mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-05 07:57:45 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
22
Documentation/spi/00-INDEX
Normal file
22
Documentation/spi/00-INDEX
Normal file
|
@ -0,0 +1,22 @@
|
|||
00-INDEX
|
||||
- this file.
|
||||
Makefile
|
||||
- Makefile for the example sourcefiles.
|
||||
butterfly
|
||||
- AVR Butterfly SPI driver overview and pin configuration.
|
||||
ep93xx_spi
|
||||
- Basic EP93xx SPI driver configuration.
|
||||
pxa2xx
|
||||
- PXA2xx SPI master controller build by spi_message fifo wq
|
||||
spidev
|
||||
- Intro to the userspace API for spi devices
|
||||
spidev_fdx.c
|
||||
- spidev example file
|
||||
spi-lm70llp
|
||||
- Connecting an LM70-LLP sensor to the kernel via the SPI subsys.
|
||||
spi-sc18is602
|
||||
- NXP SC18IS602/603 I2C-bus to SPI bridge
|
||||
spi-summary
|
||||
- (Linux) SPI overview. If unsure about SPI or SPI in Linux, start here.
|
||||
spidev_test.c
|
||||
- SPI testing utility.
|
8
Documentation/spi/Makefile
Normal file
8
Documentation/spi/Makefile
Normal file
|
@ -0,0 +1,8 @@
|
|||
# List of programs to build
|
||||
hostprogs-y := spidev_test spidev_fdx
|
||||
|
||||
# Tell kbuild to always build the programs
|
||||
always := $(hostprogs-y)
|
||||
|
||||
HOSTCFLAGS_spidev_test.o += -I$(objtree)/usr/include
|
||||
HOSTCFLAGS_spidev_fdx.o += -I$(objtree)/usr/include
|
68
Documentation/spi/butterfly
Normal file
68
Documentation/spi/butterfly
Normal file
|
@ -0,0 +1,68 @@
|
|||
spi_butterfly - parport-to-butterfly adapter driver
|
||||
===================================================
|
||||
|
||||
This is a hardware and software project that includes building and using
|
||||
a parallel port adapter cable, together with an "AVR Butterfly" to run
|
||||
firmware for user interfacing and/or sensors. A Butterfly is a $US20
|
||||
battery powered card with an AVR microcontroller and lots of goodies:
|
||||
sensors, LCD, flash, toggle stick, and more. You can use AVR-GCC to
|
||||
develop firmware for this, and flash it using this adapter cable.
|
||||
|
||||
You can make this adapter from an old printer cable and solder things
|
||||
directly to the Butterfly. Or (if you have the parts and skills) you
|
||||
can come up with something fancier, providing ciruit protection to the
|
||||
Butterfly and the printer port, or with a better power supply than two
|
||||
signal pins from the printer port. Or for that matter, you can use
|
||||
similar cables to talk to many AVR boards, even a breadboard.
|
||||
|
||||
This is more powerful than "ISP programming" cables since it lets kernel
|
||||
SPI protocol drivers interact with the AVR, and could even let the AVR
|
||||
issue interrupts to them. Later, your protocol driver should work
|
||||
easily with a "real SPI controller", instead of this bitbanger.
|
||||
|
||||
|
||||
The first cable connections will hook Linux up to one SPI bus, with the
|
||||
AVR and a DataFlash chip; and to the AVR reset line. This is all you
|
||||
need to reflash the firmware, and the pins are the standard Atmel "ISP"
|
||||
connector pins (used also on non-Butterfly AVR boards). On the parport
|
||||
side this is like "sp12" programming cables.
|
||||
|
||||
Signal Butterfly Parport (DB-25)
|
||||
------ --------- ---------------
|
||||
SCK = J403.PB1/SCK = pin 2/D0
|
||||
RESET = J403.nRST = pin 3/D1
|
||||
VCC = J403.VCC_EXT = pin 8/D6
|
||||
MOSI = J403.PB2/MOSI = pin 9/D7
|
||||
MISO = J403.PB3/MISO = pin 11/S7,nBUSY
|
||||
GND = J403.GND = pin 23/GND
|
||||
|
||||
Then to let Linux master that bus to talk to the DataFlash chip, you must
|
||||
(a) flash new firmware that disables SPI (set PRR.2, and disable pullups
|
||||
by clearing PORTB.[0-3]); (b) configure the mtd_dataflash driver; and
|
||||
(c) cable in the chipselect.
|
||||
|
||||
Signal Butterfly Parport (DB-25)
|
||||
------ --------- ---------------
|
||||
VCC = J400.VCC_EXT = pin 7/D5
|
||||
SELECT = J400.PB0/nSS = pin 17/C3,nSELECT
|
||||
GND = J400.GND = pin 24/GND
|
||||
|
||||
Or you could flash firmware making the AVR into an SPI slave (keeping the
|
||||
DataFlash in reset) and tweak the spi_butterfly driver to make it bind to
|
||||
the driver for your custom SPI-based protocol.
|
||||
|
||||
The "USI" controller, using J405, can also be used for a second SPI bus.
|
||||
That would let you talk to the AVR using custom SPI-with-USI firmware,
|
||||
while letting either Linux or the AVR use the DataFlash. There are plenty
|
||||
of spare parport pins to wire this one up, such as:
|
||||
|
||||
Signal Butterfly Parport (DB-25)
|
||||
------ --------- ---------------
|
||||
SCK = J403.PE4/USCK = pin 5/D3
|
||||
MOSI = J403.PE5/DI = pin 6/D4
|
||||
MISO = J403.PE6/DO = pin 12/S5,nPAPEROUT
|
||||
GND = J403.GND = pin 22/GND
|
||||
|
||||
IRQ = J402.PF4 = pin 10/S6,ACK
|
||||
GND = J402.GND(P2) = pin 25/GND
|
||||
|
105
Documentation/spi/ep93xx_spi
Normal file
105
Documentation/spi/ep93xx_spi
Normal file
|
@ -0,0 +1,105 @@
|
|||
Cirrus EP93xx SPI controller driver HOWTO
|
||||
=========================================
|
||||
|
||||
ep93xx_spi driver brings SPI master support for EP93xx SPI controller. Chip
|
||||
selects are implemented with GPIO lines.
|
||||
|
||||
NOTE: If possible, don't use SFRMOUT (SFRM1) signal as a chip select. It will
|
||||
not work correctly (it cannot be controlled by software). Use GPIO lines
|
||||
instead.
|
||||
|
||||
Sample configuration
|
||||
====================
|
||||
|
||||
Typically driver configuration is done in platform board files (the files under
|
||||
arch/arm/mach-ep93xx/*.c). In this example we configure MMC over SPI through
|
||||
this driver on TS-7260 board. You can adapt the code to suit your needs.
|
||||
|
||||
This example uses EGPIO9 as SD/MMC card chip select (this is wired in DIO1
|
||||
header on the board).
|
||||
|
||||
You need to select CONFIG_MMC_SPI to use mmc_spi driver.
|
||||
|
||||
arch/arm/mach-ep93xx/ts72xx.c:
|
||||
|
||||
...
