mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-07 08:48:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
525
Documentation/scheduler/sched-deadline.txt
Normal file
525
Documentation/scheduler/sched-deadline.txt
Normal file
|
@ -0,0 +1,525 @@
|
|||
Deadline Task Scheduling
|
||||
------------------------
|
||||
|
||||
CONTENTS
|
||||
========
|
||||
|
||||
0. WARNING
|
||||
1. Overview
|
||||
2. Scheduling algorithm
|
||||
3. Scheduling Real-Time Tasks
|
||||
4. Bandwidth management
|
||||
4.1 System-wide settings
|
||||
4.2 Task interface
|
||||
4.3 Default behavior
|
||||
5. Tasks CPU affinity
|
||||
5.1 SCHED_DEADLINE and cpusets HOWTO
|
||||
6. Future plans
|
||||
A. Test suite
|
||||
B. Minimal main()
|
||||
|
||||
|
||||
0. WARNING
|
||||
==========
|
||||
|
||||
Fiddling with these settings can result in an unpredictable or even unstable
|
||||
system behavior. As for -rt (group) scheduling, it is assumed that root users
|
||||
know what they're doing.
|
||||
|
||||
|
||||
1. Overview
|
||||
===========
|
||||
|
||||
The SCHED_DEADLINE policy contained inside the sched_dl scheduling class is
|
||||
basically an implementation of the Earliest Deadline First (EDF) scheduling
|
||||
algorithm, augmented with a mechanism (called Constant Bandwidth Server, CBS)
|
||||
that makes it possible to isolate the behavior of tasks between each other.
|
||||
|
||||
|
||||
2. Scheduling algorithm
|
||||
==================
|
||||
|
||||
SCHED_DEADLINE uses three parameters, named "runtime", "period", and
|
||||
"deadline", to schedule tasks. A SCHED_DEADLINE task should receive
|
||||
"runtime" microseconds of execution time every "period" microseconds, and
|
||||
these "runtime" microseconds are available within "deadline" microseconds
|
||||
from the beginning of the period. In order to implement this behaviour,
|
||||
every time the task wakes up, the scheduler computes a "scheduling deadline"
|
||||
consistent with the guarantee (using the CBS[2,3] algorithm). Tasks are then
|
||||
scheduled using EDF[1] on these scheduling deadlines (the task with the
|
||||
earliest scheduling deadline is selected for execution). Notice that the
|
||||
task actually receives "runtime" time units within "deadline" if a proper
|
||||
"admission control" strategy (see Section "4. Bandwidth management") is used
|
||||
(clearly, if the system is overloaded this guarantee cannot be respected).
|
||||
|
||||
Summing up, the CBS[2,3] algorithms assigns scheduling deadlines to tasks so
|
||||
that each task runs for at most its runtime every period, avoiding any
|
||||
interference between different tasks (bandwidth isolation), while the EDF[1]
|
||||
algorithm selects the task with the earliest scheduling deadline as the one
|
||||
to be executed next. Thanks to this feature, tasks that do not strictly comply
|
||||
with the "traditional" real-time task model (see Section 3) can effectively
|
||||
use the new policy.
|
||||
|
||||
In more details, the CBS algorithm assigns scheduling deadlines to
|
||||
tasks in the following way:
|
||||
|
||||
- Each SCHED_DEADLINE task is characterised by the "runtime",
|
||||
"deadline", and "period" parameters;
|
||||
|
||||
- The state of the task is described by a "scheduling deadline", and
|
||||
a "remaining runtime". These two parameters are initially set to 0;
|
||||
|
||||
- When a SCHED_DEADLINE task wakes up (becomes ready for execution),
|
||||
the scheduler checks if
|
||||
|
||||
remaining runtime runtime
|
||||
---------------------------------- > ---------
|
||||
scheduling deadline - current time period
|
||||
|
||||
then, if the scheduling deadline is smaller than the current time, or
|
||||
this condition is verified, the scheduling deadline and the
|
||||
remaining runtime are re-initialised as
|
||||
|
||||
scheduling deadline = current time + deadline
|
||||
remaining runtime = runtime
|
||||
|
||||
otherwise, the scheduling deadline and the remaining runtime are
|
||||
left unchanged;
|
||||
|
||||
- When a SCHED_DEADLINE task executes for an amount of time t, its
|
||||
remaining runtime is decreased as
|
||||
|
||||
remaining runtime = remaining runtime - t
|
||||
|
||||
(technically, the runtime is decreased at every tick, or when the
|
||||
task is descheduled / preempted);
|
||||
|
||||
- When the remaining runtime becomes less or equal than 0, the task is
|
||||
said to be "throttled" (also known as "depleted" in real-time literature)
|
||||
and cannot be scheduled until its scheduling deadline. The "replenishment
|
||||
time" for this task (see next item) is set to be equal to the current
|
||||
value of the scheduling deadline;
|
||||
|
||||
- When the current time is equal to the replenishment time of a
|
||||
throttled task, the scheduling deadline and the remaining runtime are
|
||||
updated as
|
||||
|
||||
scheduling deadline = scheduling deadline + period
|
||||
remaining runtime = remaining runtime + runtime
|
||||
|
||||
|
||||
3. Scheduling Real-Time Tasks
|
||||
=============================
|
||||
|
||||
* BIG FAT WARNING ******************************************************
|
||||
*
|
||||
* This section contains a (not-thorough) summary on classical deadline
|
||||
* scheduling theory, and how it applies to SCHED_DEADLINE.
