
@ -0,0 +1,25 @@
|
|||
Kernel driver ad7314
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices AD7314
|
||||
Prefix: 'ad7314'
|
||||
Datasheet: Publicly available at Analog Devices website.
|
||||
* Analog Devices ADT7301
|
||||
Prefix: 'adt7301'
|
||||
Datasheet: Publicly available at Analog Devices website.
|
||||
* Analog Devices ADT7302
|
||||
Prefix: 'adt7302'
|
||||
Datasheet: Publicly available at Analog Devices website.
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
Driver supports the above parts. The ad7314 has a 10 bit
|
||||
sensor with 1lsb = 0.25 degrees centigrade. The adt7301 and
|
||||
adt7302 have 14 bit sensors with 1lsb = 0.03125 degrees centigrade.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Currently power down mode is not supported.
|
47
Documentation/hwmon/adc128d818
Normal file
47
Documentation/hwmon/adc128d818
Normal file
|
@ -0,0 +1,47 @@
|
|||
Kernel driver adc128d818
|
||||
========================
|
||||
|
||||
Supported chips:
|
||||
* Texas Instruments ADC818D818
|
||||
Prefix: 'adc818d818'
|
||||
Addresses scanned: I2C 0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f
|
||||
Datasheet: Publicly available at the TI website
|
||||
http://www.ti.com/
|
||||
|
||||
Author: Guenter Roeck
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Texas Instruments ADC128D818.
|
||||
It is described as 'ADC System Monitor with Temperature Sensor'.
|
||||
|
||||
The ADC128D818 implements one temperature sensor and seven voltage sensors.
|
||||
|
||||
Temperatures are measured in degrees Celsius. There is one set of limits.
|
||||
When the HOT Temperature Limit is crossed, this will cause an alarm that will
|
||||
be reasserted until the temperature drops below the HOT Hysteresis.
|
||||
Measurements are guaranteed between -55 and +125 degrees. The temperature
|
||||
measurement has a resolution of 0.5 degrees; the limits have a resolution
|
||||
of 1 degree.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in volts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum
|
||||
or maximum limit. Note that minimum in this case always means 'closest to
|
||||
zero'; this is important for negative voltage measurements. All voltage
|
||||
inputs can measure voltages between 0 and 2.55 volts, with a resolution
|
||||
of 0.625 mV.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may
|
||||
already have disappeared by the time the alarm is read. The driver
|
||||
caches the alarm status for each sensor until it is at least reported
|
||||
once, to ensure that alarms are reported to user space.
|
||||
|
||||
The ADC128D818 only updates its values approximately once per second;
|
||||
reading it more often will do no harm, but will return 'old' values.
|
||||
|
||||
In addition to the scanned address list, the chip can also be configured for
|
||||
addresses 0x35 to 0x37. Those addresses are not scanned. You have to instantiate
|
||||
the driver explicitly if the chip is configured for any of those addresses in
|
||||
your system.
|
113
Documentation/hwmon/adm1021
Normal file
113
Documentation/hwmon/adm1021
Normal file
|
@ -0,0 +1,113 @@
|
|||
Kernel driver adm1021
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM1021
|
||||
Prefix: 'adm1021'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
* Analog Devices ADM1021A/ADM1023
|
||||
Prefix: 'adm1023'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
* Genesys Logic GL523SM
|
||||
Prefix: 'gl523sm'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet:
|
||||
* Maxim MAX1617
|
||||
Prefix: 'max1617'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
* Maxim MAX1617A
|
||||
Prefix: 'max1617a'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
* National Semiconductor LM84
|
||||
Prefix: 'lm84'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
* Philips NE1617
|
||||
Prefix: 'max1617' (probably detected as a max1617)
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Philips website
|
||||
* Philips NE1617A
|
||||
Prefix: 'max1617' (probably detected as a max1617)
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Philips website
|
||||
* TI THMC10
|
||||
Prefix: 'thmc10'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the TI website
|
||||
* Onsemi MC1066
|
||||
Prefix: 'mc1066'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the Onsemi website
|
||||
|
||||
|
||||
Authors:
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Philip Edelbrock <phil@netroedge.com>
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* read_only: int
|
||||
Don't set any values, read only mode
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The chips supported by this driver are very similar. The Maxim MAX1617 is
|
||||
the oldest; it has the problem that it is not very well detectable. The
|
||||
MAX1617A solves that. The ADM1021 is a straight clone of the MAX1617A.
|
||||
Ditto for the THMC10. From here on, we will refer to all these chips as
|
||||
ADM1021-clones.
|
||||
|
||||
The ADM1021 and MAX1617A reports a die code, which is a sort of revision
|
||||
code. This can help us pinpoint problems; it is not very useful
|
||||
otherwise.
|
||||
|
||||
ADM1021-clones implement two temperature sensors. One of them is internal,
|
||||
and measures the temperature of the chip itself; the other is external and
|
||||
is realised in the form of a transistor-like device. A special alarm
|
||||
indicates whether the remote sensor is connected.
|
||||
|
||||
Each sensor has its own low and high limits. When they are crossed, the
|
||||
corresponding alarm is set and remains on as long as the temperature stays
|
||||
out of range. Temperatures are measured in degrees Celsius. Measurements
|
||||
are possible between -65 and +127 degrees, with a resolution of one degree.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may already
|
||||
have disappeared!
|
||||
|
||||
This driver only updates its values each 1.5 seconds; reading it more often
|
||||
will do no harm, but will return 'old' values. It is possible to make
|
||||
ADM1021-clones do faster measurements, but there is really no good reason
|
||||
for that.
|
||||
|
||||
|
||||
Netburst-based Xeon support
|
||||
---------------------------
|
||||
|
||||
Some Xeon processors based on the Netburst (early Pentium 4, from 2001 to
|
||||
2003) microarchitecture had real MAX1617, ADM1021, or compatible chips
|
||||
within them, with two temperature sensors. Other Xeon processors of this
|
||||
era (with 400 MHz FSB) had chips with only one temperature sensor.
|
||||
|
||||
If you have such an old Xeon, and you get two valid temperatures when
|
||||
loading the adm1021 module, then things are good.
|
||||
|
||||
If nothing happens when loading the adm1021 module, and you are certain
|
||||
that your specific Xeon processor model includes compatible sensors, you
|
||||
will have to explicitly instantiate the sensor chips from user-space. See
|
||||
method 4 in Documentation/i2c/instantiating-devices. Possible slave
|
||||
addresses are 0x18, 0x1a, 0x29, 0x2b, 0x4c, or 0x4e. It is likely that
|
||||
only temp2 will be correct and temp1 will have to be ignored.
|
||||
|
||||
Previous generations of the Xeon processor (based on Pentium II/III)
|
||||
didn't have these sensors. Next generations of Xeon processors (533 MHz
|
||||
FSB and faster) lost them, until the Core-based generation which
|
||||
introduced integrated digital thermal sensors. These are supported by
|
||||
the coretemp driver.
|
51
Documentation/hwmon/adm1025
Normal file
51
Documentation/hwmon/adm1025
Normal file
|
@ -0,0 +1,51 @@
|
|||
Kernel driver adm1025
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM1025, ADM1025A
|
||||
Prefix: 'adm1025'
|
||||
Addresses scanned: I2C 0x2c - 0x2e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
* Philips NE1619
|
||||
Prefix: 'ne1619'
|
||||
Addresses scanned: I2C 0x2c - 0x2d
|
||||
Datasheet: Publicly available at the Philips website
|
||||
|
||||
The NE1619 presents some differences with the original ADM1025:
|
||||
* Only two possible addresses (0x2c - 0x2d).
|
||||
* No temperature offset register, but we don't use it anyway.
|
||||
* No INT mode for pin 16. We don't play with it anyway.
|
||||
|
||||
Authors:
|
||||
Chen-Yuan Wu <gwu@esoft.com>,
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
(This is from Analog Devices.) The ADM1025 is a complete system hardware
|
||||
monitor for microprocessor-based systems, providing measurement and limit
|
||||
comparison of various system parameters. Five voltage measurement inputs
|
||||
are provided, for monitoring +2.5V, +3.3V, +5V and +12V power supplies and
|
||||
the processor core voltage. The ADM1025 can monitor a sixth power-supply
|
||||
voltage by measuring its own VCC. One input (two pins) is dedicated to a
|
||||
remote temperature-sensing diode and an on-chip temperature sensor allows
|
||||
ambient temperature to be monitored.
|
||||
|
||||
One specificity of this chip is that the pin 11 can be hardwired in two
|
||||
different manners. It can act as the +12V power-supply voltage analog
|
||||
input, or as the a fifth digital entry for the VID reading (bit 4). It's
|
||||
kind of strange since both are useful, and the reason for designing the
|
||||
chip that way is obscure at least to me. The bit 5 of the configuration
|
||||
register can be used to define how the chip is hardwired. Please note that
|
||||
it is not a choice you have to make as the user. The choice was already
|
||||
made by your motherboard's maker. If the configuration bit isn't set
|
||||
properly, you'll have a wrong +12V reading or a wrong VID reading. The way
|
||||
the driver handles that is to preserve this bit through the initialization
|
||||
process, assuming that the BIOS set it up properly beforehand. If it turns
|
||||
out not to be true in some cases, we'll provide a module parameter to force
|
||||
modes.
|
||||
|
||||
This driver also supports the ADM1025A, which differs from the ADM1025
|
||||
only in that it has "open-drain VID inputs while the ADM1025 has on-chip
|
||||
100k pull-ups on the VID inputs". It doesn't make any difference for us.
|
93
Documentation/hwmon/adm1026
Normal file
93
Documentation/hwmon/adm1026
Normal file
|
@ -0,0 +1,93 @@
|
|||
Kernel driver adm1026
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM1026
|
||||
Prefix: 'adm1026'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.onsemi.com/PowerSolutions/product.do?id=ADM1026
|
||||
|
||||
Authors:
|
||||
Philip Pokorny <ppokorny@penguincomputing.com> for Penguin Computing
|
||||
Justin Thiessen <jthiessen@penguincomputing.com>
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* gpio_input: int array (min = 1, max = 17)
|
||||
List of GPIO pins (0-16) to program as inputs
|
||||
* gpio_output: int array (min = 1, max = 17)
|
||||
List of GPIO pins (0-16) to program as outputs
|
||||
* gpio_inverted: int array (min = 1, max = 17)
|
||||
List of GPIO pins (0-16) to program as inverted
|
||||
* gpio_normal: int array (min = 1, max = 17)
|
||||
List of GPIO pins (0-16) to program as normal/non-inverted
|
||||
* gpio_fan: int array (min = 1, max = 8)
|
||||
List of GPIO pins (0-7) to program as fan tachs
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Analog Devices ADM1026. Analog
|
||||
Devices calls it a "complete thermal system management controller."
|
||||
|
||||
The ADM1026 implements three (3) temperature sensors, 17 voltage sensors,
|
||||
16 general purpose digital I/O lines, eight (8) fan speed sensors (8-bit),
|
||||
an analog output and a PWM output along with limit, alarm and mask bits for
|
||||
all of the above. There is even 8k bytes of EEPROM memory on chip.
|
||||
|
||||
Temperatures are measured in degrees Celsius. There are two external
|
||||
sensor inputs and one internal sensor. Each sensor has a high and low
|
||||
limit. If the limit is exceeded, an interrupt (#SMBALERT) can be
|
||||
generated. The interrupts can be masked. In addition, there are over-temp
|
||||
limits for each sensor. If this limit is exceeded, the #THERM output will
|
||||
be asserted. The current temperature and limits have a resolution of 1
|
||||
degree.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute) but measured
|
||||
in counts of a 22.5kHz internal clock. Each fan has a high limit which
|
||||
corresponds to a minimum fan speed. If the limit is exceeded, an interrupt
|
||||
can be generated. Each fan can be programmed to divide the reference clock
|
||||
by 1, 2, 4 or 8. Not all RPM values can accurately be represented, so some
|
||||
rounding is done. With a divider of 8, the slowest measurable speed of a
|
||||
two pulse per revolution fan is 661 RPM.
|
||||
|
||||
There are 17 voltage sensors. An alarm is triggered if the voltage has
|
||||
crossed a programmable minimum or maximum limit. Note that minimum in this
|
||||
case always means 'closest to zero'; this is important for negative voltage
|
||||
measurements. Several inputs have integrated attenuators so they can measure
|
||||
higher voltages directly. 3.3V, 5V, 12V, -12V and battery voltage all have
|
||||
dedicated inputs. There are several inputs scaled to 0-3V full-scale range
|
||||
for SCSI terminator power. The remaining inputs are not scaled and have
|
||||
a 0-2.5V full-scale range. A 2.5V or 1.82V reference voltage is provided
|
||||
for negative voltage measurements.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may already
|
||||
have disappeared! Note that in the current implementation, all hardware
|
||||
registers are read whenever any data is read (unless it is less than 2.0
|
||||
seconds since the last update). This means that you can easily miss
|
||||
once-only alarms.
|
||||
|
||||
The ADM1026 measures continuously. Analog inputs are measured about 4
|
||||
times a second. Fan speed measurement time depends on fan speed and
|
||||
divisor. It can take as long as 1.5 seconds to measure all fan speeds.
|
||||
|
||||
The ADM1026 has the ability to automatically control fan speed based on the
|
||||
temperature sensor inputs. Both the PWM output and the DAC output can be
|
||||
used to control fan speed. Usually only one of these two outputs will be
|
||||
used. Write the minimum PWM or DAC value to the appropriate control
|
||||
register. Then set the low temperature limit in the tmin values for each
|
||||
temperature sensor. The range of control is fixed at 20 °C, and the
|
||||
largest difference between current and tmin of the temperature sensors sets
|
||||
the control output. See the datasheet for several example circuits for
|
||||
controlling fan speed with the PWM and DAC outputs. The fan speed sensors
|
||||
do not have PWM compensation, so it is probably best to control the fan
|
||||
voltage from the power lead rather than on the ground lead.
|
||||
|
||||
The datasheet shows an example application with VID signals attached to
|
||||
GPIO lines. Unfortunately, the chip may not be connected to the VID lines
|
||||
in this way. The driver assumes that the chips *is* connected this way to
|
||||
get a VID voltage.
|
35
Documentation/hwmon/adm1031
Normal file
35
Documentation/hwmon/adm1031
Normal file
|
@ -0,0 +1,35 @@
|
|||
Kernel driver adm1031
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM1030
|
||||
Prefix: 'adm1030'
|
||||
Addresses scanned: I2C 0x2c to 0x2e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/en/prod/0%2C2877%2CADM1030%2C00.html
|
||||
|
||||
* Analog Devices ADM1031
|
||||
Prefix: 'adm1031'
|
||||
Addresses scanned: I2C 0x2c to 0x2e
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/en/prod/0%2C2877%2CADM1031%2C00.html
|
||||
|
||||
Authors:
|
||||
Alexandre d'Alton <alex@alexdalton.org>
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The ADM1030 and ADM1031 are digital temperature sensors and fan controllers.
|
||||
They sense their own temperature as well as the temperature of up to one
|
||||
(ADM1030) or two (ADM1031) external diodes.
|
||||
|
||||
All temperature values are given in degrees Celsius. Resolution is 0.5
|
||||
degree for the local temperature, 0.125 degree for the remote temperatures.
|
||||
|
||||
Each temperature channel has its own high and low limits, plus a critical
|
||||
limit.
|
||||
|
||||
The ADM1030 monitors a single fan speed, while the ADM1031 monitors up to
|
||||
two. Each fan channel has its own low speed limit.
|
92
Documentation/hwmon/adm1275
Normal file
92
Documentation/hwmon/adm1275
Normal file
|
@ -0,0 +1,92 @@
|
|||
Kernel driver adm1275
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM1075
|
||||
Prefix: 'adm1075'
|
||||
Addresses scanned: -
|
||||
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1075.pdf
|
||||
* Analog Devices ADM1275
|
||||
Prefix: 'adm1275'
|
||||
Addresses scanned: -
|
||||
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1275.pdf
|
||||
* Analog Devices ADM1276
|
||||
Prefix: 'adm1276'
|
||||
Addresses scanned: -
|
||||
Datasheet: www.analog.com/static/imported-files/data_sheets/ADM1276.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for Analog Devices ADM1075, ADM1275,
|
||||
and ADM1276 Hot-Swap Controller and Digital Power Monitor.
|
||||
|
||||
ADM1075, ADM1275, and ADM1276 are hot-swap controllers that allow a circuit
|
||||
board to be removed from or inserted into a live backplane. They also feature
|
||||
current and voltage readback via an integrated 12-bit analog-to-digital
|
||||
converter (ADC), accessed using a PMBus interface.
|
||||
|
||||
The driver is a client driver to the core PMBus driver. Please see
|
||||
Documentation/hwmon/pmbus for details on PMBus client drivers.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
The ADM1075, unlike many other PMBus devices, does not support internal voltage
|
||||
or current scaling. Reported voltages, currents, and power are raw measurements,
|
||||
and will typically have to be scaled.
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
The driver supports standard PMBus driver platform data. Please see
|
||||
Documentation/hwmon/pmbus for details.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. Limits are read-write, history reset
|
||||
attributes are write-only, all other attributes are read-only.
|
||||
|
||||
in1_label "vin1" or "vout1" depending on chip variant and
|
||||
configuration. On ADM1075, vout1 reports the voltage on
|
||||
the VAUX pin.
|
||||
in1_input Measured voltage.
|
||||
in1_min Minimum Voltage.
|
||||
in1_max Maximum voltage.
|
||||
in1_min_alarm Voltage low alarm.
|
||||
in1_max_alarm Voltage high alarm.
|
||||
in1_highest Historical maximum voltage.
|
||||
in1_reset_history Write any value to reset history.
|
||||
|
||||
curr1_label "iout1"
|
||||
curr1_input Measured current.
|
||||
curr1_max Maximum current.
|
||||
curr1_max_alarm Current high alarm.
|
||||
curr1_lcrit Critical minimum current. Depending on the chip
|
||||
configuration, either curr1_lcrit or curr1_crit is
|
||||
supported, but not both.
|
||||
curr1_lcrit_alarm Critical current low alarm.
|
||||
curr1_crit Critical maximum current. Depending on the chip
|
||||
configuration, either curr1_lcrit or curr1_crit is
|
||||
supported, but not both.
|
||||
curr1_crit_alarm Critical current high alarm.
|
||||
curr1_highest Historical maximum current.
|
||||
curr1_reset_history Write any value to reset history.
|
||||
|
||||
power1_label "pin1"
|
||||
power1_input Input power.
|
||||
power1_reset_history Write any value to reset history.
|
||||
|
||||
Power attributes are supported on ADM1075 and ADM1276
|
||||
only.
|
177
Documentation/hwmon/adm9240
Normal file
177
Documentation/hwmon/adm9240
Normal file
|
@ -0,0 +1,177 @@
|
|||
Kernel driver adm9240
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADM9240
|
||||
Prefix: 'adm9240'
|
||||
Addresses scanned: I2C 0x2c - 0x2f
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/UploadedFiles/Data_Sheets/79857778ADM9240_0.pdf
|
||||
|
||||
* Dallas Semiconductor DS1780
|
||||
Prefix: 'ds1780'
|
||||
Addresses scanned: I2C 0x2c - 0x2f
|
||||
Datasheet: Publicly available at the Dallas Semiconductor (Maxim) website
|
||||
http://pdfserv.maxim-ic.com/en/ds/DS1780.pdf
|
||||
|
||||
* National Semiconductor LM81
|
||||
Prefix: 'lm81'
|
||||
Addresses scanned: I2C 0x2c - 0x2f
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/ds.cgi/LM/LM81.pdf
|
||||
|
||||
Authors:
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Philip Edelbrock <phil@netroedge.com>,
|
||||
Michiel Rook <michiel@grendelproject.nl>,
|
||||
Grant Coady <gcoady.lk@gmail.com> with guidance
|
||||
from Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Interface
|
||||
---------
|
||||
The I2C addresses listed above assume BIOS has not changed the
|
||||
chip MSB 5-bit address. Each chip reports a unique manufacturer
|
||||
identification code as well as the chip revision/stepping level.
|
||||
|
||||
Description
|
||||
-----------
|
||||
[From ADM9240] The ADM9240 is a complete system hardware monitor for
|
||||
microprocessor-based systems, providing measurement and limit comparison
|
||||
of up to four power supplies and two processor core voltages, plus
|
||||
temperature, two fan speeds and chassis intrusion. Measured values can
|
||||
be read out via an I2C-compatible serial System Management Bus, and values
|
||||
for limit comparisons can be programmed in over the same serial bus. The
|
||||
high speed successive approximation ADC allows frequent sampling of all
|
||||
analog channels to ensure a fast interrupt response to any out-of-limit
|
||||
measurement.
|
||||
|
||||
The ADM9240, DS1780 and LM81 are register compatible, the following
|
||||
details are common to the three chips. Chip differences are described
|
||||
after this section.
|
||||
|
||||
|
||||
Measurements
|
||||
------------
|
||||
The measurement cycle
|
||||
|
||||
The adm9240 driver will take a measurement reading no faster than once
|
||||
each two seconds. User-space may read sysfs interface faster than the
|
||||
measurement update rate and will receive cached data from the most
|
||||
recent measurement.
|
||||
|
||||
ADM9240 has a very fast 320us temperature and voltage measurement cycle
|
||||
with independent fan speed measurement cycles counting alternating rising
|
||||
edges of the fan tacho inputs.
|
||||
|
||||
DS1780 measurement cycle is about once per second including fan speed.
|
||||
|
||||
LM81 measurement cycle is about once per 400ms including fan speed.
|
||||
The LM81 12-bit extended temperature measurement mode is not supported.
|
||||
|
||||
Temperature
|
||||
-----------
|
||||
On chip temperature is reported as degrees Celsius as 9-bit signed data
|
||||
with resolution of 0.5 degrees Celsius. High and low temperature limits
|
||||
are 8-bit signed data with resolution of one degree Celsius.
|
||||
|
||||
Temperature alarm is asserted once the temperature exceeds the high limit,
|
||||
and is cleared when the temperature falls below the temp1_max_hyst value.
|
||||
|
||||
Fan Speed
|
||||
---------
|
||||
Two fan tacho inputs are provided, the ADM9240 gates an internal 22.5kHz
|
||||
clock via a divider to an 8-bit counter. Fan speed (rpm) is calculated by:
|
||||
|
||||
rpm = (22500 * 60) / (count * divider)
|
||||
|
||||
Automatic fan clock divider
|
||||
|
||||
* User sets 0 to fan_min limit
|
||||
- low speed alarm is disabled
|
||||
- fan clock divider not changed
|
||||
- auto fan clock adjuster enabled for valid fan speed reading
|
||||
|
||||
* User sets fan_min limit too low
|
||||
- low speed alarm is enabled
|
||||
- fan clock divider set to max
|
||||
- fan_min set to register value 254 which corresponds
|
||||
to 664 rpm on adm9240
|
||||
- low speed alarm will be asserted if fan speed is
|
||||
less than minimum measurable speed
|
||||
- auto fan clock adjuster disabled
|
||||
|
||||
* User sets reasonable fan speed
|
||||
- low speed alarm is enabled
|
||||
- fan clock divider set to suit fan_min
|
||||
- auto fan clock adjuster enabled: adjusts fan_min
|
||||
|
||||
* User sets unreasonably high low fan speed limit
|
||||
- resolution of the low speed limit may be reduced
|
||||
- alarm will be asserted
|
||||
- auto fan clock adjuster enabled: adjusts fan_min
|
||||
|
||||
* fan speed may be displayed as zero until the auto fan clock divider
|
||||
adjuster brings fan speed clock divider back into chip measurement
|
||||
range, this will occur within a few measurement cycles.
|
||||
|
||||
Analog Output
|
||||
-------------
|
||||
An analog output provides a 0 to 1.25 volt signal intended for an external
|
||||
fan speed amplifier circuit. The analog output is set to maximum value on
|
||||
power up or reset. This doesn't do much on the test Intel SE440BX-2.
|
||||
|
||||
Voltage Monitor
|
||||
|
||||
Voltage (IN) measurement is internally scaled:
|
||||
|
||||
nr label nominal maximum resolution
|
||||
mV mV mV
|
||||
0 +2.5V 2500 3320 13.0
|
||||
1 Vccp1 2700 3600 14.1
|
||||
2 +3.3V 3300 4380 17.2
|
||||
3 +5V 5000 6640 26.0
|
||||
4 +12V 12000 15940 62.5
|
||||
5 Vccp2 2700 3600 14.1
|
||||
|
||||
The reading is an unsigned 8-bit value, nominal voltage measurement is
|
||||
represented by a reading of 192, being 3/4 of the measurement range.
|
||||
|
||||
An alarm is asserted for any voltage going below or above the set limits.
|
||||
|
||||
The driver reports and accepts voltage limits scaled to the above table.
|
||||
|
||||
VID Monitor
|
||||
-----------
|
||||
The chip has five inputs to read the 5-bit VID and reports the mV value
|
||||
based on detected CPU type.
|
||||
|
||||
Chassis Intrusion
|
||||
-----------------
|
||||
An alarm is asserted when the CI pin goes active high. The ADM9240
|
||||
Datasheet has an example of an external temperature sensor driving
|
||||
this pin. On an Intel SE440BX-2 the Chassis Intrusion header is
|
||||
connected to a normally open switch.
|
||||
|
||||
The ADM9240 provides an internal open drain on this line, and may output
|
||||
a 20 ms active low pulse to reset an external Chassis Intrusion latch.
|
||||
|
||||
Clear the CI latch by writing value 0 to the sysfs intrusion0_alarm file.
|
||||
|
||||
Alarm flags reported as 16-bit word
|
||||
|
||||
bit label comment
|
||||
--- ------------- --------------------------
|
||||
0 +2.5 V_Error high or low limit exceeded
|
||||
1 VCCP_Error high or low limit exceeded
|
||||
2 +3.3 V_Error high or low limit exceeded
|
||||
3 +5 V_Error high or low limit exceeded
|
||||
4 Temp_Error temperature error
|
||||
6 FAN1_Error fan low limit exceeded
|
||||
7 FAN2_Error fan low limit exceeded
|
||||
8 +12 V_Error high or low limit exceeded
|
||||
9 VCCP2_Error high or low limit exceeded
|
||||
12 Chassis_Error CI pin went high
|
||||
|
||||
Remaining bits are reserved and thus undefined. It is important to note
|
||||
that alarm bits may be cleared on read, user-space may latch alarms and
|
||||
provide the end-user with a method to clear alarm memory.
|
76
Documentation/hwmon/ads1015
Normal file
76
Documentation/hwmon/ads1015
Normal file
|
@ -0,0 +1,76 @@
|
|||
Kernel driver ads1015
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Texas Instruments ADS1015
|
||||
Prefix: 'ads1015'
|
||||
Datasheet: Publicly available at the Texas Instruments website :
|
||||
http://focus.ti.com/lit/ds/symlink/ads1015.pdf
|
||||
* Texas Instruments ADS1115
|
||||
Prefix: 'ads1115'
|
||||
Datasheet: Publicly available at the Texas Instruments website :
|
||||
http://focus.ti.com/lit/ds/symlink/ads1115.pdf
|
||||
|
||||
Authors:
|
||||
Dirk Eibach, Guntermann & Drunck GmbH <eibach@gdsys.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Texas Instruments ADS1015/ADS1115.
|
||||
|
||||
This device is a 12/16-bit A-D converter with 4 inputs.
|
||||
|
||||
The inputs can be used single ended or in certain differential combinations.
|
||||
|
||||
The inputs can be made available by 8 sysfs input files in0_input - in7_input:
|
||||
in0: Voltage over AIN0 and AIN1.
|
||||
in1: Voltage over AIN0 and AIN3.
|
||||
in2: Voltage over AIN1 and AIN3.
|
||||
in3: Voltage over AIN2 and AIN3.
|
||||
in4: Voltage over AIN0 and GND.
|
||||
in5: Voltage over AIN1 and GND.
|
||||
in6: Voltage over AIN2 and GND.
|
||||
in7: Voltage over AIN3 and GND.
|
||||
|
||||
Which inputs are available can be configured using platform data or devicetree.
|
||||
|
||||
By default all inputs are exported.
|
||||
|
||||
Platform Data
|
||||
-------------
|
||||
|
||||
In linux/i2c/ads1015.h platform data is defined, channel_data contains
|
||||
configuration data for the used input combinations:
|
||||
- pga is the programmable gain amplifier (values are full scale)
|
||||
0: +/- 6.144 V
|
||||
1: +/- 4.096 V
|
||||
2: +/- 2.048 V
|
||||
3: +/- 1.024 V
|
||||
4: +/- 0.512 V
|
||||
5: +/- 0.256 V
|
||||
- data_rate in samples per second
|
||||
0: 128
|
||||
1: 250
|
||||
2: 490
|
||||
3: 920
|
||||
4: 1600
|
||||
5: 2400
|
||||
6: 3300
|
||||
|
||||
Example:
|
||||
struct ads1015_platform_data data = {
|
||||
.channel_data = {
|
||||
[2] = { .enabled = true, .pga = 1, .data_rate = 0 },
|
||||
[4] = { .enabled = true, .pga = 4, .data_rate = 5 },
|
||||
}
|
||||
};
|
||||
|
||||
In this case only in2_input (FS +/- 4.096 V, 128 SPS) and in4_input
|
||||
(FS +/- 0.512 V, 2400 SPS) would be created.
|
||||
|
||||
Devicetree
|
||||
----------
|
||||
|
||||
Configuration is also possible via devicetree:
|
||||
Documentation/devicetree/bindings/hwmon/ads1015.txt
|
58
Documentation/hwmon/ads7828
Normal file
58
Documentation/hwmon/ads7828
Normal file
|
@ -0,0 +1,58 @@
|
|||
Kernel driver ads7828
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Texas Instruments/Burr-Brown ADS7828
|
||||
Prefix: 'ads7828'
|
||||
Datasheet: Publicly available at the Texas Instruments website:
|
||||
http://focus.ti.com/lit/ds/symlink/ads7828.pdf
|
||||
|
||||
* Texas Instruments ADS7830
|
||||
Prefix: 'ads7830'
|
||||
Datasheet: Publicly available at the Texas Instruments website:
|
||||
http://focus.ti.com/lit/ds/symlink/ads7830.pdf
|
||||
|
||||
Authors:
|
||||
Steve Hardy <shardy@redhat.com>
|
||||
Vivien Didelot <vivien.didelot@savoirfairelinux.com>
|
||||
Guillaume Roguez <guillaume.roguez@savoirfairelinux.com>
|
||||
|
||||
Platform data
|
||||
-------------
|
||||
|
||||
The ads7828 driver accepts an optional ads7828_platform_data structure (defined
|
||||
in include/linux/platform_data/ads7828.h). The structure fields are:
|
||||
|
||||
* diff_input: (bool) Differential operation
|
||||
set to true for differential mode, false for default single ended mode.
|
||||
|
||||
* ext_vref: (bool) External reference
|
||||
set to true if it operates with an external reference, false for default
|
||||
internal reference.
|
||||
|
||||
* vref_mv: (unsigned int) Voltage reference
|
||||
if using an external reference, set this to the reference voltage in mV,
|
||||
otherwise it will default to the internal value (2500mV). This value will be
|
||||
bounded with limits accepted by the chip, described in the datasheet.
|
||||
|
||||
If no structure is provided, the configuration defaults to single ended
|
||||
operation and internal voltage reference (2.5V).
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Texas Instruments ADS7828 and ADS7830.
|
||||
|
||||
The ADS7828 device is a 12-bit 8-channel A/D converter, while the ADS7830 does
|
||||
8-bit sampling.
|
||||
|
||||
It can operate in single ended mode (8 +ve inputs) or in differential mode,
|
||||
where 4 differential pairs can be measured.
|
||||
|
||||
The chip also has the facility to use an external voltage reference. This
|
||||
may be required if your hardware supplies the ADS7828 from a 5V supply, see
|
||||
the datasheet for more details.
|
||||
|
||||
There is no reliable way to identify this chip, so the driver will not scan
|
||||
some addresses to try to auto-detect it. That means that you will have to
|
||||
statically declare the device in the platform support code.
|
73
Documentation/hwmon/adt7410
Normal file
73
Documentation/hwmon/adt7410
Normal file
|
@ -0,0 +1,73 @@
|
|||
Kernel driver adt7410
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7410
|
||||
Prefix: 'adt7410'
|
||||
Addresses scanned: None
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/static/imported-files/data_sheets/ADT7410.pdf
|
||||
* Analog Devices ADT7420
|
||||
Prefix: 'adt7420'
|
||||
Addresses scanned: None
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/static/imported-files/data_sheets/ADT7420.pdf
|
||||
* Analog Devices ADT7310
|
||||
Prefix: 'adt7310'
|
||||
Addresses scanned: None
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/static/imported-files/data_sheets/ADT7310.pdf
|
||||
* Analog Devices ADT7320
|
||||
Prefix: 'adt7320'
|
||||
Addresses scanned: None
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/static/imported-files/data_sheets/ADT7320.pdf
|
||||
|
||||
Author: Hartmut Knaack <knaack.h@gmx.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The ADT7310/ADT7410 is a temperature sensor with rated temperature range of
|
||||
-55°C to +150°C. It has a high accuracy of +/-0.5°C and can be operated at a
|
||||
resolution of 13 bits (0.0625°C) or 16 bits (0.0078°C). The sensor provides an
|
||||
INT pin to indicate that a minimum or maximum temperature set point has been
|
||||
exceeded, as well as a critical temperature (CT) pin to indicate that the
|
||||
critical temperature set point has been exceeded. Both pins can be set up with a
|
||||
common hysteresis of 0°C - 15°C and a fault queue, ranging from 1 to 4 events.
|
||||
Both pins can individually set to be active-low or active-high, while the whole
|
||||
device can either run in comparator mode or interrupt mode. The ADT7410 supports
|
||||
continuous temperature sampling, as well as sampling one temperature value per
|
||||
second or even just get one sample on demand for power saving. Besides, it can
|
||||
completely power down its ADC, if power management is required.
|
||||
|
||||
The ADT7320/ADT7420 is register compatible, the only differences being the
|
||||
package, a slightly narrower operating temperature range (-40°C to +150°C), and
|
||||
a better accuracy (0.25°C instead of 0.50°C.)
|
||||
|
||||
The difference between the ADT7310/ADT7320 and ADT7410/ADT7420 is the control
|
||||
interface, the ADT7310 and ADT7320 use SPI while the ADT7410 and ADT7420 use
|
||||
I2C.
|
||||
|
||||
Configuration Notes
|
||||
-------------------
|
||||
|
||||
Since the device uses one hysteresis value, which is an offset to minimum,
|
||||
maximum and critical temperature, it can only be set for temp#_max_hyst.
|
||||
However, temp#_min_hyst and temp#_crit_hyst show their corresponding
|
||||
hysteresis.
|
||||
The device is set to 16 bit resolution and comparator mode.
|
||||
|
||||
sysfs-Interface
|
||||
---------------
|
||||
|
||||
temp#_input - temperature input
|
||||
temp#_min - temperature minimum setpoint
|
||||
temp#_max - temperature maximum setpoint
|
||||
temp#_crit - critical temperature setpoint
|
||||
temp#_min_hyst - hysteresis for temperature minimum (read-only)
|
||||
temp#_max_hyst - hysteresis for temperature maximum (read/write)
|
||||
temp#_crit_hyst - hysteresis for critical temperature (read-only)
|
||||
temp#_min_alarm - temperature minimum alarm flag
|
||||
temp#_max_alarm - temperature maximum alarm flag
|
||||
temp#_crit_alarm - critical temperature alarm flag
|
42
Documentation/hwmon/adt7411
Normal file
42
Documentation/hwmon/adt7411
Normal file
|
@ -0,0 +1,42 @@
|
|||
Kernel driver adt7411
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7411
|
||||
Prefix: 'adt7411'
|
||||
Addresses scanned: 0x48, 0x4a, 0x4b
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
|
||||
Author: Wolfram Sang (based on adt7470 by Darrick J. Wong)
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Analog Devices ADT7411 chip. There may
|
||||
be other chips that implement this interface.
|
||||
|
||||
The ADT7411 can use an I2C/SMBus compatible 2-wire interface or an
|
||||
SPI-compatible 4-wire interface. It provides a 10-bit analog to digital
|
||||
converter which measures 1 temperature, vdd and 8 input voltages. It has an
|
||||
internal temperature sensor, but an external one can also be connected (one
|
||||
loses 2 inputs then). There are high- and low-limit registers for all inputs.
|
||||
|
||||
Check the datasheet for details.
|
||||
|
||||
sysfs-Interface
|
||||
---------------
|
||||
|
||||
in0_input - vdd voltage input
|
||||
in[1-8]_input - analog 1-8 input
|
||||
temp1_input - temperature input
|
||||
|
||||
Besides standard interfaces, this driver adds (0 = off, 1 = on):
|
||||
|
||||
adc_ref_vdd - Use vdd as reference instead of 2.25 V
|
||||
fast_sampling - Sample at 22.5 kHz instead of 1.4 kHz, but drop filters
|
||||
no_average - Turn off averaging over 16 samples
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
SPI, external temperature sensor and limit registers are not supported yet.
|
67
Documentation/hwmon/adt7462
Normal file
67
Documentation/hwmon/adt7462
Normal file
|
@ -0,0 +1,67 @@
|
|||
Kernel driver adt7462
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7462
|
||||
Prefix: 'adt7462'
|
||||
Addresses scanned: I2C 0x58, 0x5C
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
|
||||
Author: Darrick J. Wong
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Analog Devices ADT7462 chip family.
|
||||
|
||||
This chip is a bit of a beast. It has 8 counters for measuring fan speed. It
|
||||
can also measure 13 voltages or 4 temperatures, or various combinations of the
|
||||
two. See the chip documentation for more details about the exact set of
|
||||
configurations. This driver does not allow one to configure the chip; that is
|
||||
left to the system designer.
|
||||
|
||||
A sophisticated control system for the PWM outputs is designed into the ADT7462
|
||||
that allows fan speed to be adjusted automatically based on any of the three
|
||||
temperature sensors. Each PWM output is individually adjustable and
|
||||
programmable. Once configured, the ADT7462 will adjust the PWM outputs in
|
||||
response to the measured temperatures without further host intervention. This
|
||||
feature can also be disabled for manual control of the PWM's.
|
||||
|
||||
Each of the measured inputs (voltage, temperature, fan speed) has
|
||||
corresponding high/low limit values. The ADT7462 will signal an ALARM if
|
||||
any measured value exceeds either limit.
|
||||
|
||||
The ADT7462 samples all inputs continuously. The driver will not read
|
||||
the registers more often than once every other second. Further,
|
||||
configuration data is only read once per minute.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The ADT7462 have a 10-bit ADC and can therefore measure temperatures
|
||||
with 0.25 degC resolution.
|
||||
|
||||
The Analog Devices datasheet is very detailed and describes a procedure for
|
||||
determining an optimal configuration for the automatic PWM control.
|
||||
|
||||
The driver will report sensor labels when it is able to determine that
|
||||
information from the configuration registers.
|
||||
|
||||
Configuration Notes
|
||||
-------------------
|
||||
|
||||
Besides standard interfaces driver adds the following:
|
||||
|
||||
* PWM Control
|
||||
|
||||
* pwm#_auto_point1_pwm and temp#_auto_point1_temp and
|
||||
* pwm#_auto_point2_pwm and temp#_auto_point2_temp -
|
||||
|
||||
point1: Set the pwm speed at a lower temperature bound.
|
||||
point2: Set the pwm speed at a higher temperature bound.
|
||||
|
||||
The ADT7462 will scale the pwm between the lower and higher pwm speed when
|
||||
the temperature is between the two temperature boundaries. PWM values range
|
||||
from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the
|
||||
temperature sensor associated with the PWM control exceeds temp#_max.
|
||||
|
73
Documentation/hwmon/adt7470
Normal file
73
Documentation/hwmon/adt7470
Normal file
|
@ -0,0 +1,73 @@
|
|||
Kernel driver adt7470
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7470
|
||||
Prefix: 'adt7470'
|
||||
Addresses scanned: I2C 0x2C, 0x2E, 0x2F
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
|
||||
Author: Darrick J. Wong
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Analog Devices ADT7470 chip. There may
|
||||
be other chips that implement this interface.
|
||||
|
||||
The ADT7470 uses the 2-wire interface compatible with the SMBus 2.0
|
||||
specification. Using an analog to digital converter it measures up to ten (10)
|
||||
external temperatures. It has four (4) 16-bit counters for measuring fan speed.
|
||||
There are four (4) PWM outputs that can be used to control fan speed.
|
||||
|
||||
A sophisticated control system for the PWM outputs is designed into the ADT7470
|
||||
that allows fan speed to be adjusted automatically based on any of the ten
|
||||
temperature sensors. Each PWM output is individually adjustable and
|
||||
programmable. Once configured, the ADT7470 will adjust the PWM outputs in
|
||||
response to the measured temperatures with further host intervention. This
|
||||
feature can also be disabled for manual control of the PWM's.
|
||||
|
||||
Each of the measured inputs (temperature, fan speed) has corresponding high/low
|
||||
limit values. The ADT7470 will signal an ALARM if any measured value exceeds
|
||||
either limit.
|
||||
|
||||
The ADT7470 samples all inputs continuously. A kernel thread is started up for
|
||||
the purpose of periodically querying the temperature sensors, thus allowing the
|
||||
automatic fan pwm control to set the fan speed. The driver will not read the
|
||||
registers more often than once every 5 seconds. Further, configuration data is
|
||||
only read once per minute.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The ADT7470 has a 8-bit ADC and is capable of measuring temperatures with 1
|
||||
degC resolution.
|
||||
|
||||
The Analog Devices datasheet is very detailed and describes a procedure for
|
||||
determining an optimal configuration for the automatic PWM control.
|
||||
|
||||
Configuration Notes
|
||||
-------------------
|
||||
|
||||
Besides standard interfaces driver adds the following:
|
||||
|
||||
* PWM Control
|
||||
|
||||
* pwm#_auto_point1_pwm and pwm#_auto_point1_temp and
|
||||
* pwm#_auto_point2_pwm and pwm#_auto_point2_temp -
|
||||
|
||||
point1: Set the pwm speed at a lower temperature bound.
|
||||
point2: Set the pwm speed at a higher temperature bound.
|
||||
|
||||
The ADT7470 will scale the pwm between the lower and higher pwm speed when
|
||||
the temperature is between the two temperature boundaries. PWM values range
|
||||
from 0 (off) to 255 (full speed). Fan speed will be set to maximum when the
|
||||
temperature sensor associated with the PWM control exceeds
|
||||
pwm#_auto_point2_temp.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The temperature inputs no longer need to be read periodically from userspace in
|
||||
order for the automatic pwm algorithm to run. This was the case for earlier
|
||||
versions of the driver.
|
117
Documentation/hwmon/adt7475
Normal file
117
Documentation/hwmon/adt7475
Normal file
|
@ -0,0 +1,117 @@
|
|||
Kernel driver adt7475
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7473
|
||||
Prefix: 'adt7473'
|
||||
Addresses scanned: I2C 0x2C, 0x2D, 0x2E
|
||||
Datasheet: Publicly available at the On Semiconductors website
|
||||
* Analog Devices ADT7475
|
||||
Prefix: 'adt7475'
|
||||
Addresses scanned: I2C 0x2E
|
||||
Datasheet: Publicly available at the On Semiconductors website
|
||||
* Analog Devices ADT7476
|
||||
Prefix: 'adt7476'
|
||||
Addresses scanned: I2C 0x2C, 0x2D, 0x2E
|
||||
Datasheet: Publicly available at the On Semiconductors website
|
||||
* Analog Devices ADT7490
|
||||
Prefix: 'adt7490'
|
||||
Addresses scanned: I2C 0x2C, 0x2D, 0x2E
|
||||
Datasheet: Publicly available at the On Semiconductors website
|
||||
|
||||
Authors:
|
||||
Jordan Crouse
|
||||
Hans de Goede
|
||||
Darrick J. Wong (documentation)
|
||||
Jean Delvare
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Analog Devices ADT7473, ADT7475,
|
||||
ADT7476 and ADT7490 chip family. The ADT7473 and ADT7475 differ only in
|
||||
minor details. The ADT7476 has additional features, including extra voltage
|
||||
measurement inputs and VID support. The ADT7490 also has additional
|
||||
features, including extra voltage measurement inputs and PECI support. All
|
||||
the supported chips will be collectively designed by the name "ADT747x" in
|
||||
the rest of this document.
|
||||
|
||||
The ADT747x uses the 2-wire interface compatible with the SMBus 2.0
|
||||
specification. Using an analog to digital converter it measures three (3)
|
||||
temperatures and two (2) or more voltages. It has four (4) 16-bit counters
|
||||
for measuring fan speed. There are three (3) PWM outputs that can be used
|
||||
to control fan speed.
|
||||
|
||||
A sophisticated control system for the PWM outputs is designed into the
|
||||
ADT747x that allows fan speed to be adjusted automatically based on any of the
|
||||
three temperature sensors. Each PWM output is individually adjustable and
|
||||
programmable. Once configured, the ADT747x will adjust the PWM outputs in
|
||||
response to the measured temperatures without further host intervention.
|
||||
This feature can also be disabled for manual control of the PWM's.
|
||||
|
||||
Each of the measured inputs (voltage, temperature, fan speed) has
|
||||
corresponding high/low limit values. The ADT747x will signal an ALARM if
|
||||
any measured value exceeds either limit.
|
||||
|
||||
The ADT747x samples all inputs continuously. The driver will not read
|
||||
the registers more often than once every other second. Further,
|
||||
configuration data is only read once per minute.
|
||||
|
||||
Chip Differences Summary
|
||||
------------------------
|
||||
|
||||
ADT7473:
|
||||
* 2 voltage inputs
|
||||
* system acoustics optimizations (not implemented)
|
||||
|
||||
ADT7475:
|
||||
* 2 voltage inputs
|
||||
|
||||
ADT7476:
|
||||
* 5 voltage inputs
|
||||
* VID support
|
||||
|
||||
ADT7490:
|
||||
* 6 voltage inputs
|
||||
* 1 Imon input (not implemented)
|
||||
* PECI support (not implemented)
|
||||
* 2 GPIO pins (not implemented)
|
||||
* system acoustics optimizations (not implemented)
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The ADT747x has a 10-bit ADC and can therefore measure temperatures
|
||||
with a resolution of 0.25 degree Celsius. Temperature readings can be
|
||||
configured either for two's complement format or "Offset 64" format,
|
||||
wherein 64 is subtracted from the raw value to get the temperature value.
|
||||
|
||||
The datasheet is very detailed and describes a procedure for determining
|
||||
an optimal configuration for the automatic PWM control.
|
||||
|
||||
Fan Speed Control
|
||||
-----------------
|
||||
|
||||
The driver exposes two trip points per PWM channel.
|
||||
|
||||
point1: Set the PWM speed at the lower temperature bound
|
||||
point2: Set the PWM speed at the higher temperature bound
|
||||
|
||||
The ADT747x will scale the PWM linearly between the lower and higher PWM
|
||||
speed when the temperature is between the two temperature boundaries.
|
||||
Temperature boundaries are associated to temperature channels rather than
|
||||
PWM outputs, and a given PWM output can be controlled by several temperature
|
||||
channels. As a result, the ADT747x may compute more than one PWM value
|
||||
for a channel at a given time, in which case the maximum value (fastest
|
||||
fan speed) is applied. PWM values range from 0 (off) to 255 (full speed).
|
||||
|
||||
Fan speed may be set to maximum when the temperature sensor associated with
|
||||
the PWM control exceeds temp#_max.