|
||||
#include <linux/gpio.h>
|
||||
#include <linux/spi/spi.h>
|
||||
|
||||
#include <linux/platform_data/spi-ep93xx.h>
|
||||
|
||||
/* this is our GPIO line used for chip select */
|
||||
#define MMC_CHIP_SELECT_GPIO EP93XX_GPIO_LINE_EGPIO9
|
||||
|
||||
static int ts72xx_mmc_spi_setup(struct spi_device *spi)
|
||||
{
|
||||
int err;
|
||||
|
||||
err = gpio_request(MMC_CHIP_SELECT_GPIO, spi->modalias);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
gpio_direction_output(MMC_CHIP_SELECT_GPIO, 1);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void ts72xx_mmc_spi_cleanup(struct spi_device *spi)
|
||||
{
|
||||
gpio_set_value(MMC_CHIP_SELECT_GPIO, 1);
|
||||
gpio_direction_input(MMC_CHIP_SELECT_GPIO);
|
||||
gpio_free(MMC_CHIP_SELECT_GPIO);
|
||||
}
|
||||
|
||||
static void ts72xx_mmc_spi_cs_control(struct spi_device *spi, int value)
|
||||
{
|
||||
gpio_set_value(MMC_CHIP_SELECT_GPIO, value);
|
||||
}
|
||||
|
||||
static struct ep93xx_spi_chip_ops ts72xx_mmc_spi_ops = {
|
||||
.setup = ts72xx_mmc_spi_setup,
|
||||
.cleanup = ts72xx_mmc_spi_cleanup,
|
||||
.cs_control = ts72xx_mmc_spi_cs_control,
|
||||
};
|
||||
|
||||
static struct spi_board_info ts72xx_spi_devices[] __initdata = {
|
||||
{
|
||||
.modalias = "mmc_spi",
|
||||
.controller_data = &ts72xx_mmc_spi_ops,
|
||||
/*
|
||||
* We use 10 MHz even though the maximum is 7.4 MHz. The driver
|
||||
* will limit it automatically to max. frequency.
|
||||
*/
|
||||
.max_speed_hz = 10 * 1000 * 1000,
|
||||
.bus_num = 0,
|
||||
.chip_select = 0,
|
||||
.mode = SPI_MODE_0,
|
||||
},
|
||||
};
|
||||
|
||||
static struct ep93xx_spi_info ts72xx_spi_info = {
|
||||
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
|
||||
};
|
||||
|
||||
static void __init ts72xx_init_machine(void)
|
||||
{
|
||||
...
|
||||
ep93xx_register_spi(&ts72xx_spi_info, ts72xx_spi_devices,
|
||||
ARRAY_SIZE(ts72xx_spi_devices));
|
||||
}
|
||||
|
||||
The driver can use DMA for the transfers also. In this case ts72xx_spi_info
|
||||
becomes:
|
||||
|
||||
static struct ep93xx_spi_info ts72xx_spi_info = {
|
||||
.num_chipselect = ARRAY_SIZE(ts72xx_spi_devices),
|
||||
.use_dma = true;
|
||||
};
|
||||
|
||||
Note that CONFIG_EP93XX_DMA should be enabled as well.
|
||||
|
||||
Thanks to
|
||||
=========
|
||||
Martin Guy, H. Hartley Sweeten and others who helped me during development of
|
||||
the driver. Simplemachines.it donated me a Sim.One board which I used testing
|
||||
the driver on EP9307.
|
241
Documentation/spi/pxa2xx
Normal file
241
Documentation/spi/pxa2xx
Normal file
|
@ -0,0 +1,241 @@
|
|||
PXA2xx SPI on SSP driver HOWTO
|
||||
===================================================
|
||||
This a mini howto on the pxa2xx_spi driver. The driver turns a PXA2xx
|
||||
synchronous serial port into a SPI master controller
|
||||
(see Documentation/spi/spi-summary). The driver has the following features
|
||||
|
||||
- Support for any PXA2xx SSP
|
||||
- SSP PIO and SSP DMA data transfers.
|
||||
- External and Internal (SSPFRM) chip selects.
|
||||
- Per slave device (chip) configuration.
|
||||
- Full suspend, freeze, resume support.
|
||||
|
||||
The driver is built around a "spi_message" fifo serviced by workqueue and a
|
||||
tasklet. The workqueue, "pump_messages", drives message fifo and the tasklet
|
||||
(pump_transfer) is responsible for queuing SPI transactions and setting up and
|
||||
launching the dma/interrupt driven transfers.
|
||||
|
||||
Declaring PXA2xx Master Controllers
|
||||
-----------------------------------
|
||||
Typically a SPI master is defined in the arch/.../mach-*/board-*.c as a
|
||||
"platform device". The master configuration is passed to the driver via a table
|
||||
found in include/linux/spi/pxa2xx_spi.h:
|
||||
|
||||
struct pxa2xx_spi_master {
|
||||
u32 clock_enable;
|
||||
u16 num_chipselect;
|
||||
u8 enable_dma;
|
||||
};
|
||||
|
||||
The "pxa2xx_spi_master.clock_enable" field is used to enable/disable the
|
||||
corresponding SSP peripheral block in the "Clock Enable Register (CKEN"). See
|
||||
the "PXA2xx Developer Manual" section "Clocks and Power Management".
|
||||
|
||||
The "pxa2xx_spi_master.num_chipselect" field is used to determine the number of
|
||||
slave device (chips) attached to this SPI master.
|
||||
|
||||
The "pxa2xx_spi_master.enable_dma" field informs the driver that SSP DMA should
|
||||
be used. This caused the driver to acquire two DMA channels: rx_channel and
|
||||
tx_channel. The rx_channel has a higher DMA service priority the tx_channel.
|
||||
See the "PXA2xx Developer Manual" section "DMA Controller".
|
||||
|
||||
NSSP MASTER SAMPLE
|
||||
------------------
|
||||
Below is a sample configuration using the PXA255 NSSP.
|
||||
|
||||
static struct resource pxa_spi_nssp_resources[] = {
|
||||
[0] = {
|
||||
.start = __PREG(SSCR0_P(2)), /* Start address of NSSP */
|
||||
.end = __PREG(SSCR0_P(2)) + 0x2c, /* Range of registers */
|
||||
.flags = IORESOURCE_MEM,
|
||||
},
|
||||
[1] = {
|
||||
.start = IRQ_NSSP, /* NSSP IRQ */
|
||||
.end = IRQ_NSSP,
|
||||
.flags = IORESOURCE_IRQ,
|
||||
},
|
||||
};
|
||||
|
||||
static struct pxa2xx_spi_master pxa_nssp_master_info = {
|
||||
.clock_enable = CKEN_NSSP, /* NSSP Peripheral clock */
|
||||
.num_chipselect = 1, /* Matches the number of chips attached to NSSP */
|
||||
.enable_dma = 1, /* Enables NSSP DMA */
|
||||
};
|
||||
|
||||
static struct platform_device pxa_spi_nssp = {
|
||||
.name = "pxa2xx-spi", /* MUST BE THIS VALUE, so device match driver */
|
||||
.id = 2, /* Bus number, MUST MATCH SSP number 1..n */
|
||||
.resource = pxa_spi_nssp_resources,
|
||||
.num_resources = ARRAY_SIZE(pxa_spi_nssp_resources),
|
||||
.dev = {
|
||||
.platform_data = &pxa_nssp_master_info, /* Passed to driver */
|
||||
},
|
||||
};
|
||||
|
||||
static struct platform_device *devices[] __initdata = {
|
||||
&pxa_spi_nssp,
|
||||
};
|
||||
|
||||
static void __init board_init(void)
|
||||
{
|
||||
(void)platform_add_device(devices, ARRAY_SIZE(devices));
|
||||
}
|
||||
|
||||
Declaring Slave Devices
|
||||
-----------------------
|
||||
Typically each SPI slave (chip) is defined in the arch/.../mach-*/board-*.c
|
||||
using the "spi_board_info" structure found in "linux/spi/spi.h". See
|
||||
"Documentation/spi/spi-summary" for additional information.
|
||||
|
||||
Each slave device attached to the PXA must provide slave specific configuration
|
||||
information via the structure "pxa2xx_spi_chip" found in
|
||||
"include/linux/spi/pxa2xx_spi.h". The pxa2xx_spi master controller driver
|
||||
will uses the configuration whenever the driver communicates with the slave
|
||||
device. All fields are optional.