|
||||
* The reader can "safely" skip to Section 4 if only interested in seeing
|
||||
* how the scheduling policy can be used. Anyway, we strongly recommend
|
||||
* to come back here and continue reading (once the urge for testing is
|
||||
* satisfied :P) to be sure of fully understanding all technical details.
|
||||
************************************************************************
|
||||
|
||||
There are no limitations on what kind of task can exploit this new
|
||||
scheduling discipline, even if it must be said that it is particularly
|
||||
suited for periodic or sporadic real-time tasks that need guarantees on their
|
||||
timing behavior, e.g., multimedia, streaming, control applications, etc.
|
||||
|
||||
A typical real-time task is composed of a repetition of computation phases
|
||||
(task instances, or jobs) which are activated on a periodic or sporadic
|
||||
fashion.
|
||||
Each job J_j (where J_j is the j^th job of the task) is characterised by an
|
||||
arrival time r_j (the time when the job starts), an amount of computation
|
||||
time c_j needed to finish the job, and a job absolute deadline d_j, which
|
||||
is the time within which the job should be finished. The maximum execution
|
||||
time max_j{c_j} is called "Worst Case Execution Time" (WCET) for the task.
|
||||
A real-time task can be periodic with period P if r_{j+1} = r_j + P, or
|
||||
sporadic with minimum inter-arrival time P is r_{j+1} >= r_j + P. Finally,
|
||||
d_j = r_j + D, where D is the task's relative deadline.
|
||||
The utilisation of a real-time task is defined as the ratio between its
|
||||
WCET and its period (or minimum inter-arrival time), and represents
|
||||
the fraction of CPU time needed to execute the task.
|
||||
|
||||
If the total utilisation sum_i(WCET_i/P_i) is larger than M (with M equal
|
||||
to the number of CPUs), then the scheduler is unable to respect all the
|
||||
deadlines.
|
||||
Note that total utilisation is defined as the sum of the utilisations
|
||||
WCET_i/P_i over all the real-time tasks in the system. When considering
|
||||
multiple real-time tasks, the parameters of the i-th task are indicated
|
||||
with the "_i" suffix.
|
||||
Moreover, if the total utilisation is larger than M, then we risk starving
|
||||
non- real-time tasks by real-time tasks.
|
||||
If, instead, the total utilisation is smaller than M, then non real-time
|
||||
tasks will not be starved and the system might be able to respect all the
|
||||
deadlines.
|
||||
As a matter of fact, in this case it is possible to provide an upper bound
|
||||
for tardiness (defined as the maximum between 0 and the difference
|
||||
between the finishing time of a job and its absolute deadline).
|
||||
More precisely, it can be proven that using a global EDF scheduler the
|
||||
maximum tardiness of each task is smaller or equal than
|
||||
((M − 1) · WCET_max − WCET_min)/(M − (M − 2) · U_max) + WCET_max
|
||||
where WCET_max = max_i{WCET_i} is the maximum WCET, WCET_min=min_i{WCET_i}
|
||||
is the minimum WCET, and U_max = max_i{WCET_i/P_i} is the maximum utilisation.