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The nVidia binary driver presents an ADT7473 chip via an on-card i2c bus.
|
||||
Unfortunately, they fail to set the i2c adapter class, so this driver may
|
||||
fail to find the chip until the nvidia driver is patched.
|
102
Documentation/hwmon/amc6821
Normal file
102
Documentation/hwmon/amc6821
Normal file
|
@ -0,0 +1,102 @@
|
|||
Kernel driver amc6821
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
Texas Instruments AMC6821
|
||||
Prefix: 'amc6821'
|
||||
Addresses scanned: 0x18, 0x19, 0x1a, 0x2c, 0x2d, 0x2e, 0x4c, 0x4d, 0x4e
|
||||
Datasheet: http://focus.ti.com/docs/prod/folders/print/amc6821.html
|
||||
|
||||
Authors:
|
||||
Tomaz Mertelj <tomaz.mertelj@guest.arnes.si>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Texas Instruments amc6821 chip.
|
||||
The chip has one on-chip and one remote temperature sensor and one pwm fan
|
||||
regulator.
|
||||
The pwm can be controlled either from software or automatically.
|
||||
|
||||
The driver provides the following sensor accesses in sysfs:
|
||||
|
||||
temp1_input ro on-chip temperature
|
||||
temp1_min rw "
|
||||
temp1_max rw "
|
||||
temp1_crit rw "
|
||||
temp1_min_alarm ro "
|
||||
temp1_max_alarm ro "
|
||||
temp1_crit_alarm ro "
|
||||
|
||||
temp2_input ro remote temperature
|
||||
temp2_min rw "
|
||||
temp2_max rw "
|
||||
temp2_crit rw "
|
||||
temp2_min_alarm ro "
|
||||
temp2_max_alarm ro "
|
||||
temp2_crit_alarm ro "
|
||||
temp2_fault ro "
|
||||
|
||||
fan1_input ro tachometer speed
|
||||
fan1_min rw "
|
||||
fan1_max rw "
|
||||
fan1_fault ro "
|
||||
fan1_div rw Fan divisor can be either 2 or 4.
|
||||
|
||||
pwm1 rw pwm1
|
||||
pwm1_enable rw regulator mode, 1=open loop, 2=fan controlled
|
||||
by remote temperature, 3=fan controlled by
|
||||
combination of the on-chip temperature and
|
||||
remote-sensor temperature,
|
||||
pwm1_auto_channels_temp ro 1 if pwm_enable==2, 3 if pwm_enable==3
|
||||
pwm1_auto_point1_pwm ro Hardwired to 0, shared for both
|
||||
temperature channels.
|
||||
pwm1_auto_point2_pwm rw This value is shared for both temperature
|
||||
channels.
|
||||
pwm1_auto_point3_pwm rw Hardwired to 255, shared for both
|
||||
temperature channels.
|
||||
|
||||
temp1_auto_point1_temp ro Hardwired to temp2_auto_point1_temp
|
||||
which is rw. Below this temperature fan stops.
|
||||
temp1_auto_point2_temp rw The low-temperature limit of the proportional
|
||||
range. Below this temperature
|
||||
pwm1 = pwm1_auto_point2_pwm. It can go from
|
||||
0 degree C to 124 degree C in steps of
|
||||
4 degree C. Read it out after writing to get
|
||||
the actual value.
|
||||
temp1_auto_point3_temp rw Above this temperature fan runs at maximum
|
||||
speed. It can go from temp1_auto_point2_temp.
|
||||
It can only have certain discrete values
|
||||
which depend on temp1_auto_point2_temp and
|
||||
pwm1_auto_point2_pwm. Read it out after
|
||||
writing to get the actual value.
|
||||
|
||||
temp2_auto_point1_temp rw Must be between 0 degree C and 63 degree C and
|
||||
it defines the passive cooling temperature.
|
||||
Below this temperature the fan stops in
|
||||
the closed loop mode.
|
||||
temp2_auto_point2_temp rw The low-temperature limit of the proportional
|
||||
range. Below this temperature
|
||||
pwm1 = pwm1_auto_point2_pwm. It can go from
|
||||
0 degree C to 124 degree C in steps
|
||||
of 4 degree C.
|
||||
|
||||
temp2_auto_point3_temp rw Above this temperature fan runs at maximum
|
||||
speed. It can only have certain discrete
|
||||
values which depend on temp2_auto_point2_temp
|
||||
and pwm1_auto_point2_pwm. Read it out after
|
||||
writing to get actual value.
|
||||
|
||||
|
||||
Module parameters
|
||||
-----------------
|
||||
|
||||
If your board has a BIOS that initializes the amc6821 correctly, you should
|
||||
load the module with: init=0.
|
||||
|
||||
If your board BIOS doesn't initialize the chip, or you want
|
||||
different settings, you can set the following parameters:
|
||||
init=1,
|
||||
pwminv: 0 default pwm output, 1 inverts pwm output.
|
||||
|
72
Documentation/hwmon/asb100
Normal file
72
Documentation/hwmon/asb100
Normal file
|
@ -0,0 +1,72 @@
|
|||
Kernel driver asb100
|
||||
====================
|
||||
|
||||
Supported Chips:
|
||||
* Asus ASB100 and ASB100-A "Bach"
|
||||
Prefix: 'asb100'
|
||||
Addresses scanned: I2C 0x2d
|
||||
Datasheet: none released
|
||||
|
||||
Author: Mark M. Hoffman <mhoffman@lightlink.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Asus ASB100 and ASB100-A "Bach".
|
||||
These are custom ASICs available only on Asus mainboards. Asus refuses to
|
||||
supply a datasheet for these chips. Thanks go to many people who helped
|
||||
investigate their hardware, including:
|
||||
|
||||
Vitaly V. Bursov
|
||||
Alexander van Kaam (author of MBM for Windows)
|
||||
Bertrik Sikken
|
||||
|
||||
The ASB100 implements seven voltage sensors, three fan rotation speed
|
||||
sensors, four temperature sensors, VID lines and alarms. In addition to
|
||||
these, the ASB100-A also implements a single PWM controller for fans 2 and
|
||||
3 (i.e. one setting controls both.) If you have a plain ASB100, the PWM
|
||||
controller will simply not work (or maybe it will for you... it doesn't for
|
||||
me).
|
||||
|
||||
Temperatures are measured and reported in degrees Celsius.
|
||||
|
||||
Fan speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report values in volts.
|
||||
|
||||
The VID lines encode the core voltage value: the voltage level your
|
||||
processor should work with. This is hardcoded by the mainboard and/or
|
||||
processor itself. It is a value in volts.
|
||||
|
||||
Alarms: (TODO question marks indicate may or may not work)
|
||||
|
||||
0x0001 => in0 (?)
|
||||
0x0002 => in1 (?)
|
||||
0x0004 => in2
|
||||
0x0008 => in3
|
||||
0x0010 => temp1 (1)
|
||||
0x0020 => temp2
|
||||
0x0040 => fan1
|
||||
0x0080 => fan2
|
||||
0x0100 => in4
|
||||
0x0200 => in5 (?) (2)
|
||||
0x0400 => in6 (?) (2)
|
||||
0x0800 => fan3
|
||||
0x1000 => chassis switch
|
||||
0x2000 => temp3
|
||||
|
||||
Alarm Notes:
|
||||
|
||||
(1) This alarm will only trigger if the hysteresis value is 127C.
|
||||
I.e. it behaves the same as w83781d.
|
||||
|
||||
(2) The min and max registers for these values appear to
|
||||
be read-only or otherwise stuck at 0x00.
|
||||
|
||||
TODO:
|
||||
* Experiment with fan divisors > 8.
|
||||
* Experiment with temp. sensor types.
|
||||
* Are there really 13 voltage inputs? Probably not...
|
||||
* Cleanups, no doubt...
|
||||
|
296
Documentation/hwmon/asc7621
Normal file
296
Documentation/hwmon/asc7621
Normal file
|
@ -0,0 +1,296 @@
|
|||
Kernel driver asc7621
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
Andigilog aSC7621 and aSC7621a
|
||||
Prefix: 'asc7621'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.fairview5.com/linux/asc7621/asc7621.pdf
|
||||
|
||||
Author:
|
||||
George Joseph
|
||||
|
||||
Description provided by Dave Pivin @ Andigilog:
|
||||
|
||||
Andigilog has both the PECI and pre-PECI versions of the Heceta-6, as
|
||||
Intel calls them. Heceta-6e has high frequency PWM and Heceta-6p has
|
||||
added PECI and a 4th thermal zone. The Andigilog aSC7611 is the
|
||||
Heceta-6e part and aSC7621 is the Heceta-6p part. They are both in
|
||||
volume production, shipping to Intel and their subs.
|
||||
|
||||
We have enhanced both parts relative to the governing Intel
|
||||
specification. First enhancement is temperature reading resolution. We
|
||||
have used registers below 20h for vendor-specific functions in addition
|
||||
to those in the Intel-specified vendor range.
|
||||
|
||||
Our conversion process produces a result that is reported as two bytes.
|
||||
The fan speed control uses this finer value to produce a "step-less" fan
|
||||
PWM output. These two bytes are "read-locked" to guarantee that once a
|
||||
high or low byte is read, the other byte is locked-in until after the
|
||||
next read of any register. So to get an atomic reading, read high or low
|
||||
byte, then the very next read should be the opposite byte. Our data
|
||||
sheet says 10-bits of resolution, although you may find the lower bits
|
||||
are active, they are not necessarily reliable or useful externally. We
|
||||
chose not to mask them.
|
||||
|
||||
We employ significant filtering that is user tunable as described in the
|
||||
data sheet. Our temperature reports and fan PWM outputs are very smooth
|
||||
when compared to the competition, in addition to the higher resolution
|
||||
temperature reports. The smoother PWM output does not require user
|
||||
intervention.
|
||||
|
||||
We offer GPIO features on the former VID pins. These are open-drain
|
||||
outputs or inputs and may be used as general purpose I/O or as alarm
|
||||
outputs that are based on temperature limits. These are in 19h and 1Ah.
|
||||
|
||||
We offer flexible mapping of temperature readings to thermal zones. Any
|
||||
temperature may be mapped to any zone, which has a default assignment
|
||||
that follows Intel's specs.
|
||||
|
||||
Since there is a fan to zone assignment that allows for the "hotter" of
|
||||
a set of zones to control the PWM of an individual fan, but there is no
|
||||
indication to the user, we have added an indicator that shows which zone
|
||||
is currently controlling the PWM for a given fan. This is in register
|
||||
00h.
|
||||
|
||||
Both remote diode temperature readings may be given an offset value such
|
||||
that the reported reading as well as the temperature used to determine
|
||||
PWM may be offset for system calibration purposes.
|
||||
|
||||
PECI Extended configuration allows for having more than two domains per
|
||||
PECI address and also provides an enabling function for each PECI
|
||||
address. One could use our flexible zone assignment to have a zone
|
||||
assigned to up to 4 PECI addresses. This is not possible in the default
|
||||
Intel configuration. This would be useful in multi-CPU systems with
|
||||
individual fans on each that would benefit from individual fan control.
|
||||
This is in register 0Eh.
|
||||
|
||||
The tachometer measurement system is flexible and able to adapt to many
|
||||
fan types. We can also support pulse-stretched PWM so that 3-wire fans
|
||||
may be used. These characteristics are in registers 04h to 07h.
|
||||
|
||||
Finally, we have added a tach disable function that turns off the tach
|
||||
measurement system for individual tachs in order to save power. That is
|
||||
in register 75h.
|
||||
|
||||
--
|
||||
aSC7621 Product Description
|
||||
|
||||
The aSC7621 has a two wire digital interface compatible with SMBus 2.0.
|
||||
Using a 10-bit ADC, the aSC7621 measures the temperature of two remote diode
|
||||
connected transistors as well as its own die. Support for Platform
|
||||
Environmental Control Interface (PECI) is included.
|
||||
|
||||
Using temperature information from these four zones, an automatic fan speed
|
||||
control algorithm is employed to minimize acoustic impact while achieving
|
||||
recommended CPU temperature under varying operational loads.
|
||||
|
||||
To set fan speed, the aSC7621 has three independent pulse width modulation
|
||||
(PWM) outputs that are controlled by one, or a combination of three,
|
||||
temperature zones. Both high- and low-frequency PWM ranges are supported.
|
||||
|
||||
The aSC7621 also includes a digital filter that can be invoked to smooth
|
||||
temperature readings for better control of fan speed and minimum acoustic
|
||||
impact.
|
||||
|
||||
The aSC7621 has tachometer inputs to measure fan speed on up to four fans.
|
||||
Limit and status registers for all measured values are included to alert
|
||||
the system host that any measurements are outside of programmed limits
|
||||
via status registers.
|
||||
|
||||
System voltages of VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard power are
|
||||
monitored efficiently with internal scaling resistors.
|
||||
|
||||
Features
|
||||
- Supports PECI interface and monitors internal and remote thermal diodes
|
||||
- 2-wire, SMBus 2.0 compliant, serial interface
|
||||
- 10-bit ADC
|
||||
- Monitors VCCP, 2.5V, 3.3V, 5.0V, and 12V motherboard/processor supplies
|
||||
- Programmable autonomous fan control based on temperature readings
|
||||
- Noise filtering of temperature reading for fan speed control
|
||||
- 0.25C digital temperature sensor resolution
|
||||
- 3 PWM fan speed control outputs for 2-, 3- or 4-wire fans and up to 4 fan
|
||||
tachometer inputs
|
||||
- Enhanced measured temperature to Temperature Zone assignment.
|
||||
- Provides high and low PWM frequency ranges
|
||||
- 3 GPIO pins for custom use
|
||||
- 24-Lead QSOP package
|
||||
|
||||
Configuration Notes
|
||||
===================
|
||||
|
||||
Except where noted below, the sysfs entries created by this driver follow
|
||||
the standards defined in "sysfs-interface".
|
||||
|
||||
temp1_source
|
||||
0 (default) peci_legacy = 0, Remote 1 Temperature
|
||||
peci_legacy = 1, PECI Processor Temperature 0
|
||||
1 Remote 1 Temperature
|
||||
2 Remote 2 Temperature
|
||||
3 Internal Temperature
|
||||
4 PECI Processor Temperature 0
|
||||
5 PECI Processor Temperature 1
|
||||
6 PECI Processor Temperature 2
|
||||
7 PECI Processor Temperature 3
|
||||
|
||||
temp2_source
|
||||
0 (default) Internal Temperature
|
||||
1 Remote 1 Temperature
|
||||
2 Remote 2 Temperature
|
||||
3 Internal Temperature
|
||||
4 PECI Processor Temperature 0
|
||||
5 PECI Processor Temperature 1
|
||||
6 PECI Processor Temperature 2
|
||||
7 PECI Processor Temperature 3
|
||||
|
||||
temp3_source
|
||||
0 (default) Remote 2 Temperature
|
||||
1 Remote 1 Temperature
|
||||
2 Remote 2 Temperature
|
||||
3 Internal Temperature
|
||||
4 PECI Processor Temperature 0
|
||||
5 PECI Processor Temperature 1
|
||||
6 PECI Processor Temperature 2
|
||||
7 PECI Processor Temperature 3
|
||||
|
||||
temp4_source
|
||||
0 (default) peci_legacy = 0, PECI Processor Temperature 0
|
||||
peci_legacy = 1, Remote 1 Temperature
|
||||
1 Remote 1 Temperature
|
||||
2 Remote 2 Temperature
|
||||
3 Internal Temperature
|
||||
4 PECI Processor Temperature 0
|
||||
5 PECI Processor Temperature 1
|
||||
6 PECI Processor Temperature 2
|
||||
7 PECI Processor Temperature 3
|
||||
|
||||
temp[1-4]_smoothing_enable
|
||||
temp[1-4]_smoothing_time
|
||||
Smooths spikes in temp readings caused by noise.
|
||||
Valid values in milliseconds are:
|
||||
35000
|
||||
17600
|
||||
11800
|
||||
7000
|
||||
4400
|
||||
3000
|
||||
1600
|
||||
800
|
||||
|
||||
temp[1-4]_crit
|
||||
When the corresponding zone temperature reaches this value,
|
||||
ALL pwm outputs will got to 100%.
|
||||
|
||||
temp[5-8]_input
|
||||
temp[5-8]_enable
|
||||
The aSC7621 can also read temperatures provided by the processor
|
||||
via the PECI bus. Usually these are "core" temps and are relative
|
||||
to the point where the automatic thermal control circuit starts
|
||||
throttling. This means that these are usually negative numbers.
|
||||
|
||||
pwm[1-3]_enable
|
||||
0 Fan off.
|
||||
1 Fan on manual control.
|
||||
2 Fan on automatic control and will run at the minimum pwm
|
||||
if the temperature for the zone is below the minimum.
|
||||
3 Fan on automatic control but will be off if the temperature
|
||||
for the zone is below the minimum.
|
||||
4-254 Ignored.
|
||||
255 Fan on full.
|
||||
|
||||
pwm[1-3]_auto_channels
|
||||
Bitmap as described in sysctl-interface with the following
|
||||
exceptions...
|
||||
Only the following combination of zones (and their corresponding masks)
|
||||
are valid:
|
||||
1
|
||||
2
|
||||
3
|
||||
2,3
|
||||
1,2,3
|
||||
4
|
||||
1,2,3,4
|
||||
|
||||
Special values:
|
||||
0 Disabled.
|
||||
16 Fan on manual control.
|
||||
31 Fan on full.
|
||||
|
||||
|
||||
pwm[1-3]_invert
|
||||
When set, inverts the meaning of pwm[1-3].
|
||||
i.e. when pwm = 0, the fan will be on full and
|
||||
when pwm = 255 the fan will be off.
|
||||
|
||||
pwm[1-3]_freq
|
||||
PWM frequency in Hz
|
||||
Valid values in Hz are:
|
||||
|
||||
10
|
||||
15
|
||||
23
|
||||
30 (default)
|
||||
38
|
||||
47
|
||||
62
|
||||
94
|
||||
23000
|
||||
24000
|
||||
25000
|
||||
26000
|
||||
27000
|
||||
28000
|
||||
29000
|
||||
30000
|
||||
|
||||
Setting any other value will be ignored.
|
||||
|
||||
peci_enable
|
||||
Enables or disables PECI
|
||||
|
||||
peci_avg
|
||||
Input filter average time.
|
||||
|
||||
0 0 Sec. (no Smoothing) (default)
|
||||
1 0.25 Sec.
|
||||
2 0.5 Sec.
|
||||
3 1.0 Sec.
|
||||
4 2.0 Sec.
|
||||
5 4.0 Sec.
|
||||
6 8.0 Sec.
|
||||
7 0.0 Sec.
|
||||
|
||||
peci_legacy
|
||||
|
||||
0 Standard Mode (default)
|
||||
Remote Diode 1 reading is associated with
|
||||
Temperature Zone 1, PECI is associated with
|
||||
Zone 4
|
||||
|
||||
1 Legacy Mode
|
||||
PECI is associated with Temperature Zone 1,
|
||||
Remote Diode 1 is associated with Zone 4
|
||||
|
||||
peci_diode
|
||||
Diode filter
|
||||
|
||||
0 0.25 Sec.
|
||||
1 1.1 Sec.
|
||||
2 2.4 Sec. (default)
|
||||
3 3.4 Sec.
|
||||
4 5.0 Sec.
|
||||
5 6.8 Sec.
|
||||
6 10.2 Sec.
|
||||
7 16.4 Sec.
|
||||
|
||||
peci_4domain
|
||||
Four domain enable
|
||||
|
||||
0 1 or 2 Domains for enabled processors (default)
|
||||
1 3 or 4 Domains for enabled processors
|
||||
|
||||
peci_domain
|
||||
Domain
|
||||
|
||||
0 Processor contains a single domain (0) (default)
|
||||
1 Processor contains two domains (0,1)
|
181
Documentation/hwmon/coretemp
Normal file
181
Documentation/hwmon/coretemp
Normal file
|
@ -0,0 +1,181 @@
|
|||
Kernel driver coretemp
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* All Intel Core family
|
||||
Prefix: 'coretemp'
|
||||
CPUID: family 0x6, models 0xe (Pentium M DC), 0xf (Core 2 DC 65nm),
|
||||
0x16 (Core 2 SC 65nm), 0x17 (Penryn 45nm),
|
||||
0x1a (Nehalem), 0x1c (Atom), 0x1e (Lynnfield),
|
||||
0x26 (Tunnel Creek Atom), 0x27 (Medfield Atom),
|
||||
0x36 (Cedar Trail Atom)
|
||||
Datasheet: Intel 64 and IA-32 Architectures Software Developer's Manual
|
||||
Volume 3A: System Programming Guide
|
||||
http://softwarecommunity.intel.com/Wiki/Mobility/720.htm
|
||||
|
||||
Author: Rudolf Marek
|
||||
|
||||
Description
|
||||
-----------
|
||||
This driver permits reading the DTS (Digital Temperature Sensor) embedded
|
||||
inside Intel CPUs. This driver can read both the per-core and per-package
|
||||
temperature using the appropriate sensors. The per-package sensor is new;
|
||||
as of now, it is present only in the SandyBridge platform. The driver will
|
||||
show the temperature of all cores inside a package under a single device
|
||||
directory inside hwmon.
|
||||
|
||||
Temperature is measured in degrees Celsius and measurement resolution is
|
||||
1 degree C. Valid temperatures are from 0 to TjMax degrees C, because
|
||||
the actual value of temperature register is in fact a delta from TjMax.
|
||||
|
||||
Temperature known as TjMax is the maximum junction temperature of processor,
|
||||
which depends on the CPU model. See table below. At this temperature, protection
|
||||
mechanism will perform actions to forcibly cool down the processor. Alarm
|
||||
may be raised, if the temperature grows enough (more than TjMax) to trigger
|
||||
the Out-Of-Spec bit. Following table summarizes the exported sysfs files:
|
||||
|
||||
All Sysfs entries are named with their core_id (represented here by 'X').
|
||||
tempX_input - Core temperature (in millidegrees Celsius).
|
||||
tempX_max - All cooling devices should be turned on (on Core2).
|
||||
tempX_crit - Maximum junction temperature (in millidegrees Celsius).
|
||||
tempX_crit_alarm - Set when Out-of-spec bit is set, never clears.
|
||||
Correct CPU operation is no longer guaranteed.
|
||||
tempX_label - Contains string "Core X", where X is processor
|
||||
number. For Package temp, this will be "Physical id Y",
|
||||
where Y is the package number.
|
||||
|
||||
On CPU models which support it, TjMax is read from a model-specific register.
|
||||
On other models, it is set to an arbitrary value based on weak heuristics.
|
||||
If these heuristics don't work for you, you can pass the correct TjMax value
|
||||
as a module parameter (tjmax).
|
||||
|
||||
Appendix A. Known TjMax lists (TBD):
|
||||
Some information comes from ark.intel.com
|
||||
|
||||
Process Processor TjMax(C)
|
||||
|
||||
22nm Core i5/i7 Processors
|
||||
i7 3920XM, 3820QM, 3720QM, 3667U, 3520M 105
|
||||
i5 3427U, 3360M/3320M 105
|
||||
i7 3770/3770K 105
|
||||
i5 3570/3570K, 3550, 3470/3450 105
|
||||
i7 3770S 103
|
||||
i5 3570S/3550S, 3475S/3470S/3450S 103
|
||||
i7 3770T 94
|
||||
i5 3570T 94
|
||||
i5 3470T 91
|
||||
|
||||
32nm Core i3/i5/i7 Processors
|
||||
i7 2600 98
|
||||
i7 660UM/640/620, 640LM/620, 620M, 610E 105
|
||||
i5 540UM/520/430, 540M/520/450/430 105
|
||||
i3 330E, 370M/350/330 90 rPGA, 105 BGA
|
||||
i3 330UM 105
|
||||
|
||||
32nm Core i7 Extreme Processors
|
||||
980X 100
|
||||
|
||||
32nm Celeron Processors
|
||||
U3400 105
|
||||
P4505/P4500 90
|
||||
|
||||
32nm Atom Processors
|
||||
S1260/1220 95
|
||||
S1240 102
|
||||
Z2460 90
|
||||
Z2760 90
|
||||
D2700/2550/2500 100
|
||||
N2850/2800/2650/2600 100
|
||||
|
||||
45nm Xeon Processors 5400 Quad-Core
|
||||
X5492, X5482, X5472, X5470, X5460, X5450 85
|
||||
E5472, E5462, E5450/40/30/20/10/05 85
|
||||
L5408 95
|
||||
L5430, L5420, L5410 70
|
||||
|
||||
45nm Xeon Processors 5200 Dual-Core
|
||||
X5282, X5272, X5270, X5260 90
|
||||
E5240 90
|
||||
E5205, E5220 70, 90
|
||||
L5240 70
|
||||
L5238, L5215 95
|
||||
|
||||
45nm Atom Processors
|
||||
D525/510/425/410 100
|
||||
K525/510/425/410 100
|
||||
Z670/650 90
|
||||
Z560/550/540/530P/530/520PT/520/515/510PT/510P 90
|
||||
Z510/500 90
|
||||
N570/550 100
|
||||
N475/470/455/450 100
|
||||
N280/270 90
|
||||
330/230 125
|
||||
E680/660/640/620 90
|
||||
E680T/660T/640T/620T 110
|
||||
E665C/645C 90
|
||||
E665CT/645CT 110
|
||||
CE4170/4150/4110 110
|
||||
CE4200 series unknown
|
||||
CE5300 series unknown
|
||||
|
||||
45nm Core2 Processors
|
||||
Solo ULV SU3500/3300 100
|
||||
T9900/9800/9600/9550/9500/9400/9300/8300/8100 105
|
||||
T6670/6500/6400 105
|
||||
T6600 90
|
||||
SU9600/9400/9300 105
|
||||
SP9600/9400 105
|
||||
SL9600/9400/9380/9300 105
|
||||
P9700/9600/9500/8800/8700/8600/8400/7570 105
|
||||
P7550/7450 90
|
||||
|
||||
45nm Core2 Quad Processors
|
||||
Q9100/9000 100
|
||||
|
||||
45nm Core2 Extreme Processors
|
||||
X9100/9000 105
|
||||
QX9300 100
|
||||
|
||||
45nm Core i3/i5/i7 Processors
|
||||
i7 940XM/920 100
|
||||
i7 840QM/820/740/720 100
|
||||
|
||||
45nm Celeron Processors
|
||||
SU2300 100
|
||||
900 105
|
||||
|
||||
65nm Core2 Duo Processors
|
||||
Solo U2200, U2100 100
|
||||
U7700/7600/7500 100
|
||||
T7800/7700/7600/7500/7400/7300/7250/7200/7100 100
|
||||
T5870/5670/5600/5550/5500/5470/5450/5300/5270 100
|
||||
T5250 100
|
||||
T5800/5750/5200 85
|
||||
L7700/7500/7400/7300/7200 100
|
||||
|
||||
65nm Core2 Extreme Processors
|
||||
X7900/7800 100
|
||||
|
||||
65nm Core Duo Processors
|
||||
U2500/2400 100
|
||||
T2700/2600/2450/2400/2350/2300E/2300/2250/2050 100
|
||||
L2500/2400/2300 100
|
||||
|
||||
65nm Core Solo Processors
|
||||
U1500/1400/1300 100
|
||||
T1400/1350/1300/1250 100
|
||||
|
||||
65nm Xeon Processors 5000 Quad-Core
|
||||
X5000 90-95
|
||||
E5000 80
|
||||
L5000 70
|
||||
L5318 95
|
||||
|
||||
65nm Xeon Processors 5000 Dual-Core
|
||||
5080, 5063, 5060, 5050, 5030 80-90
|
||||
5160, 5150, 5148, 5140, 5130, 5120, 5110 80
|
||||
L5138 100
|
||||
|
||||
65nm Celeron Processors
|
||||
T1700/1600 100
|
||||
560/550/540/530 100
|
61
Documentation/hwmon/da9052
Normal file
61
Documentation/hwmon/da9052
Normal file
|
@ -0,0 +1,61 @@
|
|||
Supported chips:
|
||||
* Dialog Semiconductors DA9052-BC and DA9053-AA/Bx PMICs
|
||||
Prefix: 'da9052'
|
||||
Datasheet: Datasheet is not publicly available.
|
||||
|
||||
Authors: David Dajun Chen <dchen@diasemi.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The DA9052/53 provides an Analogue to Digital Converter (ADC) with 10 bits
|
||||
resolution and track and hold circuitry combined with an analogue input
|
||||
multiplexer. The analogue input multiplexer will allow conversion of up to 10
|
||||
different inputs. The track and hold circuit ensures stable input voltages at
|
||||
the input of the ADC during the conversion.
|
||||
|
||||
The ADC is used to measure the following inputs:
|
||||
Channel 0: VDDOUT - measurement of the system voltage
|
||||
Channel 1: ICH - internal battery charger current measurement
|
||||
Channel 2: TBAT - output from the battery NTC
|
||||
Channel 3: VBAT - measurement of the battery voltage
|
||||
Channel 4: ADC_IN4 - high impedance input (0 - 2.5V)
|
||||
Channel 5: ADC_IN5 - high impedance input (0 - 2.5V)
|
||||
Channel 6: ADC_IN6 - high impedance input (0 - 2.5V)
|
||||
Channel 7: XY - TSI interface to measure the X and Y voltage of the touch
|
||||
screen resistive potentiometers
|
||||
Channel 8: Internal Tjunc. - sense (internal temp. sensor)
|
||||
Channel 9: VBBAT - measurement of the backup battery voltage
|
||||
|
||||
By using sysfs attributes we can measure the system voltage VDDOUT, the battery
|
||||
charging current ICH, battery temperature TBAT, battery junction temperature
|
||||
TJUNC, battery voltage VBAT and the back up battery voltage VBBAT.
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
Voltages are sampled by a 10 bit ADC.
|
||||
|
||||
The battery voltage is calculated as:
|
||||
Milli volt = ((ADC value * 1000) / 512) + 2500
|
||||
|
||||
The backup battery voltage is calculated as:
|
||||
Milli volt = (ADC value * 2500) / 512;
|
||||
|
||||
The voltages on ADC channels 4, 5 and 6 are calculated as:
|
||||
Milli volt = (ADC value * 2500) / 1023
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are sampled by a 10 bit ADC. Junction and battery temperatures
|
||||
are monitored by the ADC channels.
|
||||
|
||||
The junction temperature is calculated:
|
||||
Degrees celsius = 1.708 * (TJUNC_RES - T_OFFSET) - 108.8
|
||||
The junction temperature attribute is supported by the driver.
|
||||
|
||||
The battery temperature is calculated:
|
||||
Degree Celsius = 1 / (t1 + 1/298)- 273
|
||||
where t1 = (1/B)* ln(( ADCval * 2.5)/(R25*ITBAT*255))
|
||||
Default values of R25, B, ITBAT are 10e3, 3380 and 50e-6 respectively.
|
47
Documentation/hwmon/da9055
Normal file
47
Documentation/hwmon/da9055
Normal file
|
@ -0,0 +1,47 @@
|
|||
Supported chips:
|
||||
* Dialog Semiconductors DA9055 PMIC
|
||||
Prefix: 'da9055'
|
||||
Datasheet: Datasheet is not publicly available.
|
||||
|
||||
Authors: David Dajun Chen <dchen@diasemi.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The DA9055 provides an Analogue to Digital Converter (ADC) with 10 bits
|
||||
resolution and track and hold circuitry combined with an analogue input
|
||||
multiplexer. The analogue input multiplexer will allow conversion of up to 5
|
||||
different inputs. The track and hold circuit ensures stable input voltages at
|
||||
the input of the ADC during the conversion.
|
||||
|
||||
The ADC is used to measure the following inputs:
|
||||
Channel 0: VDDOUT - measurement of the system voltage
|
||||
Channel 1: ADC_IN1 - high impedance input (0 - 2.5V)
|
||||
Channel 2: ADC_IN2 - high impedance input (0 - 2.5V)
|
||||
Channel 3: ADC_IN3 - high impedance input (0 - 2.5V)
|
||||
Channel 4: Internal Tjunc. - sense (internal temp. sensor)
|
||||
|
||||
By using sysfs attributes we can measure the system voltage VDDOUT,
|
||||
chip junction temperature and auxiliary channels voltages.
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
Voltages are sampled in a AUTO mode it can be manually sampled too and results
|
||||
are stored in a 10 bit ADC.
|
||||
|
||||
The system voltage is calculated as:
|
||||
Milli volt = ((ADC value * 1000) / 85) + 2500
|
||||
|
||||
The voltages on ADC channels 1, 2 and 3 are calculated as:
|
||||
Milli volt = (ADC value * 1000) / 102
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are sampled by a 10 bit ADC. Junction temperatures
|
||||
are monitored by the ADC channels.
|
||||
|
||||
The junction temperature is calculated:
|
||||
Degrees celsius = -0.4084 * (ADC_RES - T_OFFSET) + 307.6332
|
||||
The junction temperature attribute is supported by the driver.
|
328
Documentation/hwmon/dme1737
Normal file
328
Documentation/hwmon/dme1737
Normal file
|
@ -0,0 +1,328 @@
|
|||
Kernel driver dme1737
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* SMSC DME1737 and compatibles (like Asus A8000)
|
||||
Prefix: 'dme1737'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Provided by SMSC upon request and under NDA
|
||||
* SMSC SCH3112, SCH3114, SCH3116
|
||||
Prefix: 'sch311x'
|
||||
Addresses scanned: none, address read from Super-I/O config space
|
||||
Datasheet: Available on the Internet
|
||||
* SMSC SCH5027
|
||||
Prefix: 'sch5027'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Provided by SMSC upon request and under NDA
|
||||
* SMSC SCH5127
|
||||
Prefix: 'sch5127'
|
||||
Addresses scanned: none, address read from Super-I/O config space
|
||||
Datasheet: Provided by SMSC upon request and under NDA
|
||||
|
||||
Authors:
|
||||
Juerg Haefliger <juergh@gmail.com>
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* force_start: bool Enables the monitoring of voltage, fan and temp inputs
|
||||
and PWM output control functions. Using this parameter
|
||||
shouldn't be required since the BIOS usually takes care
|
||||
of this.
|
||||
* probe_all_addr: bool Include non-standard LPC addresses 0x162e and 0x164e
|
||||
when probing for ISA devices. This is required for the
|
||||
following boards:
|
||||
- VIA EPIA SN18000
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the hardware monitoring capabilities of the
|
||||
SMSC DME1737 and Asus A8000 (which are the same), SMSC SCH5027, SCH311x,
|
||||
and SCH5127 Super-I/O chips. These chips feature monitoring of 3 temp sensors
|
||||
temp[1-3] (2 remote diodes and 1 internal), 8 voltages in[0-7] (7 external and
|
||||
1 internal) and up to 6 fan speeds fan[1-6]. Additionally, the chips implement
|
||||
up to 5 PWM outputs pwm[1-3,5-6] for controlling fan speeds both manually and
|
||||
automatically.
|
||||
|
||||
For the DME1737, A8000 and SCH5027, fan[1-2] and pwm[1-2] are always present.
|
||||
Fan[3-6] and pwm[3,5-6] are optional features and their availability depends on
|
||||
the configuration of the chip. The driver will detect which features are
|
||||
present during initialization and create the sysfs attributes accordingly.
|
||||
|
||||
For the SCH311x and SCH5127, fan[1-3] and pwm[1-3] are always present and
|
||||
fan[4-6] and pwm[5-6] don't exist.
|
||||
|
||||
The hardware monitoring features of the DME1737, A8000, and SCH5027 are only
|
||||
accessible via SMBus, while the SCH311x and SCH5127 only provide access via
|
||||
the ISA bus. The driver will therefore register itself as an I2C client driver
|
||||
if it detects a DME1737, A8000, or SCH5027 and as a platform driver if it
|
||||
detects a SCH311x or SCH5127 chip.
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
The voltage inputs are sampled with 12-bit resolution and have internal
|
||||
scaling resistors. The values returned by the driver therefore reflect true
|
||||
millivolts and don't need scaling. The voltage inputs are mapped as follows
|
||||
(the last column indicates the input ranges):
|
||||
|
||||
DME1737, A8000:
|
||||
in0: +5VTR (+5V standby) 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: +5V 0V - 6.64V
|
||||
in4: +12V 0V - 16V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
SCH311x:
|
||||
in0: +2.5V 0V - 3.32V
|
||||
in1: Vccp (processor core) 0V - 2V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: +5V 0V - 6.64V
|
||||
in4: +12V 0V - 16V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
SCH5027:
|
||||
in0: +5VTR (+5V standby) 0V - 6.64V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: V2_IN 0V - 1.5V
|
||||
in4: V1_IN 0V - 1.5V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
|
||||
SCH5127:
|
||||
in0: +2.5 0V - 3.32V
|
||||
in1: Vccp (processor core) 0V - 3V
|
||||
in2: VCC (internal +3.3V) 0V - 4.38V
|
||||
in3: V2_IN 0V - 1.5V
|
||||
in4: V1_IN 0V - 1.5V
|
||||
in5: VTR (+3.3V standby) 0V - 4.38V
|
||||
in6: Vbat (+3.0V) 0V - 4.38V
|
||||
in7: Vtrip (+1.5V) 0V - 1.99V
|
||||
|
||||
Each voltage input has associated min and max limits which trigger an alarm
|
||||
when crossed.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are measured with 12-bit resolution and reported in millidegree
|
||||
Celsius. The chip also features offsets for all 3 temperature inputs which -
|
||||
when programmed - get added to the input readings. The chip does all the
|
||||
scaling by itself and the driver therefore reports true temperatures that don't
|
||||
need any user-space adjustments. The temperature inputs are mapped as follows
|
||||
(the last column indicates the input ranges):
|
||||
|
||||
temp1: Remote diode 1 (3904 type) temperature -127C - +127C
|
||||
temp2: DME1737 internal temperature -127C - +127C
|
||||
temp3: Remote diode 2 (3904 type) temperature -127C - +127C
|
||||
|
||||
Each temperature input has associated min and max limits which trigger an alarm
|
||||
when crossed. Additionally, each temperature input has a fault attribute that
|
||||
returns 1 when a faulty diode or an unconnected input is detected and 0
|
||||
otherwise.
|
||||
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan RPMs are measured with 16-bit resolution. The chip provides inputs for 6
|
||||
fan tachometers. All 6 inputs have an associated min limit which triggers an
|
||||
alarm when crossed. Fan inputs 1-4 provide type attributes that need to be set
|
||||
to the number of pulses per fan revolution that the connected tachometer
|
||||
generates. Supported values are 1, 2, and 4. Fan inputs 5-6 only support fans
|
||||
that generate 2 pulses per revolution. Fan inputs 5-6 also provide a max
|
||||
attribute that needs to be set to the maximum attainable RPM (fan at 100% duty-
|
||||
cycle) of the input. The chip adjusts the sampling rate based on this value.
|
||||
|
||||
|
||||
PWM Output Control
|
||||
------------------
|
||||
|
||||
This chip features 5 PWM outputs. PWM outputs 1-3 are associated with fan
|
||||
inputs 1-3 and PWM outputs 5-6 are associated with fan inputs 5-6. PWM outputs
|
||||
1-3 can be configured to operate either in manual or automatic mode by setting
|
||||
the appropriate enable attribute accordingly. PWM outputs 5-6 can only operate
|
||||
in manual mode, their enable attributes are therefore read-only. When set to
|
||||
manual mode, the fan speed is set by writing the duty-cycle value to the
|
||||
appropriate PWM attribute. In automatic mode, the PWM attribute returns the
|
||||
current duty-cycle as set by the fan controller in the chip. All PWM outputs
|
||||
support the setting of the output frequency via the freq attribute.
|
||||
|
||||
In automatic mode, the chip supports the setting of the PWM ramp rate which
|
||||
defines how fast the PWM output is adjusting to changes of the associated
|
||||
temperature input. Associating PWM outputs to temperature inputs is done via
|
||||
temperature zones. The chip features 3 zones whose assignments to temperature
|
||||
inputs is static and determined during initialization. These assignments can
|
||||
be retrieved via the zone[1-3]_auto_channels_temp attributes. Each PWM output
|
||||
is assigned to one (or hottest of multiple) temperature zone(s) through the
|
||||
pwm[1-3]_auto_channels_zone attributes. Each PWM output has 3 distinct output
|
||||
duty-cycles: full, low, and min. Full is internally hard-wired to 255 (100%)
|
||||
and low and min can be programmed via pwm[1-3]_auto_point1_pwm and
|
||||
pwm[1-3]_auto_pwm_min, respectively. The thermal thresholds of the zones are
|
||||
programmed via zone[1-3]_auto_point[1-3]_temp and
|
||||
zone[1-3]_auto_point1_temp_hyst:
|
||||
|
||||
pwm[1-3]_auto_point2_pwm full-speed duty-cycle (255, i.e., 100%)
|
||||
pwm[1-3]_auto_point1_pwm low-speed duty-cycle
|
||||
pwm[1-3]_auto_pwm_min min-speed duty-cycle
|
||||
|
||||
zone[1-3]_auto_point3_temp full-speed temp (all outputs)
|
||||
zone[1-3]_auto_point2_temp full-speed temp
|
||||
zone[1-3]_auto_point1_temp low-speed temp
|
||||
zone[1-3]_auto_point1_temp_hyst min-speed temp
|
||||
|
||||
The chip adjusts the output duty-cycle linearly in the range of auto_point1_pwm
|
||||
to auto_point2_pwm if the temperature of the associated zone is between
|
||||
auto_point1_temp and auto_point2_temp. If the temperature drops below the
|
||||
auto_point1_temp_hyst value, the output duty-cycle is set to the auto_pwm_min
|
||||
value which only supports two values: 0 or auto_point1_pwm. That means that the
|
||||
fan either turns completely off or keeps spinning with the low-speed
|
||||
duty-cycle. If any of the temperatures rise above the auto_point3_temp value,
|
||||
all PWM outputs are set to 100% duty-cycle.
|
||||
|
||||
Following is another representation of how the chip sets the output duty-cycle
|
||||
based on the temperature of the associated thermal zone:
|
||||
|
||||
Duty-Cycle Duty-Cycle
|
||||
Temperature Rising Temp Falling Temp
|
||||
----------- ----------- ------------
|
||||
full-speed full-speed full-speed
|
||||
|
||||
< linearly adjusted duty-cycle >
|
||||
|
||||
low-speed low-speed low-speed
|
||||
min-speed low-speed
|
||||
min-speed min-speed min-speed
|
||||
min-speed min-speed
|
||||
|
||||
|
||||
Sysfs Attributes
|
||||
----------------
|
||||
|
||||
Following is a list of all sysfs attributes that the driver provides, their
|
||||
permissions and a short description:
|
||||
|
||||
Name Perm Description
|
||||
---- ---- -----------
|
||||
cpu0_vid RO CPU core reference voltage in
|
||||
millivolts.
|
||||
vrm RW Voltage regulator module version
|
||||
number.
|
||||
|
||||
in[0-7]_input RO Measured voltage in millivolts.
|
||||
in[0-7]_min RW Low limit for voltage input.
|
||||
in[0-7]_max RW High limit for voltage input.
|
||||
in[0-7]_alarm RO Voltage input alarm. Returns 1 if
|
||||
voltage input is or went outside the
|
||||
associated min-max range, 0 otherwise.
|
||||
|
||||
temp[1-3]_input RO Measured temperature in millidegree
|
||||
Celsius.
|
||||
temp[1-3]_min RW Low limit for temp input.
|
||||
temp[1-3]_max RW High limit for temp input.
|
||||
temp[1-3]_offset RW Offset for temp input. This value will
|
||||
be added by the chip to the measured
|
||||
temperature.