|
||||
|
||||
struct pxa2xx_spi_chip {
|
||||
u8 tx_threshold;
|
||||
u8 rx_threshold;
|
||||
u8 dma_burst_size;
|
||||
u32 timeout;
|
||||
u8 enable_loopback;
|
||||
void (*cs_control)(u32 command);
|
||||
};
|
||||
|
||||
The "pxa2xx_spi_chip.tx_threshold" and "pxa2xx_spi_chip.rx_threshold" fields are
|
||||
used to configure the SSP hardware fifo. These fields are critical to the
|
||||
performance of pxa2xx_spi driver and misconfiguration will result in rx
|
||||
fifo overruns (especially in PIO mode transfers). Good default values are
|
||||
|
||||
.tx_threshold = 8,
|
||||
.rx_threshold = 8,
|
||||
|
||||
The range is 1 to 16 where zero indicates "use default".
|
||||
|
||||
The "pxa2xx_spi_chip.dma_burst_size" field is used to configure PXA2xx DMA
|
||||
engine and is related the "spi_device.bits_per_word" field. Read and understand
|
||||
the PXA2xx "Developer Manual" sections on the DMA controller and SSP Controllers
|
||||
to determine the correct value. An SSP configured for byte-wide transfers would
|
||||
use a value of 8. The driver will determine a reasonable default if
|
||||
dma_burst_size == 0.
|
||||
|
||||
The "pxa2xx_spi_chip.timeout" fields is used to efficiently handle
|
||||
trailing bytes in the SSP receiver fifo. The correct value for this field is
|
||||
dependent on the SPI bus speed ("spi_board_info.max_speed_hz") and the specific
|
||||
slave device. Please note that the PXA2xx SSP 1 does not support trailing byte
|
||||
timeouts and must busy-wait any trailing bytes.
|
||||
|
||||
The "pxa2xx_spi_chip.enable_loopback" field is used to place the SSP porting
|
||||
into internal loopback mode. In this mode the SSP controller internally
|
||||
connects the SSPTX pin to the SSPRX pin. This is useful for initial setup
|
||||
testing.
|
||||
|
||||
The "pxa2xx_spi_chip.cs_control" field is used to point to a board specific
|
||||
function for asserting/deasserting a slave device chip select. If the field is
|
||||
NULL, the pxa2xx_spi master controller driver assumes that the SSP port is
|
||||
configured to use SSPFRM instead.
|
||||
|
||||
NOTE: the SPI driver cannot control the chip select if SSPFRM is used, so the
|
||||
chipselect is dropped after each spi_transfer. Most devices need chip select
|
||||
asserted around the complete message. Use SSPFRM as a GPIO (through cs_control)
|
||||
to accommodate these chips.
|
||||
|
||||
|
||||
NSSP SLAVE SAMPLE
|
||||
-----------------
|
||||
The pxa2xx_spi_chip structure is passed to the pxa2xx_spi driver in the
|
||||
"spi_board_info.controller_data" field. Below is a sample configuration using
|
||||
the PXA255 NSSP.
|
||||
|
||||
/* Chip Select control for the CS8415A SPI slave device */
|
||||
static void cs8415a_cs_control(u32 command)
|
||||
{
|
||||
if (command & PXA2XX_CS_ASSERT)
|
||||
GPCR(2) = GPIO_bit(2);
|
||||
else
|
||||
GPSR(2) = GPIO_bit(2);
|
||||
}
|
||||
|
||||
/* Chip Select control for the CS8405A SPI slave device */
|
||||
static void cs8405a_cs_control(u32 command)
|
||||
{
|
||||
if (command & PXA2XX_CS_ASSERT)
|
||||
GPCR(3) = GPIO_bit(3);
|
||||
else
|
||||
GPSR(3) = GPIO_bit(3);
|
||||
}
|
||||
|
||||
static struct pxa2xx_spi_chip cs8415a_chip_info = {
|
||||
.tx_threshold = 8, /* SSP hardward FIFO threshold */
|
||||
.rx_threshold = 8, /* SSP hardward FIFO threshold */
|
||||
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
|
||||
.timeout = 235, /* See Intel documentation */
|
||||
.cs_control = cs8415a_cs_control, /* Use external chip select */
|
||||
};
|
||||
|
||||
static struct pxa2xx_spi_chip cs8405a_chip_info = {
|
||||
.tx_threshold = 8, /* SSP hardward FIFO threshold */
|
||||
.rx_threshold = 8, /* SSP hardward FIFO threshold */
|
||||
.dma_burst_size = 8, /* Byte wide transfers used so 8 byte bursts */
|
||||
.timeout = 235, /* See Intel documentation */
|
||||
.cs_control = cs8405a_cs_control, /* Use external chip select */
|
||||
};
|
||||
|
||||
static struct spi_board_info streetracer_spi_board_info[] __initdata = {
|
||||
{
|
||||
.modalias = "cs8415a", /* Name of spi_driver for this device */
|
||||
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
|
||||
.bus_num = 2, /* Framework bus number */
|
||||
.chip_select = 0, /* Framework chip select */
|
||||
.platform_data = NULL; /* No spi_driver specific config */
|
||||
.controller_data = &cs8415a_chip_info, /* Master chip config */
|
||||
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
|
||||
},
|
||||
{
|
||||
.modalias = "cs8405a", /* Name of spi_driver for this device */
|
||||
.max_speed_hz = 3686400, /* Run SSP as fast a possbile */
|
||||
.bus_num = 2, /* Framework bus number */
|
||||
.chip_select = 1, /* Framework chip select */
|
||||
.controller_data = &cs8405a_chip_info, /* Master chip config */
|
||||
.irq = STREETRACER_APCI_IRQ, /* Slave device interrupt */
|
||||
},
|
||||
};
|
||||
|
||||
static void __init streetracer_init(void)
|
||||
{
|
||||
spi_register_board_info(streetracer_spi_board_info,
|
||||
ARRAY_SIZE(streetracer_spi_board_info));
|
||||
}
|
||||
|
||||
|
||||
DMA and PIO I/O Support
|
||||
-----------------------
|
||||
The pxa2xx_spi driver supports both DMA and interrupt driven PIO message
|
||||
transfers. The driver defaults to PIO mode and DMA transfers must be enabled
|
||||
by setting the "enable_dma" flag in the "pxa2xx_spi_master" structure. The DMA
|
||||
mode supports both coherent and stream based DMA mappings.
|
||||
|
||||
The following logic is used to determine the type of I/O to be used on
|
||||
a per "spi_transfer" basis:
|
||||
|
||||
if !enable_dma then
|
||||
always use PIO transfers
|
||||
|
||||
if spi_message.len > 8191 then
|
||||
print "rate limited" warning
|
||||
use PIO transfers
|
||||
|
||||
if spi_message.is_dma_mapped and rx_dma_buf != 0 and tx_dma_buf != 0 then
|
||||
use coherent DMA mode
|
||||
|
||||
if rx_buf and tx_buf are aligned on 8 byte boundary then
|
||||
use streaming DMA mode
|
||||
|
||||
otherwise
|
||||
use PIO transfer
|
||||
|
||||
THANKS TO
|
||||
---------
|
||||
|
||||
David Brownell and others for mentoring the development of this driver.
|
||||
|
79
Documentation/spi/spi-lm70llp
Normal file
79
Documentation/spi/spi-lm70llp
Normal file
|
@ -0,0 +1,79 @@
|
|||
spi_lm70llp : LM70-LLP parport-to-SPI adapter
|
||||
==============================================
|
||||
|
||||
Supported board/chip:
|
||||
* National Semiconductor LM70 LLP evaluation board
|
||||
Datasheet: http://www.national.com/pf/LM/LM70.html
|
||||
|
||||
Author:
|
||||
Kaiwan N Billimoria <kaiwan@designergraphix.com>
|
||||
|
||||
Description
|
||||
-----------
|
||||
This driver provides glue code connecting a National Semiconductor LM70 LLP
|
||||
temperature sensor evaluation board to the kernel's SPI core subsystem.