|
||||
|
||||
If M=1 (uniprocessor system), or in case of partitioned scheduling (each
|
||||
real-time task is statically assigned to one and only one CPU), it is
|
||||
possible to formally check if all the deadlines are respected.
|
||||
If D_i = P_i for all tasks, then EDF is able to respect all the deadlines
|
||||
of all the tasks executing on a CPU if and only if the total utilisation
|
||||
of the tasks running on such a CPU is smaller or equal than 1.
|
||||
If D_i != P_i for some task, then it is possible to define the density of
|
||||
a task as C_i/min{D_i,T_i}, and EDF is able to respect all the deadlines
|
||||
of all the tasks running on a CPU if the sum sum_i C_i/min{D_i,T_i} of the
|
||||
densities of the tasks running on such a CPU is smaller or equal than 1
|
||||
(notice that this condition is only sufficient, and not necessary).
|
||||
|
||||
On multiprocessor systems with global EDF scheduling (non partitioned
|
||||
systems), a sufficient test for schedulability can not be based on the
|
||||
utilisations (it can be shown that task sets with utilisations slightly
|
||||
larger than 1 can miss deadlines regardless of the number of CPUs M).
|
||||
However, as previously stated, enforcing that the total utilisation is smaller
|
||||
than M is enough to guarantee that non real-time tasks are not starved and
|
||||
that the tardiness of real-time tasks has an upper bound.
|
||||
|
||||
SCHED_DEADLINE can be used to schedule real-time tasks guaranteeing that
|
||||
the jobs' deadlines of a task are respected. In order to do this, a task
|
||||
must be scheduled by setting:
|
||||
|
||||
- runtime >= WCET
|
||||
- deadline = D
|
||||
- period <= P
|
||||
|
||||
IOW, if runtime >= WCET and if period is >= P, then the scheduling deadlines
|
||||
and the absolute deadlines (d_j) coincide, so a proper admission control
|
||||
allows to respect the jobs' absolute deadlines for this task (this is what is
|
||||
called "hard schedulability property" and is an extension of Lemma 1 of [2]).
|
||||
Notice that if runtime > deadline the admission control will surely reject
|
||||
this task, as it is not possible to respect its temporal constraints.
|
||||
|
||||
References:
|
||||
1 - C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogram-
|
||||
ming in a hard-real-time environment. Journal of the Association for
|
||||
Computing Machinery, 20(1), 1973.
|
||||
2 - L. Abeni , G. Buttazzo. Integrating Multimedia Applications in Hard
|
||||
Real-Time Systems. Proceedings of the 19th IEEE Real-time Systems
|
||||
Symposium, 1998. http://retis.sssup.it/~giorgio/paps/1998/rtss98-cbs.pdf
|
||||
3 - L. Abeni. Server Mechanisms for Multimedia Applications. ReTiS Lab
|
||||
Technical Report. http://disi.unitn.it/~abeni/tr-98-01.pdf
|
||||
|
||||
4. Bandwidth management
|
||||
=======================
|
||||
|
||||
As previously mentioned, in order for -deadline scheduling to be
|
||||
effective and useful (that is, to be able to provide "runtime" time units
|
||||
within "deadline"), it is important to have some method to keep the allocation
|
||||
of the available fractions of CPU time to the various tasks under control.
|
||||
This is usually called "admission control" and if it is not performed, then
|
||||
no guarantee can be given on the actual scheduling of the -deadline tasks.
|
||||
|
||||
As already stated in Section 3, a necessary condition to be respected to
|
||||
correctly schedule a set of real-time tasks is that the total utilisation
|
||||
is smaller than M. When talking about -deadline tasks, this requires that
|
||||
the sum of the ratio between runtime and period for all tasks is smaller
|
||||
than M. Notice that the ratio runtime/period is equivalent to the utilisation
|
||||
of a "traditional" real-time task, and is also often referred to as
|
||||
"bandwidth".
|
||||
The interface used to control the CPU bandwidth that can be allocated
|
||||
to -deadline tasks is similar to the one already used for -rt
|
||||
tasks with real-time group scheduling (a.k.a. RT-throttling - see
|
||||
Documentation/scheduler/sched-rt-group.txt), and is based on readable/
|
||||
writable control files located in procfs (for system wide settings).