|
||||
temp[1-3]_alarm RO Alarm for temp input. Returns 1 if temp
|
||||
input is or went outside the associated
|
||||
min-max range, 0 otherwise.
|
||||
temp[1-3]_fault RO Temp input fault. Returns 1 if the chip
|
||||
detects a faulty thermal diode or an
|
||||
unconnected temp input, 0 otherwise.
|
||||
|
||||
zone[1-3]_auto_channels_temp RO Temperature zone to temperature input
|
||||
mapping. This attribute is a bitfield
|
||||
and supports the following values:
|
||||
1: temp1
|
||||
2: temp2
|
||||
4: temp3
|
||||
zone[1-3]_auto_point1_temp_hyst RW Auto PWM temp point1 hysteresis. The
|
||||
output of the corresponding PWM is set
|
||||
to the pwm_auto_min value if the temp
|
||||
falls below the auto_point1_temp_hyst
|
||||
value.
|
||||
zone[1-3]_auto_point[1-3]_temp RW Auto PWM temp points. Auto_point1 is
|
||||
the low-speed temp, auto_point2 is the
|
||||
full-speed temp, and auto_point3 is the
|
||||
temp at which all PWM outputs are set
|
||||
to full-speed (100% duty-cycle).
|
||||
|
||||
fan[1-6]_input RO Measured fan speed in RPM.
|
||||
fan[1-6]_min RW Low limit for fan input.
|
||||
fan[1-6]_alarm RO Alarm for fan input. Returns 1 if fan
|
||||
input is or went below the associated
|
||||
min value, 0 otherwise.
|
||||
fan[1-4]_type RW Type of attached fan. Expressed in
|
||||
number of pulses per revolution that
|
||||
the fan generates. Supported values are
|
||||
1, 2, and 4.
|
||||
fan[5-6]_max RW Max attainable RPM at 100% duty-cycle.
|
||||
Required for chip to adjust the
|
||||
sampling rate accordingly.
|
||||
|
||||
pmw[1-3,5-6] RO/RW Duty-cycle of PWM output. Supported
|
||||
values are 0-255 (0%-100%). Only
|
||||
writeable if the associated PWM is in
|
||||
manual mode.
|
||||
pwm[1-3]_enable RW Enable of PWM outputs 1-3. Supported
|
||||
values are:
|
||||
0: turned off (output @ 100%)
|
||||
1: manual mode
|
||||
2: automatic mode
|
||||
pwm[5-6]_enable RO Enable of PWM outputs 5-6. Always
|
||||
returns 1 since these 2 outputs are
|
||||
hard-wired to manual mode.
|
||||
pmw[1-3,5-6]_freq RW Frequency of PWM output. Supported
|
||||
values are in the range 11Hz-30000Hz
|
||||
(default is 25000Hz).
|
||||
pmw[1-3]_ramp_rate RW Ramp rate of PWM output. Determines how
|
||||
fast the PWM duty-cycle will change
|
||||
when the PWM is in automatic mode.
|
||||
Expressed in ms per PWM step. Supported
|
||||
values are in the range 0ms-206ms
|
||||
(default is 0, which means the duty-
|
||||
cycle changes instantly).
|
||||
pwm[1-3]_auto_channels_zone RW PWM output to temperature zone mapping.
|
||||
This attribute is a bitfield and
|
||||
supports the following values:
|
||||
1: zone1
|
||||
2: zone2
|
||||
4: zone3
|
||||
6: highest of zone[2-3]
|
||||
7: highest of zone[1-3]
|
||||
pwm[1-3]_auto_pwm_min RW Auto PWM min pwm. Minimum PWM duty-
|
||||
cycle. Supported values are 0 or
|
||||
auto_point1_pwm.
|
||||
pwm[1-3]_auto_point1_pwm RW Auto PWM pwm point. Auto_point1 is the
|
||||
low-speed duty-cycle.
|
||||
pwm[1-3]_auto_point2_pwm RO Auto PWM pwm point. Auto_point2 is the
|
||||
full-speed duty-cycle which is hard-
|
||||
wired to 255 (100% duty-cycle).
|
||||
|
||||
Chip Differences
|
||||
----------------
|
||||
|
||||
Feature dme1737 sch311x sch5027 sch5127
|
||||
-------------------------------------------------------
|
||||
temp[1-3]_offset yes yes
|
||||
vid yes
|
||||
zone3 yes yes yes
|
||||
zone[1-3]_hyst yes yes
|
||||
pwm min/off yes yes
|
||||
fan3 opt yes opt yes
|
||||
pwm3 opt yes opt yes
|
||||
fan4 opt opt
|
||||
fan5 opt opt
|
||||
pwm5 opt opt
|
||||
fan6 opt opt
|
||||
pwm6 opt opt
|
||||
in7 yes
|
187
Documentation/hwmon/ds1621
Normal file
187
Documentation/hwmon/ds1621
Normal file
|
@ -0,0 +1,187 @@
|
|||
Kernel driver ds1621
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* Dallas Semiconductor / Maxim Integrated DS1621
|
||||
Prefix: 'ds1621'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available from www.maximintegrated.com
|
||||
|
||||
* Dallas Semiconductor DS1625
|
||||
Prefix: 'ds1625'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available from www.datasheetarchive.com
|
||||
|
||||
* Maxim Integrated DS1631
|
||||
Prefix: 'ds1631'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available from www.maximintegrated.com
|
||||
|
||||
* Maxim Integrated DS1721
|
||||
Prefix: 'ds1721'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available from www.maximintegrated.com
|
||||
|
||||
* Maxim Integrated DS1731
|
||||
Prefix: 'ds1731'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available from www.maximintegrated.com
|
||||
|
||||
Authors:
|
||||
Christian W. Zuckschwerdt <zany@triq.net>
|
||||
valuable contributions by Jan M. Sendler <sendler@sendler.de>
|
||||
ported to 2.6 by Aurelien Jarno <aurelien@aurel32.net>
|
||||
with the help of Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Module Parameters
|
||||
------------------
|
||||
|
||||
* polarity int
|
||||
Output's polarity: 0 = active high, 1 = active low
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The DS1621 is a (one instance) digital thermometer and thermostat. It has
|
||||
both high and low temperature limits which can be user defined (i.e.
|
||||
programmed into non-volatile on-chip registers). Temperature range is -55
|
||||
degree Celsius to +125 in 0.5 increments. You may convert this into a
|
||||
Fahrenheit range of -67 to +257 degrees with 0.9 steps. If polarity
|
||||
parameter is not provided, original value is used.
|
||||
|
||||
As for the thermostat, behavior can also be programmed using the polarity
|
||||
toggle. On the one hand ("heater"), the thermostat output of the chip,
|
||||
Tout, will trigger when the low limit temperature is met or underrun and
|
||||
stays high until the high limit is met or exceeded. On the other hand
|
||||
("cooler"), vice versa. That way "heater" equals "active low", whereas
|
||||
"conditioner" equals "active high". Please note that the DS1621 data sheet
|
||||
is somewhat misleading in this point since setting the polarity bit does
|
||||
not simply invert Tout.
|
||||
|
||||
A second thing is that, during extensive testing, Tout showed a tolerance
|
||||
of up to +/- 0.5 degrees even when compared against precise temperature
|
||||
readings. Be sure to have a high vs. low temperature limit gap of al least
|
||||
1.0 degree Celsius to avoid Tout "bouncing", though!
|
||||
|
||||
The alarm bits are set when the high or low limits are met or exceeded and
|
||||
are reset by the module as soon as the respective temperature ranges are
|
||||
left.
|
||||
|
||||
The alarm registers are in no way suitable to find out about the actual
|
||||
status of Tout. They will only tell you about its history, whether or not
|
||||
any of the limits have ever been met or exceeded since last power-up or
|
||||
reset. Be aware: When testing, it showed that the status of Tout can change
|
||||
with neither of the alarms set.
|
||||
|
||||
Since there is no version or vendor identification register, there is
|
||||
no unique identification for these devices. Therefore, explicit device
|
||||
instantiation is required for correct device identification and functionality
|
||||
(one device per address in this address range: 0x48..0x4f).
|
||||
|
||||
The DS1625 is pin compatible and functionally equivalent with the DS1621,
|
||||
but the DS1621 is meant to replace it. The DS1631, DS1721, and DS1731 are
|
||||
also pin compatible with the DS1621 and provide multi-resolution support.
|
||||
|
||||
Additionally, the DS1721 data sheet says the temperature flags (THF and TLF)
|
||||
are used internally, however, these flags do get set and cleared as the actual
|
||||
temperature crosses the min or max settings (which by default are set to 75
|
||||
and 80 degrees respectively).
|
||||
|
||||
Temperature Conversion:
|
||||
-----------------------
|
||||
DS1621 - 750ms (older devices may take up to 1000ms)
|
||||
DS1625 - 500ms
|
||||
DS1631 - 93ms..750ms for 9..12 bits resolution, respectively.
|
||||
DS1721 - 93ms..750ms for 9..12 bits resolution, respectively.
|
||||
DS1731 - 93ms..750ms for 9..12 bits resolution, respectively.
|
||||
|
||||
Note:
|
||||
On the DS1621, internal access to non-volatile registers may last for 10ms
|
||||
or less (unverified on the other devices).
|
||||
|
||||
Temperature Accuracy:
|
||||
---------------------
|
||||
DS1621: +/- 0.5 degree Celsius (from 0 to +70 degrees)
|
||||
DS1625: +/- 0.5 degree Celsius (from 0 to +70 degrees)
|
||||
DS1631: +/- 0.5 degree Celsius (from 0 to +70 degrees)
|
||||
DS1721: +/- 1.0 degree Celsius (from -10 to +85 degrees)
|
||||
DS1731: +/- 1.0 degree Celsius (from -10 to +85 degrees)
|
||||
|
||||
Note:
|
||||
Please refer to the device datasheets for accuracy at other temperatures.
|
||||
|
||||
Temperature Resolution:
|
||||
-----------------------
|
||||
As mentioned above, the DS1631, DS1721, and DS1731 provide multi-resolution
|
||||
support, which is achieved via the R0 and R1 config register bits, where:
|
||||
|
||||
R0..R1
|
||||
------
|
||||
0 0 => 9 bits, 0.5 degrees Celcius
|
||||
1 0 => 10 bits, 0.25 degrees Celcius
|
||||
0 1 => 11 bits, 0.125 degrees Celcius
|
||||
1 1 => 12 bits, 0.0625 degrees Celcius
|
||||
|
||||
Note:
|
||||
At initial device power-on, the default resolution is set to 12-bits.
|
||||
|
||||
The resolution mode for the DS1631, DS1721, or DS1731 can be changed from
|
||||
userspace, via the device 'update_interval' sysfs attribute. This attribute
|
||||
will normalize the range of input values to the device maximum resolution
|
||||
values defined in the datasheet as follows:
|
||||
|
||||
Resolution Conversion Time Input Range
|
||||
(C/LSB) (msec) (msec)
|
||||
------------------------------------------------
|
||||
0.5 93.75 0....94
|
||||
0.25 187.5 95...187
|
||||
0.125 375 188..375
|
||||
0.0625 750 376..infinity
|
||||
------------------------------------------------
|
||||
|
||||
The following examples show how the 'update_interval' attribute can be
|
||||
used to change the conversion time:
|
||||
|
||||
$ cat update_interval
|
||||
750
|
||||
$ cat temp1_input
|
||||
22062
|
||||
$
|
||||
$ echo 300 > update_interval
|
||||
$ cat update_interval
|
||||
375
|
||||
$ cat temp1_input
|
||||
22125
|
||||
$
|
||||
$ echo 150 > update_interval
|
||||
$ cat update_interval
|
||||
188
|
||||
$ cat temp1_input
|
||||
22250
|
||||
$
|
||||
$ echo 1 > update_interval
|
||||
$ cat update_interval
|
||||
94
|
||||
$ cat temp1_input
|
||||
22000
|
||||
$
|
||||
$ echo 1000 > update_interval
|
||||
$ cat update_interval
|
||||
750
|
||||
$ cat temp1_input
|
||||
22062
|
||||
$
|
||||
|
||||
As shown, the ds1621 driver automatically adjusts the 'update_interval'
|
||||
user input, via a step function. Reading back the 'update_interval' value
|
||||
after a write operation provides the conversion time used by the device.
|
||||
|
||||
Mathematically, the resolution can be derived from the conversion time
|
||||
via the following function:
|
||||
|
||||
g(x) = 0.5 * [minimum_conversion_time/x]
|
||||
|
||||
where:
|
||||
-> 'x' = the output from 'update_interval'
|
||||
-> 'g(x)' = the resolution in degrees C per LSB.
|
||||
-> 93.75ms = minimum conversion time
|
34
Documentation/hwmon/ds620
Normal file
34
Documentation/hwmon/ds620
Normal file
|
@ -0,0 +1,34 @@
|
|||
Kernel driver ds620
|
||||
===================
|
||||
|
||||
Supported chips:
|
||||
* Dallas Semiconductor DS620
|
||||
Prefix: 'ds620'
|
||||
Datasheet: Publicly available at the Dallas Semiconductor website
|
||||
http://www.dalsemi.com/
|
||||
|
||||
Authors:
|
||||
Roland Stigge <stigge@antcom.de>
|
||||
based on ds1621.c by
|
||||
Christian W. Zuckschwerdt <zany@triq.net>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The DS620 is a (one instance) digital thermometer and thermostat. It has both
|
||||
high and low temperature limits which can be user defined (i.e. programmed
|
||||
into non-volatile on-chip registers). Temperature range is -55 degree Celsius
|
||||
to +125. Between 0 and 70 degree Celsius, accuracy is 0.5 Kelvin. The value
|
||||
returned via sysfs displays post decimal positions.
|
||||
|
||||
The thermostat function works as follows: When configured via platform_data
|
||||
(struct ds620_platform_data) .pomode == 0 (default), the thermostat output pin
|
||||
PO is always low. If .pomode == 1, the thermostat is in PO_LOW mode. I.e., the
|
||||
output pin PO becomes active when the temperature falls below temp1_min and
|
||||
stays active until the temperature goes above temp1_max.
|
||||
|
||||
Likewise, with .pomode == 2, the thermostat is in PO_HIGH mode. I.e., the PO
|
||||
output pin becomes active when the temperature goes above temp1_max and stays
|
||||
active until the temperature falls below temp1_min.
|
||||
|
||||
The PO output pin of the DS620 operates active-low.
|
59
Documentation/hwmon/emc1403
Normal file
59
Documentation/hwmon/emc1403
Normal file
|
@ -0,0 +1,59 @@
|
|||
Kernel driver emc1403
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* SMSC / Microchip EMC1402, EMC1412
|
||||
Addresses scanned: I2C 0x18, 0x1c, 0x29, 0x4c, 0x4d, 0x5c
|
||||
Prefix: 'emc1402'
|
||||
Datasheets:
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1412.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1402.pdf
|
||||
* SMSC / Microchip EMC1403, EMC1404, EMC1413, EMC1414
|
||||
Addresses scanned: I2C 0x18, 0x29, 0x4c, 0x4d
|
||||
Prefix: 'emc1403', 'emc1404'
|
||||
Datasheets:
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1403_1404.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1413_1414.pdf
|
||||
* SMSC / Microchip EMC1422
|
||||
Addresses scanned: I2C 0x4c
|
||||
Prefix: 'emc1422'
|
||||
Datasheet:
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1422.pdf
|
||||
* SMSC / Microchip EMC1423, EMC1424
|
||||
Addresses scanned: I2C 0x4c
|
||||
Prefix: 'emc1423', 'emc1424'
|
||||
Datasheet:
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/1423_1424.pdf
|
||||
|
||||
Author:
|
||||
Kalhan Trisal <kalhan.trisal@intel.com
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The Standard Microsystems Corporation (SMSC) / Microchip EMC14xx chips
|
||||
contain up to four temperature sensors. EMC14x2 support two sensors
|
||||
(one internal, one external). EMC14x3 support three sensors (one internal,
|
||||
two external), and EMC14x4 support four sensors (one internal, three
|
||||
external).
|
||||
|
||||
The chips implement three limits for each sensor: low (tempX_min), high
|
||||
(tempX_max) and critical (tempX_crit.) The chips also implement an
|
||||
hysteresis mechanism which applies to all limits. The relative difference
|
||||
is stored in a single register on the chip, which means that the relative
|
||||
difference between the limit and its hysteresis is always the same for
|
||||
all three limits.
|
||||
|
||||
This implementation detail implies the following:
|
||||
* When setting a limit, its hysteresis will automatically follow, the
|
||||
difference staying unchanged. For example, if the old critical limit
|
||||
was 80 degrees C, and the hysteresis was 75 degrees C, and you change
|
||||
the critical limit to 90 degrees C, then the hysteresis will
|
||||
automatically change to 85 degrees C.
|
||||
* The hysteresis values can't be set independently. We decided to make
|
||||
only temp1_crit_hyst writable, while all other hysteresis attributes
|
||||
are read-only. Setting temp1_crit_hyst writes the difference between
|
||||
temp1_crit_hyst and temp1_crit into the chip, and the same relative
|
||||
hysteresis applies automatically to all other limits.
|
||||
* The limits should be set before the hysteresis.
|
33
Documentation/hwmon/emc2103
Normal file
33
Documentation/hwmon/emc2103
Normal file
|
@ -0,0 +1,33 @@
|
|||
Kernel driver emc2103
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* SMSC EMC2103
|
||||
Addresses scanned: I2C 0x2e
|
||||
Prefix: 'emc2103'
|
||||
Datasheet: Not public
|
||||
|
||||
Authors:
|
||||
Steve Glendinning <steve.glendinning@smsc.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The Standard Microsystems Corporation (SMSC) EMC2103 chips
|
||||
contain up to 4 temperature sensors and a single fan controller.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. Fan
|
||||
readings can be divided by a programmable divider (1, 2, 4 or 8) to give
|
||||
the readings more range or accuracy. Not all RPM values can accurately be
|
||||
represented, so some rounding is done. With a divider of 1, the lowest
|
||||
representable value is 480 RPM.
|
||||
|
||||
This driver supports RPM based control, to use this a fan target
|
||||
should be written to fan1_target and pwm1_enable should be set to 3.
|
||||
|
||||
The 2103-2 and 2103-4 variants have a third temperature sensor, which can
|
||||
be connected to two anti-parallel diodes. These values can be read
|
||||
as temp3 and temp4. If only one diode is attached to this channel, temp4
|
||||
will show as "fault". The module parameter "apd=0" can be used to suppress
|
||||
this 4th channel when anti-parallel diodes are not fitted.
|
42
Documentation/hwmon/emc6w201
Normal file
42
Documentation/hwmon/emc6w201
Normal file
|
@ -0,0 +1,42 @@
|
|||
Kernel driver emc6w201
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* SMSC EMC6W201
|
||||
Prefix: 'emc6w201'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: Not public
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
From the datasheet:
|
||||
|
||||
"The EMC6W201 is an environmental monitoring device with automatic fan
|
||||
control capability and enhanced system acoustics for noise suppression.
|
||||
This ACPI compliant device provides hardware monitoring for up to six
|
||||
voltages (including its own VCC) and five external thermal sensors,
|
||||
measures the speed of up to five fans, and controls the speed of
|
||||
multiple DC fans using three Pulse Width Modulator (PWM) outputs. Note
|
||||
that it is possible to control more than three fans by connecting two
|
||||
fans to one PWM output. The EMC6W201 will be available in a 36-pin
|
||||
QFN package."
|
||||
|
||||
The device is functionally close to the EMC6D100 series, but is
|
||||
register-incompatible.
|
||||
|
||||
The driver currently only supports the monitoring of the voltages,
|
||||
temperatures and fan speeds. Limits can be changed. Alarms are not
|
||||
supported, and neither is fan speed control.
|
||||
|
||||
|
||||
Known Systems With EMC6W201
|
||||
---------------------------
|
||||
|
||||
The EMC6W201 is a rare device, only found on a few systems, made in
|
||||
2005 and 2006. Known systems with this device:
|
||||
* Dell Precision 670 workstation
|
||||
* Gigabyte 2CEWH mainboard
|
167
Documentation/hwmon/f71805f
Normal file
167
Documentation/hwmon/f71805f
Normal file
|
@ -0,0 +1,167 @@
|
|||
Kernel driver f71805f
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Fintek F71805F/FG
|
||||
Prefix: 'f71805f'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71806F/FG
|
||||
Prefix: 'f71872f'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71872F/FG
|
||||
Prefix: 'f71872f'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Thanks to Denis Kieft from Barracuda Networks for the donation of a
|
||||
test system (custom Jetway K8M8MS motherboard, with CPU and RAM) and
|
||||
for providing initial documentation.
|
||||
|
||||
Thanks to Kris Chen and Aaron Huang from Fintek for answering technical
|
||||
questions and providing additional documentation.
|
||||
|
||||
Thanks to Chris Lin from Jetway for providing wiring schematics and
|
||||
answering technical questions.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The Fintek F71805F/FG Super I/O chip includes complete hardware monitoring
|
||||
capabilities. It can monitor up to 9 voltages (counting its own power
|
||||
source), 3 fans and 3 temperature sensors.
|
||||
|
||||
This chip also has fan controlling features, using either DC or PWM, in
|
||||
three different modes (one manual, two automatic).
|
||||
|
||||
The Fintek F71872F/FG Super I/O chip is almost the same, with two
|
||||
additional internal voltages monitored (VSB and battery). It also features
|
||||
6 VID inputs. The VID inputs are not yet supported by this driver.
|
||||
|
||||
The Fintek F71806F/FG Super-I/O chip is essentially the same as the
|
||||
F71872F/FG, and is undistinguishable therefrom.
|
||||
|
||||
The driver assumes that no more than one chip is present, which seems
|
||||
reasonable.
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
Voltages are sampled by an 8-bit ADC with a LSB of 8 mV. The supported
|
||||
range is thus from 0 to 2.040 V. Voltage values outside of this range
|
||||
need external resistors. An exception is in0, which is used to monitor
|
||||
the chip's own power source (+3.3V), and is divided internally by a
|
||||
factor 2. For the F71872F/FG, in9 (VSB) and in10 (battery) are also
|
||||
divided internally by a factor 2.
|
||||
|
||||
The two LSB of the voltage limit registers are not used (always 0), so
|
||||
you can only set the limits in steps of 32 mV (before scaling).
|
||||
|
||||
The wirings and resistor values suggested by Fintek are as follow:
|
||||
|
||||
pin expected
|
||||
name use R1 R2 divider raw val.
|
||||
|
||||
in0 VCC VCC3.3V int. int. 2.00 1.65 V
|
||||
in1 VIN1 VTT1.2V 10K - 1.00 1.20 V
|
||||
in2 VIN2 VRAM 100K 100K 2.00 ~1.25 V (1)
|
||||
in3 VIN3 VCHIPSET 47K 100K 1.47 2.24 V (2)
|
||||
in4 VIN4 VCC5V 200K 47K 5.25 0.95 V
|
||||
in5 VIN5 +12V 200K 20K 11.00 1.05 V
|
||||
in6 VIN6 VCC1.5V 10K - 1.00 1.50 V
|
||||
in7 VIN7 VCORE 10K - 1.00 ~1.40 V (1)
|
||||
in8 VIN8 VSB5V 200K 47K 1.00 0.95 V
|
||||
in10 VSB VSB3.3V int. int. 2.00 1.65 V (3)
|
||||
in9 VBAT VBATTERY int. int. 2.00 1.50 V (3)
|
||||
|
||||
(1) Depends on your hardware setup.
|
||||
(2) Obviously not correct, swapping R1 and R2 would make more sense.
|
||||
(3) F71872F/FG only.
|
||||
|
||||
These values can be used as hints at best, as motherboard manufacturers
|
||||
are free to use a completely different setup. As a matter of fact, the
|
||||
Jetway K8M8MS uses a significantly different setup. You will have to
|
||||
find out documentation about your own motherboard, and edit sensors.conf
|
||||
accordingly.
|
||||
|
||||
Each voltage measured has associated low and high limits, each of which
|
||||
triggers an alarm when crossed.
|
||||
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan rotation speeds are reported as 12-bit values from a gated clock
|
||||
signal. Speeds down to 366 RPM can be measured. There is no theoretical
|
||||
high limit, but values over 6000 RPM seem to cause problem. The effective
|
||||
resolution is much lower than you would expect, the step between different
|
||||
register values being 10 rather than 1.
|
||||
|
||||
The chip assumes 2 pulse-per-revolution fans.
|
||||
|
||||
An alarm is triggered if the rotation speed drops below a programmable
|
||||
limit or is too low to be measured.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are reported in degrees Celsius. Each temperature measured
|
||||
has a high limit, those crossing triggers an alarm. There is an associated
|
||||
hysteresis value, below which the temperature has to drop before the
|
||||
alarm is cleared.
|
||||
|
||||
All temperature channels are external, there is no embedded temperature
|
||||
sensor. Each channel can be used for connecting either a thermal diode
|
||||
or a thermistor. The driver reports the currently selected mode, but
|
||||
doesn't allow changing it. In theory, the BIOS should have configured
|
||||
everything properly.
|
||||
|
||||
|
||||
Fan Control
|
||||
-----------
|
||||
|
||||
Both PWM (pulse-width modulation) and DC fan speed control methods are
|
||||
supported. The right one to use depends on external circuitry on the
|
||||
motherboard, so the driver assumes that the BIOS set the method
|
||||
properly. The driver will report the method, but won't let you change
|
||||
it.
|
||||
|
||||
When the PWM method is used, you can select the operating frequency,
|
||||
from 187.5 kHz (default) to 31 Hz. The best frequency depends on the
|
||||
fan model. As a rule of thumb, lower frequencies seem to give better
|
||||
control, but may generate annoying high-pitch noise. So a frequency just
|
||||
above the audible range, such as 25 kHz, may be a good choice; if this
|
||||
doesn't give you good linear control, try reducing it. Fintek recommends
|
||||
not going below 1 kHz, as the fan tachometers get confused by lower
|
||||
frequencies as well.
|
||||
|
||||
When the DC method is used, Fintek recommends not going below 5 V, which
|
||||
corresponds to a pwm value of 106 for the driver. The driver doesn't
|
||||
enforce this limit though.
|
||||
|
||||
Three different fan control modes are supported; the mode number is written
|
||||
to the pwm<n>_enable file.
|
||||
|
||||
* 1: Manual mode
|
||||
You ask for a specific PWM duty cycle or DC voltage by writing to the
|
||||
pwm<n> file.
|
||||
|
||||
* 2: Temperature mode
|
||||
You define 3 temperature/fan speed trip points using the
|
||||
pwm<n>_auto_point<m>_temp and _fan files. These define a staircase
|
||||
relationship between temperature and fan speed with two additional points
|
||||
interpolated between the values that you define. When the temperature
|
||||
is below auto_point1_temp the fan is switched off.
|
||||
|
||||
* 3: Fan speed mode
|
||||
You ask for a specific fan speed by writing to the fan<n>_target file.
|
||||
|
||||
Both of the automatic modes require that pwm1 corresponds to fan1, pwm2 to
|
||||
fan2 and pwm3 to fan3. Temperature mode also requires that temp1 corresponds
|
||||
to pwm1 and fan1, etc.
|
138
Documentation/hwmon/f71882fg
Normal file
138
Documentation/hwmon/f71882fg
Normal file
|
@ -0,0 +1,138 @@
|
|||
Kernel driver f71882fg
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Fintek F71808E
|
||||
Prefix: 'f71808e'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
* Fintek F71808A
|
||||
Prefix: 'f71808a'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
* Fintek F71858FG
|
||||
Prefix: 'f71858fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71862FG and F71863FG
|
||||
Prefix: 'f71862fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71869F and F71869E
|
||||
Prefix: 'f71869'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71869A
|
||||
Prefix: 'f71869a'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
* Fintek F71882FG and F71883FG
|
||||
Prefix: 'f71882fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71889FG
|
||||
Prefix: 'f71889fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
* Fintek F71889ED
|
||||
Prefix: 'f71889ed'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Should become available on the Fintek website soon
|
||||
* Fintek F71889A
|
||||
Prefix: 'f71889a'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Should become available on the Fintek website soon
|
||||
* Fintek F8000
|
||||
Prefix: 'f8000'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
* Fintek F81801U
|
||||
Prefix: 'f71889fg'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Not public
|
||||
Note: This is the 64-pin variant of the F71889FG, they have the
|
||||
same device ID and are fully compatible as far as hardware
|
||||
monitoring is concerned.
|
||||
* Fintek F81865F
|
||||
Prefix: 'f81865f'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Available from the Fintek website
|
||||
|
||||
Author: Hans de Goede <hdegoede@redhat.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
Fintek F718xx/F8000 Super I/O chips include complete hardware monitoring
|
||||
capabilities. They can monitor up to 9 voltages, 4 fans and 3 temperature
|
||||
sensors.
|
||||
|
||||
These chips also have fan controlling features, using either DC or PWM, in
|
||||
three different modes (one manual, two automatic).
|
||||
|
||||
The driver assumes that no more than one chip is present, which seems
|
||||
reasonable.
|
||||
|
||||
|
||||
Monitoring
|
||||
----------
|
||||
|
||||
The Voltage, Fan and Temperature Monitoring uses the standard sysfs
|
||||
interface as documented in sysfs-interface, without any exceptions.
|
||||
|
||||
|
||||
Fan Control
|
||||
-----------
|
||||
|
||||
Both PWM (pulse-width modulation) and DC fan speed control methods are
|
||||
supported. The right one to use depends on external circuitry on the
|
||||
motherboard, so the driver assumes that the BIOS set the method
|
||||
properly.
|
||||
|
||||
Note that the lowest numbered temperature zone trip point corresponds to
|
||||
to the border between the highest and one but highest temperature zones, and
|
||||
vica versa. So the temperature zone trip points 1-4 (or 1-2) go from high temp
|
||||
to low temp! This is how things are implemented in the IC, and the driver
|
||||
mimicks this.
|
||||
|
||||
There are 2 modes to specify the speed of the fan, PWM duty cycle (or DC
|
||||
voltage) mode, where 0-100% duty cycle (0-100% of 12V) is specified. And RPM
|
||||
mode where the actual RPM of the fan (as measured) is controlled and the speed
|
||||
gets specified as 0-100% of the fan#_full_speed file.
|
||||
|
||||
Since both modes work in a 0-100% (mapped to 0-255) scale, there isn't a
|
||||
whole lot of a difference when modifying fan control settings. The only
|
||||
important difference is that in RPM mode the 0-100% controls the fan speed
|
||||
between 0-100% of fan#_full_speed. It is assumed that if the BIOS programs
|
||||
RPM mode, it will also set fan#_full_speed properly, if it does not then
|
||||
fan control will not work properly, unless you set a sane fan#_full_speed
|
||||
value yourself.
|
||||
|
||||
Switching between these modes requires re-initializing a whole bunch of
|
||||
registers, so the mode which the BIOS has set is kept. The mode is
|
||||
printed when loading the driver.
|
||||
|
||||
Three different fan control modes are supported; the mode number is written
|
||||
to the pwm#_enable file. Note that not all modes are supported on all
|
||||
chips, and some modes may only be available in RPM / PWM mode.
|
||||
Writing an unsupported mode will result in an invalid parameter error.
|
||||
|
||||
* 1: Manual mode
|
||||
You ask for a specific PWM duty cycle / DC voltage or a specific % of
|
||||
fan#_full_speed by writing to the pwm# file. This mode is only
|
||||
available on the F71858FG / F8000 if the fan channel is in RPM mode.
|
||||
|
||||
* 2: Normal auto mode
|
||||
You can define a number of temperature/fan speed trip points, which % the
|
||||
fan should run at at this temp and which temp a fan should follow using the
|
||||
standard sysfs interface. The number and type of trip points is chip
|
||||
depended, see which files are available in sysfs.
|
||||
Fan/PWM channel 3 of the F8000 is always in this mode!
|
||||
|
||||
* 3: Thermostat mode (Only available on the F8000 when in duty cycle mode)
|
||||
The fan speed is regulated to keep the temp the fan is mapped to between
|
||||
temp#_auto_point2_temp and temp#_auto_point3_temp.
|
||||
|
||||
All of the automatic modes require that pwm1 corresponds to fan1, pwm2 to
|
||||
fan2 and pwm3 to fan3.
|
37
Documentation/hwmon/fam15h_power
Normal file
37
Documentation/hwmon/fam15h_power
Normal file
|
@ -0,0 +1,37 @@
|
|||
Kernel driver fam15h_power
|
||||
==========================
|
||||
|
||||
Supported chips:
|
||||
* AMD Family 15h Processors
|
||||
|
||||
Prefix: 'fam15h_power'
|
||||
Addresses scanned: PCI space
|
||||
Datasheets:
|
||||
BIOS and Kernel Developer's Guide (BKDG) For AMD Family 15h Processors
|
||||
(not yet published)
|
||||
|
||||
Author: Andreas Herrmann <herrmann.der.user@googlemail.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver permits reading of registers providing power information
|
||||
of AMD Family 15h processors.
|
||||
|
||||
For AMD Family 15h processors the following power values can be
|
||||
calculated using different processor northbridge function registers:
|
||||
|
||||
* BasePwrWatts: Specifies in watts the maximum amount of power
|
||||
consumed by the processor for NB and logic external to the core.
|
||||
* ProcessorPwrWatts: Specifies in watts the maximum amount of power
|
||||
the processor can support.
|
||||
* CurrPwrWatts: Specifies in watts the current amount of power being
|
||||
consumed by the processor.
|
||||
|
||||
This driver provides ProcessorPwrWatts and CurrPwrWatts:
|
||||
* power1_crit (ProcessorPwrWatts)
|
||||
* power1_input (CurrPwrWatts)
|
||||
|
||||
On multi-node processors the calculated value is for the entire
|
||||
package and not for a single node. Thus the driver creates sysfs
|
||||
attributes only for internal node0 of a multi-node processor.
|
36
Documentation/hwmon/g760a
Normal file
36
Documentation/hwmon/g760a
Normal file
|
@ -0,0 +1,36 @@
|
|||
Kernel driver g760a
|
||||
===================
|
||||
|
||||
Supported chips:
|
||||
* Global Mixed-mode Technology Inc. G760A
|
||||
Prefix: 'g760a'
|
||||
Datasheet: Publicly available at the GMT website
|
||||
http://www.gmt.com.tw/product/datasheet/EDS-760A.pdf
|
||||
|
||||
Author: Herbert Valerio Riedel <hvr@gnu.org>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The GMT G760A Fan Speed PWM Controller is connected directly to a fan
|
||||
and performs closed-loop control of the fan speed.
|
||||
|
||||
The fan speed is programmed by setting the period via 'pwm1' of two
|
||||
consecutive speed pulses. The period is defined in terms of clock
|
||||
cycle counts of an assumed 32kHz clock source.
|
||||
|
||||
Setting a period of 0 stops the fan; setting the period to 255 sets
|
||||
fan to maximum speed.
|
||||
|
||||
The measured fan rotation speed returned via 'fan1_input' is derived
|
||||
from the measured speed pulse period by assuming again a 32kHz clock
|
||||
source and a 2 pulse-per-revolution fan.
|
||||
|
||||
The 'alarms' file provides access to the two alarm bits provided by
|
||||
the G760A chip's status register: Bit 0 is set when the actual fan
|
||||
speed differs more than 20% with respect to the programmed fan speed;
|
||||
bit 1 is set when fan speed is below 1920 RPM.
|
||||
|
||||
The g760a driver will not update its values more frequently than every
|
||||
other second; reading them more often will do no harm, but will return
|
||||
'old' values.
|
65
Documentation/hwmon/g762
Normal file
65
Documentation/hwmon/g762
Normal file
|
@ -0,0 +1,65 @@
|
|||
Kernel driver g762
|
||||
==================
|
||||
|
||||
The GMT G762 Fan Speed PWM Controller is connected directly to a fan
|
||||
and performs closed-loop or open-loop control of the fan speed. Two
|
||||
modes - PWM or DC - are supported by the device.
|
||||
|
||||
For additional information, a detailed datasheet is available at
|
||||
http://natisbad.org/NAS/ref/GMT_EDS-762_763-080710-0.2.pdf. sysfs
|
||||
bindings are described in Documentation/hwmon/sysfs-interface.
|
||||
|
||||
The following entries are available to the user in a subdirectory of
|
||||
/sys/bus/i2c/drivers/g762/ to control the operation of the device.
|
||||
This can be done manually using the following entries but is usually
|
||||
done via a userland daemon like fancontrol.
|
||||
|
||||
Note that those entries do not provide ways to setup the specific
|
||||
hardware characteristics of the system (reference clock, pulses per
|
||||
fan revolution, ...); Those can be modified via devicetree bindings
|
||||
documented in Documentation/devicetree/bindings/hwmon/g762.txt or
|
||||
using a specific platform_data structure in board initialization
|
||||
file (see include/linux/platform_data/g762.h).
|
||||
|
||||
fan1_target: set desired fan speed. This only makes sense in closed-loop
|
||||
fan speed control (i.e. when pwm1_enable is set to 2).
|
||||
|
||||
fan1_input: provide current fan rotation value in RPM as reported by
|
||||
the fan to the device.
|
||||
|
||||
fan1_div: fan clock divisor. Supported value are 1, 2, 4 and 8.
|
||||
|
||||
fan1_pulses: number of pulses per fan revolution. Supported values
|
||||
are 2 and 4.
|
||||
|
||||
fan1_fault: reports fan failure, i.e. no transition on fan gear pin for
|
||||
about 0.7s (if the fan is not voluntarily set off).
|
||||
|
||||
fan1_alarm: in closed-loop control mode, if fan RPM value is 25% out
|
||||
of the programmed value for over 6 seconds 'fan1_alarm' is
|
||||
set to 1.
|
||||
|
||||
pwm1_enable: set current fan speed control mode i.e. 1 for manual fan
|
||||
speed control (open-loop) via pwm1 described below, 2 for
|
||||
automatic fan speed control (closed-loop) via fan1_target
|
||||
above.
|
||||
|
||||
pwm1_mode: set or get fan driving mode: 1 for PWM mode, 0 for DC mode.
|
||||
|
||||
pwm1: get or set PWM fan control value in open-loop mode. This is an
|
||||
integer value between 0 and 255. 0 stops the fan, 255 makes
|
||||
it run at full speed.
|
||||
|
||||
Both in PWM mode ('pwm1_mode' set to 1) and DC mode ('pwm1_mode' set to 0),
|
||||
when current fan speed control mode is open-loop ('pwm1_enable' set to 1),
|
||||
the fan speed is programmed by setting a value between 0 and 255 via 'pwm1'
|
||||
entry (0 stops the fan, 255 makes it run at full speed). In closed-loop mode
|
||||
('pwm1_enable' set to 2), the expected rotation speed in RPM can be passed to
|
||||
the chip via 'fan1_target'. In closed-loop mode, the target speed is compared
|
||||
with current speed (available via 'fan1_input') by the device and a feedback
|
||||
is performed to match that target value. The fan speed value is computed
|
||||
based on the parameters associated with the physical characteristics of the
|
||||
system: a reference clock source frequency, a number of pulses per fan
|
||||
revolution, etc.
|
||||
|
||||
Note that the driver will update its values at most once per second.
|
73
Documentation/hwmon/gl518sm
Normal file
73
Documentation/hwmon/gl518sm
Normal file
|
@ -0,0 +1,73 @@
|
|||
Kernel driver gl518sm
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Genesys Logic GL518SM release 0x00
|
||||
Prefix: 'gl518sm'
|
||||
Addresses scanned: I2C 0x2c and 0x2d
|
||||
* Genesys Logic GL518SM release 0x80
|
||||
Prefix: 'gl518sm'
|
||||
Addresses scanned: I2C 0x2c and 0x2d
|
||||
Datasheet: http://www.genesyslogic.com/
|
||||
|
||||
Authors:
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Kyösti Mälkki <kmalkki@cc.hut.fi>
|
||||
Hong-Gunn Chew <hglinux@gunnet.org>
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
IMPORTANT:
|
||||
|
||||
For the revision 0x00 chip, the in0, in1, and in2 values (+5V, +3V,
|
||||
and +12V) CANNOT be read. This is a limitation of the chip, not the driver.
|
||||
|
||||
This driver supports the Genesys Logic GL518SM chip. There are at least
|
||||
two revision of this chip, which we call revision 0x00 and 0x80. Revision
|
||||
0x80 chips support the reading of all voltages and revision 0x00 only
|
||||
for VIN3.
|
||||
|
||||
The GL518SM implements one temperature sensor, two fan rotation speed
|
||||
sensors, and four voltage sensors. It can report alarms through the
|
||||
computer speakers.
|
||||
|
||||
Temperatures are measured in degrees Celsius. An alarm goes off while the
|
||||
temperature is above the over temperature limit, and has not yet dropped
|
||||
below the hysteresis limit. The alarm always reflects the current
|
||||
situation. Measurements are guaranteed between -10 degrees and +110
|
||||
degrees, with a accuracy of +/-3 degrees.
|
||||
|
||||
Rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. In
|
||||
case when you have selected to turn fan1 off, no fan1 alarm is triggered.
|
||||
|
||||
Fan readings can be divided by a programmable divider (1, 2, 4 or 8) to
|
||||
give the readings more range or accuracy. Not all RPM values can
|
||||
accurately be represented, so some rounding is done. With a divider
|
||||
of 2, the lowest representable value is around 1900 RPM.
|
||||
|
||||
Voltage sensors (also known as VIN sensors) report their values in volts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum or
|
||||
maximum limit. Note that minimum in this case always means 'closest to
|
||||
zero'; this is important for negative voltage measurements. The VDD input
|
||||
measures voltages between 0.000 and 5.865 volt, with a resolution of 0.023
|
||||
volt. The other inputs measure voltages between 0.000 and 4.845 volt, with
|
||||
a resolution of 0.019 volt. Note that revision 0x00 chips do not support
|
||||
reading the current voltage of any input except for VIN3; limit setting and
|
||||
alarms work fine, though.
|
||||
|
||||
When an alarm is triggered, you can be warned by a beeping signal through your
|
||||
computer speaker. It is possible to enable all beeping globally, or only the
|
||||
beeping for some alarms.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once (except for temperature alarms). This means that the
|
||||
cause for the alarm may already have disappeared! Note that in the current
|
||||
implementation, all hardware registers are read whenever any data is read
|
||||
(unless it is less than 1.5 seconds since the last update). This means that
|
||||
you can easily miss once-only alarms.
|
||||
|
||||
The GL518SM only updates its values each 1.5 seconds; reading it more often
|
||||
will do no harm, but will return 'old' values.
|
37
Documentation/hwmon/hih6130
Normal file
37
Documentation/hwmon/hih6130
Normal file
|
@ -0,0 +1,37 @@
|
|||
Kernel driver hih6130
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Honeywell HIH-6130 / HIH-6131
|
||||
Prefix: 'hih6130'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Honeywell website
|
||||
http://sensing.honeywell.com/index.php?ci_id=3106&la_id=1&defId=44872
|
||||
|
||||
Author:
|
||||
Iain Paton <ipaton0@gmail.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The HIH-6130 & HIH-6131 are humidity and temperature sensors in a SO8 package.
|
||||
The difference between the two devices is that the HIH-6131 has a condensation
|
||||
filter.
|
||||
|
||||
The devices communicate with the I2C protocol. All sensors are set to the same
|
||||
I2C address 0x27 by default, so an entry with I2C_BOARD_INFO("hih6130", 0x27)
|
||||
can be used in the board setup code.
|
||||
|
||||
Please see Documentation/i2c/instantiating-devices for details on how to
|
||||
instantiate I2C devices.
|
||||
|
||||
sysfs-Interface
|
||||
---------------
|
||||
|
||||
temp1_input - temperature input
|
||||
humidity1_input - humidity input
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
Command mode and alarms are not currently supported.
|
46
Documentation/hwmon/htu21
Normal file
46
Documentation/hwmon/htu21
Normal file
|
@ -0,0 +1,46 @@
|
|||
Kernel driver htu21
|
||||
===================
|
||||
|
||||
Supported chips:
|
||||
* Measurement Specialties HTU21D
|
||||
Prefix: 'htu21'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Measurement Specialties website
|
||||
http://www.meas-spec.com/downloads/HTU21D.pdf
|
||||
|
||||
|
||||
Author:
|
||||
William Markezana <william.markezana@meas-spec.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The HTU21D is a humidity and temperature sensor in a DFN package of
|
||||
only 3 x 3 mm footprint and 0.9 mm height.
|
||||
|
||||
The devices communicate with the I2C protocol. All sensors are set to the
|
||||
same I2C address 0x40, so an entry with I2C_BOARD_INFO("htu21", 0x40) can
|
||||
be used in the board setup code.