|
||||
|
||||
This is a SPI master controller driver. It can be used in conjunction with
|
||||
(layered under) the LM70 logical driver (a "SPI protocol driver").
|
||||
In effect, this driver turns the parallel port interface on the eval board
|
||||
into a SPI bus with a single device, which will be driven by the generic
|
||||
LM70 driver (drivers/hwmon/lm70.c).
|
||||
|
||||
|
||||
Hardware Interfacing
|
||||
--------------------
|
||||
The schematic for this particular board (the LM70EVAL-LLP) is
|
||||
available (on page 4) here:
|
||||
|
||||
http://www.national.com/appinfo/tempsensors/files/LM70LLPEVALmanual.pdf
|
||||
|
||||
The hardware interfacing on the LM70 LLP eval board is as follows:
|
||||
|
||||
Parallel LM70 LLP
|
||||
Port Direction JP2 Header
|
||||
----------- --------- ----------------
|
||||
D0 2 - -
|
||||
D1 3 --> V+ 5
|
||||
D2 4 --> V+ 5
|
||||
D3 5 --> V+ 5
|
||||
D4 6 --> V+ 5
|
||||
D5 7 --> nCS 8
|
||||
D6 8 --> SCLK 3
|
||||
D7 9 --> SI/O 5
|
||||
GND 25 - GND 7
|
||||
Select 13 <-- SI/O 1
|
||||
----------- --------- ----------------
|
||||
|
||||
Note that since the LM70 uses a "3-wire" variant of SPI, the SI/SO pin
|
||||
is connected to both pin D7 (as Master Out) and Select (as Master In)
|
||||
using an arrangement that lets either the parport or the LM70 pull the
|
||||
pin low. This can't be shared with true SPI devices, but other 3-wire
|
||||
devices might share the same SI/SO pin.
|
||||
|
||||
The bitbanger routine in this driver (lm70_txrx) is called back from
|
||||
the bound "hwmon/lm70" protocol driver through its sysfs hook, using a
|
||||
spi_write_then_read() call. It performs Mode 0 (SPI/Microwire) bitbanging.
|
||||
The lm70 driver then inteprets the resulting digital temperature value
|
||||
and exports it through sysfs.
|
||||
|
||||
A "gotcha": National Semiconductor's LM70 LLP eval board circuit schematic
|
||||
shows that the SI/O line from the LM70 chip is connected to the base of a
|
||||
transistor Q1 (and also a pullup, and a zener diode to D7); while the
|
||||
collector is tied to VCC.
|
||||
|
||||
Interpreting this circuit, when the LM70 SI/O line is High (or tristate
|
||||
and not grounded by the host via D7), the transistor conducts and switches
|
||||
the collector to zero, which is reflected on pin 13 of the DB25 parport
|
||||
connector. When SI/O is Low (driven by the LM70 or the host) on the other
|
||||
hand, the transistor is cut off and the voltage tied to it's collector is
|
||||
reflected on pin 13 as a High level.
|
||||
|
||||
So: the getmiso inline routine in this driver takes this fact into account,
|
||||
inverting the value read at pin 13.
|
||||
|
||||
|
||||
Thanks to
|
||||
---------
|
||||
o David Brownell for mentoring the SPI-side driver development.
|
||||
o Dr.Craig Hollabaugh for the (early) "manual" bitbanging driver version.
|
||||
o Nadir Billimoria for help interpreting the circuit schematic.
|
36
Documentation/spi/spi-sc18is602
Normal file
36
Documentation/spi/spi-sc18is602
Normal file
|
@ -0,0 +1,36 @@
|
|||
Kernel driver spi-sc18is602
|
||||
===========================
|
||||
|
||||
Supported chips:
|
||||
* NXP SI18IS602/602B/603
|
||||
Datasheet: http://www.nxp.com/documents/data_sheet/SC18IS602_602B_603.pdf
|
||||
|
||||
Author:
|
||||
Guenter Roeck <linux@roeck-us.net>
|
||||
|
||||
|
||||
Description
|
||||
-----------
|
||||
|
||||
This driver provides connects a NXP SC18IS602/603 I2C-bus to SPI bridge to the
|
||||
kernel's SPI core subsystem.
|
||||
|
||||
The driver does not probe for supported chips, since the SI18IS602/603 does not
|
||||
support Chip ID registers. You will have to instantiate the devices explicitly.
|
||||
Please see Documentation/i2c/instantiating-devices for details.
|
||||
|
||||
|
||||
Usage Notes
|
||||
-----------
|
||||
|
||||
This driver requires the I2C adapter driver to support raw I2C messages. I2C
|
||||
adapter drivers which can only handle the SMBus protocol are not supported.
|
||||
|
||||
The maximum SPI message size supported by SC18IS602/603 is 200 bytes. Attempts
|
||||
to initiate longer transfers will fail with -EINVAL. EEPROM read operations and
|
||||
similar large accesses have to be split into multiple chunks of no more than
|
||||
200 bytes per SPI message (128 bytes of data per message is recommended). This
|
||||
means that programs such as "cp" or "od", which automatically use large block
|
||||
sizes to access a device, can not be used directly to read data from EEPROM.
|
||||
Programs such as dd, where the block size can be specified, should be used
|
||||
instead.
|
613
Documentation/spi/spi-summary
Normal file
613
Documentation/spi/spi-summary
Normal file
|
@ -0,0 +1,613 @@
|
|||
Overview of Linux kernel SPI support
|
||||
====================================
|
||||
|
||||
02-Feb-2012
|
||||
|
||||
What is SPI?
|
||||
------------
|
||||
The "Serial Peripheral Interface" (SPI) is a synchronous four wire serial
|
||||
link used to connect microcontrollers to sensors, memory, and peripherals.
|
||||
It's a simple "de facto" standard, not complicated enough to acquire a
|
||||
standardization body. SPI uses a master/slave configuration.
|
||||
|
||||
The three signal wires hold a clock (SCK, often on the order of 10 MHz),
|
||||
and parallel data lines with "Master Out, Slave In" (MOSI) or "Master In,
|
||||
Slave Out" (MISO) signals. (Other names are also used.) There are four
|
||||
clocking modes through which data is exchanged; mode-0 and mode-3 are most
|
||||
commonly used. Each clock cycle shifts data out and data in; the clock
|
||||
doesn't cycle except when there is a data bit to shift. Not all data bits
|
||||
are used though; not every protocol uses those full duplex capabilities.
|
||||
|
||||
SPI masters use a fourth "chip select" line to activate a given SPI slave
|
||||
device, so those three signal wires may be connected to several chips
|
||||
in parallel. All SPI slaves support chipselects; they are usually active
|
||||
low signals, labeled nCSx for slave 'x' (e.g. nCS0). Some devices have
|
||||
other signals, often including an interrupt to the master.
|
||||
|
||||
Unlike serial busses like USB or SMBus, even low level protocols for
|
||||
SPI slave functions are usually not interoperable between vendors
|
||||
(except for commodities like SPI memory chips).
|
||||
|
||||
- SPI may be used for request/response style device protocols, as with
|
||||
touchscreen sensors and memory chips.
|
||||
|
||||
- It may also be used to stream data in either direction (half duplex),
|
||||
or both of them at the same time (full duplex).
|
||||
|
||||
- Some devices may use eight bit words. Others may use different word
|
||||
lengths, such as streams of 12-bit or 20-bit digital samples.
|
||||
|
||||
- Words are usually sent with their most significant bit (MSB) first,
|
||||
but sometimes the least significant bit (LSB) goes first instead.
|
||||
|
||||
- Sometimes SPI is used to daisy-chain devices, like shift registers.