|
||||
Notice that per-group settings (controlled through cgroupfs) are still not
|
||||
defined for -deadline tasks, because more discussion is needed in order to
|
||||
figure out how we want to manage SCHED_DEADLINE bandwidth at the task group
|
||||
level.
|
||||
|
||||
A main difference between deadline bandwidth management and RT-throttling
|
||||
is that -deadline tasks have bandwidth on their own (while -rt ones don't!),
|
||||
and thus we don't need a higher level throttling mechanism to enforce the
|
||||
desired bandwidth. In other words, this means that interface parameters are
|
||||
only used at admission control time (i.e., when the user calls
|
||||
sched_setattr()). Scheduling is then performed considering actual tasks'
|
||||
parameters, so that CPU bandwidth is allocated to SCHED_DEADLINE tasks
|
||||
respecting their needs in terms of granularity. Therefore, using this simple
|
||||
interface we can put a cap on total utilization of -deadline tasks (i.e.,
|
||||
\Sum (runtime_i / period_i) < global_dl_utilization_cap).
|
||||
|
||||
4.1 System wide settings
|
||||
------------------------
|
||||
|
||||
The system wide settings are configured under the /proc virtual file system.
|
||||
|
||||
For now the -rt knobs are used for -deadline admission control and the
|
||||
-deadline runtime is accounted against the -rt runtime. We realise that this
|
||||
isn't entirely desirable; however, it is better to have a small interface for
|
||||
now, and be able to change it easily later. The ideal situation (see 5.) is to
|
||||
run -rt tasks from a -deadline server; in which case the -rt bandwidth is a
|
||||
direct subset of dl_bw.
|
||||
|
||||
This means that, for a root_domain comprising M CPUs, -deadline tasks
|
||||
can be created while the sum of their bandwidths stays below:
|
||||
|
||||
M * (sched_rt_runtime_us / sched_rt_period_us)
|
||||
|
||||
It is also possible to disable this bandwidth management logic, and
|
||||
be thus free of oversubscribing the system up to any arbitrary level.
|
||||
This is done by writing -1 in /proc/sys/kernel/sched_rt_runtime_us.
|
||||
|
||||
|
||||
4.2 Task interface
|
||||
------------------
|
||||
|
||||
Specifying a periodic/sporadic task that executes for a given amount of
|
||||
runtime at each instance, and that is scheduled according to the urgency of
|
||||
its own timing constraints needs, in general, a way of declaring:
|
||||
- a (maximum/typical) instance execution time,
|
||||
- a minimum interval between consecutive instances,
|
||||
- a time constraint by which each instance must be completed.
|
||||
|
||||
Therefore:
|
||||
* a new struct sched_attr, containing all the necessary fields is
|
||||
provided;
|
||||
* the new scheduling related syscalls that manipulate it, i.e.,
|
||||
sched_setattr() and sched_getattr() are implemented.
|
||||
|
||||
|
||||
4.3 Default behavior
|
||||
---------------------
|
||||
|
||||
The default value for SCHED_DEADLINE bandwidth is to have rt_runtime equal to
|
||||
950000. With rt_period equal to 1000000, by default, it means that -deadline
|
||||
tasks can use at most 95%, multiplied by the number of CPUs that compose the
|
||||
root_domain, for each root_domain.
|
||||
This means that non -deadline tasks will receive at least 5% of the CPU time,
|
||||
and that -deadline tasks will receive their runtime with a guaranteed
|
||||
worst-case delay respect to the "deadline" parameter. If "deadline" = "period"
|
||||
and the cpuset mechanism is used to implement partitioned scheduling (see
|
||||
Section 5), then this simple setting of the bandwidth management is able to
|
||||
deterministically guarantee that -deadline tasks will receive their runtime
|
||||
in a period.
|
||||
|
||||
Finally, notice that in order not to jeopardize the admission control a
|
||||
-deadline task cannot fork.
|
||||
|
||||
5. Tasks CPU affinity
|
||||
=====================
|
||||
|
||||
-deadline tasks cannot have an affinity mask smaller that the entire
|
||||
root_domain they are created on. However, affinities can be specified
|
||||
through the cpuset facility (Documentation/cgroups/cpusets.txt).
|
||||
|
||||
5.1 SCHED_DEADLINE and cpusets HOWTO
|
||||
------------------------------------
|
||||
|
||||
An example of a simple configuration (pin a -deadline task to CPU0)
|
||||
follows (rt-app is used to create a -deadline task).