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices
|
||||
for details.
|
||||
|
||||
sysfs-Interface
|
||||
---------------
|
||||
|
||||
temp1_input - temperature input
|
||||
humidity1_input - humidity input
|
||||
|
||||
Notes
|
||||
-----
|
||||
|
||||
The driver uses the default resolution settings of 12 bit for humidity and 14
|
||||
bit for temperature, which results in typical measurement times of 11 ms for
|
||||
humidity and 44 ms for temperature. To keep self heating below 0.1 degree
|
||||
Celsius, the device should not be active for more than 10% of the time. For
|
||||
this reason, the driver performs no more than two measurements per second and
|
||||
reports cached information if polled more frequently.
|
||||
|
||||
Different resolutions, the on-chip heater, using the CRC checksum and reading
|
||||
the serial number are not supported yet.
|
107
Documentation/hwmon/hwmon-kernel-api.txt
Normal file
107
Documentation/hwmon/hwmon-kernel-api.txt
Normal file
|
@ -0,0 +1,107 @@
|
|||
The Linux Hardware Monitoring kernel API.
|
||||
=========================================
|
||||
|
||||
Guenter Roeck
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
This document describes the API that can be used by hardware monitoring
|
||||
drivers that want to use the hardware monitoring framework.
|
||||
|
||||
This document does not describe what a hardware monitoring (hwmon) Driver or
|
||||
Device is. It also does not describe the API which can be used by user space
|
||||
to communicate with a hardware monitoring device. If you want to know this
|
||||
then please read the following file: Documentation/hwmon/sysfs-interface.
|
||||
|
||||
For additional guidelines on how to write and improve hwmon drivers, please
|
||||
also read Documentation/hwmon/submitting-patches.
|
||||
|
||||
The API
|
||||
-------
|
||||
Each hardware monitoring driver must #include <linux/hwmon.h> and, in most
|
||||
cases, <linux/hwmon-sysfs.h>. linux/hwmon.h declares the following
|
||||
register/unregister functions:
|
||||
|
||||
struct device *hwmon_device_register(struct device *dev);
|
||||
struct device *
|
||||
hwmon_device_register_with_groups(struct device *dev, const char *name,
|
||||
void *drvdata,
|
||||
const struct attribute_group **groups);
|
||||
|
||||
struct device *
|
||||
devm_hwmon_device_register_with_groups(struct device *dev,
|
||||
const char *name, void *drvdata,
|
||||
const struct attribute_group **groups);
|
||||
|
||||
void hwmon_device_unregister(struct device *dev);
|
||||
void devm_hwmon_device_unregister(struct device *dev);
|
||||
|
||||
hwmon_device_register registers a hardware monitoring device. The parameter
|
||||
of this function is a pointer to the parent device.
|
||||
This function returns a pointer to the newly created hardware monitoring device
|
||||
or PTR_ERR for failure. If this registration function is used, hardware
|
||||
monitoring sysfs attributes are expected to have been created and attached to
|
||||
the parent device prior to calling hwmon_device_register. A name attribute must
|
||||
have been created by the caller.
|
||||
|
||||
hwmon_device_register_with_groups is similar to hwmon_device_register. However,
|
||||
it has additional parameters. The name parameter is a pointer to the hwmon
|
||||
device name. The registration function wil create a name sysfs attribute
|
||||
pointing to this name. The drvdata parameter is the pointer to the local
|
||||
driver data. hwmon_device_register_with_groups will attach this pointer
|
||||
to the newly allocated hwmon device. The pointer can be retrieved by the driver
|
||||
using dev_get_drvdata() on the hwmon device pointer. The groups parameter is
|
||||
a pointer to a list of sysfs attribute groups. The list must be NULL terminated.
|
||||
hwmon_device_register_with_groups creates the hwmon device with name attribute
|
||||
as well as all sysfs attributes attached to the hwmon device.
|
||||
|
||||
devm_hwmon_device_register_with_groups is similar to
|
||||
hwmon_device_register_with_groups. However, it is device managed, meaning the
|
||||
hwmon device does not have to be removed explicitly by the removal function.
|
||||
|
||||
hwmon_device_unregister deregisters a registered hardware monitoring device.
|
||||
The parameter of this function is the pointer to the registered hardware
|
||||
monitoring device structure. This function must be called from the driver
|
||||
remove function if the hardware monitoring device was registered with
|
||||
hwmon_device_register or with hwmon_device_register_with_groups.
|
||||
|
||||
devm_hwmon_device_unregister does not normally have to be called. It is only
|
||||
needed for error handling, and only needed if the driver probe fails after
|
||||
the call to devm_hwmon_device_register_with_groups.
|
||||
|
||||
The header file linux/hwmon-sysfs.h provides a number of useful macros to
|
||||
declare and use hardware monitoring sysfs attributes.
|
||||
|
||||
In many cases, you can use the exsting define DEVICE_ATTR to declare such
|
||||
attributes. This is feasible if an attribute has no additional context. However,
|
||||
in many cases there will be additional information such as a sensor index which
|
||||
will need to be passed to the sysfs attribute handling function.
|
||||
|
||||
SENSOR_DEVICE_ATTR and SENSOR_DEVICE_ATTR_2 can be used to define attributes
|
||||
which need such additional context information. SENSOR_DEVICE_ATTR requires
|
||||
one additional argument, SENSOR_DEVICE_ATTR_2 requires two.
|
||||
|
||||
SENSOR_DEVICE_ATTR defines a struct sensor_device_attribute variable.
|
||||
This structure has the following fields.
|
||||
|
||||
struct sensor_device_attribute {
|
||||
struct device_attribute dev_attr;
|
||||
int index;
|
||||
};
|
||||
|
||||
You can use to_sensor_dev_attr to get the pointer to this structure from the
|
||||
attribute read or write function. Its parameter is the device to which the
|
||||
attribute is attached.
|
||||
|
||||
SENSOR_DEVICE_ATTR_2 defines a struct sensor_device_attribute_2 variable,
|
||||
which is defined as follows.
|
||||
|
||||
struct sensor_device_attribute_2 {
|
||||
struct device_attribute dev_attr;
|
||||
u8 index;
|
||||
u8 nr;
|
||||
};
|
||||
|
||||
Use to_sensor_dev_attr_2 to get the pointer to this structure. Its parameter
|
||||
is the device to which the attribute is attached.
|
38
Documentation/hwmon/ibmaem
Normal file
38
Documentation/hwmon/ibmaem
Normal file
|
@ -0,0 +1,38 @@
|
|||
Kernel driver ibmaem
|
||||
======================
|
||||
|
||||
This driver talks to the IBM Systems Director Active Energy Manager, known
|
||||
henceforth as AEM.
|
||||
|
||||
Supported systems:
|
||||
* Any recent IBM System X server with AEM support.
|
||||
This includes the x3350, x3550, x3650, x3655, x3755, x3850 M2,
|
||||
x3950 M2, and certain HC10/HS2x/LS2x/QS2x blades. The IPMI host interface
|
||||
driver ("ipmi-si") needs to be loaded for this driver to do anything.
|
||||
Prefix: 'ibmaem'
|
||||
Datasheet: Not available
|
||||
|
||||
Author: Darrick J. Wong
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements sensor reading support for the energy and power meters
|
||||
available on various IBM System X hardware through the BMC. All sensor banks
|
||||
will be exported as platform devices; this driver can talk to both v1 and v2
|
||||
interfaces. This driver is completely separate from the older ibmpex driver.
|
||||
|
||||
The v1 AEM interface has a simple set of features to monitor energy use. There
|
||||
is a register that displays an estimate of raw energy consumption since the
|
||||
last BMC reset, and a power sensor that returns average power use over a
|
||||
configurable interval.
|
||||
|
||||
The v2 AEM interface is a bit more sophisticated, being able to present a wider
|
||||
range of energy and power use registers, the power cap as set by the AEM
|
||||
software, and temperature sensors.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The "power_cap" value displays the current system power cap, as set by the AEM
|
||||
software. Setting the power cap from the host is not currently supported.
|
41
Documentation/hwmon/ibmpowernv
Normal file
41
Documentation/hwmon/ibmpowernv
Normal file
|
@ -0,0 +1,41 @@
|
|||
Kernel Driver IBMPOWERNV
|
||||
========================
|
||||
|
||||
Supported systems:
|
||||
* Any recent IBM P servers based on POWERNV platform
|
||||
|
||||
Author: Neelesh Gupta
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements reading the platform sensors data like temperature/fan/
|
||||
voltage/power for 'POWERNV' platform.
|
||||
|
||||
The driver uses the platform device infrastructure. It probes the device tree
|
||||
for sensor devices during the __init phase and registers them with the 'hwmon'.
|
||||
'hwmon' populates the 'sysfs' tree having attribute files, each for a given
|
||||
sensor type and its attribute data.
|
||||
|
||||
All the nodes in the DT appear under "/ibm,opal/sensors" and each valid node in
|
||||
the DT maps to an attribute file in 'sysfs'. The node exports unique 'sensor-id'
|
||||
which the driver uses to make an OPAL call to the firmware.
|
||||
|
||||
Usage notes
|
||||
-----------
|
||||
The driver is built statically with the kernel by enabling the config
|
||||
CONFIG_SENSORS_IBMPOWERNV. It can also be built as module 'ibmpowernv'.
|
||||
|
||||
Sysfs attributes
|
||||
----------------
|
||||
|
||||
fanX_input Measured RPM value.
|
||||
fanX_min Threshold RPM for alert generation.
|
||||
fanX_fault 0: No fail condition
|
||||
1: Failing fan
|
||||
tempX_input Measured ambient temperature.
|
||||
tempX_max Threshold ambient temperature for alert generation.
|
||||
inX_input Measured power supply voltage
|
||||
inX_fault 0: No fail condition.
|
||||
1: Failing power supply.
|
||||
power1_input System power consumption (microWatt)
|
93
Documentation/hwmon/ina209
Normal file
93
Documentation/hwmon/ina209
Normal file
|
@ -0,0 +1,93 @@
|
|||
Kernel driver ina209
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Burr-Brown / Texas Instruments INA209
|
||||
Prefix: 'ina209'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://www.ti.com/lit/gpn/ina209
|
||||
|
||||
Author: Paul Hays <Paul.Hays@cattail.ca>
|
||||
Author: Ira W. Snyder <iws@ovro.caltech.edu>
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The TI / Burr-Brown INA209 monitors voltage, current, and power on the high side
|
||||
of a D.C. power supply. It can perform measurements and calculations in the
|
||||
background to supply readings at any time. It includes a programmable
|
||||
calibration multiplier to scale the displayed current and power values.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The INA209 chip is highly configurable both via hardwiring and via
|
||||
the I2C bus. See the datasheet for details.
|
||||
|
||||
This tries to expose most monitoring features of the hardware via
|
||||
sysfs. It does not support every feature of this chip.
|
||||
|
||||
|
||||
in0_input shunt voltage (mV)
|
||||
in0_input_highest shunt voltage historical maximum reading (mV)
|
||||
in0_input_lowest shunt voltage historical minimum reading (mV)
|
||||
in0_reset_history reset shunt voltage history
|
||||
in0_max shunt voltage max alarm limit (mV)
|
||||
in0_min shunt voltage min alarm limit (mV)
|
||||
in0_crit_max shunt voltage crit max alarm limit (mV)
|
||||
in0_crit_min shunt voltage crit min alarm limit (mV)
|
||||
in0_max_alarm shunt voltage max alarm limit exceeded
|
||||
in0_min_alarm shunt voltage min alarm limit exceeded
|
||||
in0_crit_max_alarm shunt voltage crit max alarm limit exceeded
|
||||
in0_crit_min_alarm shunt voltage crit min alarm limit exceeded
|
||||
|
||||
in1_input bus voltage (mV)
|
||||
in1_input_highest bus voltage historical maximum reading (mV)
|
||||
in1_input_lowest bus voltage historical minimum reading (mV)
|
||||
in1_reset_history reset bus voltage history
|
||||
in1_max bus voltage max alarm limit (mV)
|
||||
in1_min bus voltage min alarm limit (mV)
|
||||
in1_crit_max bus voltage crit max alarm limit (mV)
|
||||
in1_crit_min bus voltage crit min alarm limit (mV)
|
||||
in1_max_alarm bus voltage max alarm limit exceeded
|
||||
in1_min_alarm bus voltage min alarm limit exceeded
|
||||
in1_crit_max_alarm bus voltage crit max alarm limit exceeded
|
||||
in1_crit_min_alarm bus voltage crit min alarm limit exceeded
|
||||
|
||||
power1_input power measurement (uW)
|
||||
power1_input_highest power historical maximum reading (uW)
|
||||
power1_reset_history reset power history
|
||||
power1_max power max alarm limit (uW)
|
||||
power1_crit power crit alarm limit (uW)
|
||||
power1_max_alarm power max alarm limit exceeded
|
||||
power1_crit_alarm power crit alarm limit exceeded
|
||||
|
||||
curr1_input current measurement (mA)
|
||||
|
||||
update_interval data conversion time; affects number of samples used
|
||||
to average results for shunt and bus voltages.
|
||||
|
||||
General Remarks
|
||||
---------------
|
||||
|
||||
The power and current registers in this chip require that the calibration
|
||||
register is programmed correctly before they are used. Normally this is expected
|
||||
to be done in the BIOS. In the absence of BIOS programming, the shunt resistor
|
||||
voltage can be provided using platform data. The driver uses platform data from
|
||||
the ina2xx driver for this purpose. If calibration register data is not provided
|
||||
via platform data, the driver checks if the calibration register has been
|
||||
programmed (ie has a value not equal to zero). If so, this value is retained.
|
||||
Otherwise, a default value reflecting a shunt resistor value of 10 mOhm is
|
||||
programmed into the calibration register.
|
||||
|
||||
|
||||
Output Pins
|
||||
-----------
|
||||
|
||||
Output pin programming is a board feature which depends on the BIOS. It is
|
||||
outside the scope of a hardware monitoring driver to enable or disable output
|
||||
pins.
|
49
Documentation/hwmon/ina2xx
Normal file
49
Documentation/hwmon/ina2xx
Normal file
|
@ -0,0 +1,49 @@
|
|||
Kernel driver ina2xx
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* Texas Instruments INA219
|
||||
Prefix: 'ina219'
|
||||
Addresses: I2C 0x40 - 0x4f
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/
|
||||
|
||||
* Texas Instruments INA220
|
||||
Prefix: 'ina220'
|
||||
Addresses: I2C 0x40 - 0x4f
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/
|
||||
|
||||
* Texas Instruments INA226
|
||||
Prefix: 'ina226'
|
||||
Addresses: I2C 0x40 - 0x4f
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/
|
||||
|
||||
* Texas Instruments INA230
|
||||
Prefix: 'ina230'
|
||||
Addresses: I2C 0x40 - 0x4f
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/
|
||||
|
||||
Author: Lothar Felten <l-felten@ti.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The INA219 is a high-side current shunt and power monitor with an I2C
|
||||
interface. The INA219 monitors both shunt drop and supply voltage, with
|
||||
programmable conversion times and filtering.
|
||||
|
||||
The INA220 is a high or low side current shunt and power monitor with an I2C
|
||||
interface. The INA220 monitors both shunt drop and supply voltage.
|
||||
|
||||
The INA226 is a current shunt and power monitor with an I2C interface.
|
||||
The INA226 monitors both a shunt voltage drop and bus supply voltage.
|
||||
|
||||
The INA230 is a high or low side current shunt and power monitor with an I2C
|
||||
interface. The INA230 monitors both a shunt voltage drop and bus supply voltage.
|
||||
|
||||
The shunt value in micro-ohms can be set via platform data or device tree.
|
||||
Please refer to the Documentation/devicetree/bindings/i2c/ina2xx.txt for bindings
|
||||
if the device tree is used.
|
240
Documentation/hwmon/it87
Normal file
240
Documentation/hwmon/it87
Normal file
|
@ -0,0 +1,240 @@
|
|||
Kernel driver it87
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* IT8603E/IT8623E
|
||||
Prefix: 'it8603'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8705F
|
||||
Prefix: 'it87'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Once publicly available at the ITE website, but no longer
|
||||
* IT8712F
|
||||
Prefix: 'it8712'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Once publicly available at the ITE website, but no longer
|
||||
* IT8716F/IT8726F
|
||||
Prefix: 'it8716'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Once publicly available at the ITE website, but no longer
|
||||
* IT8718F
|
||||
Prefix: 'it8718'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Once publicly available at the ITE website, but no longer
|
||||
* IT8720F
|
||||
Prefix: 'it8720'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8721F/IT8758E
|
||||
Prefix: 'it8721'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8728F
|
||||
Prefix: 'it8728'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8771E
|
||||
Prefix: 'it8771'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8772E
|
||||
Prefix: 'it8772'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8782F
|
||||
Prefix: 'it8782'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* IT8783E/F
|
||||
Prefix: 'it8783'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: Not publicly available
|
||||
* SiS950 [clone of IT8705F]
|
||||
Prefix: 'it87'
|
||||
Addresses scanned: from Super I/O config space (8 I/O ports)
|
||||
Datasheet: No longer be available
|
||||
|
||||
Authors:
|
||||
Christophe Gauthron
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* update_vbat: int
|
||||
|
||||
0 if vbat should report power on value, 1 if vbat should be updated after
|
||||
each read. Default is 0. On some boards the battery voltage is provided
|
||||
by either the battery or the onboard power supply. Only the first reading
|
||||
at power on will be the actual battery voltage (which the chip does
|
||||
automatically). On other boards the battery voltage is always fed to
|
||||
the chip so can be read at any time. Excessive reading may decrease
|
||||
battery life but no information is given in the datasheet.
|
||||
|
||||
* fix_pwm_polarity int
|
||||
|
||||
Force PWM polarity to active high (DANGEROUS). Some chips are
|
||||
misconfigured by BIOS - PWM values would be inverted. This option tries
|
||||
to fix this. Please contact your BIOS manufacturer and ask him for fix.
|
||||
|
||||
|
||||
Hardware Interfaces
|
||||
-------------------
|
||||
|
||||
All the chips supported by this driver are LPC Super-I/O chips, accessed
|
||||
through the LPC bus (ISA-like I/O ports). The IT8712F additionally has an
|
||||
SMBus interface to the hardware monitoring functions. This driver no
|
||||
longer supports this interface though, as it is slower and less reliable
|
||||
than the ISA access, and was only available on a small number of
|
||||
motherboard models.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the IT8603E, IT8623E, IT8705F, IT8712F,
|
||||
IT8716F, IT8718F, IT8720F, IT8721F, IT8726F, IT8728F, IT8758E, IT8771E,
|
||||
IT8772E, IT8782F, IT8783E/F, and SiS950 chips.
|
||||
|
||||
These chips are 'Super I/O chips', supporting floppy disks, infrared ports,
|
||||
joysticks and other miscellaneous stuff. For hardware monitoring, they
|
||||
include an 'environment controller' with 3 temperature sensors, 3 fan
|
||||
rotation speed sensors, 8 voltage sensors, associated alarms, and chassis
|
||||
intrusion detection.
|
||||
|
||||
The IT8712F and IT8716F additionally feature VID inputs, used to report
|
||||
the Vcore voltage of the processor. The early IT8712F have 5 VID pins,
|
||||
the IT8716F and late IT8712F have 6. They are shared with other functions
|
||||
though, so the functionality may not be available on a given system.
|
||||
|
||||
The IT8718F and IT8720F also features VID inputs (up to 8 pins) but the value
|
||||
is stored in the Super-I/O configuration space. Due to technical limitations,
|
||||
this value can currently only be read once at initialization time, so
|
||||
the driver won't notice and report changes in the VID value. The two
|
||||
upper VID bits share their pins with voltage inputs (in5 and in6) so you
|
||||
can't have both on a given board.
|
||||
|
||||
The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E and later IT8712F revisions
|
||||
have support for 2 additional fans. The additional fans are supported by the
|
||||
driver.
|
||||
|
||||
The IT8716F, IT8718F, IT8720F, IT8721F/IT8758E, IT8782F, IT8783E/F, and late
|
||||
IT8712F and IT8705F also have optional 16-bit tachometer counters for fans 1 to
|
||||
3. This is better (no more fan clock divider mess) but not compatible with the
|
||||
older chips and revisions. The 16-bit tachometer mode is enabled by the driver
|
||||
when one of the above chips is detected.
|
||||
|
||||
The IT8726F is just bit enhanced IT8716F with additional hardware
|
||||
for AMD power sequencing. Therefore the chip will appear as IT8716F
|
||||
to userspace applications.
|
||||
|
||||
The IT8728F, IT8771E, and IT8772E are considered compatible with the IT8721F,
|
||||
until a datasheet becomes available (hopefully.)
|
||||
|
||||
The IT8603E/IT8623E is a custom design, hardware monitoring part is similar to
|
||||
IT8728F. It only supports 16-bit fan mode, the full speed mode of the
|
||||
fan is not supported (value 0 of pwmX_enable).
|
||||
|
||||
Temperatures are measured in degrees Celsius. An alarm is triggered once
|
||||
when the Overtemperature Shutdown limit is crossed.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. When
|
||||
16-bit tachometer counters aren't used, fan readings can be divided by
|
||||
a programmable divider (1, 2, 4 or 8) to give the readings more range or
|
||||
accuracy. With a divider of 2, the lowest representable value is around
|
||||
2600 RPM. Not all RPM values can accurately be represented, so some rounding
|
||||
is done.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in volts. An
|
||||
alarm is triggered if the voltage has crossed a programmable minimum or
|
||||
maximum limit. Note that minimum in this case always means 'closest to
|
||||
zero'; this is important for negative voltage measurements. All voltage
|
||||
inputs can measure voltages between 0 and 4.08 volts, with a resolution of
|
||||
0.016 volt (except IT8603E, IT8721F/IT8758E and IT8728F: 0.012 volt.) The
|
||||
battery voltage in8 does not have limit registers.
|
||||
|
||||
On the IT8603E, IT8721F/IT8758E, IT8782F, and IT8783E/F, some voltage inputs
|
||||
are internal and scaled inside the chip:
|
||||
* in3 (optional)
|
||||
* in7 (optional for IT8782F and IT8783E/F)
|
||||
* in8 (always)
|
||||
* in9 (relevant for IT8603E only)
|
||||
The driver handles this transparently so user-space doesn't have to care.
|
||||
|
||||
The VID lines (IT8712F/IT8716F/IT8718F/IT8720F) encode the core voltage value:
|
||||
the voltage level your processor should work with. This is hardcoded by
|
||||
the mainboard and/or processor itself. It is a value in volts.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may already
|
||||
have disappeared! Note that in the current implementation, all hardware
|
||||
registers are read whenever any data is read (unless it is less than 1.5
|
||||
seconds since the last update). This means that you can easily miss
|
||||
once-only alarms.
|
||||
|
||||
Out-of-limit readings can also result in beeping, if the chip is properly
|
||||
wired and configured. Beeping can be enabled or disabled per sensor type
|
||||
(temperatures, voltages and fans.)
|
||||
|
||||
The IT87xx only updates its values each 1.5 seconds; reading it more often
|
||||
will do no harm, but will return 'old' values.
|
||||
|
||||
To change sensor N to a thermistor, 'echo 4 > tempN_type' where N is 1, 2,
|
||||
or 3. To change sensor N to a thermal diode, 'echo 3 > tempN_type'.
|
||||
Give 0 for unused sensor. Any other value is invalid. To configure this at
|
||||
startup, consult lm_sensors's /etc/sensors.conf. (4 = thermistor;
|
||||
3 = thermal diode)
|
||||
|
||||
|
||||
Fan speed control
|
||||
-----------------
|
||||
|
||||
The fan speed control features are limited to manual PWM mode. Automatic
|
||||
"Smart Guardian" mode control handling is only implemented for older chips
|
||||
(see below.) However if you want to go for "manual mode" just write 1 to
|
||||
pwmN_enable.
|
||||
|
||||
If you are only able to control the fan speed with very small PWM values,
|
||||
try lowering the PWM base frequency (pwm1_freq). Depending on the fan,
|
||||
it may give you a somewhat greater control range. The same frequency is
|
||||
used to drive all fan outputs, which is why pwm2_freq and pwm3_freq are
|
||||
read-only.
|
||||
|
||||
|
||||
Automatic fan speed control (old interface)
|
||||
-------------------------------------------
|
||||
|
||||
The driver supports the old interface to automatic fan speed control
|
||||
which is implemented by IT8705F chips up to revision F and IT8712F
|
||||
chips up to revision G.
|
||||
|
||||
This interface implements 4 temperature vs. PWM output trip points.
|
||||
The PWM output of trip point 4 is always the maximum value (fan running
|
||||
at full speed) while the PWM output of the other 3 trip points can be
|
||||
freely chosen. The temperature of all 4 trip points can be freely chosen.
|
||||
Additionally, trip point 1 has an hysteresis temperature attached, to
|
||||
prevent fast switching between fan on and off.
|
||||
|
||||
The chip automatically computes the PWM output value based on the input
|
||||
temperature, based on this simple rule: if the temperature value is
|
||||
between trip point N and trip point N+1 then the PWM output value is
|
||||
the one of trip point N. The automatic control mode is less flexible
|
||||
than the manual control mode, but it reacts faster, is more robust and
|
||||
doesn't use CPU cycles.
|
||||
|
||||
Trip points must be set properly before switching to automatic fan speed
|
||||
control mode. The driver will perform basic integrity checks before
|
||||
actually switching to automatic control mode.
|
||||
|
||||
|
||||
Temperature offset attributes
|
||||
-----------------------------
|
||||
|
||||
The driver supports temp[1-3]_offset sysfs attributes to adjust the reported
|
||||
temperature for thermal diodes or diode-connected thermal transistors.
|
||||
If a temperature sensor is configured for thermistors, the attribute values
|
||||
are ignored. If the thermal sensor type is Intel PECI, the temperature offset
|
||||
must be programmed to the critical CPU temperature.
|
104
Documentation/hwmon/jc42
Normal file
104
Documentation/hwmon/jc42
Normal file
|
@ -0,0 +1,104 @@
|
|||
Kernel driver jc42
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* Analog Devices ADT7408
|
||||
Datasheets:
|
||||
http://www.analog.com/static/imported-files/data_sheets/ADT7408.pdf
|
||||
* Atmel AT30TS00, AT30TS002A/B, AT30TSE004A
|
||||
Datasheets:
|
||||
http://www.atmel.com/Images/doc8585.pdf
|
||||
http://www.atmel.com/Images/doc8711.pdf
|
||||
http://www.atmel.com/Images/Atmel-8852-SEEPROM-AT30TSE002A-Datasheet.pdf
|
||||
http://www.atmel.com/Images/Atmel-8868-DTS-AT30TSE004A-Datasheet.pdf
|
||||
* IDT TSE2002B3, TSE2002GB2, TS3000B3, TS3000GB2
|
||||
Datasheets:
|
||||
http://www.idt.com/sites/default/files/documents/IDT_TSE2002B3C_DST_20100512_120303152056.pdf
|
||||
http://www.idt.com/sites/default/files/documents/IDT_TSE2002GB2A1_DST_20111107_120303145914.pdf
|
||||
http://www.idt.com/sites/default/files/documents/IDT_TS3000B3A_DST_20101129_120303152013.pdf
|
||||
http://www.idt.com/sites/default/files/documents/IDT_TS3000GB2A1_DST_20111104_120303151012.pdf
|
||||
* Maxim MAX6604
|
||||
Datasheets:
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX6604.pdf
|
||||
* Microchip MCP9804, MCP9805, MCP98242, MCP98243, MCP98244, MCP9843
|
||||
Datasheets:
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/22203C.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/21977b.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/21996a.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/22153c.pdf
|
||||
http://ww1.microchip.com/downloads/en/DeviceDoc/22327A.pdf
|
||||
* NXP Semiconductors SE97, SE97B, SE98, SE98A
|
||||
Datasheets:
|
||||
http://www.nxp.com/documents/data_sheet/SE97.pdf
|
||||
http://www.nxp.com/documents/data_sheet/SE97B.pdf
|
||||
http://www.nxp.com/documents/data_sheet/SE98.pdf
|
||||
http://www.nxp.com/documents/data_sheet/SE98A.pdf
|
||||
* ON Semiconductor CAT34TS02, CAT6095
|
||||
Datasheet:
|
||||
http://www.onsemi.com/pub_link/Collateral/CAT34TS02-D.PDF
|
||||
http://www.onsemi.com/pub/Collateral/CAT6095-D.PDF
|
||||
* ST Microelectronics STTS424, STTS424E02, STTS2002, STTS2004, STTS3000
|
||||
Datasheets:
|
||||
http://www.st.com/web/en/resource/technical/document/datasheet/CD00157556.pdf
|
||||
http://www.st.com/web/en/resource/technical/document/datasheet/CD00157558.pdf
|
||||
http://www.st.com/web/en/resource/technical/document/datasheet/CD00266638.pdf
|
||||
http://www.st.com/web/en/resource/technical/document/datasheet/CD00225278.pdf
|
||||
http://www.st.com/web/en/resource/technical/document/datasheet/DM00076709.pdf
|
||||
* JEDEC JC 42.4 compliant temperature sensor chips
|
||||
Datasheet:
|
||||
http://www.jedec.org/sites/default/files/docs/4_01_04R19.pdf
|
||||
|
||||
Common for all chips:
|
||||
Prefix: 'jc42'
|
||||
Addresses scanned: I2C 0x18 - 0x1f
|
||||
|
||||
Author:
|
||||
Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for JEDEC JC 42.4 compliant temperature sensors,
|
||||
which are used on many DDR3 memory modules for mobile devices and servers. Some
|
||||
systems use the sensor to prevent memory overheating by automatically throttling
|
||||
the memory controller.
|
||||
|
||||
The driver auto-detects the chips listed above, but can be manually instantiated
|
||||
to support other JC 42.4 compliant chips.
|
||||
|
||||
Example: the following will load the driver for a generic JC 42.4 compliant
|
||||
temperature sensor at address 0x18 on I2C bus #1:
|
||||
|
||||
# modprobe jc42
|
||||
# echo jc42 0x18 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
A JC 42.4 compliant chip supports a single temperature sensor. Minimum, maximum,
|
||||
and critical temperature can be configured. There are alarms for high, low,
|
||||
and critical thresholds.
|
||||
|
||||
There is also an hysteresis to control the thresholds for resetting alarms.
|
||||
Per JC 42.4 specification, the hysteresis threshold can be configured to 0, 1.5,
|
||||
3.0, and 6.0 degrees C. Configured hysteresis values will be rounded to those
|
||||
limits. The chip supports only a single register to configure the hysteresis,
|
||||
which applies to all limits. This register can be written by writing into
|
||||
temp1_crit_hyst. Other hysteresis attributes are read-only.
|
||||
|
||||
If the BIOS has configured the sensor for automatic temperature management, it
|
||||
is likely that it has locked the registers, i.e., that the temperature limits
|
||||
cannot be changed.
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
temp1_input Temperature (RO)
|
||||
temp1_min Minimum temperature (RO or RW)
|
||||
temp1_max Maximum temperature (RO or RW)
|
||||
temp1_crit Critical high temperature (RO or RW)
|
||||
|
||||
temp1_crit_hyst Critical hysteresis temperature (RO or RW)
|
||||
temp1_max_hyst Maximum hysteresis temperature (RO)
|
||||
|
||||
temp1_min_alarm Temperature low alarm
|
||||
temp1_max_alarm Temperature high alarm
|
||||
temp1_crit_alarm Temperature critical alarm
|
77
Documentation/hwmon/k10temp
Normal file
77
Documentation/hwmon/k10temp
Normal file
|
@ -0,0 +1,77 @@
|
|||
Kernel driver k10temp
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* AMD Family 10h processors:
|
||||
Socket F: Quad-Core/Six-Core/Embedded Opteron (but see below)
|
||||
Socket AM2+: Quad-Core Opteron, Phenom (II) X3/X4, Athlon X2 (but see below)
|
||||
Socket AM3: Quad-Core Opteron, Athlon/Phenom II X2/X3/X4, Sempron II
|
||||
Socket S1G3: Athlon II, Sempron, Turion II
|
||||
* AMD Family 11h processors:
|
||||
Socket S1G2: Athlon (X2), Sempron (X2), Turion X2 (Ultra)
|
||||
* AMD Family 12h processors: "Llano" (E2/A4/A6/A8-Series)
|
||||
* AMD Family 14h processors: "Brazos" (C/E/G/Z-Series)
|
||||
* AMD Family 15h processors: "Bulldozer" (FX-Series), "Trinity", "Kaveri", "Carrizo"
|
||||
* AMD Family 16h processors: "Kabini", "Mullins"
|
||||
|
||||
Prefix: 'k10temp'
|
||||
Addresses scanned: PCI space
|
||||
Datasheets:
|
||||
BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/31116.pdf
|
||||
BIOS and Kernel Developer's Guide (BKDG) for AMD Family 11h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/41256.pdf
|
||||
BIOS and Kernel Developer's Guide (BKDG) for AMD Family 12h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/41131.pdf
|
||||
BIOS and Kernel Developer's Guide (BKDG) for AMD Family 14h Models 00h-0Fh Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/43170.pdf
|
||||
Revision Guide for AMD Family 10h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/41322.pdf
|
||||
Revision Guide for AMD Family 11h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/41788.pdf
|
||||
Revision Guide for AMD Family 12h Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/44739.pdf
|
||||
Revision Guide for AMD Family 14h Models 00h-0Fh Processors:
|
||||
http://support.amd.com/us/Processor_TechDocs/47534.pdf
|
||||
AMD Family 11h Processor Power and Thermal Data Sheet for Notebooks:
|
||||
http://support.amd.com/us/Processor_TechDocs/43373.pdf
|
||||
AMD Family 10h Server and Workstation Processor Power and Thermal Data Sheet:
|
||||
http://support.amd.com/us/Processor_TechDocs/43374.pdf
|
||||
AMD Family 10h Desktop Processor Power and Thermal Data Sheet:
|
||||
http://support.amd.com/us/Processor_TechDocs/43375.pdf
|
||||
|
||||
Author: Clemens Ladisch <clemens@ladisch.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver permits reading of the internal temperature sensor of AMD
|
||||
Family 10h/11h/12h/14h/15h/16h processors.
|
||||
|
||||
All these processors have a sensor, but on those for Socket F or AM2+,
|
||||
the sensor may return inconsistent values (erratum 319). The driver
|
||||
will refuse to load on these revisions unless you specify the "force=1"
|
||||
module parameter.
|
||||
|
||||
Due to technical reasons, the driver can detect only the mainboard's
|
||||
socket type, not the processor's actual capabilities. Therefore, if you
|
||||
are using an AM3 processor on an AM2+ mainboard, you can safely use the
|
||||
"force=1" parameter.
|
||||
|
||||
There is one temperature measurement value, available as temp1_input in
|
||||
sysfs. It is measured in degrees Celsius with a resolution of 1/8th degree.
|
||||
Please note that it is defined as a relative value; to quote the AMD manual:
|
||||
|
||||
Tctl is the processor temperature control value, used by the platform to
|
||||
control cooling systems. Tctl is a non-physical temperature on an
|
||||
arbitrary scale measured in degrees. It does _not_ represent an actual
|
||||
physical temperature like die or case temperature. Instead, it specifies
|
||||
the processor temperature relative to the point at which the system must
|
||||
supply the maximum cooling for the processor's specified maximum case
|
||||
temperature and maximum thermal power dissipation.
|
||||
|
||||
The maximum value for Tctl is available in the file temp1_max.
|
||||
|
||||
If the BIOS has enabled hardware temperature control, the threshold at
|
||||
which the processor will throttle itself to avoid damage is available in
|
||||
temp1_crit and temp1_crit_hyst.
|
55
Documentation/hwmon/k8temp
Normal file
55
Documentation/hwmon/k8temp
Normal file
|
@ -0,0 +1,55 @@
|
|||
Kernel driver k8temp
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* AMD Athlon64/FX or Opteron CPUs
|
||||
Prefix: 'k8temp'
|
||||
Addresses scanned: PCI space
|
||||
Datasheet: http://support.amd.com/us/Processor_TechDocs/32559.pdf
|
||||
|
||||
Author: Rudolf Marek
|
||||
Contact: Rudolf Marek <r.marek@assembler.cz>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver permits reading temperature sensor(s) embedded inside AMD K8
|
||||
family CPUs (Athlon64/FX, Opteron). Official documentation says that it works
|
||||
from revision F of K8 core, but in fact it seems to be implemented for all
|
||||
revisions of K8 except the first two revisions (SH-B0 and SH-B3).
|
||||
|
||||
Please note that you will need at least lm-sensors 2.10.1 for proper userspace
|
||||
support.
|
||||
|
||||
There can be up to four temperature sensors inside single CPU. The driver
|
||||
will auto-detect the sensors and will display only temperatures from
|
||||
implemented sensors.
|
||||
|
||||
Mapping of /sys files is as follows:
|
||||
|
||||
temp1_input - temperature of Core 0 and "place" 0
|
||||
temp2_input - temperature of Core 0 and "place" 1
|
||||
temp3_input - temperature of Core 1 and "place" 0
|
||||
temp4_input - temperature of Core 1 and "place" 1
|
||||
|
||||
Temperatures are measured in degrees Celsius and measurement resolution is
|
||||
1 degree C. It is expected that future CPU will have better resolution. The
|
||||
temperature is updated once a second. Valid temperatures are from -49 to
|
||||
206 degrees C.
|
||||
|
||||
Temperature known as TCaseMax was specified for processors up to revision E.
|
||||
This temperature is defined as temperature between heat-spreader and CPU
|
||||
case, so the internal CPU temperature supplied by this driver can be higher.
|
||||
There is no easy way how to measure the temperature which will correlate
|
||||
with TCaseMax temperature.
|
||||
|
||||
For newer revisions of CPU (rev F, socket AM2) there is a mathematically
|
||||
computed temperature called TControl, which must be lower than TControlMax.
|
||||
|
||||
The relationship is following:
|
||||
|
||||
temp1_input - TjOffset*2 < TControlMax,
|
||||
|
||||
TjOffset is not yet exported by the driver, TControlMax is usually
|
||||
70 degrees C. The rule of the thumb -> CPU temperature should not cross
|
||||
60 degrees C too much.
|
77
Documentation/hwmon/lineage-pem
Normal file
77
Documentation/hwmon/lineage-pem
Normal file
|
@ -0,0 +1,77 @@
|
|||
Kernel driver lineage-pem
|
||||
=========================
|
||||
|
||||
Supported devices:
|
||||
* Lineage Compact Power Line Power Entry Modules
|
||||
Prefix: 'lineage-pem'
|
||||
Addresses scanned: -
|
||||
Documentation:
|
||||
http://www.lineagepower.com/oem/pdf/CPLI2C.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports various Lineage Compact Power Line DC/DC and AC/DC
|
||||
converters such as CP1800, CP2000AC, CP2000DC, CP2100DC, and others.
|
||||
|
||||
Lineage CPL power entry modules are nominally PMBus compliant. However, most
|
||||
standard PMBus commands are not supported. Specifically, all hardware monitoring
|
||||
and status reporting commands are non-standard. For this reason, a standard
|
||||
PMBus driver can not be used.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for Lineage CPL devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for a Lineage PEM at address 0x40
|
||||
on I2C bus #1:
|
||||
$ modprobe lineage-pem
|
||||
$ echo lineage-pem 0x40 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
All Lineage CPL power entry modules have a built-in I2C bus master selector
|
||||
(PCA9541). To ensure device access, this driver should only be used as client
|
||||
driver to the pca9541 I2C master selector driver.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
All Lineage CPL devices report output voltage and device temperature as well as
|
||||
alarms for output voltage, temperature, input voltage, input current, input power,
|
||||
and fan status.
|
||||
|
||||
Input voltage, input current, input power, and fan speed measurement is only
|
||||
supported on newer devices. The driver detects if those attributes are supported,
|
||||
and only creates respective sysfs entries if they are.
|
||||
|
||||
in1_input Output voltage (mV)
|
||||
in1_min_alarm Output undervoltage alarm
|
||||
in1_max_alarm Output overvoltage alarm
|
||||
in1_crit Output voltage critical alarm
|
||||
|
||||
in2_input Input voltage (mV, optional)
|
||||
in2_alarm Input voltage alarm
|
||||
|
||||
curr1_input Input current (mA, optional)
|
||||
curr1_alarm Input overcurrent alarm
|
||||
|
||||
power1_input Input power (uW, optional)
|
||||
power1_alarm Input power alarm
|
||||
|
||||
fan1_input Fan 1 speed (rpm, optional)
|
||||
fan2_input Fan 2 speed (rpm, optional)
|
||||
fan3_input Fan 3 speed (rpm, optional)
|
||||
|
||||
temp1_input
|
||||
temp1_max
|
||||
temp1_crit
|
||||
temp1_alarm
|
||||
temp1_crit_alarm
|
||||
temp1_fault
|
120
Documentation/hwmon/lm25066
Normal file
120
Documentation/hwmon/lm25066
Normal file
|
@ -0,0 +1,120 @@
|
|||
Kernel driver lm25066
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* TI LM25056
|
||||
Prefix: 'lm25056'
|
||||
Addresses scanned: -
|
||||
Datasheets:
|
||||
http://www.ti.com/lit/gpn/lm25056
|
||||
http://www.ti.com/lit/gpn/lm25056a
|
||||
* TI LM25063
|
||||
Prefix: 'lm25063'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
To be announced
|
||||
* National Semiconductor LM25066
|
||||
Prefix: 'lm25066'
|
||||
Addresses scanned: -
|
||||
Datasheets:
|
||||
http://www.national.com/pf/LM/LM25066.html
|
||||
http://www.national.com/pf/LM/LM25066A.html
|
||||
* National Semiconductor LM5064
|
||||
Prefix: 'lm5064'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://www.national.com/pf/LM/LM5064.html
|
||||
* National Semiconductor LM5066
|
||||
Prefix: 'lm5066'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://www.national.com/pf/LM/LM5066.html
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for National Semiconductor / TI LM25056,
|
||||
LM25063, LM25066, LM5064, and LM5066 Power Management, Monitoring, Control, and
|
||||
Protection ICs.
|
||||
|
||||
The driver is a client driver to the core PMBus driver. Please see
|
||||
Documentation/hwmon/pmbus for details on PMBus client drivers.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
The driver supports standard PMBus driver platform data.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. Limits are read-write; all other
|
||||
attributes are read-only.
|
||||
|
||||
in1_label "vin"
|
||||
in1_input Measured input voltage.
|
||||
in1_average Average measured input voltage.
|
||||
in1_min Minimum input voltage.
|
||||
in1_max Maximum input voltage.
|
||||
in1_crit Critical high input voltage (LM25063 only).
|
||||
in1_lcrit Critical low input voltage (LM25063 only).
|
||||
in1_min_alarm Input voltage low alarm.
|
||||
in1_max_alarm Input voltage high alarm.
|
||||
in1_lcrit_alarm Input voltage critical low alarm (LM25063 only).
|
||||
in1_crit_alarm Input voltage critical high alarm. (LM25063 only).
|
||||
|
||||
in2_label "vmon"
|
||||
in2_input Measured voltage on VAUX pin
|
||||
in2_min Minimum VAUX voltage (LM25056 only).
|
||||
in2_max Maximum VAUX voltage (LM25056 only).
|
||||
in2_min_alarm VAUX voltage low alarm (LM25056 only).
|
||||
in2_max_alarm VAUX voltage high alarm (LM25056 only).
|
||||
|
||||
in3_label "vout1"
|
||||
Not supported on LM25056.
|
||||
in3_input Measured output voltage.
|
||||
in3_average Average measured output voltage.
|
||||
in3_min Minimum output voltage.
|
||||
in3_min_alarm Output voltage low alarm.
|
||||
in3_highest Historical minimum output voltage (LM25063 only).
|
||||
in3_lowest Historical maximum output voltage (LM25063 only).
|
||||
|
||||
curr1_label "iin"
|
||||
curr1_input Measured input current.
|
||||
curr1_average Average measured input current.
|
||||
curr1_max Maximum input current.
|
||||
curr1_crit Critical input current (LM25063 only).
|
||||
curr1_max_alarm Input current high alarm.
|
||||
curr1_crit_alarm Input current critical high alarm (LM25063 only).
|
||||
|
||||
power1_label "pin"
|
||||
power1_input Measured input power.
|
||||
power1_average Average measured input power.
|
||||
power1_max Maximum input power limit.
|
||||
power1_alarm Input power alarm
|
||||
power1_input_highest Historical maximum power.
|
||||
power1_reset_history Write any value to reset maximum power history.
|
||||
|
||||
power2_label "pout". LM25063 only.
|
||||
power2_input Measured output power.
|
||||
power2_max Maximum output power limit.
|
||||
power2_crit Critical output power limit.
|
||||
|
||||
temp1_input Measured temperature.
|
||||
temp1_max Maximum temperature.
|
||||
temp1_crit Critical high temperature.
|
||||
temp1_max_alarm Chip temperature high alarm.
|
||||
temp1_crit_alarm Chip temperature critical high alarm.
|
77
Documentation/hwmon/lm63
Normal file
77
Documentation/hwmon/lm63
Normal file
|
@ -0,0 +1,77 @@
|
|||
Kernel driver lm63
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM63
|
||||
Prefix: 'lm63'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM63.html
|
||||
* National Semiconductor LM64
|
||||
Prefix: 'lm64'
|
||||
Addresses scanned: I2C 0x18 and 0x4e
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM64.html
|
||||
* National Semiconductor LM96163
|
||||
Prefix: 'lm96163'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM96163.html
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Thanks go to Tyan and especially Alex Buckingham for setting up a remote
|
||||
access to their S4882 test platform for this driver.
|
||||
http://www.tyan.com/
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM63 is a digital temperature sensor with integrated fan monitoring
|
||||
and control.
|
||||
|
||||
The LM63 is basically an LM86 with fan speed monitoring and control
|
||||
capabilities added. It misses some of the LM86 features though:
|
||||
- No low limit for local temperature.
|
||||
- No critical limit for local temperature.
|
||||
- Critical limit for remote temperature can be changed only once. We
|
||||
will consider that the critical limit is read-only.
|
||||
|
||||
The datasheet isn't very clear about what the tachometer reading is.
|
||||
|
||||
An explanation from National Semiconductor: The two lower bits of the read
|
||||
value have to be masked out. The value is still 16 bit in width.
|
||||
|
||||
All temperature values are given in degrees Celsius. Resolution is 1.0
|
||||
degree for the local temperature, 0.125 degree for the remote temperature.