|
||||
|
||||
In the same way, SPI slaves will only rarely support any kind of automatic
|
||||
discovery/enumeration protocol. The tree of slave devices accessible from
|
||||
a given SPI master will normally be set up manually, with configuration
|
||||
tables.
|
||||
|
||||
SPI is only one of the names used by such four-wire protocols, and
|
||||
most controllers have no problem handling "MicroWire" (think of it as
|
||||
half-duplex SPI, for request/response protocols), SSP ("Synchronous
|
||||
Serial Protocol"), PSP ("Programmable Serial Protocol"), and other
|
||||
related protocols.
|
||||
|
||||
Some chips eliminate a signal line by combining MOSI and MISO, and
|
||||
limiting themselves to half-duplex at the hardware level. In fact
|
||||
some SPI chips have this signal mode as a strapping option. These
|
||||
can be accessed using the same programming interface as SPI, but of
|
||||
course they won't handle full duplex transfers. You may find such
|
||||
chips described as using "three wire" signaling: SCK, data, nCSx.
|
||||
(That data line is sometimes called MOMI or SISO.)
|
||||
|
||||
Microcontrollers often support both master and slave sides of the SPI
|
||||
protocol. This document (and Linux) currently only supports the master
|
||||
side of SPI interactions.
|
||||
|
||||
|
||||
Who uses it? On what kinds of systems?
|
||||
---------------------------------------
|
||||
Linux developers using SPI are probably writing device drivers for embedded
|
||||
systems boards. SPI is used to control external chips, and it is also a
|
||||
protocol supported by every MMC or SD memory card. (The older "DataFlash"
|
||||
cards, predating MMC cards but using the same connectors and card shape,
|
||||
support only SPI.) Some PC hardware uses SPI flash for BIOS code.
|
||||
|
||||
SPI slave chips range from digital/analog converters used for analog
|
||||
sensors and codecs, to memory, to peripherals like USB controllers
|
||||
or Ethernet adapters; and more.
|
||||
|
||||
Most systems using SPI will integrate a few devices on a mainboard.
|
||||
Some provide SPI links on expansion connectors; in cases where no
|
||||
dedicated SPI controller exists, GPIO pins can be used to create a
|
||||
low speed "bitbanging" adapter. Very few systems will "hotplug" an SPI
|
||||
controller; the reasons to use SPI focus on low cost and simple operation,
|
||||
and if dynamic reconfiguration is important, USB will often be a more
|
||||
appropriate low-pincount peripheral bus.
|
||||
|
||||
Many microcontrollers that can run Linux integrate one or more I/O
|
||||
interfaces with SPI modes. Given SPI support, they could use MMC or SD
|
||||
cards without needing a special purpose MMC/SD/SDIO controller.
|
||||
|
||||
|
||||
I'm confused. What are these four SPI "clock modes"?
|
||||
-----------------------------------------------------
|
||||
It's easy to be confused here, and the vendor documentation you'll
|
||||
find isn't necessarily helpful. The four modes combine two mode bits:
|
||||
|
||||
- CPOL indicates the initial clock polarity. CPOL=0 means the
|
||||
clock starts low, so the first (leading) edge is rising, and
|
||||
the second (trailing) edge is falling. CPOL=1 means the clock
|
||||
starts high, so the first (leading) edge is falling.
|
||||
|
||||
- CPHA indicates the clock phase used to sample data; CPHA=0 says
|
||||
sample on the leading edge, CPHA=1 means the trailing edge.
|
||||
|
||||
Since the signal needs to stablize before it's sampled, CPHA=0
|
||||
implies that its data is written half a clock before the first
|
||||
clock edge. The chipselect may have made it become available.
|
||||
|
||||
Chip specs won't always say "uses SPI mode X" in as many words,
|
||||
but their timing diagrams will make the CPOL and CPHA modes clear.
|
||||
|
||||
In the SPI mode number, CPOL is the high order bit and CPHA is the
|
||||
low order bit. So when a chip's timing diagram shows the clock
|
||||
starting low (CPOL=0) and data stabilized for sampling during the
|
||||
trailing clock edge (CPHA=1), that's SPI mode 1.
|
||||
|
||||
Note that the clock mode is relevant as soon as the chipselect goes
|
||||
active. So the master must set the clock to inactive before selecting
|
||||
a slave, and the slave can tell the chosen polarity by sampling the
|
||||
clock level when its select line goes active. That's why many devices
|
||||
support for example both modes 0 and 3: they don't care about polarity,
|
||||
and always clock data in/out on rising clock edges.
|
||||
|
||||
|
||||
How do these driver programming interfaces work?
|
||||
------------------------------------------------
|
||||
The <linux/spi/spi.h> header file includes kerneldoc, as does the
|
||||
main source code, and you should certainly read that chapter of the
|
||||
kernel API document. This is just an overview, so you get the big
|
||||
picture before those details.
|
||||
|
||||
SPI requests always go into I/O queues. Requests for a given SPI device
|
||||
are always executed in FIFO order, and complete asynchronously through
|
||||
completion callbacks. There are also some simple synchronous wrappers
|
||||
for those calls, including ones for common transaction types like writing
|
||||
a command and then reading its response.
|
||||
|
||||
There are two types of SPI driver, here called:
|
||||
|
||||
Controller drivers ... controllers may be built into System-On-Chip
|
||||
processors, and often support both Master and Slave roles.
|
||||
These drivers touch hardware registers and may use DMA.
|
||||
Or they can be PIO bitbangers, needing just GPIO pins.
|
||||
|
||||
Protocol drivers ... these pass messages through the controller
|
||||
driver to communicate with a Slave or Master device on the
|
||||
other side of an SPI link.
|
||||
|
||||
So for example one protocol driver might talk to the MTD layer to export
|
||||
data to filesystems stored on SPI flash like DataFlash; and others might
|
||||
control audio interfaces, present touchscreen sensors as input interfaces,
|
||||
or monitor temperature and voltage levels during industrial processing.
|
||||
And those might all be sharing the same controller driver.
|
||||
|
||||
A "struct spi_device" encapsulates the master-side interface between
|
||||
those two types of driver. At this writing, Linux has no slave side
|
||||
programming interface.
|
||||
|
||||
There is a minimal core of SPI programming interfaces, focussing on
|
||||
using the driver model to connect controller and protocol drivers using
|
||||
device tables provided by board specific initialization code. SPI
|
||||
shows up in sysfs in several locations:
|
||||
|
||||
/sys/devices/.../CTLR ... physical node for a given SPI controller
|
||||
|
||||
/sys/devices/.../CTLR/spiB.C ... spi_device on bus "B",
|
||||
chipselect C, accessed through CTLR.
|
||||
|
||||
/sys/bus/spi/devices/spiB.C ... symlink to that physical
|
||||
.../CTLR/spiB.C device
|
||||
|
||||
/sys/devices/.../CTLR/spiB.C/modalias ... identifies the driver
|
||||
that should be used with this device (for hotplug/coldplug)
|
||||
|
||||
/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
|
||||
|
||||
/sys/class/spi_master/spiB ... symlink (or actual device node) to
|
||||
a logical node which could hold class related state for the
|
||||
controller managing bus "B". All spiB.* devices share one
|
||||
physical SPI bus segment, with SCLK, MOSI, and MISO.
|
||||
|
||||
Note that the actual location of the controller's class state depends
|
||||
on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time,
|
||||
the only class-specific state is the bus number ("B" in "spiB"), so
|
||||
those /sys/class entries are only useful to quickly identify busses.
|
||||
|
||||
|
||||
How does board-specific init code declare SPI devices?
|
||||
------------------------------------------------------
|
||||
Linux needs several kinds of information to properly configure SPI devices.