|
||||
|
||||
mkdir /dev/cpuset
|
||||
mount -t cgroup -o cpuset cpuset /dev/cpuset
|
||||
cd /dev/cpuset
|
||||
mkdir cpu0
|
||||
echo 0 > cpu0/cpuset.cpus
|
||||
echo 0 > cpu0/cpuset.mems
|
||||
echo 1 > cpuset.cpu_exclusive
|
||||
echo 0 > cpuset.sched_load_balance
|
||||
echo 1 > cpu0/cpuset.cpu_exclusive
|
||||
echo 1 > cpu0/cpuset.mem_exclusive
|
||||
echo $$ > cpu0/tasks
|
||||
rt-app -t 100000:10000:d:0 -D5 (it is now actually superfluous to specify
|
||||
task affinity)
|
||||
|
||||
6. Future plans
|
||||
===============
|
||||
|
||||
Still missing:
|
||||
|
||||
- refinements to deadline inheritance, especially regarding the possibility
|
||||
of retaining bandwidth isolation among non-interacting tasks. This is
|
||||
being studied from both theoretical and practical points of view, and
|
||||
hopefully we should be able to produce some demonstrative code soon;
|
||||
- (c)group based bandwidth management, and maybe scheduling;
|
||||
- access control for non-root users (and related security concerns to
|
||||
address), which is the best way to allow unprivileged use of the mechanisms
|
||||
and how to prevent non-root users "cheat" the system?
|
||||
|
||||
As already discussed, we are planning also to merge this work with the EDF
|
||||
throttling patches [https://lkml.org/lkml/2010/2/23/239] but we still are in
|
||||
the preliminary phases of the merge and we really seek feedback that would
|
||||
help us decide on the direction it should take.
|
||||
|
||||
Appendix A. Test suite
|
||||
======================
|
||||
|
||||
The SCHED_DEADLINE policy can be easily tested using two applications that
|
||||
are part of a wider Linux Scheduler validation suite. The suite is
|
||||
available as a GitHub repository: https://github.com/scheduler-tools.
|
||||
|
||||
The first testing application is called rt-app and can be used to
|
||||
start multiple threads with specific parameters. rt-app supports
|
||||
SCHED_{OTHER,FIFO,RR,DEADLINE} scheduling policies and their related
|
||||
parameters (e.g., niceness, priority, runtime/deadline/period). rt-app
|
||||
is a valuable tool, as it can be used to synthetically recreate certain
|
||||
workloads (maybe mimicking real use-cases) and evaluate how the scheduler
|
||||
behaves under such workloads. In this way, results are easily reproducible.
|
||||
rt-app is available at: https://github.com/scheduler-tools/rt-app.
|
||||
|
||||
Thread parameters can be specified from the command line, with something like
|
||||
this:
|
||||
|
||||
# rt-app -t 100000:10000:d -t 150000:20000:f:10 -D5
|
||||
|
||||
The above creates 2 threads. The first one, scheduled by SCHED_DEADLINE,
|
||||
executes for 10ms every 100ms. The second one, scheduled at SCHED_FIFO
|
||||
priority 10, executes for 20ms every 150ms. The test will run for a total
|
||||
of 5 seconds.
|
||||
|
||||
More interestingly, configurations can be described with a json file that
|
||||
can be passed as input to rt-app with something like this:
|
||||
|
||||
# rt-app my_config.json
|
||||
|
||||
The parameters that can be specified with the second method are a superset
|
||||
of the command line options. Please refer to rt-app documentation for more
|
||||
details (<rt-app-sources>/doc/*.json).
|
||||
|
||||
The second testing application is a modification of schedtool, called
|
||||
schedtool-dl, which can be used to setup SCHED_DEADLINE parameters for a
|
||||
certain pid/application. schedtool-dl is available at:
|
||||
https://github.com/scheduler-tools/schedtool-dl.git.
|
||||
|
||||
The usage is straightforward:
|
||||
|
||||
# schedtool -E -t 10000000:100000000 -e ./my_cpuhog_app
|
||||
|
||||
With this, my_cpuhog_app is put to run inside a SCHED_DEADLINE reservation
|
||||
of 10ms every 100ms (note that parameters are expressed in microseconds).