|
||||
|
||||
The fan speed is measured using a tachometer. Contrary to most chips which
|
||||
store the value in an 8-bit register and have a selectable clock divider
|
||||
to make sure that the result will fit in the register, the LM63 uses 16-bit
|
||||
value for measuring the speed of the fan. It can measure fan speeds down to
|
||||
83 RPM, at least in theory.
|
||||
|
||||
Note that the pin used for fan monitoring is shared with an alert out
|
||||
function. Depending on how the board designer wanted to use the chip, fan
|
||||
speed monitoring will or will not be possible. The proper chip configuration
|
||||
is left to the BIOS, and the driver will blindly trust it. Only the original
|
||||
LM63 suffers from this limitation, the LM64 and LM96163 have separate pins
|
||||
for fan monitoring and alert out. On the LM64, monitoring is always enabled;
|
||||
on the LM96163 it can be disabled.
|
||||
|
||||
A PWM output can be used to control the speed of the fan. The LM63 has two
|
||||
PWM modes: manual and automatic. Automatic mode is not fully implemented yet
|
||||
(you cannot define your custom PWM/temperature curve), and mode change isn't
|
||||
supported either.
|
||||
|
||||
The lm63 driver will not update its values more frequently than configured with
|
||||
the update_interval sysfs attribute; reading them more often will do no harm,
|
||||
but will return 'old' values. Values in the automatic fan control lookup table
|
||||
(attributes pwm1_auto_*) have their own independent lifetime of 5 seconds.
|
||||
|
||||
The LM64 is effectively an LM63 with GPIO lines. The driver does not
|
||||
support these GPIO lines at present.
|
||||
|
||||
The LM96163 is an enhanced version of LM63 with improved temperature accuracy
|
||||
and better PWM resolution. For LM96163, the external temperature sensor type is
|
||||
configurable as CPU embedded diode(1) or 3904 transistor(2).
|
47
Documentation/hwmon/lm70
Normal file
47
Documentation/hwmon/lm70
Normal file
|
@ -0,0 +1,47 @@
|
|||
Kernel driver lm70
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM70
|
||||
Datasheet: http://www.national.com/pf/LM/LM70.html
|
||||
* Texas Instruments TMP121/TMP123
|
||||
Information: http://focus.ti.com/docs/prod/folders/print/tmp121.html
|
||||
* National Semiconductor LM71
|
||||
Datasheet: http://www.ti.com/product/LM71
|
||||
* National Semiconductor LM74
|
||||
Datasheet: http://www.ti.com/product/LM74
|
||||
|
||||
Author:
|
||||
Kaiwan N Billimoria <kaiwan@designergraphix.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM70
|
||||
temperature sensor.
|
||||
|
||||
The LM70 temperature sensor chip supports a single temperature sensor.
|
||||
It communicates with a host processor (or microcontroller) via an
|
||||
SPI/Microwire Bus interface.
|
||||
|
||||
Communication with the LM70 is simple: when the temperature is to be sensed,
|
||||
the driver accesses the LM70 using SPI communication: 16 SCLK cycles
|
||||
comprise the MOSI/MISO loop. At the end of the transfer, the 11-bit 2's
|
||||
complement digital temperature (sent via the SIO line), is available in the
|
||||
driver for interpretation. This driver makes use of the kernel's in-core
|
||||
SPI support.
|
||||
|
||||
As a real (in-tree) example of this "SPI protocol driver" interfacing
|
||||
with a "SPI master controller driver", see drivers/spi/spi_lm70llp.c
|
||||
and its associated documentation.
|
||||
|
||||
The LM74 and TMP121/TMP123 are very similar; main difference is 13-bit
|
||||
temperature data (0.0625 degrees celsius resolution).
|
||||
|
||||
The LM71 is also very similar; main difference is 14-bit temperature
|
||||
data (0.03125 degrees celsius resolution).
|
||||
|
||||
Thanks to
|
||||
---------
|
||||
Jean Delvare <jdelvare@suse.de> for mentoring the hwmon-side driver
|
||||
development.
|
90
Documentation/hwmon/lm73
Normal file
90
Documentation/hwmon/lm73
Normal file
|
@ -0,0 +1,90 @@
|
|||
Kernel driver lm73
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* Texas Instruments LM73
|
||||
Prefix: 'lm73'
|
||||
Addresses scanned: I2C 0x48, 0x49, 0x4a, 0x4c, 0x4d, and 0x4e
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/product/lm73
|
||||
|
||||
Author: Guillaume Ligneul <guillaume.ligneul@gmail.com>
|
||||
Documentation: Chris Verges <kg4ysn@gmail.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM73 is a digital temperature sensor. All temperature values are
|
||||
given in degrees Celsius.
|
||||
|
||||
Measurement Resolution Support
|
||||
------------------------------
|
||||
|
||||
The LM73 supports four resolutions, defined in terms of degrees C per
|
||||
LSB: 0.25, 0.125, 0.0625, and 0.3125. Changing the resolution mode
|
||||
affects the conversion time of the LM73's analog-to-digital converter.
|
||||
From userspace, the desired resolution can be specified as a function of
|
||||
conversion time via the 'update_interval' sysfs attribute for the
|
||||
device. This attribute will normalize ranges of input values to the
|
||||
maximum times defined for the resolution in the datasheet.
|
||||
|
||||
Resolution Conv. Time Input Range
|
||||
(C/LSB) (msec) (msec)
|
||||
--------------------------------------
|
||||
0.25 14 0..14
|
||||
0.125 28 15..28
|
||||
0.0625 56 29..56
|
||||
0.03125 112 57..infinity
|
||||
--------------------------------------
|
||||
|
||||
The following examples show how the 'update_interval' attribute can be
|
||||
used to change the conversion time:
|
||||
|
||||
$ echo 0 > update_interval
|
||||
$ cat update_interval
|
||||
14
|
||||
$ cat temp1_input
|
||||
24250
|
||||
|
||||
$ echo 22 > update_interval
|
||||
$ cat update_interval
|
||||
28
|
||||
$ cat temp1_input
|
||||
24125
|
||||
|
||||
$ echo 56 > update_interval
|
||||
$ cat update_interval
|
||||
56
|
||||
$ cat temp1_input
|
||||
24062
|
||||
|
||||
$ echo 85 > update_interval
|
||||
$ cat update_interval
|
||||
112
|
||||
$ cat temp1_input
|
||||
24031
|
||||
|
||||
As shown here, the lm73 driver automatically adjusts any user input for
|
||||
'update_interval' via a step function. Reading back the
|
||||
'update_interval' value after a write operation will confirm the
|
||||
conversion time actively in use.
|
||||
|
||||
Mathematically, the resolution can be derived from the conversion time
|
||||
via the following function:
|
||||
|
||||
g(x) = 0.250 * [log(x/14) / log(2)]
|
||||
|
||||
where 'x' is the output from 'update_interval' and 'g(x)' is the
|
||||
resolution in degrees C per LSB.
|
||||
|
||||
Alarm Support
|
||||
-------------
|
||||
|
||||
The LM73 features a simple over-temperature alarm mechanism. This
|
||||
feature is exposed via the sysfs attributes.
|
||||
|
||||
The attributes 'temp1_max_alarm' and 'temp1_min_alarm' are flags
|
||||
provided by the LM73 that indicate whether the measured temperature has
|
||||
passed the 'temp1_max' and 'temp1_min' thresholds, respectively. These
|
||||
values _must_ be read to clear the registers on the LM73.
|
87
Documentation/hwmon/lm75
Normal file
87
Documentation/hwmon/lm75
Normal file
|
@ -0,0 +1,87 @@
|
|||
Kernel driver lm75
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM75
|
||||
Prefix: 'lm75'
|
||||
Addresses scanned: I2C 0x48 - 0x4f
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
* National Semiconductor LM75A
|
||||
Prefix: 'lm75a'
|
||||
Addresses scanned: I2C 0x48 - 0x4f
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
* Dallas Semiconductor (now Maxim) DS75, DS1775, DS7505
|
||||
Prefixes: 'ds75', 'ds1775', 'ds7505'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maximintegrated.com/
|
||||
* Maxim MAX6625, MAX6626
|
||||
Prefixes: 'max6625', 'max6626'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/
|
||||
* Microchip (TelCom) TCN75
|
||||
Prefix: 'tcn75'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Microchip website
|
||||
http://www.microchip.com/
|
||||
* Microchip MCP9800, MCP9801, MCP9802, MCP9803
|
||||
Prefix: 'mcp980x'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Microchip website
|
||||
http://www.microchip.com/
|
||||
* Analog Devices ADT75
|
||||
Prefix: 'adt75'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Analog Devices website
|
||||
http://www.analog.com/adt75
|
||||
* ST Microelectronics STDS75
|
||||
Prefix: 'stds75'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the ST website
|
||||
http://www.st.com/internet/analog/product/121769.jsp
|
||||
* Texas Instruments TMP100, TMP101, TMP105, TMP112, TMP75, TMP175, TMP275
|
||||
Prefixes: 'tmp100', 'tmp101', 'tmp105', 'tmp112', 'tmp175', 'tmp75', 'tmp275'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/product/tmp100
|
||||
http://www.ti.com/product/tmp101
|
||||
http://www.ti.com/product/tmp105
|
||||
http://www.ti.com/product/tmp112
|
||||
http://www.ti.com/product/tmp75
|
||||
http://www.ti.com/product/tmp175
|
||||
http://www.ti.com/product/tmp275
|
||||
|
||||
Author: Frodo Looijaard <frodol@dds.nl>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM75 implements one temperature sensor. Limits can be set through the
|
||||
Overtemperature Shutdown register and Hysteresis register. Each value can be
|
||||
set and read to half-degree accuracy.
|
||||
An alarm is issued (usually to a connected LM78) when the temperature
|
||||
gets higher then the Overtemperature Shutdown value; it stays on until
|
||||
the temperature falls below the Hysteresis value.
|
||||
All temperatures are in degrees Celsius, and are guaranteed within a
|
||||
range of -55 to +125 degrees.
|
||||
|
||||
The driver caches the values for a period varying between 1 second for the
|
||||
slowest chips and 125 ms for the fastest chips; reading it more often
|
||||
will do no harm, but will return 'old' values.
|
||||
|
||||
The original LM75 was typically used in combination with LM78-like chips
|
||||
on PC motherboards, to measure the temperature of the processor(s). Clones
|
||||
are now used in various embedded designs.
|
||||
|
||||
The LM75 is essentially an industry standard; there may be other
|
||||
LM75 clones not listed here, with or without various enhancements,
|
||||
that are supported. The clones are not detected by the driver, unless
|
||||
they reproduce the exact register tricks of the original LM75, and must
|
||||
therefore be instantiated explicitly. Higher resolution up to 12-bit
|
||||
is supported by this driver, other specific enhancements are not.
|
||||
|
||||
The LM77 is not supported, contrary to what we pretended for a long time.
|
||||
Both chips are simply not compatible, value encoding differs.
|
38
Documentation/hwmon/lm77
Normal file
38
Documentation/hwmon/lm77
Normal file
|
@ -0,0 +1,38 @@
|
|||
Kernel driver lm77
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM77
|
||||
Prefix: 'lm77'
|
||||
Addresses scanned: I2C 0x48 - 0x4b
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
|
||||
Author: Andras BALI <drewie@freemail.hu>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM77 implements one temperature sensor. The temperature
|
||||
sensor incorporates a band-gap type temperature sensor,
|
||||
10-bit ADC, and a digital comparator with user-programmable upper
|
||||
and lower limit values.
|
||||
|
||||
The LM77 implements 3 limits: low (temp1_min), high (temp1_max) and
|
||||
critical (temp1_crit.) It also implements an hysteresis mechanism which
|
||||
applies to all 3 limits. The relative difference is stored in a single
|
||||
register on the chip, which means that the relative difference between
|
||||
the limit and its hysteresis is always the same for all 3 limits.
|
||||
|
||||
This implementation detail implies the following:
|
||||
* When setting a limit, its hysteresis will automatically follow, the
|
||||
difference staying unchanged. For example, if the old critical limit
|
||||
was 80 degrees C, and the hysteresis was 75 degrees C, and you change
|
||||
the critical limit to 90 degrees C, then the hysteresis will
|
||||
automatically change to 85 degrees C.
|
||||
* All 3 hysteresis can't be set independently. We decided to make
|
||||
temp1_crit_hyst writable, while temp1_min_hyst and temp1_max_hyst are
|
||||
read-only. Setting temp1_crit_hyst writes the difference between
|
||||
temp1_crit_hyst and temp1_crit into the chip, and the same relative
|
||||
hysteresis applies automatically to the low and high limits.
|
||||
* The limits should be set before the hysteresis.
|
68
Documentation/hwmon/lm78
Normal file
68
Documentation/hwmon/lm78
Normal file
|
@ -0,0 +1,68 @@
|
|||
Kernel driver lm78
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM78 / LM78-J
|
||||
Prefix: 'lm78'
|
||||
Addresses scanned: I2C 0x28 - 0x2f, ISA 0x290 (8 I/O ports)
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
* National Semiconductor LM79
|
||||
Prefix: 'lm79'
|
||||
Addresses scanned: I2C 0x28 - 0x2f, ISA 0x290 (8 I/O ports)
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
|
||||
Authors: Frodo Looijaard <frodol@dds.nl>
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM78, LM78-J
|
||||
and LM79. They are described as 'Microprocessor System Hardware Monitors'.
|
||||
|
||||
There is almost no difference between the three supported chips. Functionally,
|
||||
the LM78 and LM78-J are exactly identical. The LM79 has one more VID line,
|
||||
which is used to report the lower voltages newer Pentium processors use.
|
||||
From here on, LM7* means either of these three types.
|
||||
|
||||
The LM7* implements one temperature sensor, three fan rotation speed sensors,
|
||||
seven voltage sensors, VID lines, alarms, and some miscellaneous stuff.
|
||||
|
||||
Temperatures are measured in degrees Celsius. An alarm is triggered once
|
||||
when the Overtemperature Shutdown limit is crossed; it is triggered again
|
||||
as soon as it drops below the Hysteresis value. A more useful behavior
|
||||
can be found by setting the Hysteresis value to +127 degrees Celsius; in
|
||||
this case, alarms are issued during all the time when the actual temperature
|
||||
is above the Overtemperature Shutdown value. Measurements are guaranteed
|
||||
between -55 and +125 degrees, with a resolution of 1 degree.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. Fan
|
||||
readings can be divided by a programmable divider (1, 2, 4 or 8) to give
|
||||
the readings more range or accuracy. Not all RPM values can accurately be
|
||||
represented, so some rounding is done. With a divider of 2, the lowest
|
||||
representable value is around 2600 RPM.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in volts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum
|
||||
or maximum limit. Note that minimum in this case always means 'closest to
|
||||
zero'; this is important for negative voltage measurements. All voltage
|
||||
inputs can measure voltages between 0 and 4.08 volts, with a resolution
|
||||
of 0.016 volt.
|
||||
|
||||
The VID lines encode the core voltage value: the voltage level your processor
|
||||
should work with. This is hardcoded by the mainboard and/or processor itself.
|
||||
It is a value in volts. When it is unconnected, you will often find the
|
||||
value 3.50 V here.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may
|
||||
already have disappeared! Note that in the current implementation, all
|
||||
hardware registers are read whenever any data is read (unless it is less
|
||||
than 1.5 seconds since the last update). This means that you can easily
|
||||
miss once-only alarms.
|
||||
|
||||
The LM7* only updates its values each 1.5 seconds; reading it more often
|
||||
will do no harm, but will return 'old' values.
|
63
Documentation/hwmon/lm80
Normal file
63
Documentation/hwmon/lm80
Normal file
|
@ -0,0 +1,63 @@
|
|||
Kernel driver lm80
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM80
|
||||
Prefix: 'lm80'
|
||||
Addresses scanned: I2C 0x28 - 0x2f
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
* National Semiconductor LM96080
|
||||
Prefix: 'lm96080'
|
||||
Addresses scanned: I2C 0x28 - 0x2f
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/
|
||||
|
||||
Authors:
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Philip Edelbrock <phil@netroedge.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM80.
|
||||
It is described as a 'Serial Interface ACPI-Compatible Microprocessor
|
||||
System Hardware Monitor'. The LM96080 is a more recent incarnation,
|
||||
it is pin and register compatible, with a few additional features not
|
||||
yet supported by the driver.
|
||||
|
||||
The LM80 implements one temperature sensor, two fan rotation speed sensors,
|
||||
seven voltage sensors, alarms, and some miscellaneous stuff.
|
||||
|
||||
Temperatures are measured in degrees Celsius. There are two sets of limits
|
||||
which operate independently. When the HOT Temperature Limit is crossed,
|
||||
this will cause an alarm that will be reasserted until the temperature
|
||||
drops below the HOT Hysteresis. The Overtemperature Shutdown (OS) limits
|
||||
should work in the same way (but this must be checked; the datasheet
|
||||
is unclear about this). Measurements are guaranteed between -55 and
|
||||
+125 degrees. The current temperature measurement has a resolution of
|
||||
0.0625 degrees; the limits have a resolution of 1 degree.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. Fan
|
||||
readings can be divided by a programmable divider (1, 2, 4 or 8) to give
|
||||
the readings more range or accuracy. Not all RPM values can accurately be
|
||||
represented, so some rounding is done. With a divider of 2, the lowest
|
||||
representable value is around 2600 RPM.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in volts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum
|
||||
or maximum limit. Note that minimum in this case always means 'closest to
|
||||
zero'; this is important for negative voltage measurements. All voltage
|
||||
inputs can measure voltages between 0 and 2.55 volts, with a resolution
|
||||
of 0.01 volt.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may
|
||||
already have disappeared! Note that in the current implementation, all
|
||||
hardware registers are read whenever any data is read (unless it is less
|
||||
than 2.0 seconds since the last update). This means that you can easily
|
||||
miss once-only alarms.
|
||||
|
||||
The LM80 only updates its values each 1.5 seconds; reading it more often
|
||||
will do no harm, but will return 'old' values.
|
85
Documentation/hwmon/lm83
Normal file
85
Documentation/hwmon/lm83
Normal file
|
@ -0,0 +1,85 @@
|
|||
Kernel driver lm83
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM83
|
||||
Prefix: 'lm83'
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM83.html
|
||||
* National Semiconductor LM82
|
||||
Addresses scanned: I2C 0x18 - 0x1a, 0x29 - 0x2b, 0x4c - 0x4e
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM82.html
|
||||
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM83 is a digital temperature sensor. It senses its own temperature as
|
||||
well as the temperature of up to three external diodes. The LM82 is
|
||||
a stripped down version of the LM83 that only supports one external diode.
|
||||
Both are compatible with many other devices such as the LM84 and all
|
||||
other ADM1021 clones. The main difference between the LM83 and the LM84
|
||||
in that the later can only sense the temperature of one external diode.
|
||||
|
||||
Using the adm1021 driver for a LM83 should work, but only two temperatures
|
||||
will be reported instead of four.
|
||||
|
||||
The LM83 is only found on a handful of motherboards. Both a confirmed
|
||||
list and an unconfirmed list follow. If you can confirm or infirm the
|
||||
fact that any of these motherboards do actually have an LM83, please
|
||||
contact us. Note that the LM90 can easily be misdetected as a LM83.
|
||||
|
||||
Confirmed motherboards:
|
||||
SBS P014
|
||||
SBS PSL09
|
||||
|
||||
Unconfirmed motherboards:
|
||||
Gigabyte GA-8IK1100
|
||||
Iwill MPX2
|
||||
Soltek SL-75DRV5
|
||||
|
||||
The LM82 is confirmed to have been found on most AMD Geode reference
|
||||
designs and test platforms.
|
||||
|
||||
The driver has been successfully tested by Magnus Forsström, who I'd
|
||||
like to thank here. More testers will be of course welcome.
|
||||
|
||||
The fact that the LM83 is only scarcely used can be easily explained.
|
||||
Most motherboards come with more than just temperature sensors for
|
||||
health monitoring. They also have voltage and fan rotation speed
|
||||
sensors. This means that temperature-only chips are usually used as
|
||||
secondary chips coupled with another chip such as an IT8705F or similar
|
||||
chip, which provides more features. Since systems usually need three
|
||||
temperature sensors (motherboard, processor, power supply) and primary
|
||||
chips provide some temperature sensors, the secondary chip, if needed,
|
||||
won't have to handle more than two temperatures. Thus, ADM1021 clones
|
||||
are sufficient, and there is no need for a four temperatures sensor
|
||||
chip such as the LM83. The only case where using an LM83 would make
|
||||
sense is on SMP systems, such as the above-mentioned Iwill MPX2,
|
||||
because you want an additional temperature sensor for each additional
|
||||
CPU.
|
||||
|
||||
On the SBS P014, this is different, since the LM83 is the only hardware
|
||||
monitoring chipset. One temperature sensor is used for the motherboard
|
||||
(actually measuring the LM83's own temperature), one is used for the
|
||||
CPU. The two other sensors must be used to measure the temperature of
|
||||
two other points of the motherboard. We suspect these points to be the
|
||||
north and south bridges, but this couldn't be confirmed.
|
||||
|
||||
All temperature values are given in degrees Celsius. Local temperature
|
||||
is given within a range of 0 to +85 degrees. Remote temperatures are
|
||||
given within a range of 0 to +125 degrees. Resolution is 1.0 degree,
|
||||
accuracy is guaranteed to 3.0 degrees (see the datasheet for more
|
||||
details).
|
||||
|
||||
Each sensor has its own high limit, but the critical limit is common to
|
||||
all four sensors. There is no hysteresis mechanism as found on most
|
||||
recent temperature sensors.
|
||||
|
||||
The lm83 driver will not update its values more frequently than every
|
||||
other second; reading them more often will do no harm, but will return
|
||||
'old' values.
|
230
Documentation/hwmon/lm85
Normal file
230
Documentation/hwmon/lm85
Normal file
|
@ -0,0 +1,230 @@
|
|||
Kernel driver lm85
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM85 (B and C versions)
|
||||
Prefix: 'lm85'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.national.com/pf/LM/LM85.html
|
||||
* Analog Devices ADM1027
|
||||
Prefix: 'adm1027'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.onsemi.com/PowerSolutions/product.do?id=ADM1027
|
||||
* Analog Devices ADT7463
|
||||
Prefix: 'adt7463'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.onsemi.com/PowerSolutions/product.do?id=ADT7463
|
||||
* Analog Devices ADT7468
|
||||
Prefix: 'adt7468'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.onsemi.com/PowerSolutions/product.do?id=ADT7468
|
||||
* SMSC EMC6D100, SMSC EMC6D101
|
||||
Prefix: 'emc6d100'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.smsc.com/media/Downloads_Public/discontinued/6d100.pdf
|
||||
* SMSC EMC6D102
|
||||
Prefix: 'emc6d102'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.smsc.com/main/catalog/emc6d102.html
|
||||
* SMSC EMC6D103
|
||||
Prefix: 'emc6d103'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.smsc.com/main/catalog/emc6d103.html
|
||||
* SMSC EMC6D103S
|
||||
Prefix: 'emc6d103s'
|
||||
Addresses scanned: I2C 0x2c, 0x2d, 0x2e
|
||||
Datasheet: http://www.smsc.com/main/catalog/emc6d103s.html
|
||||
|
||||
Authors:
|
||||
Philip Pokorny <ppokorny@penguincomputing.com>,
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Richard Barrington <rich_b_nz@clear.net.nz>,
|
||||
Margit Schubert-While <margitsw@t-online.de>,
|
||||
Justin Thiessen <jthiessen@penguincomputing.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM85 and
|
||||
compatible chips including the Analog Devices ADM1027, ADT7463, ADT7468 and
|
||||
SMSC EMC6D10x chips family.
|
||||
|
||||
The LM85 uses the 2-wire interface compatible with the SMBUS 2.0
|
||||
specification. Using an analog to digital converter it measures three (3)
|
||||
temperatures and five (5) voltages. It has four (4) 16-bit counters for
|
||||
measuring fan speed. Five (5) digital inputs are provided for sampling the
|
||||
VID signals from the processor to the VRM. Lastly, there are three (3) PWM
|
||||
outputs that can be used to control fan speed.
|
||||
|
||||
The voltage inputs have internal scaling resistors so that the following
|
||||
voltage can be measured without external resistors:
|
||||
|
||||
2.5V, 3.3V, 5V, 12V, and CPU core voltage (2.25V)
|
||||
|
||||
The temperatures measured are one internal diode, and two remote diodes.
|
||||
Remote 1 is generally the CPU temperature. These inputs are designed to
|
||||
measure a thermal diode like the one in a Pentium 4 processor in a socket
|
||||
423 or socket 478 package. They can also measure temperature using a
|
||||
transistor like the 2N3904.
|
||||
|
||||
A sophisticated control system for the PWM outputs is designed into the
|
||||
LM85 that allows fan speed to be adjusted automatically based on any of the
|
||||
three temperature sensors. Each PWM output is individually adjustable and
|
||||
programmable. Once configured, the LM85 will adjust the PWM outputs in
|
||||
response to the measured temperatures without further host intervention.
|
||||
This feature can also be disabled for manual control of the PWM's.
|
||||
|
||||
Each of the measured inputs (voltage, temperature, fan speed) has
|
||||
corresponding high/low limit values. The LM85 will signal an ALARM if any
|
||||
measured value exceeds either limit.
|
||||
|
||||
The LM85 samples all inputs continuously. The lm85 driver will not read
|
||||
the registers more often than once a second. Further, configuration data is
|
||||
only read once each 5 minutes. There is twice as much config data as
|
||||
measurements, so this would seem to be a worthwhile optimization.
|
||||
|
||||
Special Features
|
||||
----------------
|
||||
|
||||
The LM85 has four fan speed monitoring modes. The ADM1027 has only two.
|
||||
Both have special circuitry to compensate for PWM interactions with the
|
||||
TACH signal from the fans. The ADM1027 can be configured to measure the
|
||||
speed of a two wire fan, but the input conditioning circuitry is different
|
||||
for 3-wire and 2-wire mode. For this reason, the 2-wire fan modes are not
|
||||
exposed to user control. The BIOS should initialize them to the correct
|
||||
mode. If you've designed your own ADM1027, you'll have to modify the
|
||||
init_client function and add an insmod parameter to set this up.
|
||||
|
||||
To smooth the response of fans to changes in temperature, the LM85 has an
|
||||
optional filter for smoothing temperatures. The ADM1027 has the same
|
||||
config option but uses it to rate limit the changes to fan speed instead.
|
||||
|
||||
The ADM1027, ADT7463 and ADT7468 have a 10-bit ADC and can therefore
|
||||
measure temperatures with 0.25 degC resolution. They also provide an offset
|
||||
to the temperature readings that is automatically applied during
|
||||
measurement. This offset can be used to zero out any errors due to traces
|
||||
and placement. The documentation says that the offset is in 0.25 degC
|
||||
steps, but in initial testing of the ADM1027 it was 1.00 degC steps. Analog
|
||||
Devices has confirmed this "bug". The ADT7463 is reported to work as
|
||||
described in the documentation. The current lm85 driver does not show the
|
||||
offset register.
|
||||
|
||||
The ADT7468 has a high-frequency PWM mode, where all PWM outputs are
|
||||
driven by a 22.5 kHz clock. This is a global mode, not per-PWM output,
|
||||
which means that setting any PWM frequency above 11.3 kHz will switch
|
||||
all 3 PWM outputs to a 22.5 kHz frequency. Conversely, setting any PWM
|
||||
frequency below 11.3 kHz will switch all 3 PWM outputs to a frequency
|
||||
between 10 and 100 Hz, which can then be tuned separately.
|
||||
|
||||
See the vendor datasheets for more information. There is application note
|
||||
from National (AN-1260) with some additional information about the LM85.
|
||||
The Analog Devices datasheet is very detailed and describes a procedure for
|
||||
determining an optimal configuration for the automatic PWM control.
|
||||
|
||||
The SMSC EMC6D100 & EMC6D101 monitor external voltages, temperatures, and
|
||||
fan speeds. They use this monitoring capability to alert the system to out
|
||||
of limit conditions and can automatically control the speeds of multiple
|
||||
fans in a PC or embedded system. The EMC6D101, available in a 24-pin SSOP
|
||||
package, and the EMC6D100, available in a 28-pin SSOP package, are designed
|
||||
to be register compatible. The EMC6D100 offers all the features of the
|
||||
EMC6D101 plus additional voltage monitoring and system control features.
|
||||
Unfortunately it is not possible to distinguish between the package
|
||||
versions on register level so these additional voltage inputs may read
|
||||
zero. EMC6D102 and EMC6D103 feature additional ADC bits thus extending precision
|
||||
of voltage and temperature channels.
|
||||
|
||||
SMSC EMC6D103S is similar to EMC6D103, but does not support pwm#_auto_pwm_minctl
|
||||
and temp#_auto_temp_off.
|
||||
|
||||
Hardware Configurations
|
||||
-----------------------
|
||||
|
||||
The LM85 can be jumpered for 3 different SMBus addresses. There are
|
||||
no other hardware configuration options for the LM85.
|
||||
|
||||
The lm85 driver detects both LM85B and LM85C revisions of the chip. See the
|
||||
datasheet for a complete description of the differences. Other than
|
||||
identifying the chip, the driver behaves no differently with regard to
|
||||
these two chips. The LM85B is recommended for new designs.
|
||||
|
||||
The ADM1027, ADT7463 and ADT7468 chips have an optional SMBALERT output
|
||||
that can be used to signal the chipset in case a limit is exceeded or the
|
||||
temperature sensors fail. Individual sensor interrupts can be masked so
|
||||
they won't trigger SMBALERT. The SMBALERT output if configured replaces one
|
||||
of the other functions (PWM2 or IN0). This functionality is not implemented
|
||||
in current driver.
|
||||
|
||||
The ADT7463 and ADT7468 also have an optional THERM output/input which can
|
||||
be connected to the processor PROC_HOT output. If available, the autofan
|
||||
control dynamic Tmin feature can be enabled to keep the system temperature
|
||||
within spec (just?!) with the least possible fan noise.
|
||||
|
||||
Configuration Notes
|
||||
-------------------
|
||||
|
||||
Besides standard interfaces driver adds following:
|
||||
|
||||
* Temperatures and Zones
|
||||
|
||||
Each temperature sensor is associated with a Zone. There are three
|
||||
sensors and therefore three zones (# 1, 2 and 3). Each zone has the following
|
||||
temperature configuration points:
|
||||
|
||||
* temp#_auto_temp_off - temperature below which fans should be off or spinning very low.
|
||||
* temp#_auto_temp_min - temperature over which fans start to spin.
|
||||
* temp#_auto_temp_max - temperature when fans spin at full speed.
|
||||
* temp#_auto_temp_crit - temperature when all fans will run full speed.
|
||||
|
||||
* PWM Control
|
||||
|
||||
There are three PWM outputs. The LM85 datasheet suggests that the
|
||||
pwm3 output control both fan3 and fan4. Each PWM can be individually
|
||||
configured and assigned to a zone for its control value. Each PWM can be
|
||||
configured individually according to the following options.
|
||||
|
||||
* pwm#_auto_pwm_min - this specifies the PWM value for temp#_auto_temp_off
|
||||
temperature. (PWM value from 0 to 255)
|
||||
|
||||
* pwm#_auto_pwm_minctl - this flags selects for temp#_auto_temp_off temperature
|
||||
the behaviour of fans. Write 1 to let fans spinning at
|
||||
pwm#_auto_pwm_min or write 0 to let them off.
|
||||
|
||||
NOTE: It has been reported that there is a bug in the LM85 that causes the flag
|
||||
to be associated with the zones not the PWMs. This contradicts all the
|
||||
published documentation. Setting pwm#_min_ctl in this case actually affects all
|
||||
PWMs controlled by zone '#'.
|
||||
|
||||
* PWM Controlling Zone selection
|
||||
|
||||
* pwm#_auto_channels - controls zone that is associated with PWM
|
||||
|
||||
Configuration choices:
|
||||
|
||||
Value Meaning
|
||||
------ ------------------------------------------------
|
||||
1 Controlled by Zone 1
|
||||
2 Controlled by Zone 2
|
||||
3 Controlled by Zone 3
|
||||
23 Controlled by higher temp of Zone 2 or 3
|
||||
123 Controlled by highest temp of Zone 1, 2 or 3
|
||||
0 PWM always 0% (off)
|
||||
-1 PWM always 100% (full on)
|
||||
-2 Manual control (write to 'pwm#' to set)
|
||||
|
||||
The National LM85's have two vendor specific configuration
|
||||
features. Tach. mode and Spinup Control. For more details on these,
|
||||
see the LM85 datasheet or Application Note AN-1260. These features
|
||||
are not currently supported by the lm85 driver.
|
||||
|
||||
The Analog Devices ADM1027 has several vendor specific enhancements.
|
||||
The number of pulses-per-rev of the fans can be set, Tach monitoring
|
||||
can be optimized for PWM operation, and an offset can be applied to
|
||||
the temperatures to compensate for systemic errors in the
|
||||
measurements. These features are not currently supported by the lm85
|
||||
driver.
|
||||
|
||||
In addition to the ADM1027 features, the ADT7463 and ADT7468 also have
|
||||
Tmin control and THERM asserted counts. Automatic Tmin control acts to
|
||||
adjust the Tmin value to maintain the measured temperature sensor at a
|
||||
specified temperature. There isn't much documentation on this feature in
|
||||
the ADT7463 data sheet. This is not supported by current driver.
|
77
Documentation/hwmon/lm87
Normal file
77
Documentation/hwmon/lm87
Normal file
|
@ -0,0 +1,77 @@
|
|||
Kernel driver lm87
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM87
|
||||
Prefix: 'lm87'
|
||||
Addresses scanned: I2C 0x2c - 0x2e
|
||||
Datasheet: http://www.national.com/pf/LM/LM87.html
|
||||
* Analog Devices ADM1024
|
||||
Prefix: 'adm1024'
|
||||
Addresses scanned: I2C 0x2c - 0x2e
|
||||
Datasheet: http://www.analog.com/en/prod/0,2877,ADM1024,00.html
|
||||
|
||||
Authors:
|
||||
Frodo Looijaard <frodol@dds.nl>,
|
||||
Philip Edelbrock <phil@netroedge.com>,
|
||||
Mark Studebaker <mdsxyz123@yahoo.com>,
|
||||
Stephen Rousset <stephen.rousset@rocketlogix.com>,
|
||||
Dan Eaton <dan.eaton@rocketlogix.com>,
|
||||
Jean Delvare <jdelvare@suse.de>,
|
||||
Original 2.6 port Jeff Oliver
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM87
|
||||
and the Analog Devices ADM1024.
|
||||
|
||||
The LM87 implements up to three temperature sensors, up to two fan
|
||||
rotation speed sensors, up to seven voltage sensors, alarms, and some
|
||||
miscellaneous stuff. The ADM1024 is fully compatible.
|
||||
|
||||
Temperatures are measured in degrees Celsius. Each input has a high
|
||||
and low alarm settings. A high limit produces an alarm when the value
|
||||
goes above it, and an alarm is also produced when the value goes below
|
||||
the low limit.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. Fan
|
||||
readings can be divided by a programmable divider (1, 2, 4 or 8) to give
|
||||
the readings more range or accuracy. Not all RPM values can accurately be
|
||||
represented, so some rounding is done. With a divider of 2, the lowest
|
||||
representable value is around 2600 RPM.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in
|
||||
volts. An alarm is triggered if the voltage has crossed a programmable
|
||||
minimum or maximum limit. Note that minimum in this case always means
|
||||
'closest to zero'; this is important for negative voltage measurements.
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may
|
||||
already have disappeared! Note that in the current implementation, all
|
||||
hardware registers are read whenever any data is read (unless it is less
|
||||
than 1.0 seconds since the last update). This means that you can easily
|
||||
miss once-only alarms.
|
||||
|
||||
The lm87 driver only updates its values each 1.0 seconds; reading it more
|
||||
often will do no harm, but will return 'old' values.
|
||||
|
||||
|
||||
Hardware Configurations
|
||||
-----------------------
|
||||
|
||||
The LM87 has four pins which can serve one of two possible functions,
|
||||
depending on the hardware configuration.
|
||||
|
||||
Some functions share pins, so not all functions are available at the same
|
||||
time. Which are depends on the hardware setup. This driver normally
|
||||
assumes that firmware configured the chip correctly. Where this is not
|
||||
the case, platform code must set the I2C client's platform_data to point
|
||||
to a u8 value to be written to the channel register.
|
||||
|
||||
For reference, here is the list of exclusive functions:
|
||||
- in0+in5 (default) or temp3
|
||||
- fan1 (default) or in6
|
||||
- fan2 (default) or in7
|
||||
- VID lines (default) or IRQ lines (not handled by this driver)
|
275
Documentation/hwmon/lm90
Normal file
275
Documentation/hwmon/lm90
Normal file
|
@ -0,0 +1,275 @@
|
|||
Kernel driver lm90
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM90
|
||||
Prefix: 'lm90'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM90.html
|
||||
* National Semiconductor LM89
|
||||
Prefix: 'lm89' (no auto-detection)
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/mpf/LM/LM89.html
|
||||
* National Semiconductor LM99
|
||||
Prefix: 'lm99'
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/pf/LM/LM99.html
|
||||
* National Semiconductor LM86
|
||||
Prefix: 'lm86'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/mpf/LM/LM86.html
|
||||
* Analog Devices ADM1032
|
||||
Prefix: 'adm1032'
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the ON Semiconductor website
|
||||
http://www.onsemi.com/PowerSolutions/product.do?id=ADM1032
|
||||
* Analog Devices ADT7461
|
||||
Prefix: 'adt7461'
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the ON Semiconductor website
|
||||
http://www.onsemi.com/PowerSolutions/product.do?id=ADT7461
|
||||
* Analog Devices ADT7461A
|
||||
Prefix: 'adt7461a'
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the ON Semiconductor website
|
||||
http://www.onsemi.com/PowerSolutions/product.do?id=ADT7461A
|
||||
* ON Semiconductor NCT1008
|
||||
Prefix: 'nct1008'
|
||||
Addresses scanned: I2C 0x4c and 0x4d
|
||||
Datasheet: Publicly available at the ON Semiconductor website
|
||||
http://www.onsemi.com/PowerSolutions/product.do?id=NCT1008
|
||||
* Maxim MAX6646
|
||||
Prefix: 'max6646'
|
||||
Addresses scanned: I2C 0x4d
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
|
||||
* Maxim MAX6647
|
||||
Prefix: 'max6646'
|
||||
Addresses scanned: I2C 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
|
||||
* Maxim MAX6648
|
||||
Prefix: 'max6646'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
|
||||
* Maxim MAX6649
|
||||
Prefix: 'max6646'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3497
|
||||
* Maxim MAX6657
|
||||
Prefix: 'max6657'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
|
||||
* Maxim MAX6658
|
||||
Prefix: 'max6657'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
|
||||
* Maxim MAX6659
|
||||
Prefix: 'max6659'
|
||||
Addresses scanned: I2C 0x4c, 0x4d, 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2578
|
||||
* Maxim MAX6680
|
||||
Prefix: 'max6680'
|
||||
Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
|
||||
0x4c, 0x4d and 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3370
|
||||
* Maxim MAX6681
|
||||
Prefix: 'max6680'
|
||||
Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
|
||||
0x4c, 0x4d and 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3370
|
||||
* Maxim MAX6692
|
||||
Prefix: 'max6646'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3500
|
||||
* Maxim MAX6695
|
||||
Prefix: 'max6695'
|
||||
Addresses scanned: I2C 0x18
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/datasheet/index.mvp/id/4199
|
||||
* Maxim MAX6696
|
||||
Prefix: 'max6695'
|
||||
Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b,
|
||||
0x4c, 0x4d and 0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://www.maxim-ic.com/datasheet/index.mvp/id/4199
|
||||
* Winbond/Nuvoton W83L771W/G
|
||||
Prefix: 'w83l771'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: No longer available
|
||||
* Winbond/Nuvoton W83L771AWG/ASG
|
||||
Prefix: 'w83l771'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Not publicly available, can be requested from Nuvoton
|
||||
* Philips/NXP SA56004X
|
||||
Prefix: 'sa56004'
|
||||
Addresses scanned: I2C 0x48 through 0x4F
|
||||
Datasheet: Publicly available at NXP website
|
||||
http://ics.nxp.com/products/interface/datasheet/sa56004x.pdf
|
||||
* GMT G781
|
||||
Prefix: 'g781'
|
||||
Addresses scanned: I2C 0x4c, 0x4d
|
||||
Datasheet: Not publicly available from GMT
|
||||
* Texas Instruments TMP451
|
||||
Prefix: 'tmp451'
|
||||
Addresses scanned: I2C 0x4c
|
||||
Datasheet: Publicly available at TI website
|
||||
http://www.ti.com/litv/pdf/sbos686
|
||||
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM90 is a digital temperature sensor. It senses its own temperature as
|
||||
well as the temperature of up to one external diode. It is compatible
|
||||
with many other devices, many of which are supported by this driver.
|
||||
|
||||
Note that there is no easy way to differentiate between the MAX6657,
|
||||
MAX6658 and MAX6659 variants. The extra features of the MAX6659 are only
|
||||
supported by this driver if the chip is located at address 0x4d or 0x4e,
|
||||
or if the chip type is explicitly selected as max6659.
|
||||
The MAX6680 and MAX6681 only differ in their pinout, therefore they obviously
|
||||
can't (and don't need to) be distinguished.
|
||||
|
||||
The specificity of this family of chipsets over the ADM1021/LM84
|
||||
family is that it features critical limits with hysteresis, and an
|
||||
increased resolution of the remote temperature measurement.
|
||||
|
||||
The different chipsets of the family are not strictly identical, although
|
||||
very similar. For reference, here comes a non-exhaustive list of specific
|
||||
features:
|
||||
|
||||
LM90:
|
||||
* Filter and alert configuration register at 0xBF.
|
||||
* ALERT is triggered by temperatures over critical limits.
|
||||
|
||||
LM86 and LM89:
|
||||
* Same as LM90
|
||||
* Better external channel accuracy
|
||||
|
||||
LM99:
|
||||
* Same as LM89
|
||||
* External temperature shifted by 16 degrees down
|
||||
|
||||
ADM1032:
|
||||
* Consecutive alert register at 0x22.
|
||||
* Conversion averaging.
|
||||
* Up to 64 conversions/s.
|
||||
* ALERT is triggered by open remote sensor.
|
||||
* SMBus PEC support for Write Byte and Receive Byte transactions.
|
||||
|
||||
ADT7461, ADT7461A, NCT1008:
|
||||
* Extended temperature range (breaks compatibility)
|
||||
* Lower resolution for remote temperature
|
||||
|
||||
MAX6657 and MAX6658:
|
||||
* Better local resolution
|
||||
* Remote sensor type selection
|
||||
|
||||
MAX6659:
|
||||
* Better local resolution
|
||||
* Selectable address
|
||||
* Second critical temperature limit
|
||||
* Remote sensor type selection
|
||||
|
||||
MAX6680 and MAX6681:
|
||||
* Selectable address
|
||||
* Remote sensor type selection
|
||||
|
||||
MAX6695 and MAX6696:
|
||||
* Better local resolution
|
||||
* Selectable address (max6696)
|
||||
* Second critical temperature limit
|
||||
* Two remote sensors
|
||||
|
||||
W83L771W/G
|
||||
* The G variant is lead-free, otherwise similar to the W.
|
||||
* Filter and alert configuration register at 0xBF
|
||||
* Moving average (depending on conversion rate)
|
||||
|
||||
W83L771AWG/ASG
|
||||
* Successor of the W83L771W/G, same features.
|
||||
* The AWG and ASG variants only differ in package format.
|
||||
* Diode ideality factor configuration (remote sensor) at 0xE3
|
||||
|
||||
SA56004X:
|
||||
* Better local resolution
|
||||
|
||||
All temperature values are given in degrees Celsius. Resolution
|
||||
is 1.0 degree for the local temperature, 0.125 degree for the remote
|
||||
temperature, except for the MAX6657, MAX6658 and MAX6659 which have a
|
||||
resolution of 0.125 degree for both temperatures.
|
||||
|
||||
Each sensor has its own high and low limits, plus a critical limit.
|
||||
Additionally, there is a relative hysteresis value common to both critical
|
||||
values. To make life easier to user-space applications, two absolute values
|
||||
are exported, one for each channel, but these values are of course linked.
|
||||
Only the local hysteresis can be set from user-space, and the same delta
|
||||
applies to the remote hysteresis.
|
||||
|
||||
The lm90 driver will not update its values more frequently than configured with
|
||||
the update_interval attribute; reading them more often will do no harm, but will
|
||||
return 'old' values.
|
||||
|
||||
SMBus Alert Support
|
||||
-------------------
|
||||
|
||||
This driver has basic support for SMBus alert. When an alert is received,
|
||||
the status register is read and the faulty temperature channel is logged.
|
||||
|
||||
The Analog Devices chips (ADM1032, ADT7461 and ADT7461A) and ON
|
||||
Semiconductor chips (NCT1008) do not implement the SMBus alert protocol
|
||||
properly so additional care is needed: the ALERT output is disabled when
|
||||
an alert is received, and is re-enabled only when the alarm is gone.
|
||||
Otherwise the chip would block alerts from other chips in the bus as long
|
||||
as the alarm is active.
|
||||
|
||||
PEC Support
|
||||
-----------
|
||||
|
||||
The ADM1032 is the only chip of the family which supports PEC. It does
|
||||
not support PEC on all transactions though, so some care must be taken.
|
||||
|
||||
When reading a register value, the PEC byte is computed and sent by the
|
||||
ADM1032 chip. However, in the case of a combined transaction (SMBus Read
|
||||
Byte), the ADM1032 computes the CRC value over only the second half of
|
||||
the message rather than its entirety, because it thinks the first half
|
||||
of the message belongs to a different transaction. As a result, the CRC
|
||||
value differs from what the SMBus master expects, and all reads fail.
|
||||
|
||||
For this reason, the lm90 driver will enable PEC for the ADM1032 only if
|
||||
the bus supports the SMBus Send Byte and Receive Byte transaction types.
|
||||
These transactions will be used to read register values, instead of
|
||||
SMBus Read Byte, and PEC will work properly.
|
||||
|
||||
Additionally, the ADM1032 doesn't support SMBus Send Byte with PEC.
|
||||
Instead, it will try to write the PEC value to the register (because the
|
||||
SMBus Send Byte transaction with PEC is similar to a Write Byte transaction
|
||||
without PEC), which is not what we want. Thus, PEC is explicitly disabled
|
||||
on SMBus Send Byte transactions in the lm90 driver.
|
||||
|
||||
PEC on byte data transactions represents a significant increase in bandwidth
|
||||
usage (+33% for writes, +25% for reads) in normal conditions. With the need
|
||||
to use two SMBus transaction for reads, this overhead jumps to +50%. Worse,
|
||||
two transactions will typically mean twice as much delay waiting for
|
||||
transaction completion, effectively doubling the register cache refresh time.
|
||||
I guess reliability comes at a price, but it's quite expensive this time.
|
||||
|
||||
So, as not everyone might enjoy the slowdown, PEC can be disabled through
|
||||
sysfs. Just write 0 to the "pec" file and PEC will be disabled. Write 1
|
||||
to that file to enable PEC again.
|
37
Documentation/hwmon/lm92
Normal file
37
Documentation/hwmon/lm92
Normal file
|
@ -0,0 +1,37 @@
|
|||
Kernel driver lm92
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM92
|
||||
Prefix: 'lm92'
|
||||
Addresses scanned: I2C 0x48 - 0x4b
|
||||
Datasheet: http://www.national.com/pf/LM/LM92.html
|
||||
* National Semiconductor LM76
|
||||
Prefix: 'lm92'
|
||||
Addresses scanned: none, force parameter needed
|
||||
Datasheet: http://www.national.com/pf/LM/LM76.html
|
||||
* Maxim MAX6633/MAX6634/MAX6635
|
||||
Prefix: 'lm92'
|
||||
Addresses scanned: I2C 0x48 - 0x4b
|
||||
MAX6633 with address in 0x40 - 0x47, 0x4c - 0x4f needs force parameter
|
||||
and MAX6634 with address in 0x4c - 0x4f needs force parameter
|
||||
Datasheet: http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3074
|
||||
|
||||
Authors:
|
||||
Abraham van der Merwe <abraham@2d3d.co.za>
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the National Semiconductor LM92
|
||||
temperature sensor.
|
||||
|
||||
Each LM92 temperature sensor supports a single temperature sensor. There are
|
||||
alarms for high, low, and critical thresholds. There's also an hysteresis to
|
||||
control the thresholds for resetting alarms.
|
||||
|
||||
Support was added later for the LM76 and Maxim MAX6633/MAX6634/MAX6635,
|
||||
which are mostly compatible. They have not all been tested, so you
|
||||
may need to use the force parameter.
|
309
Documentation/hwmon/lm93
Normal file
309
Documentation/hwmon/lm93
Normal file
|
@ -0,0 +1,309 @@
|
|||
Kernel driver lm93
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM93
|
||||
Prefix 'lm93'
|
||||
Addresses scanned: I2C 0x2c-0x2e
|
||||
Datasheet: http://www.national.com/ds.cgi/LM/LM93.pdf
|
||||
* National Semiconductor LM94
|
||||
Prefix 'lm94'
|
||||
Addresses scanned: I2C 0x2c-0x2e
|
||||
Datasheet: http://www.national.com/ds.cgi/LM/LM94.pdf
|
||||
|
||||
Authors:
|
||||
Mark M. Hoffman <mhoffman@lightlink.com>
|
||||
Ported to 2.6 by Eric J. Bowersox <ericb@aspsys.com>
|
||||
Adapted to 2.6.20 by Carsten Emde <ce@osadl.org>
|
||||
Modified for mainline integration by Hans J. Koch <hjk@hansjkoch.de>
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* init: integer
|
||||
Set to non-zero to force some initializations (default is 0).
|
||||
* disable_block: integer
|
||||
A "0" allows SMBus block data transactions if the host supports them. A "1"
|
||||
disables SMBus block data transactions. The default is 0.
|
||||
* vccp_limit_type: integer array (2)
|
||||
Configures in7 and in8 limit type, where 0 means absolute and non-zero
|
||||
means relative. "Relative" here refers to "Dynamic Vccp Monitoring using
|
||||
VID" from the datasheet. It greatly simplifies the interface to allow
|
||||
only one set of limits (absolute or relative) to be in operation at a
|
||||
time (even though the hardware is capable of enabling both). There's
|
||||
not a compelling use case for enabling both at once, anyway. The default
|
||||
is "0,0".
|
||||
* vid_agtl: integer
|
||||
A "0" configures the VID pins for V(ih) = 2.1V min, V(il) = 0.8V max.
|
||||
A "1" configures the VID pins for V(ih) = 0.8V min, V(il) = 0.4V max.
|
||||
(The latter setting is referred to as AGTL+ Compatible in the datasheet.)
|
||||
I.e. this parameter controls the VID pin input thresholds; if your VID
|
||||
inputs are not working, try changing this. The default value is "0".
|
||||
|
||||
|
||||
Hardware Description
|
||||
--------------------
|
||||
|
||||
(from the datasheet)
|
||||
|
||||
The LM93 hardware monitor has a two wire digital interface compatible with
|
||||
SMBus 2.0. Using an 8-bit ADC, the LM93 measures the temperature of two remote
|
||||
diode connected transistors as well as its own die and 16 power supply
|
||||
voltages. To set fan speed, the LM93 has two PWM outputs that are each
|
||||
controlled by up to four temperature zones. The fancontrol algorithm is lookup
|
||||
table based. The LM93 includes a digital filter that can be invoked to smooth
|
||||
temperature readings for better control of fan speed. The LM93 has four
|
||||
tachometer inputs to measure fan speed. Limit and status registers for all
|
||||
measured values are included. The LM93 builds upon the functionality of
|
||||
previous motherboard management ASICs and uses some of the LM85's features
|
||||
(i.e. smart tachometer mode). It also adds measurement and control support
|
||||
for dynamic Vccp monitoring and PROCHOT. It is designed to monitor a dual
|
||||
processor Xeon class motherboard with a minimum of external components.
|
||||
|
||||
LM94 is also supported in LM93 compatible mode. Extra sensors and features of
|
||||
LM94 are not supported.
|
||||
|
||||
|
||||
User Interface
|
||||
--------------
|
||||
|
||||
#PROCHOT:
|
||||
|
||||
The LM93 can monitor two #PROCHOT signals. The results are found in the
|
||||
sysfs files prochot1, prochot2, prochot1_avg, prochot2_avg, prochot1_max,
|
||||
and prochot2_max. prochot1_max and prochot2_max contain the user limits
|
||||
for #PROCHOT1 and #PROCHOT2, respectively. prochot1 and prochot2 contain
|
||||
the current readings for the most recent complete time interval. The
|
||||
value of prochot1_avg and prochot2_avg is something like a 2 period
|
||||
exponential moving average (but not quite - check the datasheet). Note
|
||||
that this third value is calculated by the chip itself. All values range
|
||||
from 0-255 where 0 indicates no throttling, and 255 indicates > 99.6%.
|
||||
|
||||
The monitoring intervals for the two #PROCHOT signals is also configurable.
|
||||
These intervals can be found in the sysfs files prochot1_interval and
|
||||
prochot2_interval. The values in these files specify the intervals for
|
||||
#P1_PROCHOT and #P2_PROCHOT, respectively. Selecting a value not in this
|
||||
list will cause the driver to use the next largest interval. The available
|
||||
intervals are (in seconds):
|
||||
|
||||
#PROCHOT intervals: 0.73, 1.46, 2.9, 5.8, 11.7, 23.3, 46.6, 93.2, 186, 372
|
||||
|
||||
It is possible to configure the LM93 to logically short the two #PROCHOT
|
||||
signals. I.e. when #P1_PROCHOT is asserted, the LM93 will automatically
|
||||
assert #P2_PROCHOT, and vice-versa. This mode is enabled by writing a
|
||||
non-zero integer to the sysfs file prochot_short.
|
||||
|
||||
The LM93 can also override the #PROCHOT pins by driving a PWM signal onto
|
||||
one or both of them. When overridden, the signal has a period of 3.56 ms,
|
||||
a minimum pulse width of 5 clocks (at 22.5kHz => 6.25% duty cycle), and
|
||||
a maximum pulse width of 80 clocks (at 22.5kHz => 99.88% duty cycle).
|
||||
|
||||
The sysfs files prochot1_override and prochot2_override contain boolean
|
||||
integers which enable or disable the override function for #P1_PROCHOT and
|
||||
#P2_PROCHOT, respectively. The sysfs file prochot_override_duty_cycle
|
||||
contains a value controlling the duty cycle for the PWM signal used when
|
||||
the override function is enabled. This value ranges from 0 to 15, with 0
|
||||
indicating minimum duty cycle and 15 indicating maximum.
|
||||
|
||||
#VRD_HOT:
|
||||
|
||||
The LM93 can monitor two #VRD_HOT signals. The results are found in the
|
||||
sysfs files vrdhot1 and vrdhot2. There is one value per file: a boolean for
|
||||
which 1 indicates #VRD_HOT is asserted and 0 indicates it is negated. These
|
||||
files are read-only.
|
||||
|
||||
Smart Tach Mode:
|
||||
|
||||
(from the datasheet)
|
||||
|
||||
If a fan is driven using a low-side drive PWM, the tachometer
|
||||
output of the fan is corrupted. The LM93 includes smart tachometer
|
||||
circuitry that allows an accurate tachometer reading to be
|
||||
achieved despite the signal corruption. In smart tach mode all
|
||||
four signals are measured within 4 seconds.
|
||||
|
||||
Smart tach mode is enabled by the driver by writing 1 or 2 (associating the
|
||||
the fan tachometer with a pwm) to the sysfs file fan<n>_smart_tach. A zero
|
||||
will disable the function for that fan. Note that Smart tach mode cannot be
|
||||
enabled if the PWM output frequency is 22500 Hz (see below).
|
||||
|
||||
Manual PWM:
|
||||
|
||||
The LM93 has a fixed or override mode for the two PWM outputs (although, there
|
||||
are still some conditions that will override even this mode - see section
|
||||
15.10.6 of the datasheet for details.) The sysfs files pwm1_override
|
||||
and pwm2_override are used to enable this mode; each is a boolean integer
|
||||
where 0 disables and 1 enables the manual control mode. The sysfs files pwm1
|
||||
and pwm2 are used to set the manual duty cycle; each is an integer (0-255)
|
||||
where 0 is 0% duty cycle, and 255 is 100%. Note that the duty cycle values
|
||||
are constrained by the hardware. Selecting a value which is not available
|
||||
will cause the driver to use the next largest value. Also note: when manual
|
||||
PWM mode is disabled, the value of pwm1 and pwm2 indicates the current duty
|
||||
cycle chosen by the h/w.
|
||||
|
||||
PWM Output Frequency:
|
||||
|
||||
The LM93 supports several different frequencies for the PWM output channels.
|
||||
The sysfs files pwm1_freq and pwm2_freq are used to select the frequency. The
|
||||
frequency values are constrained by the hardware. Selecting a value which is
|
||||
not available will cause the driver to use the next largest value. Also note
|
||||
that this parameter has implications for the Smart Tach Mode (see above).
|
||||
|
||||
PWM Output Frequencies (in Hz): 12, 36, 48, 60, 72, 84, 96, 22500 (default)
|
||||
|
||||
Automatic PWM:
|
||||
|
||||
The LM93 is capable of complex automatic fan control, with many different
|
||||
points of configuration. To start, each PWM output can be bound to any
|
||||
combination of eight control sources. The final PWM is the largest of all
|
||||
individual control sources to which the PWM output is bound.
|
||||
|
||||
The eight control sources are: temp1-temp4 (aka "zones" in the datasheet),
|
||||
#PROCHOT 1 & 2, and #VRDHOT 1 & 2. The bindings are expressed as a bitmask
|
||||
in the sysfs files pwm<n>_auto_channels, where a "1" enables the binding, and
|
||||
a "0" disables it. The h/w default is 0x0f (all temperatures bound).
|
||||
|
||||
0x01 - Temp 1
|
||||
0x02 - Temp 2
|
||||
0x04 - Temp 3
|
||||
0x08 - Temp 4
|
||||
0x10 - #PROCHOT 1
|
||||
0x20 - #PROCHOT 2
|
||||
0x40 - #VRDHOT 1
|
||||
0x80 - #VRDHOT 2
|
||||
|
||||
The function y = f(x) takes a source temperature x to a PWM output y. This
|
||||
function of the LM93 is derived from a base temperature and a table of 12
|
||||
temperature offsets. The base temperature is expressed in degrees C in the
|
||||
sysfs files temp<n>_auto_base. The offsets are expressed in cumulative
|
||||
degrees C, with the value of offset <i> for temperature value <n> being
|
||||
contained in the file temp<n>_auto_offset<i>. E.g. if the base temperature
|
||||
is 40C:
|
||||
|
||||
offset # temp<n>_auto_offset<i> range pwm
|
||||
1 0 - 25.00%
|
||||
2 0 - 28.57%
|
||||
3 1 40C - 41C 32.14%
|
||||
4 1 41C - 42C 35.71%
|
||||
5 2 42C - 44C 39.29%
|
||||
6 2 44C - 46C 42.86%
|
||||
7 2 48C - 50C 46.43%
|
||||
8 2 50C - 52C 50.00%
|
||||
9 2 52C - 54C 53.57%
|
||||
10 2 54C - 56C 57.14%
|
||||
11 2 56C - 58C 71.43%
|
||||
12 2 58C - 60C 85.71%
|
||||
> 60C 100.00%
|
||||
|
||||
Valid offsets are in the range 0C <= x <= 7.5C in 0.5C increments.
|
||||
|
||||
There is an independent base temperature for each temperature channel. Note,
|
||||
however, there are only two tables of offsets: one each for temp[12] and
|
||||
temp[34]. Therefore, any change to e.g. temp1_auto_offset<i> will also
|
||||
affect temp2_auto_offset<i>.
|
||||
|
||||
The LM93 can also apply hysteresis to the offset table, to prevent unwanted
|
||||
oscillation between two steps in the offsets table. These values are found in
|
||||
the sysfs files temp<n>_auto_offset_hyst. The value in this file has the
|
||||
same representation as in temp<n>_auto_offset<i>.
|
||||
|
||||
If a temperature reading falls below the base value for that channel, the LM93
|
||||
will use the minimum PWM value. These values are found in the sysfs files
|
||||
temp<n>_auto_pwm_min. Note, there are only two minimums: one each for temp[12]
|
||||
and temp[34]. Therefore, any change to e.g. temp1_auto_pwm_min will also
|
||||
affect temp2_auto_pwm_min.
|
||||
|
||||
PWM Spin-Up Cycle:
|
||||
|
||||
A spin-up cycle occurs when a PWM output is commanded from 0% duty cycle to
|
||||
some value > 0%. The LM93 supports a minimum duty cycle during spin-up. These
|
||||
values are found in the sysfs files pwm<n>_auto_spinup_min. The value in this
|
||||
file has the same representation as other PWM duty cycle values. The
|
||||
duration of the spin-up cycle is also configurable. These values are found in
|
||||
the sysfs files pwm<n>_auto_spinup_time. The value in this file is
|
||||
the spin-up time in seconds. The available spin-up times are constrained by
|
||||
the hardware. Selecting a value which is not available will cause the driver
|
||||
to use the next largest value.
|
||||
|
||||
Spin-up Durations: 0 (disabled, h/w default), 0.1, 0.25, 0.4, 0.7, 1.0,
|
||||
2.0, 4.0
|
||||
|
||||
#PROCHOT and #VRDHOT PWM Ramping:
|
||||
|
||||
If the #PROCHOT or #VRDHOT signals are asserted while bound to a PWM output
|
||||
channel, the LM93 will ramp the PWM output up to 100% duty cycle in discrete
|
||||
steps. The duration of each step is configurable. There are two files, with
|
||||
one value each in seconds: pwm_auto_prochot_ramp and pwm_auto_vrdhot_ramp.
|
||||
The available ramp times are constrained by the hardware. Selecting a value
|
||||
which is not available will cause the driver to use the next largest value.
|
||||
|
||||
Ramp Times: 0 (disabled, h/w default) to 0.75 in 0.05 second intervals
|
||||
|
||||
Fan Boost:
|
||||
|
||||
For each temperature channel, there is a boost temperature: if the channel
|
||||
exceeds this limit, the LM93 will immediately drive both PWM outputs to 100%.
|
||||
This limit is expressed in degrees C in the sysfs files temp<n>_auto_boost.
|
||||
There is also a hysteresis temperature for this function: after the boost
|
||||
limit is reached, the temperature channel must drop below this value before
|
||||
the boost function is disabled. This temperature is also expressed in degrees
|
||||
C in the sysfs files temp<n>_auto_boost_hyst.
|
||||
|
||||
GPIO Pins:
|
||||
|
||||
The LM93 can monitor the logic level of four dedicated GPIO pins as well as the
|
||||
four tach input pins. GPIO0-GPIO3 correspond to (fan) tach 1-4, respectively.
|
||||
All eight GPIOs are read by reading the bitmask in the sysfs file gpio. The
|
||||
LSB is GPIO0, and the MSB is GPIO7.
|
||||
|
||||
|
||||
LM93 Unique sysfs Files
|
||||
-----------------------
|
||||
|
||||
file description
|
||||
-------------------------------------------------------------
|
||||
|
||||
prochot<n> current #PROCHOT %
|
||||
|
||||
prochot<n>_avg moving average #PROCHOT %
|
||||
|
||||
prochot<n>_max limit #PROCHOT %
|
||||
|
||||
prochot_short enable or disable logical #PROCHOT pin short
|
||||
|
||||
prochot<n>_override force #PROCHOT assertion as PWM
|
||||
|
||||
prochot_override_duty_cycle
|
||||
duty cycle for the PWM signal used when
|
||||
#PROCHOT is overridden
|
||||
|
||||
prochot<n>_interval #PROCHOT PWM sampling interval
|
||||
|
||||
vrdhot<n> 0 means negated, 1 means asserted
|
||||
|
||||
fan<n>_smart_tach enable or disable smart tach mode
|
||||
|
||||
pwm<n>_auto_channels select control sources for PWM outputs
|
||||
|
||||
pwm<n>_auto_spinup_min minimum duty cycle during spin-up
|
||||
|
||||
pwm<n>_auto_spinup_time duration of spin-up
|
||||
|
||||
pwm_auto_prochot_ramp ramp time per step when #PROCHOT asserted
|
||||
|
||||
pwm_auto_vrdhot_ramp ramp time per step when #VRDHOT asserted
|
||||
|
||||
temp<n>_auto_base temperature channel base
|
||||
|
||||
temp<n>_auto_offset[1-12]
|
||||
temperature channel offsets
|
||||
|
||||
temp<n>_auto_offset_hyst
|
||||
temperature channel offset hysteresis
|
||||
|
||||
temp<n>_auto_boost temperature channel boost (PWMs to 100%) limit
|
||||
|
||||
temp<n>_auto_boost_hyst temperature channel boost hysteresis
|
||||
|
||||
gpio input state of 8 GPIO pins; read-only
|
||||
|
36
Documentation/hwmon/lm95234
Normal file
36
Documentation/hwmon/lm95234
Normal file
|
@ -0,0 +1,36 @@
|
|||
Kernel driver lm95234
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor / Texas Instruments LM95234
|
||||
Addresses scanned: I2C 0x18, 0x4d, 0x4e
|
||||
Datasheet: Publicly available at the Texas Instruments website
|
||||
http://www.ti.com/product/lm95234
|
||||
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
LM95234 is an 11-bit digital temperature sensor with a 2-wire System Management
|
||||
Bus (SMBus) interface and TrueTherm technology that can very accurately monitor
|
||||
the temperature of four remote diodes as well as its own temperature.
|
||||
The four remote diodes can be external devices such as microprocessors,
|
||||
graphics processors or diode-connected 2N3904s. The LM95234's TruTherm
|
||||
beta compensation technology allows sensing of 90 nm or 65 nm process
|
||||
thermal diodes accurately.
|
||||
|
||||
All temperature values are given in millidegrees Celsius. Temperature
|
||||
is provided within a range of -127 to +255 degrees (+127.875 degrees for
|
||||
the internal sensor). Resolution depends on temperature input and range.
|
||||
|
||||
Each sensor has its own maximum limit, but the hysteresis is common to all
|
||||
channels. The hysteresis is configurable with the tem1_max_hyst attribute and
|
||||
affects the hysteresis on all channels. The first two external sensors also
|
||||
have a critical limit.
|
||||
|
||||
The lm95234 driver can change its update interval to a fixed set of values.
|
||||
It will round up to the next selectable interval. See the datasheet for exact
|
||||
values. Reading sensor values more often will do no harm, but will return
|
||||
'old' values.
|
37
Documentation/hwmon/lm95245
Normal file
37
Documentation/hwmon/lm95245
Normal file
|
@ -0,0 +1,37 @@
|
|||
Kernel driver lm95245
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor LM95245
|
||||
Addresses scanned: I2C 0x18, 0x19, 0x29, 0x4c, 0x4d
|
||||
Datasheet: Publicly available at the National Semiconductor website
|
||||
http://www.national.com/mpf/LM/LM95245.html
|
||||
|
||||
|
||||
Author: Alexander Stein <alexander.stein@systec-electronic.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LM95245 is an 11-bit digital temperature sensor with a 2-wire System
|
||||
Management Bus (SMBus) interface and TruTherm technology that can monitor
|
||||
the temperature of a remote diode as well as its own temperature.
|
||||
The LM95245 can be used to very accurately monitor the temperature of
|
||||
external devices such as microprocessors.
|
||||
|
||||
All temperature values are given in millidegrees Celsius. Local temperature
|
||||
is given within a range of -127 to +127.875 degrees. Remote temperatures are
|
||||
given within a range of -127 to +255 degrees. Resolution depends on
|
||||
temperature input and range.
|
||||
|
||||
Each sensor has its own critical limit. Additionally, there is a relative
|
||||
hysteresis value common to both critical limits. To make life easier to
|
||||
user-space applications, two absolute values are exported, one for each
|
||||
channel, but these values are of course linked. Only the local hysteresis
|
||||
can be set from user-space, and the same delta applies to the remote
|
||||
hysteresis.
|
||||
|
||||
The lm95245 driver can change its update interval to a fixed set of values.
|
||||
It will round up to the next selectable interval. See the datasheet for exact
|
||||
values. Reading sensor values more often will do no harm, but will return
|
||||
'old' values.
|
84
Documentation/hwmon/ltc2945
Normal file
84
Documentation/hwmon/ltc2945
Normal file
|
@ -0,0 +1,84 @@
|
|||
Kernel driver ltc2945
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC2945
|
||||
Prefix: 'ltc2945'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://cds.linear.com/docs/en/datasheet/2945fa.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC2945 is a rail-to-rail system monitor that measures current, voltage,
|
||||
and power consumption.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC2945 devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC2945 at address 0x10
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc2945
|
||||
$ echo ltc2945 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
Voltage readings provided by this driver are reported as obtained from the ADC
|
||||
registers. If a set of voltage divider resistors is installed, calculate the
|
||||
real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
|
||||
value of the divider resistor against the measured voltage and R2 is the value
|
||||
of the divider resistor against Ground.
|
||||
|
||||
Current reading provided by this driver is reported as obtained from the ADC
|
||||
Current Sense register. The reported value assumes that a 1 mOhm sense resistor
|
||||
is installed. If a different sense resistor is installed, calculate the real
|
||||
current by dividing the reported value by the sense resistor value in mOhm.
|
||||
|
||||
in1_input VIN voltage (mV). Voltage is measured either at
|
||||
SENSE+ or VDD pin depending on chip configuration.
|
||||
in1_min Undervoltage threshold
|
||||
in1_max Overvoltage threshold
|
||||
in1_lowest Lowest measured voltage
|
||||
in1_highest Highest measured voltage
|
||||
in1_reset_history Write 1 to reset in1 history
|
||||
in1_min_alarm Undervoltage alarm
|
||||
in1_max_alarm Overvoltage alarm
|
||||
|
||||
in2_input ADIN voltage (mV)
|
||||
in2_min Undervoltage threshold
|
||||
in2_max Overvoltage threshold
|
||||
in2_lowest Lowest measured voltage
|
||||
in2_highest Highest measured voltage
|
||||
in2_reset_history Write 1 to reset in2 history
|
||||
in2_min_alarm Undervoltage alarm
|
||||
in2_max_alarm Overvoltage alarm
|
||||
|
||||
curr1_input SENSE current (mA)
|
||||
curr1_min Undercurrent threshold
|
||||
curr1_max Overcurrent threshold
|
||||
curr1_lowest Lowest measured current
|
||||
curr1_highest Highest measured current
|
||||
curr1_reset_history Write 1 to reset curr1 history
|
||||
curr1_min_alarm Undercurrent alarm
|
||||
curr1_max_alarm Overcurrent alarm
|
||||
|
||||
power1_input Power (in uW). Power is calculated based on SENSE+/VDD
|
||||
voltage or ADIN voltage depending on chip configuration.
|
||||
power1_min Low lower threshold
|
||||
power1_max High power threshold
|
||||
power1_input_lowest Historical minimum power use
|
||||
power1_input_highest Historical maximum power use
|
||||
power1_reset_history Write 1 to reset power1 history
|
||||
power1_min_alarm Low power alarm
|
||||
power1_max_alarm High power alarm
|
157
Documentation/hwmon/ltc2978
Normal file
157
Documentation/hwmon/ltc2978
Normal file
|
@ -0,0 +1,157 @@
|
|||
Kernel driver ltc2978
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC2974
|
||||
Prefix: 'ltc2974'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltc2974
|
||||
* Linear Technology LTC2977
|
||||
Prefix: 'ltc2977'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltc2977
|
||||
* Linear Technology LTC2978, LTC2978A
|
||||
Prefix: 'ltc2978'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltc2978
|
||||
http://www.linear.com/product/ltc2978a
|
||||
* Linear Technology LTC3880
|
||||
Prefix: 'ltc3880'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltc3880
|
||||
* Linear Technology LTC3883
|
||||
Prefix: 'ltc3883'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltc3883
|
||||
* Linear Technology LTM4676
|
||||
Prefix: 'ltm4676'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://www.linear.com/product/ltm4676
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
LTC2974 is a quad digital power supply manager. LTC2978 is an octal power supply
|
||||
monitor. LTC2977 is a pin compatible replacement for LTC2978. LTC3880 is a dual
|
||||
output poly-phase step-down DC/DC controller. LTC3883 is a single phase
|
||||
step-down DC/DC controller. LTM4676 is a dual 13A or single 26A uModule
|
||||
regulator.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for PMBus devices. You will have to instantiate
|
||||
devices explicitly.
|
||||
|
||||
Example: the following commands will load the driver for an LTC2978 at address
|
||||
0x60 on I2C bus #1:
|
||||
|
||||
# modprobe ltc2978
|
||||
# echo ltc2978 0x60 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs attributes
|
||||
----------------
|
||||
|
||||
in1_label "vin"
|
||||
in1_input Measured input voltage.
|
||||
in1_min Minimum input voltage.
|
||||
in1_max Maximum input voltage.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
in1_lcrit Critical minimum input voltage.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
in1_crit Critical maximum input voltage.
|
||||
in1_min_alarm Input voltage low alarm.
|
||||
in1_max_alarm Input voltage high alarm.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
in1_lcrit_alarm Input voltage critical low alarm.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
in1_crit_alarm Input voltage critical high alarm.
|
||||
in1_lowest Lowest input voltage.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
in1_highest Highest input voltage.
|
||||
in1_reset_history Reset input voltage history.
|
||||
|
||||
in[N]_label "vout[1-8]".
|
||||
LTC2974: N=2-5
|
||||
LTC2977: N=2-9
|
||||
LTC2978: N=2-9
|
||||
LTC3880, LTM4676: N=2-3
|
||||
LTC3883: N=2
|
||||
in[N]_input Measured output voltage.
|
||||
in[N]_min Minimum output voltage.
|
||||
in[N]_max Maximum output voltage.
|
||||
in[N]_lcrit Critical minimum output voltage.
|
||||
in[N]_crit Critical maximum output voltage.
|
||||
in[N]_min_alarm Output voltage low alarm.
|
||||
in[N]_max_alarm Output voltage high alarm.
|
||||
in[N]_lcrit_alarm Output voltage critical low alarm.
|
||||
in[N]_crit_alarm Output voltage critical high alarm.
|
||||
in[N]_lowest Lowest output voltage. LTC2974 and LTC2978 only.
|
||||
in[N]_highest Highest output voltage.
|
||||
in[N]_reset_history Reset output voltage history.
|
||||
|
||||
temp[N]_input Measured temperature.
|
||||
On LTC2974, temp[1-4] report external temperatures,
|
||||
and temp5 reports the chip temperature.
|
||||
On LTC2977 and LTC2978, only one temperature measurement
|
||||
is supported and reports the chip temperature.
|
||||
On LTC3880 and LTM4676, temp1 and temp2 report external
|
||||
temperatures, and temp3 reports the chip temperature.
|
||||
On LTC3883, temp1 reports an external temperature,
|
||||
and temp2 reports the chip temperature.
|
||||
temp[N]_min Mimimum temperature. LTC2974, LCT2977, and LTC2978 only.
|
||||
temp[N]_max Maximum temperature.
|
||||
temp[N]_lcrit Critical low temperature.
|
||||
temp[N]_crit Critical high temperature.
|
||||
temp[N]_min_alarm Temperature low alarm.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
temp[N]_max_alarm Temperature high alarm.
|
||||
temp[N]_lcrit_alarm Temperature critical low alarm.
|
||||
temp[N]_crit_alarm Temperature critical high alarm.
|
||||
temp[N]_lowest Lowest measured temperature.
|
||||
LTC2974, LTC2977, and LTC2978 only.
|
||||
Not supported for chip temperature sensor on LTC2974.
|
||||
temp[N]_highest Highest measured temperature. Not supported for chip
|
||||
temperature sensor on LTC2974.
|
||||
temp[N]_reset_history Reset temperature history. Not supported for chip
|
||||
temperature sensor on LTC2974.
|
||||
|
||||
power1_label "pin". LTC3883 only.
|
||||
power1_input Measured input power.
|
||||
|
||||
power[N]_label "pout[1-4]".
|
||||
LTC2974: N=1-4
|
||||
LTC2977: Not supported
|
||||
LTC2978: Not supported
|
||||
LTC3880, LTM4676: N=1-2
|
||||
LTC3883: N=2
|
||||
power[N]_input Measured output power.
|
||||
|
||||
curr1_label "iin". LTC3880, LTC3883, and LTM4676 only.
|
||||
curr1_input Measured input current.
|
||||
curr1_max Maximum input current.
|
||||
curr1_max_alarm Input current high alarm.
|
||||
curr1_highest Highest input current. LTC3883 only.
|
||||
curr1_reset_history Reset input current history. LTC3883 only.
|
||||
|
||||
curr[N]_label "iout[1-4]".
|
||||
LTC2974: N=1-4
|
||||
LTC2977: not supported
|
||||
LTC2978: not supported
|
||||
LTC3880, LTM4676: N=2-3
|
||||
LTC3883: N=2
|
||||
curr[N]_input Measured output current.
|
||||
curr[N]_max Maximum output current.
|
||||
curr[N]_crit Critical high output current.
|
||||
curr[N]_lcrit Critical low output current. LTC2974 only.
|
||||
curr[N]_max_alarm Output current high alarm.
|
||||
curr[N]_crit_alarm Output current critical high alarm.
|
||||
curr[N]_lcrit_alarm Output current critical low alarm. LTC2974 only.
|
||||
curr[N]_lowest Lowest output current. LTC2974 only.
|
||||
curr[N]_highest Highest output current.
|
||||
curr[N]_reset_history Reset output current history.
|
47
Documentation/hwmon/ltc4151
Normal file
47
Documentation/hwmon/ltc4151
Normal file
|
@ -0,0 +1,47 @@
|
|||
Kernel driver ltc4151
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4151
|
||||
Prefix: 'ltc4151'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://www.linear.com/docs/Datasheet/4151fc.pdf
|
||||
|
||||
Author: Per Dalen <per.dalen@appeartv.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4151 is a High Voltage I2C Current and Voltage Monitor.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4151 devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4151 at address 0x6f
|
||||
on I2C bus #0:
|
||||
# modprobe ltc4151
|
||||
# echo ltc4151 0x6f > /sys/bus/i2c/devices/i2c-0/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
Voltage readings provided by this driver are reported as obtained from the ADIN
|
||||
and VIN registers.
|
||||
|
||||
Current reading provided by this driver is reported as obtained from the Current
|
||||
Sense register. The reported value assumes that a 1 mOhm sense resistor is
|
||||
installed.
|
||||
|
||||
in1_input VDIN voltage (mV)
|
||||
|
||||
in2_input ADIN voltage (mV)
|
||||
|
||||
curr1_input SENSE current (mA)
|
51
Documentation/hwmon/ltc4215
Normal file
51
Documentation/hwmon/ltc4215
Normal file
|
@ -0,0 +1,51 @@
|
|||
Kernel driver ltc4215
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4215
|
||||
Prefix: 'ltc4215'
|
||||
Addresses scanned: 0x44
|
||||
Datasheet:
|
||||
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1163,P17572,D12697
|
||||
|
||||
Author: Ira W. Snyder <iws@ovro.caltech.edu>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4215 controller allows a board to be safely inserted and removed
|
||||
from a live backplane.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4215 devices, due to the fact that some
|
||||
of the possible addresses are unfriendly to probing. You will have to
|
||||
instantiate the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4215 at address 0x44
|
||||
on I2C bus #0:
|
||||
$ modprobe ltc4215
|
||||
$ echo ltc4215 0x44 > /sys/bus/i2c/devices/i2c-0/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The LTC4215 has built-in limits for overvoltage, undervoltage, and
|
||||
undercurrent warnings. This makes it very likely that the reference
|
||||
circuit will be used.
|
||||
|
||||
in1_input input voltage
|
||||
in2_input output voltage
|
||||
|
||||
in1_min_alarm input undervoltage alarm
|
||||
in1_max_alarm input overvoltage alarm
|
||||
|
||||
curr1_input current
|
||||
curr1_max_alarm overcurrent alarm
|
||||
|
||||
power1_input power usage
|
||||
power1_alarm power bad alarm
|
102
Documentation/hwmon/ltc4245
Normal file
102
Documentation/hwmon/ltc4245
Normal file
|
@ -0,0 +1,102 @@
|
|||
Kernel driver ltc4245
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4245
|
||||
Prefix: 'ltc4245'
|
||||
Addresses scanned: 0x20-0x3f
|
||||
Datasheet:
|
||||
http://www.linear.com/pc/downloadDocument.do?navId=H0,C1,C1003,C1006,C1140,P19392,D13517
|
||||
|
||||
Author: Ira W. Snyder <iws@ovro.caltech.edu>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4245 controller allows a board to be safely inserted and removed
|
||||
from a live backplane in multiple supply systems such as CompactPCI and
|
||||
PCI Express.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4245 devices, due to the fact that some
|
||||
of the possible addresses are unfriendly to probing. You will have to
|
||||
instantiate the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4245 at address 0x23
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc4245
|
||||
$ echo ltc4245 0x23 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The LTC4245 has built-in limits for over and under current warnings. This
|
||||
makes it very likely that the reference circuit will be used.
|
||||
|
||||
This driver uses the values in the datasheet to change the register values
|
||||
into the values specified in the sysfs-interface document. The current readings
|
||||
rely on the sense resistors listed in Table 2: "Sense Resistor Values".
|
||||
|
||||
in1_input 12v input voltage (mV)
|
||||
in2_input 5v input voltage (mV)
|
||||
in3_input 3v input voltage (mV)
|
||||
in4_input Vee (-12v) input voltage (mV)
|
||||
|
||||
in1_min_alarm 12v input undervoltage alarm
|
||||
in2_min_alarm 5v input undervoltage alarm
|
||||
in3_min_alarm 3v input undervoltage alarm
|
||||
in4_min_alarm Vee (-12v) input undervoltage alarm
|
||||
|
||||
curr1_input 12v current (mA)
|
||||
curr2_input 5v current (mA)
|
||||
curr3_input 3v current (mA)
|
||||
curr4_input Vee (-12v) current (mA)
|
||||
|
||||
curr1_max_alarm 12v overcurrent alarm
|
||||
curr2_max_alarm 5v overcurrent alarm
|
||||
curr3_max_alarm 3v overcurrent alarm
|
||||
curr4_max_alarm Vee (-12v) overcurrent alarm
|
||||
|
||||
in5_input 12v output voltage (mV)
|
||||
in6_input 5v output voltage (mV)
|
||||
in7_input 3v output voltage (mV)
|
||||
in8_input Vee (-12v) output voltage (mV)
|
||||
|
||||
in5_min_alarm 12v output undervoltage alarm
|
||||
in6_min_alarm 5v output undervoltage alarm
|
||||
in7_min_alarm 3v output undervoltage alarm
|
||||
in8_min_alarm Vee (-12v) output undervoltage alarm
|
||||
|
||||
in9_input GPIO voltage data (see note 1)
|
||||
in10_input GPIO voltage data (see note 1)
|
||||
in11_input GPIO voltage data (see note 1)
|
||||
|
||||
power1_input 12v power usage (mW)
|
||||
power2_input 5v power usage (mW)
|
||||
power3_input 3v power usage (mW)
|
||||
power4_input Vee (-12v) power usage (mW)
|
||||
|
||||
|
||||
Note 1
|
||||
------
|
||||
|
||||
If you have NOT configured the driver to sample all GPIO pins as analog
|
||||
voltages, then the in10_input and in11_input sysfs attributes will not be
|
||||
created. The driver will sample the GPIO pin that is currently connected to the
|
||||
ADC as an analog voltage, and report the value in in9_input.
|
||||
|
||||
If you have configured the driver to sample all GPIO pins as analog voltages,
|
||||
then they will be sampled in round-robin fashion. If userspace reads too
|
||||
slowly, -EAGAIN will be returned when you read the sysfs attribute containing
|
||||
the sensor reading.
|
||||
|
||||
The LTC4245 chip can be configured to sample all GPIO pins with two methods:
|
||||
1) platform data -- see include/linux/i2c/ltc4245.h
|
||||
2) OF device tree -- add the "ltc4245,use-extra-gpios" property to each chip
|
||||
|
||||
The default mode of operation is to sample a single GPIO pin.
|
56
Documentation/hwmon/ltc4260
Normal file
56
Documentation/hwmon/ltc4260
Normal file
|
@ -0,0 +1,56 @@
|
|||
Kernel driver ltc4260
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4260
|
||||
Prefix: 'ltc4260'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://cds.linear.com/docs/en/datasheet/4260fc.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4260 Hot Swap controller allows a board to be safely inserted
|
||||
and removed from a live backplane.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4260 devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4260 at address 0x10
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc4260
|
||||
$ echo ltc4260 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
Voltage readings provided by this driver are reported as obtained from the ADC
|
||||
registers. If a set of voltage divider resistors is installed, calculate the
|
||||
real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
|
||||
value of the divider resistor against the measured voltage and R2 is the value
|
||||
of the divider resistor against Ground.
|
||||
|
||||
Current reading provided by this driver is reported as obtained from the ADC
|
||||
Current Sense register. The reported value assumes that a 1 mOhm sense resistor
|
||||
is installed. If a different sense resistor is installed, calculate the real
|
||||
current by dividing the reported value by the sense resistor value in mOhm.
|
||||
|
||||
in1_input SOURCE voltage (mV)
|
||||
in1_min_alarm Undervoltage alarm
|
||||
in1_max_alarm Overvoltage alarm
|
||||
|
||||
in2_input ADIN voltage (mV)
|
||||
in2_alarm Power bad alarm
|
||||
|
||||
curr1_input SENSE current (mA)
|
||||
curr1_alarm SENSE overcurrent alarm
|
63
Documentation/hwmon/ltc4261
Normal file
63
Documentation/hwmon/ltc4261
Normal file
|
@ -0,0 +1,63 @@
|
|||
Kernel driver ltc4261
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4261
|
||||
Prefix: 'ltc4261'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://cds.linear.com/docs/Datasheet/42612fb.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4261/LTC4261-2 negative voltage Hot Swap controllers allow a board
|
||||
to be safely inserted and removed from a live backplane.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4261 devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4261 at address 0x10
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc4261
|
||||
$ echo ltc4261 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
Voltage readings provided by this driver are reported as obtained from the ADC
|
||||
registers. If a set of voltage divider resistors is installed, calculate the
|
||||
real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
|
||||
value of the divider resistor against the measured voltage and R2 is the value
|
||||
of the divider resistor against Ground.
|
||||
|
||||
Current reading provided by this driver is reported as obtained from the ADC
|
||||
Current Sense register. The reported value assumes that a 1 mOhm sense resistor
|
||||
is installed. If a different sense resistor is installed, calculate the real
|
||||
current by dividing the reported value by the sense resistor value in mOhm.
|
||||
|
||||
The chip has two voltage sensors, but only one set of voltage alarm status bits.
|
||||
In many many designs, those alarms are associated with the ADIN2 sensor, due to
|
||||
the proximity of the ADIN2 pin to the OV pin. ADIN2 is, however, not available
|
||||
on all chip variants. To ensure that the alarm condition is reported to the user,
|
||||
report it with both voltage sensors.
|
||||
|
||||
in1_input ADIN2 voltage (mV)
|
||||
in1_min_alarm ADIN/ADIN2 Undervoltage alarm
|
||||
in1_max_alarm ADIN/ADIN2 Overvoltage alarm
|
||||
|
||||
in2_input ADIN voltage (mV)
|
||||
in2_min_alarm ADIN/ADIN2 Undervoltage alarm
|
||||
in2_max_alarm ADIN/ADIN2 Overvoltage alarm
|
||||
|
||||
curr1_input SENSE current (mA)
|
||||
curr1_alarm SENSE overcurrent alarm
|
66
Documentation/hwmon/max16064
Normal file
66
Documentation/hwmon/max16064
Normal file
|
@ -0,0 +1,66 @@
|
|||
Kernel driver max16064
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX16064
|
||||
Prefix: 'max16064'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX16064.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for Maxim MAX16064 Quad Power-Supply
|
||||
Controller with Active-Voltage Output Control and PMBus Interface.
|
||||
|
||||
The driver is a client driver to the core PMBus driver.
|
||||
Please see Documentation/hwmon/pmbus for details on PMBus client drivers.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
The driver supports standard PMBus driver platform data.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. Limits are read-write; all other
|
||||
attributes are read-only.
|
||||
|
||||
in[1-4]_label "vout[1-4]"
|
||||
in[1-4]_input Measured voltage. From READ_VOUT register.
|
||||
in[1-4]_min Minimum Voltage. From VOUT_UV_WARN_LIMIT register.
|
||||
in[1-4]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
|
||||
in[1-4]_lcrit Critical minimum Voltage. VOUT_UV_FAULT_LIMIT register.
|
||||
in[1-4]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
|
||||
in[1-4]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
|
||||
in[1-4]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
|
||||
in[1-4]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
|
||||
in[1-4]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
|
||||
in[1-4]_highest Historical maximum voltage.
|
||||
in[1-4]_reset_history Write any value to reset history.
|
||||
|
||||
temp1_input Measured temperature. From READ_TEMPERATURE_1 register.
|
||||
temp1_max Maximum temperature. From OT_WARN_LIMIT register.
|
||||
temp1_crit Critical high temperature. From OT_FAULT_LIMIT register.
|
||||
temp1_max_alarm Chip temperature high alarm. Set by comparing
|
||||
READ_TEMPERATURE_1 with OT_WARN_LIMIT if TEMP_OT_WARNING
|
||||
status is set.
|
||||
temp1_crit_alarm Chip temperature critical high alarm. Set by comparing
|
||||
READ_TEMPERATURE_1 with OT_FAULT_LIMIT if TEMP_OT_FAULT
|
||||
status is set.
|
||||
temp1_highest Historical maximum temperature.
|
||||
temp1_reset_history Write any value to reset history.
|
105
Documentation/hwmon/max16065
Normal file
105
Documentation/hwmon/max16065
Normal file
|
@ -0,0 +1,105 @@
|
|||
Kernel driver max16065
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX16065, MAX16066
|
||||
Prefixes: 'max16065', 'max16066'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX16065-MAX16066.pdf
|
||||
* Maxim MAX16067
|
||||
Prefix: 'max16067'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX16067.pdf
|
||||
* Maxim MAX16068
|
||||
Prefix: 'max16068'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX16068.pdf
|
||||
* Maxim MAX16070/MAX16071
|
||||
Prefixes: 'max16070', 'max16071'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX16070-MAX16071.pdf
|
||||
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
[From datasheets] The MAX16065/MAX16066 flash-configurable system managers
|
||||
monitor and sequence multiple system voltages. The MAX16065/MAX16066 can also
|
||||
accurately monitor (+/-2.5%) one current channel using a dedicated high-side
|
||||
current-sense amplifier. The MAX16065 manages up to twelve system voltages
|
||||
simultaneously, and the MAX16066 manages up to eight supply voltages.
|
||||
|
||||
The MAX16067 flash-configurable system manager monitors and sequences multiple
|
||||
system voltages. The MAX16067 manages up to six system voltages simultaneously.
|
||||
|
||||
The MAX16068 flash-configurable system manager monitors and manages up to six
|
||||
system voltages simultaneously.
|
||||
|
||||
The MAX16070/MAX16071 flash-configurable system monitors supervise multiple
|
||||
system voltages. The MAX16070/MAX16071 can also accurately monitor (+/-2.5%)
|
||||
one current channel using a dedicated high-side current-sense amplifier. The
|
||||
MAX16070 monitors up to twelve system voltages simultaneously, and the MAX16071
|
||||
monitors up to eight supply voltages.
|
||||
|
||||
Each monitored channel has its own low and high critical limits. MAX16065,
|
||||
MAX16066, MAX16070, and MAX16071 support an additional limit which is
|
||||
configurable as either low or high secondary limit. MAX16065, MAX16066,
|
||||
MAX16070, and MAX16071 also support supply current monitoring.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for devices, since there is no register which
|
||||
can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
WARNING: Do not access chip registers using the i2cdump command, and do not use
|
||||
any of the i2ctools commands on a command register (0xa5 to 0xac). The chips
|
||||
supported by this driver interpret any access to a command register (including
|
||||
read commands) as request to execute the command in question. This may result in
|
||||
power loss, board resets, and/or Flash corruption. Worst case, your board may
|
||||
turn into a brick.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
in[0-11]_input Input voltage measurements.
|
||||
|
||||
in12_input Voltage on CSP (Current Sense Positive) pin.
|
||||
Only if the chip supports current sensing and if
|
||||
current sensing is enabled.
|
||||
|
||||
in[0-11]_min Low warning limit.
|
||||
Supported on MAX16065, MAX16066, MAX16070, and MAX16071
|
||||
only.
|
||||
|
||||
in[0-11]_max High warning limit.
|
||||
Supported on MAX16065, MAX16066, MAX16070, and MAX16071
|
||||
only.
|
||||
|
||||
Either low or high warning limits are supported
|
||||
(depending on chip configuration), but not both.
|
||||
|
||||
in[0-11]_lcrit Low critical limit.
|
||||
|
||||
in[0-11]_crit High critical limit.
|
||||
|
||||
in[0-11]_alarm Input voltage alarm.
|
||||
|
||||
curr1_input Current sense input; only if the chip supports current
|
||||
sensing and if current sensing is enabled.
|
||||
Displayed current assumes 0.001 Ohm current sense
|
||||
resistor.
|
||||
|
||||
curr1_alarm Overcurrent alarm; only if the chip supports current
|
||||
sensing and if current sensing is enabled.
|
29
Documentation/hwmon/max1619
Normal file
29
Documentation/hwmon/max1619
Normal file
|
@ -0,0 +1,29 @@
|
|||
Kernel driver max1619
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX1619
|
||||
Prefix: 'max1619'
|
||||
Addresses scanned: I2C 0x18-0x1a, 0x29-0x2b, 0x4c-0x4e
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://pdfserv.maxim-ic.com/en/ds/MAX1619.pdf
|
||||
|
||||
Authors:
|
||||
Oleksij Rempel <bug-track@fisher-privat.net>,
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The MAX1619 is a digital temperature sensor. It senses its own temperature as
|
||||
well as the temperature of up to one external diode.
|
||||
|
||||
All temperature values are given in degrees Celsius. Resolution
|
||||
is 1.0 degree for the local temperature and for the remote temperature.
|
||||
|
||||
Only the external sensor has high and low limits.
|
||||
|
||||
The max1619 driver will not update its values more frequently than every
|
||||
other second; reading them more often will do no harm, but will return
|
||||
'old' values.
|
||||
|
60
Documentation/hwmon/max1668
Normal file
60
Documentation/hwmon/max1668
Normal file
|
@ -0,0 +1,60 @@
|
|||
Kernel driver max1668
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX1668, MAX1805 and MAX1989
|
||||
Prefix: 'max1668'
|
||||
Addresses scanned: I2C 0x18, 0x19, 0x1a, 0x29, 0x2a, 0x2b, 0x4c, 0x4d, 0x4e
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX1668-MAX1989.pdf
|
||||
|
||||
Author:
|
||||
David George <david.george@ska.ac.za>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Maxim MAX1668, MAX1805 and MAX1989
|
||||
chips.
|
||||
|
||||
The three devices are very similar, but the MAX1805 has a reduced feature
|
||||
set; only two remote temperature inputs vs the four avaible on the other
|
||||
two ICs.
|
||||
|
||||
The driver is able to distinguish between the devices and creates sysfs
|
||||
entries as follows:
|
||||
|
||||
MAX1805, MAX1668 and MAX1989:
|
||||
|
||||
temp1_input ro local (ambient) temperature
|
||||
temp1_max rw local temperature maximum threshold for alarm
|
||||
temp1_max_alarm ro local temperature maximum threshold alarm
|
||||
temp1_min rw local temperature minimum threshold for alarm
|
||||
temp1_min_alarm ro local temperature minimum threshold alarm
|
||||
temp2_input ro remote temperature 1
|
||||
temp2_max rw remote temperature 1 maximum threshold for alarm
|
||||
temp2_max_alarm ro remote temperature 1 maximum threshold alarm
|
||||
temp2_min rw remote temperature 1 minimum threshold for alarm
|
||||
temp2_min_alarm ro remote temperature 1 minimum threshold alarm
|
||||
temp3_input ro remote temperature 2
|
||||
temp3_max rw remote temperature 2 maximum threshold for alarm
|
||||
temp3_max_alarm ro remote temperature 2 maximum threshold alarm
|
||||
temp3_min rw remote temperature 2 minimum threshold for alarm
|
||||
temp3_min_alarm ro remote temperature 2 minimum threshold alarm
|
||||
|
||||
MAX1668 and MAX1989 only:
|
||||
temp4_input ro remote temperature 3
|
||||
temp4_max rw remote temperature 3 maximum threshold for alarm
|
||||
temp4_max_alarm ro remote temperature 3 maximum threshold alarm
|
||||
temp4_min rw remote temperature 3 minimum threshold for alarm
|
||||
temp4_min_alarm ro remote temperature 3 minimum threshold alarm
|
||||
temp5_input ro remote temperature 4
|
||||
temp5_max rw remote temperature 4 maximum threshold for alarm
|
||||
temp5_max_alarm ro remote temperature 4 maximum threshold alarm
|
||||
temp5_min rw remote temperature 4 minimum threshold for alarm
|
||||
temp5_min_alarm ro remote temperature 4 minimum threshold alarm
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* read_only: int
|
||||
Set to non-zero if you wish to prevent write access to alarm thresholds.
|
60
Documentation/hwmon/max197
Normal file
60
Documentation/hwmon/max197
Normal file
|
@ -0,0 +1,60 @@
|
|||
Maxim MAX197 driver
|
||||
===================
|
||||
|
||||
Author:
|
||||
* Vivien Didelot <vivien.didelot@savoirfairelinux.com>
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX197
|
||||
Prefix: 'max197'
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX197.pdf
|
||||
|
||||
* Maxim MAX199
|
||||
Prefix: 'max199'
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX199.pdf
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The A/D converters MAX197, and MAX199 are both 8-Channel, Multi-Range, 5V,
|
||||
12-Bit DAS with 8+4 Bus Interface and Fault Protection.
|
||||
|
||||
The available ranges for the MAX197 are {0,-5V} to 5V, and {0,-10V} to 10V,
|
||||
while they are {0,-2V} to 2V, and {0,-4V} to 4V on the MAX199.
|
||||
|
||||
Platform data
|
||||
-------------
|
||||
|
||||
The MAX197 platform data (defined in linux/platform_data/max197.h) should be
|
||||
filled with a pointer to a conversion function, defined like:
|
||||
|
||||
int convert(u8 ctrl);
|
||||
|
||||
ctrl is the control byte to write to start a new conversion.
|
||||
On success, the function must return the 12-bit raw value read from the chip,
|
||||
or a negative error code otherwise.
|
||||
|
||||
Control byte format:
|
||||
|
||||
Bit Name Description
|
||||
7,6 PD1,PD0 Clock and Power-Down modes
|
||||
5 ACQMOD Internal or External Controlled Acquisition
|
||||
4 RNG Full-scale voltage magnitude at the input
|
||||
3 BIP Unipolar or Bipolar conversion mode
|
||||
2,1,0 A2,A1,A0 Channel
|
||||
|
||||
Sysfs interface
|
||||
---------------
|
||||
|
||||
* in[0-7]_input: The conversion value for the corresponding channel.
|
||||
RO
|
||||
|
||||
* in[0-7]_min: The lower limit (in mV) for the corresponding channel.
|
||||
For the MAX197, it will be adjusted to -10000, -5000, or 0.
|
||||
For the MAX199, it will be adjusted to -4000, -2000, or 0.
|
||||
RW
|
||||
|
||||
* in[0-7]_max: The higher limit (in mV) for the corresponding channel.
|
||||
For the MAX197, it will be adjusted to 0, 5000, or 10000.
|
||||
For the MAX199, it will be adjusted to 0, 2000, or 4000.
|
||||
RW
|
127
Documentation/hwmon/max34440
Normal file
127
Documentation/hwmon/max34440
Normal file
|
@ -0,0 +1,127 @@
|
|||
Kernel driver max34440
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX34440
|
||||
Prefixes: 'max34440'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34440.pdf
|
||||
* Maxim MAX34441
|
||||
PMBus 5-Channel Power-Supply Manager and Intelligent Fan Controller
|
||||
Prefixes: 'max34441'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34441.pdf
|
||||
* Maxim MAX34446
|
||||
PMBus Power-Supply Data Logger
|
||||
Prefixes: 'max34446'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX34446.pdf
|
||||
* Maxim MAX34460
|
||||
PMBus 12-Channel Voltage Monitor & Sequencer
|
||||
Prefix: 'max34460'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX34460.pdf
|
||||
* Maxim MAX34461
|
||||
PMBus 16-Channel Voltage Monitor & Sequencer
|
||||
Prefix: 'max34461'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX34461.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for Maxim MAX34440 PMBus 6-Channel
|
||||
Power-Supply Manager, MAX34441 PMBus 5-Channel Power-Supply Manager
|
||||
and Intelligent Fan Controller, and MAX34446 PMBus Power-Supply Data Logger.
|
||||
It also supports the MAX34460 and MAX34461 PMBus Voltage Monitor & Sequencers.
|
||||
The MAX34460 supports 12 voltage channels, and the MAX34461 supports 16 voltage
|
||||
channels.
|
||||
|
||||
The driver is a client driver to the core PMBus driver. Please see
|
||||
Documentation/hwmon/pmbus for details on PMBus client drivers.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
For MAX34446, the value of the currX_crit attribute determines if current or
|
||||
voltage measurement is enabled for a given channel. Voltage measurement is
|
||||
enabled if currX_crit is set to 0; current measurement is enabled if the
|
||||
attribute is set to a positive value. Power measurement is only enabled if
|
||||
channel 1 (3) is configured for voltage measurement, and channel 2 (4) is
|
||||
configured for current measurement.
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
The driver supports standard PMBus driver platform data.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. Limits are read-write; all other
|
||||
attributes are read-only.
|
||||
|
||||
in[1-6]_label "vout[1-6]".
|
||||
in[1-6]_input Measured voltage. From READ_VOUT register.
|
||||
in[1-6]_min Minimum Voltage. From VOUT_UV_WARN_LIMIT register.
|
||||
in[1-6]_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
|
||||
in[1-6]_lcrit Critical minimum Voltage. VOUT_UV_FAULT_LIMIT register.
|
||||
in[1-6]_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
|
||||
in[1-6]_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
|
||||
in[1-6]_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
|
||||
in[1-6]_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
|
||||
in[1-6]_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
|
||||
in[1-6]_lowest Historical minimum voltage.
|
||||
in[1-6]_highest Historical maximum voltage.
|
||||
in[1-6]_reset_history Write any value to reset history.
|
||||
|
||||
MAX34446 only supports in[1-4].
|
||||
|
||||
curr[1-6]_label "iout[1-6]".
|
||||
curr[1-6]_input Measured current. From READ_IOUT register.
|
||||
curr[1-6]_max Maximum current. From IOUT_OC_WARN_LIMIT register.
|
||||
curr[1-6]_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
|
||||
curr[1-6]_max_alarm Current high alarm. From IOUT_OC_WARNING status.
|
||||
curr[1-6]_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
|
||||
curr[1-4]_average Historical average current (MAX34446 only).
|
||||
curr[1-6]_highest Historical maximum current.
|
||||
curr[1-6]_reset_history Write any value to reset history.
|
||||
|
||||
in6 and curr6 attributes only exist for MAX34440.
|
||||
MAX34446 only supports curr[1-4].
|
||||
|
||||
power[1,3]_label "pout[1,3]"
|
||||
power[1,3]_input Measured power.
|
||||
power[1,3]_average Historical average power.
|
||||
power[1,3]_highest Historical maximum power.
|
||||
|
||||
Power attributes only exist for MAX34446.
|
||||
|
||||
temp[1-8]_input Measured temperatures. From READ_TEMPERATURE_1 register.
|
||||
temp1 is the chip's internal temperature. temp2..temp5
|
||||
are remote I2C temperature sensors. For MAX34441, temp6
|
||||
is a remote thermal-diode sensor. For MAX34440, temp6..8
|
||||
are remote I2C temperature sensors.
|
||||
temp[1-8]_max Maximum temperature. From OT_WARN_LIMIT register.
|
||||
temp[1-8]_crit Critical high temperature. From OT_FAULT_LIMIT register.
|
||||
temp[1-8]_max_alarm Temperature high alarm.
|
||||
temp[1-8]_crit_alarm Temperature critical high alarm.
|
||||
temp[1-8]_average Historical average temperature (MAX34446 only).
|
||||
temp[1-8]_highest Historical maximum temperature.
|
||||
temp[1-8]_reset_history Write any value to reset history.
|
||||
|
||||
temp7 and temp8 attributes only exist for MAX34440.
|
||||
MAX34446 only supports temp[1-3].
|
||||
|
||||
MAX34460 supports attribute groups in[1-12] and temp[1-5].
|
||||
MAX34461 supports attribute groups in[1-16] and temp[1-5].
|
49
Documentation/hwmon/max6639
Normal file
49
Documentation/hwmon/max6639
Normal file
|
@ -0,0 +1,49 @@
|
|||
Kernel driver max6639
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX6639
|
||||
Prefix: 'max6639'
|
||||
Addresses scanned: I2C 0x2c, 0x2e, 0x2f
|
||||
Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6639.pdf
|
||||
|
||||
Authors:
|
||||
He Changqing <hechangqing@semptian.com>
|
||||
Roland Stigge <stigge@antcom.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Maxim MAX6639. This chip is a 2-channel
|
||||
temperature monitor with dual PWM fan speed controller. It can monitor its own
|
||||
temperature and one external diode-connected transistor or two external
|
||||
diode-connected transistors.
|
||||
|
||||
The following device attributes are implemented via sysfs:
|
||||
|
||||
Attribute R/W Contents
|
||||
----------------------------------------------------------------------------
|
||||
temp1_input R Temperature channel 1 input (0..150 C)
|
||||
temp2_input R Temperature channel 2 input (0..150 C)
|
||||
temp1_fault R Temperature channel 1 diode fault
|
||||
temp2_fault R Temperature channel 2 diode fault
|
||||
temp1_max RW Set THERM temperature for input 1
|
||||
(in C, see datasheet)
|
||||
temp2_max RW Set THERM temperature for input 2
|
||||
temp1_crit RW Set ALERT temperature for input 1
|
||||
temp2_crit RW Set ALERT temperature for input 2
|
||||
temp1_emergency RW Set OT temperature for input 1
|
||||
(in C, see datasheet)
|
||||
temp2_emergency RW Set OT temperature for input 2
|
||||
pwm1 RW Fan 1 target duty cycle (0..255)
|
||||
pwm2 RW Fan 2 target duty cycle (0..255)
|
||||
fan1_input R TACH1 fan tachometer input (in RPM)
|
||||
fan2_input R TACH2 fan tachometer input (in RPM)
|
||||
fan1_fault R Fan 1 fault
|
||||
fan2_fault R Fan 2 fault
|
||||
temp1_max_alarm R Alarm on THERM temperature on channel 1
|
||||
temp2_max_alarm R Alarm on THERM temperature on channel 2
|
||||
temp1_crit_alarm R Alarm on ALERT temperature on channel 1
|
||||
temp2_crit_alarm R Alarm on ALERT temperature on channel 2
|
||||
temp1_emergency_alarm R Alarm on OT temperature on channel 1
|
||||
temp2_emergency_alarm R Alarm on OT temperature on channel 2
|
21
Documentation/hwmon/max6642
Normal file
21
Documentation/hwmon/max6642
Normal file
|
@ -0,0 +1,21 @@
|
|||
Kernel driver max6642
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX6642
|
||||
Prefix: 'max6642'
|
||||
Addresses scanned: I2C 0x48-0x4f
|
||||
Datasheet: Publicly available at the Maxim website
|
||||
http://datasheets.maxim-ic.com/en/ds/MAX6642.pdf
|
||||
|
||||
Authors:
|
||||
Per Dalen <per.dalen@appeartv.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The MAX6642 is a digital temperature sensor. It senses its own temperature as
|
||||
well as the temperature on one external diode.
|
||||
|
||||
All temperature values are given in degrees Celsius. Resolution
|
||||
is 0.25 degree for the local temperature and for the remote temperature.
|
64
Documentation/hwmon/max6650
Normal file
64
Documentation/hwmon/max6650
Normal file
|
@ -0,0 +1,64 @@
|
|||
Kernel driver max6650
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX6650
|
||||
Prefix: 'max6650'
|
||||
Addresses scanned: none
|
||||
Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6650-MAX6651.pdf
|
||||
* Maxim MAX6651
|
||||
Prefix: 'max6651'
|
||||
Addresses scanned: none
|
||||
Datasheet: http://pdfserv.maxim-ic.com/en/ds/MAX6650-MAX6651.pdf
|
||||
|
||||
Authors:
|
||||
Hans J. Koch <hjk@hansjkoch.de>
|
||||
John Morris <john.morris@spirentcom.com>
|
||||
Claus Gindhart <claus.gindhart@kontron.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Maxim MAX6650 and MAX6651.
|
||||
|
||||
The 2 devices are very similar, but the MAX6550 has a reduced feature
|
||||
set, e.g. only one fan-input, instead of 4 for the MAX6651.
|
||||
|
||||
The driver is not able to distinguish between the 2 devices.
|
||||
|
||||
The driver provides the following sensor accesses in sysfs:
|
||||
|
||||
fan1_input ro fan tachometer speed in RPM
|
||||
fan2_input ro "
|
||||
fan3_input ro "
|
||||
fan4_input ro "
|
||||
fan1_target rw desired fan speed in RPM (closed loop mode only)
|
||||
pwm1_enable rw regulator mode, 0=full on, 1=open loop, 2=closed loop
|
||||
pwm1 rw relative speed (0-255), 255=max. speed.
|
||||
Used in open loop mode only.
|
||||
fan1_div rw sets the speed range the inputs can handle. Legal
|
||||
values are 1, 2, 4, and 8. Use lower values for
|
||||
faster fans.
|
||||
|
||||
Usage notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
Module parameters
|
||||
-----------------
|
||||
|
||||
If your board has a BIOS that initializes the MAX6650/6651 correctly, you can
|
||||
simply load your module without parameters. It won't touch the configuration
|
||||
registers then. If your board BIOS doesn't initialize the chip, or you want
|
||||
different settings, you can set the following parameters:
|
||||
|
||||
voltage_12V: 5=5V fan, 12=12V fan, 0=don't change
|
||||
prescaler: Possible values are 1,2,4,8,16, or 0 for don't change
|
||||
clock: The clock frequency in Hz of the chip the driver should assume [254000]
|
||||
|
||||
Please have a look at the MAX6650/6651 data sheet and make sure that you fully
|
||||
understand the meaning of these parameters before you attempt to change them.
|
||||
|
58
Documentation/hwmon/max6697
Normal file
58
Documentation/hwmon/max6697
Normal file
|
@ -0,0 +1,58 @@
|
|||
Kernel driver max6697
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX6581
|
||||
Prefix: 'max6581'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6581.pdf
|
||||
* Maxim MAX6602
|
||||
Prefix: 'max6602'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6602.pdf
|
||||
* Maxim MAX6622
|
||||
Prefix: 'max6622'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6622.pdf
|
||||
* Maxim MAX6636
|
||||
Prefix: 'max6636'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6636.pdf
|
||||
* Maxim MAX6689
|
||||
Prefix: 'max6689'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6689.pdf
|
||||
* Maxim MAX6693
|
||||
Prefix: 'max6693'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6693.pdf
|
||||
* Maxim MAX6694
|
||||
Prefix: 'max6694'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6694.pdf
|
||||
* Maxim MAX6697
|
||||
Prefix: 'max6697'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6697.pdf
|
||||
* Maxim MAX6698
|
||||
Prefix: 'max6698'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6698.pdf
|
||||
* Maxim MAX6699
|
||||
Prefix: 'max6699'
|
||||
Datasheet: http://datasheets.maximintegrated.com/en/ds/MAX6699.pdf
|
||||
|
||||
Author:
|
||||
Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for several MAX6697 compatible temperature sensor
|
||||
chips. The chips support one local temperature sensor plus four, six, or seven
|
||||
remote temperature sensors. Remote temperature sensors are diode-connected
|
||||
thermal transitors, except for MAX6698 which supports three diode-connected
|
||||
thermal transistors plus three thermistors in addition to the local temperature
|
||||
sensor.
|
||||
|
||||
The driver provides the following sysfs attributes. temp1 is the local (chip)
|
||||
temperature, temp[2..n] are remote temperatures. The actually supported
|
||||
per-channel attributes are chip type and channel dependent.
|
||||
|
||||
tempX_input RO temperature
|
||||
tempX_max RW temperature maximum threshold
|
||||
tempX_max_alarm RO temperature maximum threshold alarm
|
||||
tempX_crit RW temperature critical threshold
|
||||
tempX_crit_alarm RO temperature critical threshold alarm
|
||||
tempX_fault RO temperature diode fault (remote sensors only)
|
75
Documentation/hwmon/max8688
Normal file
75
Documentation/hwmon/max8688
Normal file
|
@ -0,0 +1,75 @@
|
|||
Kernel driver max8688
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Maxim MAX8688
|
||||
Prefix: 'max8688'
|
||||
Addresses scanned: -
|
||||
Datasheet: http://datasheets.maxim-ic.com/en/ds/MAX8688.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for Maxim MAX8688 Digital Power-Supply
|
||||
Controller/Monitor with PMBus Interface.
|
||||
|
||||
The driver is a client driver to the core PMBus driver. Please see
|
||||
Documentation/hwmon/pmbus for details on PMBus client drivers.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not auto-detect devices. You will have to instantiate the
|
||||
devices explicitly. Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
The driver supports standard PMBus driver platform data.
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. Limits are read-write; all other
|
||||
attributes are read-only.
|
||||
|
||||
in1_label "vout1"
|
||||
in1_input Measured voltage. From READ_VOUT register.
|
||||
in1_min Minimum Voltage. From VOUT_UV_WARN_LIMIT register.
|
||||
in1_max Maximum voltage. From VOUT_OV_WARN_LIMIT register.
|
||||
in1_lcrit Critical minimum Voltage. VOUT_UV_FAULT_LIMIT register.
|
||||
in1_crit Critical maximum voltage. From VOUT_OV_FAULT_LIMIT register.
|
||||
in1_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
|
||||
in1_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
|
||||
in1_lcrit_alarm Voltage critical low alarm. From VOLTAGE_UV_FAULT status.
|
||||
in1_crit_alarm Voltage critical high alarm. From VOLTAGE_OV_FAULT status.
|
||||
in1_highest Historical maximum voltage.
|
||||
in1_reset_history Write any value to reset history.
|
||||
|
||||
curr1_label "iout1"
|
||||
curr1_input Measured current. From READ_IOUT register.
|
||||
curr1_max Maximum current. From IOUT_OC_WARN_LIMIT register.
|
||||
curr1_crit Critical maximum current. From IOUT_OC_FAULT_LIMIT register.
|
||||
curr1_max_alarm Current high alarm. From IOUT_OC_WARN_LIMIT register.
|
||||
curr1_crit_alarm Current critical high alarm. From IOUT_OC_FAULT status.
|
||||
curr1_highest Historical maximum current.
|
||||
curr1_reset_history Write any value to reset history.
|
||||
|
||||
temp1_input Measured temperature. From READ_TEMPERATURE_1 register.
|
||||
temp1_max Maximum temperature. From OT_WARN_LIMIT register.
|
||||
temp1_crit Critical high temperature. From OT_FAULT_LIMIT register.
|
||||
temp1_max_alarm Chip temperature high alarm. Set by comparing
|
||||
READ_TEMPERATURE_1 with OT_WARN_LIMIT if TEMP_OT_WARNING
|
||||
status is set.
|
||||
temp1_crit_alarm Chip temperature critical high alarm. Set by comparing
|
||||
READ_TEMPERATURE_1 with OT_FAULT_LIMIT if TEMP_OT_FAULT
|
||||
status is set.
|
||||
temp1_highest Historical maximum temperature.
|
||||
temp1_reset_history Write any value to reset history.
|
74
Documentation/hwmon/mc13783-adc
Normal file
74
Documentation/hwmon/mc13783-adc
Normal file
|
@ -0,0 +1,74 @@
|
|||
Kernel driver mc13783-adc
|
||||
=========================
|
||||
|
||||
Supported chips:
|
||||
* Freescale Atlas MC13783
|
||||
Prefix: 'mc13783'
|
||||
Datasheet: http://www.freescale.com/files/rf_if/doc/data_sheet/MC13783.pdf?fsrch=1
|
||||
* Freescale Atlas MC13892
|
||||
Prefix: 'mc13892'
|
||||
Datasheet: http://cache.freescale.com/files/analog/doc/data_sheet/MC13892.pdf?fsrch=1&sr=1
|
||||
|
||||
Authors:
|
||||
Sascha Hauer <s.hauer@pengutronix.de>
|
||||
Luotao Fu <l.fu@pengutronix.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The Freescale MC13783 and MC13892 are Power Management and Audio Circuits.
|
||||
Among other things they contain a 10-bit A/D converter. The converter has 16
|
||||
(MC13783) resp. 12 (MC13892) channels which can be used in different modes. The
|
||||
A/D converter has a resolution of 2.25mV.
|
||||
|
||||
Some channels can be used as General Purpose inputs or in a dedicated mode with
|
||||
a chip internal scaling applied .
|
||||
|
||||
Currently the driver only supports the Application Supply channel (BP / BPSNS),
|
||||
the General Purpose inputs and touchscreen.
|
||||
|
||||
See the following tables for the meaning of the different channels and their
|
||||
chip internal scaling:
|
||||
|
||||
MC13783:
|
||||
Channel Signal Input Range Scaling
|
||||
-------------------------------------------------------------------------------
|
||||
0 Battery Voltage (BATT) 2.50 - 4.65V -2.40V
|
||||
1 Battery Current (BATT - BATTISNS) -50 - 50 mV x20
|
||||
2 Application Supply (BP) 2.50 - 4.65V -2.40V
|
||||
3 Charger Voltage (CHRGRAW) 0 - 10V / /5
|
||||
0 - 20V /10
|
||||
4 Charger Current (CHRGISNSP-CHRGISNSN) -0.25 - 0.25V x4
|
||||
5 General Purpose ADIN5 / Battery Pack Thermistor 0 - 2.30V No
|
||||
6 General Purpose ADIN6 / Backup Voltage (LICELL) 0 - 2.30V / No /
|
||||
1.50 - 3.50V -1.20V
|
||||
7 General Purpose ADIN7 / UID / Die Temperature 0 - 2.30V / No /
|
||||
0 - 2.55V / x0.9 / No
|
||||
8 General Purpose ADIN8 0 - 2.30V No
|
||||
9 General Purpose ADIN9 0 - 2.30V No
|
||||
10 General Purpose ADIN10 0 - 2.30V No
|
||||
11 General Purpose ADIN11 0 - 2.30V No
|
||||
12 General Purpose TSX1 / Touchscreen X-plate 1 0 - 2.30V No
|
||||
13 General Purpose TSX2 / Touchscreen X-plate 2 0 - 2.30V No
|
||||
14 General Purpose TSY1 / Touchscreen Y-plate 1 0 - 2.30V No
|
||||
15 General Purpose TSY2 / Touchscreen Y-plate 2 0 - 2.30V No
|
||||
|
||||
MC13892:
|
||||
Channel Signal Input Range Scaling
|
||||
-------------------------------------------------------------------------------
|
||||
0 Battery Voltage (BATT) 0 - 4.8V /2
|
||||
1 Battery Current (BATT - BATTISNSCC) -60 - 60 mV x20
|
||||
2 Application Supply (BPSNS) 0 - 4.8V /2
|
||||
3 Charger Voltage (CHRGRAW) 0 - 12V / /5
|
||||
0 - 20V /10
|
||||
4 Charger Current (CHRGISNS-BPSNS) / -0.3 - 0.3V / x4 /
|
||||
Touchscreen X-plate 1 0 - 2.4V No
|
||||
5 General Purpose ADIN5 / Battery Pack Thermistor 0 - 2.4V No
|
||||
6 General Purpose ADIN6 / Backup Voltage (LICELL) 0 - 2.4V / No
|
||||
Backup Voltage (LICELL) 0 - 3.6V x2/3
|
||||
7 General Purpose ADIN7 / UID / Die Temperature 0 - 2.4V / No /
|
||||
0 - 4.8V /2
|
||||
12 General Purpose TSX1 / Touchscreen X-plate 1 0 - 2.4V No
|
||||
13 General Purpose TSX2 / Touchscreen X-plate 2 0 - 2.4V No
|
||||
14 General Purpose TSY1 / Touchscreen Y-plate 1 0 - 2.4V No
|
||||
15 General Purpose TSY2 / Touchscreen Y-plate 2 0 - 2.4V No
|
29
Documentation/hwmon/mcp3021
Normal file
29
Documentation/hwmon/mcp3021
Normal file
|
@ -0,0 +1,29 @@
|
|||
Kernel driver MCP3021
|
||||
======================
|
||||
|
||||
Supported chips:
|
||||
* Microchip Technology MCP3021
|
||||
Prefix: 'mcp3021'
|
||||
Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/21805a.pdf
|
||||
* Microchip Technology MCP3221
|
||||
Prefix: 'mcp3221'
|
||||
Datasheet: http://ww1.microchip.com/downloads/en/DeviceDoc/21732c.pdf
|
||||
|
||||
Authors:
|
||||
Mingkai Hu
|
||||
Sven Schuchmann <schuchmann@schleissheimer.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Microchip Technology MCP3021 and
|
||||
MCP3221 chip.
|
||||
|
||||
The Microchip Technology Inc. MCP3021 is a successive approximation A/D
|
||||
converter (ADC) with 10-bit resolution. The MCP3221 has 12-bit resolution.
|
||||
|
||||
These devices provide one single-ended input with very low power consumption.
|
||||
Communication to the MCP3021/MCP3221 is performed using a 2-wire I2C
|
||||
compatible interface. Standard (100 kHz) and Fast (400 kHz) I2C modes are
|
||||
available. The default I2C device address is 0x4d (contact the Microchip
|
||||
factory for additional address options).
|
50
Documentation/hwmon/menf21bmc
Normal file
50
Documentation/hwmon/menf21bmc
Normal file
|
@ -0,0 +1,50 @@
|
|||
Kernel driver menf21bmc_hwmon
|
||||
=============================
|
||||
|
||||
Supported chips:
|
||||
* MEN 14F021P00
|
||||
Prefix: 'menf21bmc_hwmon'
|
||||
Adresses scanned: -
|
||||
|
||||
Author: Andreas Werner <andreas.werner@men.de>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The menf21bmc is a Board Management Controller (BMC) which provides an I2C
|
||||
interface to the host to access the features implemented in the BMC.
|
||||
|
||||
This driver gives access to the voltage monitoring feature of the main
|
||||
voltages of the board.
|
||||
The voltage sensors are connected to the ADC inputs of the BMC which is
|
||||
a PIC16F917 Mikrocontroller.
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver is part of the MFD driver named "menf21bmc" and does
|
||||
not auto-detect devices.
|
||||
You will have to instantiate the MFD driver explicitly.
|
||||
Please see Documentation/i2c/instantiating-devices for
|
||||
details.
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
The following attributes are supported. All attributes are read only
|
||||
The Limits are read once by the driver.
|
||||
|
||||
in0_input +3.3V input voltage
|
||||
in1_input +5.0V input voltage
|
||||
in2_input +12.0V input voltage
|
||||
in3_input +5V Standby input voltage
|
||||
in4_input VBAT (on board battery)
|
||||
|
||||
in[0-4]_min Minimum voltage limit
|
||||
in[0-4]_max Maximum voltage limit
|
||||
|
||||
in0_label "MON_3_3V"
|
||||
in1_label "MON_5V"
|
||||
in2_label "MON_12V"
|
||||
in3_label "5V_STANDBY"
|
||||
in4_label "VBAT"
|
57
Documentation/hwmon/nct6683
Normal file
57
Documentation/hwmon/nct6683
Normal file
|
@ -0,0 +1,57 @@
|
|||
Kernel driver nct6683
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Nuvoton NCT6683D
|
||||
Prefix: 'nct6683'
|
||||
Addresses scanned: ISA address retrieved from Super I/O registers
|
||||
Datasheet: Available from Nuvoton upon request
|
||||
|
||||
Authors:
|
||||
Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Nuvoton NCT6683D eSIO chip.
|
||||
|
||||
The chips implement up to shared 32 temperature and voltage sensors.
|
||||
It supports up to 16 fan rotation sensors and up to 8 fan control engines.
|
||||
|
||||
Temperatures are measured in degrees Celsius. Measurement resolution is
|
||||
0.5 degrees C.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in millivolts.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute).
|
||||
|
||||
Usage Note
|
||||
----------
|
||||
|
||||
Limit register locations on Intel boards with EC firmware version 1.0
|
||||
build date 04/03/13 do not match the register locations in the Nuvoton
|
||||
datasheet. Nuvoton confirms that Intel uses a special firmware version
|
||||
with different register addresses. The specification describing the Intel
|
||||
firmware is held under NDA by Nuvoton and Intel and not available
|
||||
to the public.
|
||||
|
||||
Some of the register locations can be reverse engineered; others are too
|
||||
well hidden. Given this, writing any values from the operating system is
|
||||
considered too risky with this firmware and has been disabled. All limits
|
||||
must all be written from the BIOS.
|
||||
|
||||
The driver has only been tested with the Intel firmware, and by default
|
||||
only instantiates on Intel boards. To enable it on non-Intel boards,
|
||||
set the 'force' module parameter to 1.
|
||||
|
||||
Tested Boards and Firmware Versions
|
||||
-----------------------------------
|
||||
|
||||
The driver has been reported to work with the following boards and
|
||||
firmware versions.
|
||||
|
||||
Board Firmware version
|
||||
---------------------------------------------------------------
|
||||
Intel DH87RL NCT6683D EC firmware version 1.0 build 04/03/13
|
||||
Intel DH87MC NCT6683D EC firmware version 1.0 build 04/03/13
|
||||
Intel DB85FL NCT6683D EC firmware version 1.0 build 04/03/13
|
188
Documentation/hwmon/nct6775
Normal file
188
Documentation/hwmon/nct6775
Normal file
|
@ -0,0 +1,188 @@
|
|||
Note
|
||||
====
|
||||
|
||||
This driver supersedes the NCT6775F and NCT6776F support in the W83627EHF
|
||||
driver.
|
||||
|
||||
Kernel driver NCT6775
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Nuvoton NCT5572D/NCT6771F/NCT6772F/NCT6775F/W83677HG-I
|
||||
Prefix: 'nct6775'
|
||||
Addresses scanned: ISA address retrieved from Super I/O registers
|
||||
Datasheet: Available from Nuvoton upon request
|
||||
* Nuvoton NCT5577D/NCT6776D/NCT6776F
|
||||
Prefix: 'nct6776'
|
||||
Addresses scanned: ISA address retrieved from Super I/O registers
|
||||
Datasheet: Available from Nuvoton upon request
|
||||
* Nuvoton NCT5532D/NCT6779D
|
||||
Prefix: 'nct6779'
|
||||
Addresses scanned: ISA address retrieved from Super I/O registers
|
||||
Datasheet: Available from Nuvoton upon request
|
||||
|
||||
Authors:
|
||||
Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver implements support for the Nuvoton NCT6775F, NCT6776F, and NCT6779D
|
||||
and compatible super I/O chips.
|
||||
|
||||
The chips support up to 25 temperature monitoring sources. Up to 6 of those are
|
||||
direct temperature sensor inputs, the others are special sources such as PECI,
|
||||
PCH, and SMBUS. Depending on the chip type, 2 to 6 of the temperature sources
|
||||
can be monitored and compared against minimum, maximum, and critical
|
||||
temperatures. The driver reports up to 10 of the temperatures to the user.
|
||||
There are 4 to 5 fan rotation speed sensors, 8 to 15 analog voltage sensors,
|
||||
one VID, alarms with beep warnings (control unimplemented), and some automatic
|
||||
fan regulation strategies (plus manual fan control mode).
|
||||
|
||||
The temperature sensor sources on all chips are configurable. The configured
|
||||
source for each of the temperature sensors is provided in tempX_label.
|
||||
|
||||
Temperatures are measured in degrees Celsius and measurement resolution is
|
||||
either 1 degC or 0.5 degC, depending on the temperature source and
|
||||
configuration. An alarm is triggered when the temperature gets higher than
|
||||
the high limit; it stays on until the temperature falls below the hysteresis
|
||||
value. Alarms are only supported for temp1 to temp6, depending on the chip type.
|
||||
|
||||
Fan rotation speeds are reported in RPM (rotations per minute). An alarm is
|
||||
triggered if the rotation speed has dropped below a programmable limit. On
|
||||
NCT6775F, fan readings can be divided by a programmable divider (1, 2, 4, 8,
|
||||
16, 32, 64 or 128) to give the readings more range or accuracy; the other chips
|
||||
do not have a fan speed divider. The driver sets the most suitable fan divisor
|
||||
itself; specifically, it increases the divider value each time a fan speed
|
||||
reading returns an invalid value, and it reduces it if the fan speed reading
|
||||
is lower than optimal. Some fans might not be present because they share pins
|
||||
with other functions.
|
||||
|
||||
Voltage sensors (also known as IN sensors) report their values in millivolts.
|
||||
An alarm is triggered if the voltage has crossed a programmable minimum
|
||||
or maximum limit.
|
||||
|
||||
The driver supports automatic fan control mode known as Thermal Cruise.
|
||||
In this mode, the chip attempts to keep the measured temperature in a
|
||||
predefined temperature range. If the temperature goes out of range, fan
|
||||
is driven slower/faster to reach the predefined range again.
|
||||
|
||||
The mode works for fan1-fan5.
|
||||
|
||||
sysfs attributes
|
||||
----------------
|
||||
|
||||
pwm[1-5] - this file stores PWM duty cycle or DC value (fan speed) in range:
|
||||
0 (lowest speed) to 255 (full)
|
||||
|
||||
pwm[1-5]_enable - this file controls mode of fan/temperature control:
|
||||
* 0 Fan control disabled (fans set to maximum speed)
|
||||
* 1 Manual mode, write to pwm[0-5] any value 0-255
|
||||
* 2 "Thermal Cruise" mode
|
||||
* 3 "Fan Speed Cruise" mode
|
||||
* 4 "Smart Fan III" mode (NCT6775F only)
|
||||
* 5 "Smart Fan IV" mode
|
||||
|
||||
pwm[1-5]_mode - controls if output is PWM or DC level
|
||||
* 0 DC output
|
||||
* 1 PWM output
|
||||
|
||||
Common fan control attributes
|
||||
-----------------------------
|
||||
|
||||
pwm[1-5]_temp_sel Temperature source. Value is temperature sensor index.
|
||||
For example, select '1' for temp1_input.
|
||||
pwm[1-5]_weight_temp_sel
|
||||
Secondary temperature source. Value is temperature
|
||||
sensor index. For example, select '1' for temp1_input.
|
||||
Set to 0 to disable secondary temperature control.
|
||||
|
||||
If secondary temperature functionality is enabled, it is controlled with the
|
||||
following attributes.
|
||||
|
||||
pwm[1-5]_weight_duty_step
|
||||
Duty step size.
|
||||
pwm[1-5]_weight_temp_step
|
||||
Temperature step size. With each step over
|
||||
temp_step_base, the value of weight_duty_step is added
|
||||
to the current pwm value.
|
||||
pwm[1-5]_weight_temp_step_base
|
||||
Temperature at which secondary temperature control kicks
|
||||
in.
|
||||
pwm[1-5]_weight_temp_step_tol
|
||||
Temperature step tolerance.
|
||||
|
||||
Thermal Cruise mode (2)
|
||||
-----------------------
|
||||
|
||||
If the temperature is in the range defined by:
|
||||
|
||||
pwm[1-5]_target_temp Target temperature, unit millidegree Celsius
|
||||
(range 0 - 127000)
|
||||
pwm[1-5]_temp_tolerance
|
||||
Target temperature tolerance, unit millidegree Celsius
|
||||
|
||||
there are no changes to fan speed. Once the temperature leaves the interval, fan
|
||||
speed increases (if temperature is higher that desired) or decreases (if
|
||||
temperature is lower than desired), using the following limits and time
|
||||
intervals.
|
||||
|
||||
pwm[1-5]_start fan pwm start value (range 1 - 255), to start fan
|
||||
when the temperature is above defined range.
|
||||
pwm[1-5]_floor lowest fan pwm (range 0 - 255) if temperature is below
|
||||
the defined range. If set to 0, the fan is expected to
|
||||
stop if the temperature is below the defined range.
|
||||
pwm[1-5]_step_up_time milliseconds before fan speed is increased
|
||||
pwm[1-5]_step_down_time milliseconds before fan speed is decreased
|
||||
pwm[1-5]_stop_time how many milliseconds must elapse to switch
|
||||
corresponding fan off (when the temperature was below
|
||||
defined range).
|
||||
|
||||
Speed Cruise mode (3)
|
||||
---------------------
|
||||
|
||||
This modes tries to keep the fan speed constant.
|
||||
|
||||
fan[1-5]_target Target fan speed
|
||||
fan[1-5]_tolerance
|
||||
Target speed tolerance
|
||||
|
||||
|
||||
Untested; use at your own risk.
|
||||
|
||||
Smart Fan IV mode (5)
|
||||
---------------------
|
||||
|
||||
This mode offers multiple slopes to control the fan speed. The slopes can be
|
||||
controlled by setting the pwm and temperature attributes. When the temperature
|
||||
rises, the chip will calculate the DC/PWM output based on the current slope.
|
||||
There are up to seven data points depending on the chip type. Subsequent data
|
||||
points should be set to higher temperatures and higher pwm values to achieve
|
||||
higher fan speeds with increasing temperature. The last data point reflects
|
||||
critical temperature mode, in which the fans should run at full speed.
|
||||
|
||||
pwm[1-5]_auto_point[1-7]_pwm
|
||||
pwm value to be set if temperature reaches matching
|
||||
temperature range.
|
||||
pwm[1-5]_auto_point[1-7]_temp
|
||||
Temperature over which the matching pwm is enabled.
|
||||
pwm[1-5]_temp_tolerance
|
||||
Temperature tolerance, unit millidegree Celsius
|
||||
pwm[1-5]_crit_temp_tolerance
|
||||
Temperature tolerance for critical temperature,
|
||||
unit millidegree Celsius
|
||||
|
||||
pwm[1-5]_step_up_time milliseconds before fan speed is increased
|
||||
pwm[1-5]_step_down_time milliseconds before fan speed is decreased
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
On various ASUS boards with NCT6776F, it appears that CPUTIN is not really
|
||||
connected to anything and floats, or that it is connected to some non-standard
|
||||
temperature measurement device. As a result, the temperature reported on CPUTIN
|
||||
will not reflect a usable value. It often reports unreasonably high
|
||||
temperatures, and in some cases the reported temperature declines if the actual
|
||||
temperature increases (similar to the raw PECI temperature value - see PECI
|
||||
specification for details). CPUTIN should therefore be be ignored on ASUS
|
||||
boards. The CPU temperature on ASUS boards is reported from PECI 0.
|
98
Documentation/hwmon/ntc_thermistor
Normal file
98
Documentation/hwmon/ntc_thermistor
Normal file
|
@ -0,0 +1,98 @@
|
|||
Kernel driver ntc_thermistor
|
||||
=================
|
||||
|
||||
Supported thermistors from Murata:
|
||||
* Murata NTC Thermistors NCP15WB473, NCP18WB473, NCP21WB473, NCP03WB473, NCP15WL333
|
||||
Prefixes: 'ncp15wb473', 'ncp18wb473', 'ncp21wb473', 'ncp03wb473', 'ncp15wl333'
|
||||
Datasheet: Publicly available at Murata
|
||||
|
||||
Supported thermistors from EPCOS:
|
||||
* EPCOS NTC Thermistors B57330V2103
|
||||
Prefixes: b57330v2103
|
||||
Datasheet: Publicly available at EPCOS
|
||||
|
||||
Other NTC thermistors can be supported simply by adding compensation
|
||||
tables; e.g., NCP15WL333 support is added by the table ncpXXwl333.
|
||||
|
||||
Authors:
|
||||
MyungJoo Ham <myungjoo.ham@samsung.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The NTC (Negative Temperature Coefficient) thermistor is a simple thermistor
|
||||
that requires users to provide the resistance and lookup the corresponding
|
||||
compensation table to get the temperature input.