|
||||
That information is normally provided by board-specific code, even for
|
||||
chips that do support some of automated discovery/enumeration.
|
||||
|
||||
DECLARE CONTROLLERS
|
||||
|
||||
The first kind of information is a list of what SPI controllers exist.
|
||||
For System-on-Chip (SOC) based boards, these will usually be platform
|
||||
devices, and the controller may need some platform_data in order to
|
||||
operate properly. The "struct platform_device" will include resources
|
||||
like the physical address of the controller's first register and its IRQ.
|
||||
|
||||
Platforms will often abstract the "register SPI controller" operation,
|
||||
maybe coupling it with code to initialize pin configurations, so that
|
||||
the arch/.../mach-*/board-*.c files for several boards can all share the
|
||||
same basic controller setup code. This is because most SOCs have several
|
||||
SPI-capable controllers, and only the ones actually usable on a given
|
||||
board should normally be set up and registered.
|
||||
|
||||
So for example arch/.../mach-*/board-*.c files might have code like:
|
||||
|
||||
#include <mach/spi.h> /* for mysoc_spi_data */
|
||||
|
||||
/* if your mach-* infrastructure doesn't support kernels that can
|
||||
* run on multiple boards, pdata wouldn't benefit from "__init".
|
||||
*/
|
||||
static struct mysoc_spi_data pdata __initdata = { ... };
|
||||
|
||||
static __init board_init(void)
|
||||
{
|
||||
...
|
||||
/* this board only uses SPI controller #2 */
|
||||
mysoc_register_spi(2, &pdata);
|
||||
...
|
||||
}
|
||||
|
||||
And SOC-specific utility code might look something like:
|
||||
|
||||
#include <mach/spi.h>
|
||||
|
||||
static struct platform_device spi2 = { ... };
|
||||
|
||||
void mysoc_register_spi(unsigned n, struct mysoc_spi_data *pdata)
|
||||
{
|
||||
struct mysoc_spi_data *pdata2;
|
||||
|
||||
pdata2 = kmalloc(sizeof *pdata2, GFP_KERNEL);
|
||||
*pdata2 = pdata;
|
||||
...
|
||||
if (n == 2) {
|
||||
spi2->dev.platform_data = pdata2;
|
||||
register_platform_device(&spi2);
|
||||
|
||||
/* also: set up pin modes so the spi2 signals are
|
||||
* visible on the relevant pins ... bootloaders on
|
||||
* production boards may already have done this, but
|
||||
* developer boards will often need Linux to do it.
|
||||
*/
|
||||
}
|
||||
...
|
||||
}
|
||||
|
||||
Notice how the platform_data for boards may be different, even if the
|
||||
same SOC controller is used. For example, on one board SPI might use
|
||||
an external clock, where another derives the SPI clock from current
|
||||
settings of some master clock.
|
||||
|
||||
|
||||
DECLARE SLAVE DEVICES
|
||||
|
||||
The second kind of information is a list of what SPI slave devices exist
|
||||
on the target board, often with some board-specific data needed for the
|
||||
driver to work correctly.
|
||||
|
||||
Normally your arch/.../mach-*/board-*.c files would provide a small table
|
||||
listing the SPI devices on each board. (This would typically be only a
|
||||
small handful.) That might look like:
|
||||
|
||||
static struct ads7846_platform_data ads_info = {
|
||||
.vref_delay_usecs = 100,
|
||||
.x_plate_ohms = 580,
|
||||
.y_plate_ohms = 410,
|
||||
};
|
||||
|
||||
static struct spi_board_info spi_board_info[] __initdata = {
|
||||
{
|
||||
.modalias = "ads7846",
|
||||
.platform_data = &ads_info,
|
||||
.mode = SPI_MODE_0,
|
||||
.irq = GPIO_IRQ(31),
|
||||
.max_speed_hz = 120000 /* max sample rate at 3V */ * 16,
|
||||
.bus_num = 1,
|
||||
.chip_select = 0,
|
||||
},
|
||||
};
|
||||
|
||||
Again, notice how board-specific information is provided; each chip may need
|
||||
several types. This example shows generic constraints like the fastest SPI
|
||||
clock to allow (a function of board voltage in this case) or how an IRQ pin
|
||||
is wired, plus chip-specific constraints like an important delay that's
|
||||
changed by the capacitance at one pin.
|
||||
|
||||
(There's also "controller_data", information that may be useful to the
|
||||
controller driver. An example would be peripheral-specific DMA tuning
|
||||
data or chipselect callbacks. This is stored in spi_device later.)
|
||||
|
||||
The board_info should provide enough information to let the system work
|
||||
without the chip's driver being loaded. The most troublesome aspect of
|
||||
that is likely the SPI_CS_HIGH bit in the spi_device.mode field, since
|
||||
sharing a bus with a device that interprets chipselect "backwards" is
|
||||
not possible until the infrastructure knows how to deselect it.
|
||||
|
||||
Then your board initialization code would register that table with the SPI
|
||||
infrastructure, so that it's available later when the SPI master controller
|
||||
driver is registered:
|
||||
|
||||
spi_register_board_info(spi_board_info, ARRAY_SIZE(spi_board_info));
|
||||
|
||||
Like with other static board-specific setup, you won't unregister those.
|
||||
|
||||
The widely used "card" style computers bundle memory, cpu, and little else
|
||||
onto a card that's maybe just thirty square centimeters. On such systems,
|
||||
your arch/.../mach-.../board-*.c file would primarily provide information
|
||||
about the devices on the mainboard into which such a card is plugged. That
|
||||
certainly includes SPI devices hooked up through the card connectors!
|
||||
|
||||
|
||||
NON-STATIC CONFIGURATIONS
|
||||
|
||||
Developer boards often play by different rules than product boards, and one
|
||||
example is the potential need to hotplug SPI devices and/or controllers.
|
||||
|
||||
For those cases you might need to use spi_busnum_to_master() to look
|
||||
up the spi bus master, and will likely need spi_new_device() to provide the
|
||||
board info based on the board that was hotplugged. Of course, you'd later
|
||||
call at least spi_unregister_device() when that board is removed.
|
||||
|
||||
When Linux includes support for MMC/SD/SDIO/DataFlash cards through SPI, those
|
||||
configurations will also be dynamic. Fortunately, such devices all support
|
||||
basic device identification probes, so they should hotplug normally.
|
||||
|
||||
|
||||
How do I write an "SPI Protocol Driver"?
|
||||
----------------------------------------
|
||||
Most SPI drivers are currently kernel drivers, but there's also support
|
||||
for userspace drivers. Here we talk only about kernel drivers.
|
||||
|
||||
SPI protocol drivers somewhat resemble platform device drivers:
|
||||
|
||||
static struct spi_driver CHIP_driver = {
|
||||
.driver = {
|
||||
.name = "CHIP",
|
||||
.owner = THIS_MODULE,
|
||||
},
|
||||
|
||||
.probe = CHIP_probe,
|
||||
.remove = CHIP_remove,
|
||||
.suspend = CHIP_suspend,
|
||||
.resume = CHIP_resume,
|
||||
};
|
||||
|
||||
The driver core will automatically attempt to bind this driver to any SPI
|
||||
device whose board_info gave a modalias of "CHIP". Your probe() code
|
||||
might look like this unless you're creating a device which is managing
|
||||
a bus (appearing under /sys/class/spi_master).
|
||||
|
||||
static int CHIP_probe(struct spi_device *spi)
|
||||
{
|
||||
struct CHIP *chip;
|
||||
struct CHIP_platform_data *pdata;
|
||||
|
||||
/* assuming the driver requires board-specific data: */
|
||||
pdata = &spi->dev.platform_data;
|
||||
if (!pdata)
|
||||
return -ENODEV;
|
||||
|
||||
/* get memory for driver's per-chip state */
|
||||
chip = kzalloc(sizeof *chip, GFP_KERNEL);
|
||||
if (!chip)
|
||||
return -ENOMEM;
|
||||
spi_set_drvdata(spi, chip);
|
||||
|
||||
... etc
|
||||
return 0;
|
||||
}
|
||||
|
||||
As soon as it enters probe(), the driver may issue I/O requests to
|
||||
the SPI device using "struct spi_message". When remove() returns,
|
||||
or after probe() fails, the driver guarantees that it won't submit
|
||||
any more such messages.
|
||||
|
||||
- An spi_message is a sequence of protocol operations, executed
|
||||
as one atomic sequence. SPI driver controls include:
|
||||
|
||||
+ when bidirectional reads and writes start ... by how its
|
||||
sequence of spi_transfer requests is arranged;
|
||||
|
||||
+ which I/O buffers are used ... each spi_transfer wraps a
|
||||
buffer for each transfer direction, supporting full duplex
|
||||
(two pointers, maybe the same one in both cases) and half
|
||||
duplex (one pointer is NULL) transfers;
|
||||
|
||||
+ optionally defining short delays after transfers ... using
|
||||
the spi_transfer.delay_usecs setting (this delay can be the
|
||||
only protocol effect, if the buffer length is zero);
|
||||
|
||||
+ whether the chipselect becomes inactive after a transfer and
|
||||
any delay ... by using the spi_transfer.cs_change flag;
|
||||
|
||||
+ hinting whether the next message is likely to go to this same
|
||||
device ... using the spi_transfer.cs_change flag on the last
|
||||
transfer in that atomic group, and potentially saving costs
|
||||
for chip deselect and select operations.
|
||||
|
||||
- Follow standard kernel rules, and provide DMA-safe buffers in
|
||||
your messages. That way controller drivers using DMA aren't forced
|
||||
to make extra copies unless the hardware requires it (e.g. working
|
||||
around hardware errata that force the use of bounce buffering).
|
||||
|
||||
If standard dma_map_single() handling of these buffers is inappropriate,
|
||||
you can use spi_message.is_dma_mapped to tell the controller driver
|
||||
that you've already provided the relevant DMA addresses.
|
||||
|
||||
- The basic I/O primitive is spi_async(). Async requests may be
|
||||
issued in any context (irq handler, task, etc) and completion
|
||||
is reported using a callback provided with the message.
|
||||
After any detected error, the chip is deselected and processing
|
||||
of that spi_message is aborted.
|
||||
|
||||
- There are also synchronous wrappers like spi_sync(), and wrappers
|
||||
like spi_read(), spi_write(), and spi_write_then_read(). These
|
||||
may be issued only in contexts that may sleep, and they're all
|
||||
clean (and small, and "optional") layers over spi_async().
|
||||
|
||||
- The spi_write_then_read() call, and convenience wrappers around
|
||||
it, should only be used with small amounts of data where the
|
||||
cost of an extra copy may be ignored. It's designed to support
|
||||
common RPC-style requests, such as writing an eight bit command
|
||||
and reading a sixteen bit response -- spi_w8r16() being one its
|
||||
wrappers, doing exactly that.
|
||||
|
||||
Some drivers may need to modify spi_device characteristics like the
|
||||
transfer mode, wordsize, or clock rate. This is done with spi_setup(),
|
||||
which would normally be called from probe() before the first I/O is
|
||||
done to the device. However, that can also be called at any time
|
||||
that no message is pending for that device.
|
||||
|
||||
While "spi_device" would be the bottom boundary of the driver, the
|
||||
upper boundaries might include sysfs (especially for sensor readings),
|
||||
the input layer, ALSA, networking, MTD, the character device framework,
|
||||
or other Linux subsystems.
|
||||
|
||||
Note that there are two types of memory your driver must manage as part
|
||||
of interacting with SPI devices.
|
||||
|
||||
- I/O buffers use the usual Linux rules, and must be DMA-safe.
|
||||
You'd normally allocate them from the heap or free page pool.
|
||||
Don't use the stack, or anything that's declared "static".
|
||||
|
||||
- The spi_message and spi_transfer metadata used to glue those
|
||||
I/O buffers into a group of protocol transactions. These can
|
||||
be allocated anywhere it's convenient, including as part of
|
||||
other allocate-once driver data structures. Zero-init these.
|
||||
|
||||
If you like, spi_message_alloc() and spi_message_free() convenience
|
||||
routines are available to allocate and zero-initialize an spi_message
|
||||
with several transfers.
|
||||
|
||||
|
||||
How do I write an "SPI Master Controller Driver"?
|
||||
-------------------------------------------------
|
||||
An SPI controller will probably be registered on the platform_bus; write
|
||||
a driver to bind to the device, whichever bus is involved.
|
||||
|
||||
The main task of this type of driver is to provide an "spi_master".
|
||||
Use spi_alloc_master() to allocate the master, and spi_master_get_devdata()
|
||||
to get the driver-private data allocated for that device.
|
||||
|
||||
struct spi_master *master;
|
||||
struct CONTROLLER *c;
|
||||
|
||||
master = spi_alloc_master(dev, sizeof *c);
|
||||
if (!master)
|
||||
return -ENODEV;
|
||||
|
||||
c = spi_master_get_devdata(master);
|
||||
|
||||
The driver will initialize the fields of that spi_master, including the
|
||||
bus number (maybe the same as the platform device ID) and three methods
|
||||
used to interact with the SPI core and SPI protocol drivers. It will
|
||||
also initialize its own internal state. (See below about bus numbering
|
||||
and those methods.)
|
||||
|
||||
After you initialize the spi_master, then use spi_register_master() to
|
||||
publish it to the rest of the system. At that time, device nodes for the
|
||||
controller and any predeclared spi devices will be made available, and
|
||||
the driver model core will take care of binding them to drivers.
|
||||
|
||||
If you need to remove your SPI controller driver, spi_unregister_master()
|
||||
will reverse the effect of spi_register_master().
|
||||
|
||||
|
||||
BUS NUMBERING
|
||||
|
||||
Bus numbering is important, since that's how Linux identifies a given
|
||||
SPI bus (shared SCK, MOSI, MISO). Valid bus numbers start at zero. On
|
||||
SOC systems, the bus numbers should match the numbers defined by the chip
|
||||
manufacturer. For example, hardware controller SPI2 would be bus number 2,
|
||||
and spi_board_info for devices connected to it would use that number.
|
||||
|
||||
If you don't have such hardware-assigned bus number, and for some reason
|
||||
you can't just assign them, then provide a negative bus number. That will
|
||||
then be replaced by a dynamically assigned number. You'd then need to treat
|
||||
this as a non-static configuration (see above).
|
||||
|
||||
|
||||
SPI MASTER METHODS
|
||||
|
||||
master->setup(struct spi_device *spi)
|
||||
This sets up the device clock rate, SPI mode, and word sizes.
|
||||
Drivers may change the defaults provided by board_info, and then
|
||||
call spi_setup(spi) to invoke this routine. It may sleep.
|
||||
|
||||
Unless each SPI slave has its own configuration registers, don't
|
||||
change them right away ... otherwise drivers could corrupt I/O
|
||||
that's in progress for other SPI devices.
|
||||
|
||||
** BUG ALERT: for some reason the first version of
|
||||
** many spi_master drivers seems to get this wrong.
|
||||
** When you code setup(), ASSUME that the controller
|
||||
** is actively processing transfers for another device.
|
||||
|
||||
master->cleanup(struct spi_device *spi)
|
||||
Your controller driver may use spi_device.controller_state to hold
|
||||
state it dynamically associates with that device. If you do that,
|
||||
be sure to provide the cleanup() method to free that state.