|
||||
You can also use schedtool to create a reservation for an already running
|
||||
application, given that you know its pid:
|
||||
|
||||
# schedtool -E -t 10000000:100000000 my_app_pid
|
||||
|
||||
Appendix B. Minimal main()
|
||||
==========================
|
||||
|
||||
We provide in what follows a simple (ugly) self-contained code snippet
|
||||
showing how SCHED_DEADLINE reservations can be created by a real-time
|
||||
application developer.
|
||||
|
||||
#define _GNU_SOURCE
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <time.h>
|
||||
#include <linux/unistd.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/types.h>
|
||||
#include <sys/syscall.h>
|
||||
#include <pthread.h>
|
||||
|
||||
#define gettid() syscall(__NR_gettid)
|
||||
|
||||
#define SCHED_DEADLINE 6
|
||||
|
||||
/* XXX use the proper syscall numbers */
|
||||
#ifdef __x86_64__
|
||||
#define __NR_sched_setattr 314
|
||||
#define __NR_sched_getattr 315
|
||||
#endif
|
||||
|
||||
#ifdef __i386__
|
||||
#define __NR_sched_setattr 351
|
||||
#define __NR_sched_getattr 352
|
||||
#endif
|
||||
|
||||
#ifdef __arm__
|
||||
#define __NR_sched_setattr 380
|
||||
#define __NR_sched_getattr 381
|
||||
#endif
|
||||
|
||||
static volatile int done;
|
||||
|
||||
struct sched_attr {
|
||||
__u32 size;
|
||||
|
||||
__u32 sched_policy;
|
||||
__u64 sched_flags;
|
||||
|
||||
/* SCHED_NORMAL, SCHED_BATCH */
|
||||
__s32 sched_nice;
|
||||
|
||||
/* SCHED_FIFO, SCHED_RR */
|
||||
__u32 sched_priority;
|
||||
|
||||
/* SCHED_DEADLINE (nsec) */
|
||||
__u64 sched_runtime;
|
||||
__u64 sched_deadline;
|
||||
__u64 sched_period;
|
||||
};
|
||||
|
||||
int sched_setattr(pid_t pid,
|
||||
const struct sched_attr *attr,
|
||||
unsigned int flags)
|
||||
{
|
||||
return syscall(__NR_sched_setattr, pid, attr, flags);
|
||||
}
|
||||
|
||||
int sched_getattr(pid_t pid,
|
||||
struct sched_attr *attr,
|
||||
unsigned int size,
|
||||
unsigned int flags)
|
||||
{
|
||||
return syscall(__NR_sched_getattr, pid, attr, size, flags);
|
||||
}
|
||||
|
||||
void *run_deadline(void *data)
|
||||
{
|
||||
struct sched_attr attr;
|
||||
int x = 0;
|
||||
int ret;
|
||||
unsigned int flags = 0;
|
||||
|
||||
printf("deadline thread started [%ld]\n", gettid());
|
||||
|
||||
attr.size = sizeof(attr);
|
||||
attr.sched_flags = 0;
|
||||
attr.sched_nice = 0;
|
||||
attr.sched_priority = 0;
|
||||
|
||||
/* This creates a 10ms/30ms reservation */
|
||||
attr.sched_policy = SCHED_DEADLINE;
|
||||
attr.sched_runtime = 10 * 1000 * 1000;
|
||||
attr.sched_period = attr.sched_deadline = 30 * 1000 * 1000;
|
||||
|
||||
ret = sched_setattr(0, &attr, flags);
|
||||
if (ret < 0) {
|
||||
done = 0;
|
||||
perror("sched_setattr");
|
||||
exit(-1);
|
||||
}
|
||||
|
||||
while (!done) {
|
||||
x++;
|
||||
}
|
||||
|
||||
printf("deadline thread dies [%ld]\n", gettid());
|
||||
return NULL;
|
||||
}
|
||||
|
||||
int main (int argc, char **argv)
|
||||
{
|
||||
pthread_t thread;
|
||||
|
||||
printf("main thread [%ld]\n", gettid());
|
||||
|
||||
pthread_create(&thread, NULL, run_deadline, NULL);
|
||||
|
||||
sleep(10);
|
||||
|
||||
done = 1;
|
||||
pthread_join(thread, NULL);
|
||||
|
||||
printf("main dies [%ld]\n", gettid());
|
||||
return 0;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue