mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-05 16:07:46 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
63
Documentation/hwmon/ltc4261
Normal file
63
Documentation/hwmon/ltc4261
Normal file
|
@ -0,0 +1,63 @@
|
|||
Kernel driver ltc4261
|
||||
=====================
|
||||
|
||||
Supported chips:
|
||||
* Linear Technology LTC4261
|
||||
Prefix: 'ltc4261'
|
||||
Addresses scanned: -
|
||||
Datasheet:
|
||||
http://cds.linear.com/docs/Datasheet/42612fb.pdf
|
||||
|
||||
Author: Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
The LTC4261/LTC4261-2 negative voltage Hot Swap controllers allow a board
|
||||
to be safely inserted and removed from a live backplane.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver does not probe for LTC4261 devices, since there is no register
|
||||
which can be safely used to identify the chip. You will have to instantiate
|
||||
the devices explicitly.
|
||||
|
||||
Example: the following will load the driver for an LTC4261 at address 0x10
|
||||
on I2C bus #1:
|
||||
$ modprobe ltc4261
|
||||
$ echo ltc4261 0x10 > /sys/bus/i2c/devices/i2c-1/new_device
|
||||
|
||||
|
||||
Sysfs entries
|
||||
-------------
|
||||
|
||||
Voltage readings provided by this driver are reported as obtained from the ADC
|
||||
registers. If a set of voltage divider resistors is installed, calculate the
|
||||
real voltage by multiplying the reported value with (R1+R2)/R2, where R1 is the
|
||||
value of the divider resistor against the measured voltage and R2 is the value
|
||||
of the divider resistor against Ground.
|
||||
|
||||
Current reading provided by this driver is reported as obtained from the ADC
|
||||
Current Sense register. The reported value assumes that a 1 mOhm sense resistor
|
||||
is installed. If a different sense resistor is installed, calculate the real
|
||||
current by dividing the reported value by the sense resistor value in mOhm.
|
||||
|
||||
The chip has two voltage sensors, but only one set of voltage alarm status bits.
|
||||
In many many designs, those alarms are associated with the ADIN2 sensor, due to
|
||||
the proximity of the ADIN2 pin to the OV pin. ADIN2 is, however, not available
|
||||
on all chip variants. To ensure that the alarm condition is reported to the user,
|
||||
report it with both voltage sensors.
|
||||
|
||||
in1_input ADIN2 voltage (mV)
|
||||
in1_min_alarm ADIN/ADIN2 Undervoltage alarm
|
||||
in1_max_alarm ADIN/ADIN2 Overvoltage alarm
|
||||
|
||||
in2_input ADIN voltage (mV)
|
||||
in2_min_alarm ADIN/ADIN2 Undervoltage alarm
|
||||
in2_max_alarm ADIN/ADIN2 Overvoltage alarm
|
||||
|
||||
curr1_input SENSE current (mA)
|
||||
curr1_alarm SENSE overcurrent alarm
|
Loading…
Add table
Add a link
Reference in a new issue