|
||||
|
||||
The NTC driver provides lookup tables with a linear approximation function
|
||||
and four circuit models with an option not to use any of the four models.
|
||||
|
||||
The four circuit models provided are:
|
||||
|
||||
$: resister, [TH]: the thermistor
|
||||
|
||||
1. connect = NTC_CONNECTED_POSITIVE, pullup_ohm > 0
|
||||
|
||||
[pullup_uV]
|
||||
| |
|
||||
[TH] $ (pullup_ohm)
|
||||
| |
|
||||
+----+-----------------------[read_uV]
|
||||
|
|
||||
$ (pulldown_ohm)
|
||||
|
|
||||
--- (ground)
|
||||
|
||||
2. connect = NTC_CONNECTED_POSITIVE, pullup_ohm = 0 (not-connected)
|
||||
|
||||
[pullup_uV]
|
||||
|
|
||||
[TH]
|
||||
|
|
||||
+----------------------------[read_uV]
|
||||
|
|
||||
$ (pulldown_ohm)
|
||||
|
|
||||
--- (ground)
|
||||
|
||||
3. connect = NTC_CONNECTED_GROUND, pulldown_ohm > 0
|
||||
|
||||
[pullup_uV]
|
||||
|
|
||||
$ (pullup_ohm)
|
||||
|
|
||||
+----+-----------------------[read_uV]
|
||||
| |
|
||||
[TH] $ (pulldown_ohm)
|
||||
| |
|
||||
-------- (ground)
|
||||
|
||||
4. connect = NTC_CONNECTED_GROUND, pulldown_ohm = 0 (not-connected)
|
||||
|
||||
[pullup_uV]
|
||||
|
|
||||
$ (pullup_ohm)
|
||||
|
|
||||
+----------------------------[read_uV]
|
||||
|
|
||||
[TH]
|
||||
|
|
||||
--- (ground)
|
||||
|
||||
When one of the four circuit models is used, read_uV, pullup_uV, pullup_ohm,
|
||||
pulldown_ohm, and connect should be provided. When none of the four models
|
||||
are suitable or the user can get the resistance directly, the user should
|
||||
provide read_ohm and _not_ provide the others.
|
||||
|
||||
Sysfs Interface
|
||||
---------------
|
||||
name the mandatory global attribute, the thermistor name.
|
||||
|
||||
temp1_type always 4 (thermistor)
|
||||
RO
|
||||
|
||||
temp1_input measure the temperature and provide the measured value.
|
||||
(reading this file initiates the reading procedure.)
|
||||
RO
|
||||
|
||||
Note that each NTC thermistor has only _one_ thermistor; thus, only temp1 exists.
|
184
Documentation/hwmon/pc87360
Normal file
184
Documentation/hwmon/pc87360
Normal file
|
@ -0,0 +1,184 @@
|
|||
Kernel driver pc87360
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor PC87360, PC87363, PC87364, PC87365 and PC87366
|
||||
Prefixes: 'pc87360', 'pc87363', 'pc87364', 'pc87365', 'pc87366'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheets: No longer available
|
||||
|
||||
Authors: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Thanks to Sandeep Mehta, Tonko de Rooy and Daniel Ceregatti for testing.
|
||||
Thanks to Rudolf Marek for helping me investigate conversion issues.
|
||||
|
||||
|
||||
Module Parameters
|
||||
-----------------
|
||||
|
||||
* init int
|
||||
Chip initialization level:
|
||||
0: None
|
||||
*1: Forcibly enable internal voltage and temperature channels, except in9
|
||||
2: Forcibly enable all voltage and temperature channels, except in9
|
||||
3: Forcibly enable all voltage and temperature channels, including in9
|
||||
|
||||
Note that this parameter has no effect for the PC87360, PC87363 and PC87364
|
||||
chips.
|
||||
|
||||
Also note that for the PC87366, initialization levels 2 and 3 don't enable
|
||||
all temperature channels, because some of them share pins with each other,
|
||||
so they can't be used at the same time.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The National Semiconductor PC87360 Super I/O chip contains monitoring and
|
||||
PWM control circuitry for two fans. The PC87363 chip is similar, and the
|
||||
PC87364 chip has monitoring and PWM control for a third fan.
|
||||
|
||||
The National Semiconductor PC87365 and PC87366 Super I/O chips are complete
|
||||
hardware monitoring chipsets, not only controlling and monitoring three fans,
|
||||
but also monitoring eleven voltage inputs and two (PC87365) or up to four
|
||||
(PC87366) temperatures.
|
||||
|
||||
Chip #vin #fan #pwm #temp devid
|
||||
|
||||
PC87360 - 2 2 - 0xE1
|
||||
PC87363 - 2 2 - 0xE8
|
||||
PC87364 - 3 3 - 0xE4
|
||||
PC87365 11 3 3 2 0xE5
|
||||
PC87366 11 3 3 3-4 0xE9
|
||||
|
||||
The driver assumes that no more than one chip is present, and one of the
|
||||
standard Super I/O addresses is used (0x2E/0x2F or 0x4E/0x4F)
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan rotation speeds are reported in RPM (revolutions per minute). An alarm
|
||||
is triggered if the rotation speed has dropped below a programmable limit.
|
||||
A different alarm is triggered if the fan speed is too low to be measured.
|
||||
|
||||
Fan readings are affected by a programmable clock divider, giving the
|
||||
readings more range or accuracy. Usually, users have to learn how it works,
|
||||
but this driver implements dynamic clock divider selection, so you don't
|
||||
have to care no more.
|
||||
|
||||
For reference, here are a few values about clock dividers:
|
||||
|
||||
slowest accuracy highest
|
||||
measurable around 3000 accurate
|
||||
divider speed (RPM) RPM (RPM) speed (RPM)
|
||||
1 1882 18 6928
|
||||
2 941 37 4898
|
||||
4 470 74 3464
|
||||
8 235 150 2449
|
||||
|
||||
For the curious, here is how the values above were computed:
|
||||
* slowest measurable speed: clock/(255*divider)
|
||||
* accuracy around 3000 RPM: 3000^2/clock
|
||||
* highest accurate speed: sqrt(clock*100)
|
||||
The clock speed for the PC87360 family is 480 kHz. I arbitrarily chose 100
|
||||
RPM as the lowest acceptable accuracy.
|
||||
|
||||
As mentioned above, you don't have to care about this no more.
|
||||
|
||||
Note that not all RPM values can be represented, even when the best clock
|
||||
divider is selected. This is not only true for the measured speeds, but
|
||||
also for the programmable low limits, so don't be surprised if you try to
|
||||
set, say, fan1_min to 2900 and it finally reads 2909.
|
||||
|
||||
|
||||
Fan Control
|
||||
-----------
|
||||
|
||||
PWM (pulse width modulation) values range from 0 to 255, with 0 meaning
|
||||
that the fan is stopped, and 255 meaning that the fan goes at full speed.
|
||||
|
||||
Be extremely careful when changing PWM values. Low PWM values, even
|
||||
non-zero, can stop the fan, which may cause irreversible damage to your
|
||||
hardware if temperature increases too much. When changing PWM values, go
|
||||
step by step and keep an eye on temperatures.
|
||||
|
||||
One user reported problems with PWM. Changing PWM values would break fan
|
||||
speed readings. No explanation nor fix could be found.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
Temperatures are reported in degrees Celsius. Each temperature measured has
|
||||
associated low, high and overtemperature limits, each of which triggers an
|
||||
alarm when crossed.
|
||||
|
||||
The first two temperature channels are external. The third one (PC87366
|
||||
only) is internal.
|
||||
|
||||
The PC87366 has three additional temperature channels, based on
|
||||
thermistors (as opposed to thermal diodes for the first three temperature
|
||||
channels). For technical reasons, these channels are held by the VLM
|
||||
(voltage level monitor) logical device, not the TMS (temperature
|
||||
measurement) one. As a consequence, these temperatures are exported as
|
||||
voltages, and converted into temperatures in user-space.
|
||||
|
||||
Note that these three additional channels share their pins with the
|
||||
external thermal diode channels, so you (physically) can't use them all at
|
||||
the same time. Although it should be possible to mix the two sensor types,
|
||||
the documents from National Semiconductor suggest that motherboard
|
||||
manufacturers should choose one type and stick to it. So you will more
|
||||
likely have either channels 1 to 3 (thermal diodes) or 3 to 6 (internal
|
||||
thermal diode, and thermistors).
|
||||
|
||||
|
||||
Voltage Monitoring
|
||||
------------------
|
||||
|
||||
Voltages are reported relatively to a reference voltage, either internal or
|
||||
external. Some of them (in7:Vsb, in8:Vdd and in10:AVdd) are divided by two
|
||||
internally, you will have to compensate in sensors.conf. Others (in0 to in6)
|
||||
are likely to be divided externally. The meaning of each of these inputs as
|
||||
well as the values of the resistors used for division is left to the
|
||||
motherboard manufacturers, so you will have to document yourself and edit
|
||||
sensors.conf accordingly. National Semiconductor has a document with
|
||||
recommended resistor values for some voltages, but this still leaves much
|
||||
room for per motherboard specificities, unfortunately. Even worse,
|
||||
motherboard manufacturers don't seem to care about National Semiconductor's
|
||||
recommendations.
|
||||
|
||||
Each voltage measured has associated low and high limits, each of which
|
||||
triggers an alarm when crossed.
|
||||
|
||||
When available, VID inputs are used to provide the nominal CPU Core voltage.
|
||||
The driver will default to VRM 9.0, but this can be changed from user-space.
|
||||
The chipsets can handle two sets of VID inputs (on dual-CPU systems), but
|
||||
the driver will only export one for now. This may change later if there is
|
||||
a need.
|
||||
|
||||
|
||||
General Remarks
|
||||
---------------
|
||||
|
||||
If an alarm triggers, it will remain triggered until the hardware register
|
||||
is read at least once. This means that the cause for the alarm may already
|
||||
have disappeared! Note that all hardware registers are read whenever any
|
||||
data is read (unless it is less than 2 seconds since the last update, in
|
||||
which case cached values are returned instead). As a consequence, when
|
||||
a once-only alarm triggers, it may take 2 seconds for it to show, and 2
|
||||
more seconds for it to disappear.
|
||||
|
||||
Monitoring of in9 isn't enabled at lower init levels (<3) because that
|
||||
channel measures the battery voltage (Vbat). It is a known fact that
|
||||
repeatedly sampling the battery voltage reduces its lifetime. National
|
||||
Semiconductor smartly designed their chipset so that in9 is sampled only
|
||||
once every 1024 sampling cycles (that is every 34 minutes at the default
|
||||
sampling rate), so the effect is attenuated, but still present.
|
||||
|
||||
|
||||
Limitations
|
||||
-----------
|
||||
|
||||
The datasheets suggests that some values (fan mins, fan dividers)
|
||||
shouldn't be changed once the monitoring has started, but we ignore that
|
||||
recommendation. We'll reconsider if it actually causes trouble.
|
59
Documentation/hwmon/pc87427
Normal file
59
Documentation/hwmon/pc87427
Normal file
|
@ -0,0 +1,59 @@
|
|||
Kernel driver pc87427
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* National Semiconductor PC87427
|
||||
Prefix: 'pc87427'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: No longer available
|
||||
|
||||
Author: Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
Thanks to Amir Habibi at Candelis for setting up a test system, and to
|
||||
Michael Kress for testing several iterations of this driver.
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The National Semiconductor Super I/O chip includes complete hardware
|
||||
monitoring capabilities. It can monitor up to 18 voltages, 8 fans and
|
||||
6 temperature sensors. Only the fans and temperatures are supported at
|
||||
the moment, voltages aren't.
|
||||
|
||||
This chip also has fan controlling features (up to 4 PWM outputs),
|
||||
which are partly supported by this driver.
|
||||
|
||||
The driver assumes that no more than one chip is present, which seems
|
||||
reasonable.
|
||||
|
||||
|
||||
Fan Monitoring
|
||||
--------------
|
||||
|
||||
Fan rotation speeds are reported as 14-bit values from a gated clock
|
||||
signal. Speeds down to 83 RPM can be measured.
|
||||
|
||||
An alarm is triggered if the rotation speed drops below a programmable
|
||||
limit. Another alarm is triggered if the speed is too low to be measured
|
||||
(including stalled or missing fan).
|
||||
|
||||
|
||||
Fan Speed Control
|
||||
-----------------
|
||||
|
||||
Fan speed can be controlled by PWM outputs. There are 4 possible modes:
|
||||
always off, always on, manual and automatic. The latter isn't supported
|
||||
by the driver: you can only return to that mode if it was the original
|
||||
setting, and the configuration interface is missing.
|
||||
|
||||
|
||||
Temperature Monitoring
|
||||
----------------------
|
||||
|
||||
The PC87427 relies on external sensors (following the SensorPath
|
||||
standard), so the resolution and range depend on the type of sensor
|
||||
connected. The integer part can be 8-bit or 9-bit, and can be signed or
|
||||
not. I couldn't find a way to figure out the external sensor data
|
||||
temperature format, so user-space adjustment (typically by a factor 2)
|
||||
may be required.
|
90
Documentation/hwmon/pcf8591
Normal file
90
Documentation/hwmon/pcf8591
Normal file
|
@ -0,0 +1,90 @@
|
|||
Kernel driver pcf8591
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Philips/NXP PCF8591
|
||||
Prefix: 'pcf8591'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the NXP website
|
||||
http://www.nxp.com/pip/PCF8591_6.html
|
||||
|
||||
Authors:
|
||||
Aurelien Jarno <aurelien@aurel32.net>
|
||||
valuable contributions by Jan M. Sendler <sendler@sendler.de>,
|
||||
Jean Delvare <jdelvare@suse.de>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The PCF8591 is an 8-bit A/D and D/A converter (4 analog inputs and one
|
||||
analog output) for the I2C bus produced by Philips Semiconductors (now NXP).
|
||||
It is designed to provide a byte I2C interface to up to 4 separate devices.
|
||||
|
||||
The PCF8591 has 4 analog inputs programmable as single-ended or
|
||||
differential inputs :
|
||||
- mode 0 : four single ended inputs
|
||||
Pins AIN0 to AIN3 are single ended inputs for channels 0 to 3
|
||||
|
||||
- mode 1 : three differential inputs
|
||||
Pins AIN3 is the common negative differential input
|
||||
Pins AIN0 to AIN2 are positive differential inputs for channels 0 to 2
|
||||
|
||||
- mode 2 : single ended and differential mixed
|
||||
Pins AIN0 and AIN1 are single ended inputs for channels 0 and 1
|
||||
Pins AIN2 is the positive differential input for channel 3
|
||||
Pins AIN3 is the negative differential input for channel 3
|
||||
|
||||
- mode 3 : two differential inputs
|
||||
Pins AIN0 is the positive differential input for channel 0
|
||||
Pins AIN1 is the negative differential input for channel 0
|
||||
Pins AIN2 is the positive differential input for channel 1
|
||||
Pins AIN3 is the negative differential input for channel 1
|
||||
|
||||
See the datasheet for details.
|
||||
|
||||
Module parameters
|
||||
-----------------
|
||||
|
||||
* input_mode int
|
||||
|
||||
Analog input mode:
|
||||
0 = four single ended inputs
|
||||
1 = three differential inputs
|
||||
2 = single ended and differential mixed
|
||||
3 = two differential inputs
|
||||
|
||||
|
||||
Accessing PCF8591 via /sys interface
|
||||
-------------------------------------
|
||||
|
||||
The PCF8591 is plainly impossible to detect! Thus the driver won't even
|
||||
try. You have to explicitly instantiate the device at the relevant
|
||||
address (in the interval [0x48..0x4f]) either through platform data, or
|
||||
using the sysfs interface. See Documentation/i2c/instantiating-devices
|
||||
for details.
|
||||
|
||||
Directories are being created for each instantiated PCF8591:
|
||||
|
||||
/sys/bus/i2c/devices/<0>-<1>/
|
||||
where <0> is the bus the chip is connected to (e. g. i2c-0)
|
||||
and <1> the chip address ([48..4f])
|
||||
|
||||
Inside these directories, there are such files:
|
||||
in0_input, in1_input, in2_input, in3_input, out0_enable, out0_output, name
|
||||
|
||||
Name contains chip name.
|
||||
|
||||
The in0_input, in1_input, in2_input and in3_input files are RO. Reading gives
|
||||
the value of the corresponding channel. Depending on the current analog inputs
|
||||
configuration, files in2_input and in3_input may not exist. Values range
|
||||
from 0 to 255 for single ended inputs and -128 to +127 for differential inputs
|
||||
(8-bit ADC).
|
||||
|
||||
The out0_enable file is RW. Reading gives "1" for analog output enabled and
|
||||
"0" for analog output disabled. Writing accepts "0" and "1" accordingly.
|
||||
|
||||
The out0_output file is RW. Writing a number between 0 and 255 (8-bit DAC), send
|
||||
the value to the digital-to-analog converter. Note that a voltage will
|
||||
only appears on AOUT pin if aout0_enable equals 1. Reading returns the last
|
||||
value written.
|
212
Documentation/hwmon/pmbus
Normal file
212
Documentation/hwmon/pmbus
Normal file
|
@ -0,0 +1,212 @@
|
|||
Kernel driver pmbus
|
||||
====================
|
||||
|
||||
Supported chips:
|
||||
* Ericsson BMR453, BMR454
|
||||
Prefixes: 'bmr453', 'bmr454'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://archive.ericsson.net/service/internet/picov/get?DocNo=28701-EN/LZT146395
|
||||
* ON Semiconductor ADP4000, NCP4200, NCP4208
|
||||
Prefixes: 'adp4000', 'ncp4200', 'ncp4208'
|
||||
Addresses scanned: -
|
||||
Datasheets:
|
||||
http://www.onsemi.com/pub_link/Collateral/ADP4000-D.PDF
|
||||
http://www.onsemi.com/pub_link/Collateral/NCP4200-D.PDF
|
||||
http://www.onsemi.com/pub_link/Collateral/JUNE%202009-%20REV.%200.PDF
|
||||
* Lineage Power
|
||||
Prefixes: 'mdt040', 'pdt003', 'pdt006', 'pdt012', 'udt020'
|
||||
Addresses scanned: -
|
||||
Datasheets:
|
||||
http://www.lineagepower.com/oem/pdf/PDT003A0X.pdf
|
||||
http://www.lineagepower.com/oem/pdf/PDT006A0X.pdf
|
||||
http://www.lineagepower.com/oem/pdf/PDT012A0X.pdf
|
||||
http://www.lineagepower.com/oem/pdf/UDT020A0X.pdf
|
||||
http://www.lineagepower.com/oem/pdf/MDT040A0X.pdf
|
||||
* Texas Instruments TPS40400
|
||||
Prefixes: 'tps40400'
|
||||
Addresses scanned: -
|
||||
Datasheets:
|
||||
http://www.ti.com/lit/gpn/tps40400
|
||||
* Generic PMBus devices
|
||||
Prefix: 'pmbus'
|
||||
Addresses scanned: -
|
||||
Datasheet: n.a.
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports hardware montoring for various PMBus compliant devices.
|
||||
It supports voltage, current, power, and temperature sensors as supported
|
||||
by the device.
|
||||
|
||||
Each monitored channel has its own high and low limits, plus a critical
|
||||
limit.
|
||||
|
||||
Fan support will be added in a later version of this driver.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for PMBus devices, since there is no register
|
||||
which can be safely used to identify the chip (The MFG_ID register is not
|
||||
supported by all chips), and since there is no well defined address range for
|
||||
PMBus devices. You will have to instantiate the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC2978 at address 0x60
|
||||
on I2C bus #1:
|
||||
$ modprobe pmbus
|
||||
$ echo ltc2978 0x60 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Platform data support
|
||||
---------------------
|
||||
|
||||
Support for additional PMBus chips can be added by defining chip parameters in
|
||||
a new chip specific driver file. For example, (untested) code to add support for
|
||||
Emerson DS1200 power modules might look as follows.
|
||||
|
||||
static struct pmbus_driver_info ds1200_info = {
|
||||
.pages = 1,
|
||||
/* Note: All other sensors are in linear mode */
|
||||
.direct[PSC_VOLTAGE_OUT] = true,
|
||||
.direct[PSC_TEMPERATURE] = true,
|
||||
.direct[PSC_CURRENT_OUT] = true,
|
||||
.m[PSC_VOLTAGE_IN] = 1,
|
||||
.b[PSC_VOLTAGE_IN] = 0,
|
||||
.R[PSC_VOLTAGE_IN] = 3,
|
||||
.m[PSC_VOLTAGE_OUT] = 1,
|
||||
.b[PSC_VOLTAGE_OUT] = 0,
|
||||
.R[PSC_VOLTAGE_OUT] = 3,
|
||||
.m[PSC_TEMPERATURE] = 1,
|
||||
.b[PSC_TEMPERATURE] = 0,
|
||||
.R[PSC_TEMPERATURE] = 3,
|
||||
.func[0] = PMBUS_HAVE_VIN | PMBUS_HAVE_IIN | PMBUS_HAVE_STATUS_INPUT
|
||||
| PMBUS_HAVE_VOUT | PMBUS_HAVE_STATUS_VOUT
|
||||
| PMBUS_HAVE_IOUT | PMBUS_HAVE_STATUS_IOUT
|
||||
| PMBUS_HAVE_PIN | PMBUS_HAVE_POUT
|
||||
| PMBUS_HAVE_TEMP | PMBUS_HAVE_STATUS_TEMP
|
||||
| PMBUS_HAVE_FAN12 | PMBUS_HAVE_STATUS_FAN12,
|
||||
};
|
||||
|
||||
static int ds1200_probe(struct i2c_client *client,
|
||||
const struct i2c_device_id *id)
|
||||
{
|
||||
return pmbus_do_probe(client, id, &ds1200_info);
|
||||
}
|
||||
|
||||
static int ds1200_remove(struct i2c_client *client)
|
||||
{
|
||||
return pmbus_do_remove(client);
|
||||
}
|
||||
|
||||
static const struct i2c_device_id ds1200_id[] = {
|
||||
{"ds1200", 0},
|
||||
{}
|
||||
};
|
||||
|
||||
MODULE_DEVICE_TABLE(i2c, ds1200_id);
|
||||
|
||||
/* This is the driver that will be inserted */
|
||||
static struct i2c_driver ds1200_driver = {
|
||||
.driver = {
|
||||
.name = "ds1200",
|
||||
},
|
||||
.probe = ds1200_probe,
|
||||
.remove = ds1200_remove,
|
||||
.id_table = ds1200_id,
|
||||
};
|
||||
|
||||
static int __init ds1200_init(void)
|
||||
{
|
||||
return i2c_add_driver(&ds1200_driver);
|
||||
}
|
||||
|
||||
static void __exit ds1200_exit(void)
|
||||
{
|
||||
i2c_del_driver(&ds1200_driver);
|
||||
}
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
When probing the chip, the driver identifies which PMBus registers are
|
||||
supported, and determines available sensors from this information.
|
||||
Attribute files only exist if respective sensors are supported by the chip.
|
||||
Labels are provided to inform the user about the sensor associated with
|
||||
a given sysfs entry.
|
||||
|
||||
The following attributes are supported. Limits are read-write; all other
|
||||
attributes are read-only.
|
||||
|
||||
inX_input Measured voltage. From READ_VIN or READ_VOUT register.
|
||||
inX_min Minimum Voltage.
|
||||
From VIN_UV_WARN_LIMIT or VOUT_UV_WARN_LIMIT register.
|
||||
inX_max Maximum voltage.
|
||||
From VIN_OV_WARN_LIMIT or VOUT_OV_WARN_LIMIT register.
|
||||
inX_lcrit Critical minimum Voltage.
|
||||
From VIN_UV_FAULT_LIMIT or VOUT_UV_FAULT_LIMIT register.
|
||||
inX_crit Critical maximum voltage.
|
||||
From VIN_OV_FAULT_LIMIT or VOUT_OV_FAULT_LIMIT register.
|
||||
inX_min_alarm Voltage low alarm. From VOLTAGE_UV_WARNING status.
|
||||
inX_max_alarm Voltage high alarm. From VOLTAGE_OV_WARNING status.
|
||||
inX_lcrit_alarm Voltage critical low alarm.
|
||||
From VOLTAGE_UV_FAULT status.
|
||||
inX_crit_alarm Voltage critical high alarm.
|
||||
From VOLTAGE_OV_FAULT status.
|
||||
inX_label "vin", "vcap", or "voutY"
|
||||
|
||||
currX_input Measured current. From READ_IIN or READ_IOUT register.
|
||||
currX_max Maximum current.
|
||||
From IIN_OC_WARN_LIMIT or IOUT_OC_WARN_LIMIT register.
|
||||
currX_lcrit Critical minimum output current.
|
||||
From IOUT_UC_FAULT_LIMIT register.
|
||||
currX_crit Critical maximum current.
|
||||
From IIN_OC_FAULT_LIMIT or IOUT_OC_FAULT_LIMIT register.
|
||||
currX_alarm Current high alarm.
|
||||
From IIN_OC_WARNING or IOUT_OC_WARNING status.
|
||||
currX_max_alarm Current high alarm.
|
||||
From IIN_OC_WARN_LIMIT or IOUT_OC_WARN_LIMIT status.
|
||||
currX_lcrit_alarm Output current critical low alarm.
|
||||
From IOUT_UC_FAULT status.
|
||||
currX_crit_alarm Current critical high alarm.
|
||||
From IIN_OC_FAULT or IOUT_OC_FAULT status.
|
||||
currX_label "iin" or "ioutY"
|
||||
|
||||
powerX_input Measured power. From READ_PIN or READ_POUT register.
|
||||
powerX_cap Output power cap. From POUT_MAX register.
|
||||
powerX_max Power limit. From PIN_OP_WARN_LIMIT or
|
||||
POUT_OP_WARN_LIMIT register.
|
||||
powerX_crit Critical output power limit.
|
||||
From POUT_OP_FAULT_LIMIT register.
|
||||
powerX_alarm Power high alarm.
|
||||
From PIN_OP_WARNING or POUT_OP_WARNING status.
|
||||
powerX_crit_alarm Output power critical high alarm.
|
||||
From POUT_OP_FAULT status.
|
||||
powerX_label "pin" or "poutY"
|
||||
|
||||
tempX_input Measured temperature.
|
||||
From READ_TEMPERATURE_X register.
|
||||
tempX_min Mimimum temperature. From UT_WARN_LIMIT register.
|
||||
tempX_max Maximum temperature. From OT_WARN_LIMIT register.
|
||||
tempX_lcrit Critical low temperature.
|
||||
From UT_FAULT_LIMIT register.
|
||||
tempX_crit Critical high temperature.
|
||||
From OT_FAULT_LIMIT register.
|
||||
tempX_min_alarm Chip temperature low alarm. Set by comparing
|
||||
READ_TEMPERATURE_X with UT_WARN_LIMIT if
|
||||
TEMP_UT_WARNING status is set.
|
||||
tempX_max_alarm Chip temperature high alarm. Set by comparing
|
||||
READ_TEMPERATURE_X with OT_WARN_LIMIT if
|
||||
TEMP_OT_WARNING status is set.
|
||||
tempX_lcrit_alarm Chip temperature critical low alarm. Set by comparing
|
||||
READ_TEMPERATURE_X with UT_FAULT_LIMIT if
|
||||
TEMP_UT_FAULT status is set.
|
||||
tempX_crit_alarm Chip temperature critical high alarm. Set by comparing
|
||||
READ_TEMPERATURE_X with OT_FAULT_LIMIT if
|
||||
TEMP_OT_FAULT status is set.
|
283
Documentation/hwmon/pmbus-core
Normal file
283
Documentation/hwmon/pmbus-core
Normal file
|
@ -0,0 +1,283 @@
|
|||
PMBus core driver and internal API
|
||||
==================================
|
||||
|
||||
Introduction
|
||||
============
|
||||
|
||||
[from pmbus.org] The Power Management Bus (PMBus) is an open standard
|
||||
power-management protocol with a fully defined command language that facilitates
|
||||
communication with power converters and other devices in a power system. The
|
||||
protocol is implemented over the industry-standard SMBus serial interface and
|
||||
enables programming, control, and real-time monitoring of compliant power
|
||||
conversion products. This flexible and highly versatile standard allows for
|
||||
communication between devices based on both analog and digital technologies, and
|
||||
provides true interoperability which will reduce design complexity and shorten
|
||||
time to market for power system designers. Pioneered by leading power supply and
|
||||
semiconductor companies, this open power system standard is maintained and
|
||||
promoted by the PMBus Implementers Forum (PMBus-IF), comprising 30+ adopters
|
||||
with the objective to provide support to, and facilitate adoption among, users.
|
||||
|
||||
Unfortunately, while PMBus commands are standardized, there are no mandatory
|
||||
commands, and manufacturers can add as many non-standard commands as they like.
|
||||
Also, different PMBUs devices act differently if non-supported commands are
|
||||
executed. Some devices return an error, some devices return 0xff or 0xffff and
|
||||
set a status error flag, and some devices may simply hang up.
|
||||
|
||||
Despite all those difficulties, a generic PMBus device driver is still useful
|
||||
and supported since kernel version 2.6.39. However, it was necessary to support
|
||||
device specific extensions in addition to the core PMBus driver, since it is
|
||||
simply unknown what new device specific functionality PMBus device developers
|
||||
come up with next.
|
||||
|
||||
To make device specific extensions as scalable as possible, and to avoid having
|
||||
to modify the core PMBus driver repeatedly for new devices, the PMBus driver was
|
||||
split into core, generic, and device specific code. The core code (in
|
||||
pmbus_core.c) provides generic functionality. The generic code (in pmbus.c)
|
||||
provides support for generic PMBus devices. Device specific code is responsible
|
||||
for device specific initialization and, if needed, maps device specific
|
||||
functionality into generic functionality. This is to some degree comparable
|
||||
to PCI code, where generic code is augmented as needed with quirks for all kinds
|
||||
of devices.
|
||||
|
||||
PMBus device capabilities auto-detection
|
||||
========================================
|
||||
|
||||
For generic PMBus devices, code in pmbus.c attempts to auto-detect all supported
|
||||
PMBus commands. Auto-detection is somewhat limited, since there are simply too
|
||||
many variables to consider. For example, it is almost impossible to autodetect
|
||||
which PMBus commands are paged and which commands are replicated across all
|
||||
pages (see the PMBus specification for details on multi-page PMBus devices).
|
||||
|
||||
For this reason, it often makes sense to provide a device specific driver if not
|
||||
all commands can be auto-detected. The data structures in this driver can be
|
||||
used to inform the core driver about functionality supported by individual
|
||||
chips.
|
||||
|
||||
Some commands are always auto-detected. This applies to all limit commands
|
||||
(lcrit, min, max, and crit attributes) as well as associated alarm attributes.
|
||||
Limits and alarm attributes are auto-detected because there are simply too many
|
||||
possible combinations to provide a manual configuration interface.
|
||||
|
||||
PMBus internal API
|
||||
==================
|
||||
|
||||
The API between core and device specific PMBus code is defined in
|
||||
drivers/hwmon/pmbus/pmbus.h. In addition to the internal API, pmbus.h defines
|
||||
standard PMBus commands and virtual PMBus commands.
|
||||
|
||||
Standard PMBus commands
|
||||
-----------------------
|
||||
|
||||
Standard PMBus commands (commands values 0x00 to 0xff) are defined in the PMBUs
|
||||
specification.
|
||||
|
||||
Virtual PMBus commands
|
||||
----------------------
|
||||
|
||||
Virtual PMBus commands are provided to enable support for non-standard
|
||||
functionality which has been implemented by several chip vendors and is thus
|
||||
desirable to support.
|
||||
|
||||
Virtual PMBus commands start with command value 0x100 and can thus easily be
|
||||
distinguished from standard PMBus commands (which can not have values larger
|
||||
than 0xff). Support for virtual PMBus commands is device specific and thus has
|
||||
to be implemented in device specific code.
|
||||
|
||||
Virtual commands are named PMBUS_VIRT_xxx and start with PMBUS_VIRT_BASE. All
|
||||
virtual commands are word sized.
|
||||
|
||||
There are currently two types of virtual commands.
|
||||
|
||||
- READ commands are read-only; writes are either ignored or return an error.
|
||||
- RESET commands are read/write. Reading reset registers returns zero
|
||||
(used for detection), writing any value causes the associated history to be
|
||||
reset.
|
||||
|
||||
Virtual commands have to be handled in device specific driver code. Chip driver
|
||||
code returns non-negative values if a virtual command is supported, or a
|
||||
negative error code if not. The chip driver may return -ENODATA or any other
|
||||
Linux error code in this case, though an error code other than -ENODATA is
|
||||
handled more efficiently and thus preferred. Either case, the calling PMBus
|
||||
core code will abort if the chip driver returns an error code when reading
|
||||
or writing virtual registers (in other words, the PMBus core code will never
|
||||
send a virtual command to a chip).
|
||||
|
||||
PMBus driver information
|
||||
------------------------
|
||||
|
||||
PMBus driver information, defined in struct pmbus_driver_info, is the main means
|
||||
for device specific drivers to pass information to the core PMBus driver.
|
||||
Specifically, it provides the following information.
|
||||
|
||||
- For devices supporting its data in Direct Data Format, it provides coefficients
|
||||
for converting register values into normalized data. This data is usually
|
||||
provided by chip manufacturers in device datasheets.
|
||||
- Supported chip functionality can be provided to the core driver. This may be
|
||||
necessary for chips which react badly if non-supported commands are executed,
|
||||
and/or to speed up device detection and initialization.
|
||||
- Several function entry points are provided to support overriding and/or
|
||||
augmenting generic command execution. This functionality can be used to map
|
||||
non-standard PMBus commands to standard commands, or to augment standard
|
||||
command return values with device specific information.
|
||||
|
||||
API functions
|
||||
-------------
|
||||
|
||||
Functions provided by chip driver
|
||||
---------------------------------
|
||||
|
||||
All functions return the command return value (read) or zero (write) if
|
||||
successful. A return value of -ENODATA indicates that there is no manufacturer
|
||||
specific command, but that a standard PMBus command may exist. Any other
|
||||
negative return value indicates that the commands does not exist for this
|
||||
chip, and that no attempt should be made to read or write the standard
|
||||
command.
|
||||
|
||||
As mentioned above, an exception to this rule applies to virtual commands,
|
||||
which _must_ be handled in driver specific code. See "Virtual PMBus Commands"
|
||||
above for more details.
|
||||
|
||||
Command execution in the core PMBus driver code is as follows.
|
||||
|
||||
if (chip_access_function) {
|
||||
status = chip_access_function();
|
||||
if (status != -ENODATA)
|
||||
return status;
|
||||
}
|
||||
if (command >= PMBUS_VIRT_BASE) /* For word commands/registers only */
|
||||
return -EINVAL;
|
||||
return generic_access();
|
||||
|
||||
Chip drivers may provide pointers to the following functions in struct
|
||||
pmbus_driver_info. All functions are optional.
|
||||
|
||||
int (*read_byte_data)(struct i2c_client *client, int page, int reg);
|
||||
|
||||
Read byte from page <page>, register <reg>.
|
||||
<page> may be -1, which means "current page".
|
||||
|
||||
int (*read_word_data)(struct i2c_client *client, int page, int reg);
|
||||
|
||||
Read word from page <page>, register <reg>.
|
||||
|
||||
int (*write_word_data)(struct i2c_client *client, int page, int reg,
|
||||
u16 word);
|
||||
|
||||
Write word to page <page>, register <reg>.
|
||||
|
||||
int (*write_byte)(struct i2c_client *client, int page, u8 value);
|
||||
|
||||
Write byte to page <page>, register <reg>.
|
||||
<page> may be -1, which means "current page".
|
||||
|
||||
int (*identify)(struct i2c_client *client, struct pmbus_driver_info *info);
|
||||
|
||||
Determine supported PMBus functionality. This function is only necessary
|
||||
if a chip driver supports multiple chips, and the chip functionality is not
|
||||
pre-determined. It is currently only used by the generic pmbus driver
|
||||
(pmbus.c).
|
||||
|
||||
Functions exported by core driver
|
||||
---------------------------------
|
||||
|
||||
Chip drivers are expected to use the following functions to read or write
|
||||
PMBus registers. Chip drivers may also use direct I2C commands. If direct I2C
|
||||
commands are used, the chip driver code must not directly modify the current
|
||||
page, since the selected page is cached in the core driver and the core driver
|
||||
will assume that it is selected. Using pmbus_set_page() to select a new page
|
||||
is mandatory.
|
||||
|
||||
int pmbus_set_page(struct i2c_client *client, u8 page);
|
||||
|
||||
Set PMBus page register to <page> for subsequent commands.
|
||||
|
||||
int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg);
|
||||
|
||||
Read word data from <page>, <reg>. Similar to i2c_smbus_read_word_data(), but
|
||||
selects page first.
|
||||
|
||||
int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg,
|
||||
u16 word);
|
||||
|
||||
Write word data to <page>, <reg>. Similar to i2c_smbus_write_word_data(), but
|
||||
selects page first.
|
||||
|
||||
int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg);
|
||||
|
||||
Read byte data from <page>, <reg>. Similar to i2c_smbus_read_byte_data(), but
|
||||
selects page first. <page> may be -1, which means "current page".
|
||||
|
||||
int pmbus_write_byte(struct i2c_client *client, int page, u8 value);
|
||||
|
||||
Write byte data to <page>, <reg>. Similar to i2c_smbus_write_byte(), but
|
||||
selects page first. <page> may be -1, which means "current page".
|
||||
|
||||
void pmbus_clear_faults(struct i2c_client *client);
|
||||
|
||||
Execute PMBus "Clear Fault" command on all chip pages.
|
||||
This function calls the device specific write_byte function if defined.
|
||||
Therefore, it must _not_ be called from that function.
|
||||
|
||||
bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg);
|
||||
|
||||
Check if byte register exists. Return true if the register exists, false
|
||||
otherwise.
|
||||
This function calls the device specific write_byte function if defined to
|
||||
obtain the chip status. Therefore, it must _not_ be called from that function.
|
||||
|
||||
bool pmbus_check_word_register(struct i2c_client *client, int page, int reg);
|
||||
|
||||
Check if word register exists. Return true if the register exists, false
|
||||
otherwise.
|
||||
This function calls the device specific write_byte function if defined to
|
||||
obtain the chip status. Therefore, it must _not_ be called from that function.
|
||||
|
||||
int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
|
||||
struct pmbus_driver_info *info);
|
||||
|
||||
Execute probe function. Similar to standard probe function for other drivers,
|
||||
with the pointer to struct pmbus_driver_info as additional argument. Calls
|
||||
identify function if supported. Must only be called from device probe
|
||||
function.
|
||||
|
||||
void pmbus_do_remove(struct i2c_client *client);
|
||||
|
||||
Execute driver remove function. Similar to standard driver remove function.
|
||||
|
||||
const struct pmbus_driver_info
|
||||
*pmbus_get_driver_info(struct i2c_client *client);
|
||||
|
||||
Return pointer to struct pmbus_driver_info as passed to pmbus_do_probe().
|
||||
|
||||
|
||||
PMBus driver platform data
|
||||
==========================
|
||||
|
||||
PMBus platform data is defined in include/linux/i2c/pmbus.h. Platform data
|
||||
currently only provides a flag field with a single bit used.
|
||||
|
||||
#define PMBUS_SKIP_STATUS_CHECK (1 << 0)
|
||||
|
||||
struct pmbus_platform_data {
|
||||
u32 flags; /* Device specific flags */
|
||||
};
|
||||
|
||||
|
||||
Flags
|
||||
-----
|
||||
|
||||
PMBUS_SKIP_STATUS_CHECK
|
||||
|
||||
During register detection, skip checking the status register for
|
||||
communication or command errors.
|
||||
|
||||
Some PMBus chips respond with valid data when trying to read an unsupported
|
||||
register. For such chips, checking the status register is mandatory when
|
||||
trying to determine if a chip register exists or not.
|
||||
Other PMBus chips don't support the STATUS_CML register, or report
|
||||
communication errors for no explicable reason. For such chips, checking the
|
||||
status register must be disabled.
|
||||
|
||||
Some i2c controllers do not support single-byte commands (write commands with
|
||||
no data, i2c_smbus_write_byte()). With such controllers, clearing the status
|
||||
register is impossible, and the PMBUS_SKIP_STATUS_CHECK flag must be set.
|
45
Documentation/hwmon/powr1220
Normal file
45
Documentation/hwmon/powr1220
Normal file
|
@ -0,0 +1,45 @@
|
|||
Kernel driver powr1220
|
||||
==================
|
||||
|
||||
Supported chips:
|
||||
* Lattice POWR1220AT8
|
||||
Prefix: 'powr1220'
|
||||
Addresses scanned: none
|
||||
Datasheet: Publicly available at the Lattice website
|
||||
http://www.latticesemi.com/
|
||||
|
||||
Author: Scott Kanowitz <scott.kanowitz@gmail.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver supports the Lattice POWR1220AT8 chip. The POWR1220
|
||||
includes voltage monitoring for 14 inputs as well as trim settings
|
||||
for output voltages and GPIOs. This driver implements the voltage
|
||||
monitoring portion of the chip.
|
||||
|
||||
Voltages are sampled by a 12-bit ADC with a step size of 2 mV.
|
||||
An in-line attenuator allows measurements from 0 to 6 V. The
|
||||
attenuator is enabled or disabled depending on the setting of the
|
||||
input's max value. The driver will enable the attenuator for any
|
||||
value over the low measurement range maximum of 2 V.
|
||||
|
||||
The input naming convention is as follows:
|
||||
|
||||
driver name pin name
|
||||
in0 VMON1
|
||||
in1 VMON2
|
||||
in2 VMON3
|
||||
in2 VMON4
|
||||
in4 VMON5
|
||||
in5 VMON6
|
||||
in6 VMON7
|
||||
in7 VMON8
|
||||
in8 VMON9
|
||||
in9 VMON10
|
||||
in10 VMON11
|
||||
in11 VMON12
|
||||
in12 VCCA
|
||||
in13 VCCINP
|
||||
|
||||
The ADC readings are updated on request with a minimum period of 1s.
|
17
Documentation/hwmon/pwm-fan
Normal file
17
Documentation/hwmon/pwm-fan
Normal file
|
@ -0,0 +1,17 @@
|
|||
Kernel driver pwm-fan
|
||||
=====================
|
||||
|
||||
This driver enables the use of a PWM module to drive a fan. It uses the
|
||||
generic PWM interface thus it is hardware independent. It can be used on
|
||||
many SoCs, as long as the SoC supplies a PWM line driver that exposes
|
||||
the generic PWM API.
|
||||
|
||||
Author: Kamil Debski <k.debski@samsung.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The driver implements a simple interface for driving a fan connected to
|
||||
a PWM output. It uses the generic PWM interface, thus it can be used with
|
||||
a range of SoCs. The driver exposes the fan to the user space through
|
||||
the hwmon's sysfs interface.
|
27
Documentation/hwmon/sch5627
Normal file
27
Documentation/hwmon/sch5627
Normal file
|
@ -0,0 +1,27 @@
|
|||
Kernel driver sch5627
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* SMSC SCH5627
|
||||
Prefix: 'sch5627'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
Datasheet: Application Note available upon request
|
||||
|
||||
Author: Hans de Goede <hdegoede@redhat.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
SMSC SCH5627 Super I/O chips include complete hardware monitoring
|
||||
capabilities. They can monitor up to 5 voltages, 4 fans and 8 temperatures.
|
||||
|
||||
The SMSC SCH5627 hardware monitoring part also contains an integrated
|
||||
watchdog. In order for this watchdog to function some motherboard specific
|
||||
initialization most be done by the BIOS, so if the watchdog is not enabled
|
||||
by the BIOS the sch5627 driver will not register a watchdog device.
|
||||
|
||||
The hardware monitoring part of the SMSC SCH5627 is accessed by talking
|
||||
through an embedded microcontroller. An application note describing the
|
||||
protocol for communicating with the microcontroller is available upon
|
||||
request. Please mail me if you want a copy.
|
34
Documentation/hwmon/sch5636
Normal file
34
Documentation/hwmon/sch5636
Normal file
|
@ -0,0 +1,34 @@
|
|||
Kernel driver sch5636
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* SMSC SCH5636
|
||||
Prefix: 'sch5636'
|
||||
Addresses scanned: none, address read from Super I/O config space
|
||||
|
||||
Author: Hans de Goede <hdegoede@redhat.com>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
SMSC SCH5636 Super I/O chips include an embedded microcontroller for
|
||||
hardware monitoring solutions, allowing motherboard manufacturers to create
|
||||
their own custom hwmon solution based upon the SCH5636.
|
||||
|
||||
Currently the sch5636 driver only supports the Fujitsu Theseus SCH5636 based
|
||||
hwmon solution. The sch5636 driver runs a sanity check on loading to ensure
|
||||
it is dealing with a Fujitsu Theseus and not with another custom SCH5636 based
|
||||
hwmon solution.
|
||||
|
||||
The Fujitsu Theseus can monitor up to 5 voltages, 8 fans and 16
|
||||
temperatures. Note that the driver detects how many fan headers /
|
||||
temperature sensors are actually implemented on the motherboard, so you will
|
||||
likely see fewer temperature and fan inputs.
|
||||
|
||||
The Fujitsu Theseus hwmon solution also contains an integrated watchdog.
|
||||
This watchdog is fully supported by the sch5636 driver.
|
||||
|
||||
An application note describing the Theseus' registers, as well as an
|
||||
application note describing the protocol for communicating with the
|
||||
microcontroller is available upon request. Please mail me if you want a copy.
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Add a link
Reference in a new issue