|
||||
|
||||
master->prepare_transfer_hardware(struct spi_master *master)
|
||||
This will be called by the queue mechanism to signal to the driver
|
||||
that a message is coming in soon, so the subsystem requests the
|
||||
driver to prepare the transfer hardware by issuing this call.
|
||||
This may sleep.
|
||||
|
||||
master->unprepare_transfer_hardware(struct spi_master *master)
|
||||
This will be called by the queue mechanism to signal to the driver
|
||||
that there are no more messages pending in the queue and it may
|
||||
relax the hardware (e.g. by power management calls). This may sleep.
|
||||
|
||||
master->transfer_one_message(struct spi_master *master,
|
||||
struct spi_message *mesg)
|
||||
The subsystem calls the driver to transfer a single message while
|
||||
queuing transfers that arrive in the meantime. When the driver is
|
||||
finished with this message, it must call
|
||||
spi_finalize_current_message() so the subsystem can issue the next
|
||||
message. This may sleep.
|
||||
|
||||
master->transfer_one(struct spi_master *master, struct spi_device *spi,
|
||||
struct spi_transfer *transfer)
|
||||
The subsystem calls the driver to transfer a single transfer while
|
||||
queuing transfers that arrive in the meantime. When the driver is
|
||||
finished with this transfer, it must call
|
||||
spi_finalize_current_transfer() so the subsystem can issue the next
|
||||
transfer. This may sleep. Note: transfer_one and transfer_one_message
|
||||
are mutually exclusive; when both are set, the generic subsystem does
|
||||
not call your transfer_one callback.
|
||||
|
||||
Return values:
|
||||
negative errno: error
|
||||
0: transfer is finished
|
||||
1: transfer is still in progress
|
||||
|
||||
DEPRECATED METHODS
|
||||
|
||||
master->transfer(struct spi_device *spi, struct spi_message *message)
|
||||
This must not sleep. Its responsibility is to arrange that the
|
||||
transfer happens and its complete() callback is issued. The two
|
||||
will normally happen later, after other transfers complete, and
|
||||
if the controller is idle it will need to be kickstarted. This
|
||||
method is not used on queued controllers and must be NULL if
|
||||
transfer_one_message() and (un)prepare_transfer_hardware() are
|
||||
implemented.
|
||||
|
||||
|
||||
SPI MESSAGE QUEUE
|
||||
|
||||
If you are happy with the standard queueing mechanism provided by the
|
||||
SPI subsystem, just implement the queued methods specified above. Using
|
||||
the message queue has the upside of centralizing a lot of code and
|
||||
providing pure process-context execution of methods. The message queue
|
||||
can also be elevated to realtime priority on high-priority SPI traffic.
|
||||
|
||||
Unless the queueing mechanism in the SPI subsystem is selected, the bulk
|
||||
of the driver will be managing the I/O queue fed by the now deprecated
|
||||
function transfer().
|
||||
|
||||
That queue could be purely conceptual. For example, a driver used only
|
||||
for low-frequency sensor access might be fine using synchronous PIO.
|
||||
|
||||
But the queue will probably be very real, using message->queue, PIO,
|
||||
often DMA (especially if the root filesystem is in SPI flash), and
|
||||
execution contexts like IRQ handlers, tasklets, or workqueues (such
|
||||
as keventd). Your driver can be as fancy, or as simple, as you need.
|
||||
Such a transfer() method would normally just add the message to a
|
||||
queue, and then start some asynchronous transfer engine (unless it's
|
||||
already running).
|
||||
|
||||
|
||||
THANKS TO
|
||||
---------
|
||||
Contributors to Linux-SPI discussions include (in alphabetical order,
|
||||
by last name):
|
||||
|
||||
Mark Brown
|
||||
David Brownell
|
||||
Russell King
|
||||
Grant Likely
|
||||
Dmitry Pervushin
|
||||
Stephen Street
|
||||
Mark Underwood
|
||||
Andrew Victor
|
||||
Linus Walleij
|
||||
Vitaly Wool
|
149
Documentation/spi/spidev
Normal file
149
Documentation/spi/spidev
Normal file
|
@ -0,0 +1,149 @@
|
|||
SPI devices have a limited userspace API, supporting basic half-duplex
|
||||
read() and write() access to SPI slave devices. Using ioctl() requests,
|
||||
full duplex transfers and device I/O configuration are also available.
|
||||
|
||||
#include <fcntl.h>
|
||||
#include <unistd.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/spi/spidev.h>
|
||||
|
||||
Some reasons you might want to use this programming interface include:
|
||||
|
||||
* Prototyping in an environment that's not crash-prone; stray pointers
|
||||
in userspace won't normally bring down any Linux system.
|
||||
|
||||
* Developing simple protocols used to talk to microcontrollers acting
|
||||
as SPI slaves, which you may need to change quite often.
|
||||
|
||||
Of course there are drivers that can never be written in userspace, because
|
||||
they need to access kernel interfaces (such as IRQ handlers or other layers
|
||||
of the driver stack) that are not accessible to userspace.
|
||||
|
||||
|
||||
DEVICE CREATION, DRIVER BINDING
|
||||
===============================
|
||||
The simplest way to arrange to use this driver is to just list it in the
|
||||
spi_board_info for a device as the driver it should use: the "modalias"
|
||||
entry is "spidev", matching the name of the driver exposing this API.
|
||||
Set up the other device characteristics (bits per word, SPI clocking,
|
||||
chipselect polarity, etc) as usual, so you won't always need to override
|
||||
them later.
|
||||
|
||||
(Sysfs also supports userspace driven binding/unbinding of drivers to
|
||||
devices. That mechanism might be supported here in the future.)
|
||||
|
||||
When you do that, the sysfs node for the SPI device will include a child
|
||||
device node with a "dev" attribute that will be understood by udev or mdev.
|
||||
(Larger systems will have "udev". Smaller ones may configure "mdev" into
|
||||
busybox; it's less featureful, but often enough.) For a SPI device with
|
||||
chipselect C on bus B, you should see:
|
||||
|
||||
/dev/spidevB.C ... character special device, major number 153 with
|
||||
a dynamically chosen minor device number. This is the node
|
||||
that userspace programs will open, created by "udev" or "mdev".
|
||||
|
||||
/sys/devices/.../spiB.C ... as usual, the SPI device node will
|
||||
be a child of its SPI master controller.
|
||||
|
||||
/sys/class/spidev/spidevB.C ... created when the "spidev" driver
|
||||
binds to that device. (Directory or symlink, based on whether
|
||||
or not you enabled the "deprecated sysfs files" Kconfig option.)
|
||||
|
||||
Do not try to manage the /dev character device special file nodes by hand.
|
||||
That's error prone, and you'd need to pay careful attention to system
|
||||
security issues; udev/mdev should already be configured securely.
|
||||
|
||||
If you unbind the "spidev" driver from that device, those two "spidev" nodes
|
||||
(in sysfs and in /dev) should automatically be removed (respectively by the
|
||||
kernel and by udev/mdev). You can unbind by removing the "spidev" driver
|
||||
module, which will affect all devices using this driver. You can also unbind
|
||||
by having kernel code remove the SPI device, probably by removing the driver
|
||||
for its SPI controller (so its spi_master vanishes).
|
||||
|
||||
Since this is a standard Linux device driver -- even though it just happens
|
||||
to expose a low level API to userspace -- it can be associated with any number
|
||||
of devices at a time. Just provide one spi_board_info record for each such
|
||||
SPI device, and you'll get a /dev device node for each device.
|
||||
|
||||
|
||||
BASIC CHARACTER DEVICE API
|
||||
==========================
|
||||
Normal open() and close() operations on /dev/spidevB.D files work as you
|
||||
would expect.
|
||||
|
||||
Standard read() and write() operations are obviously only half-duplex, and
|
||||
the chipselect is deactivated between those operations. Full-duplex access,
|
||||
and composite operation without chipselect de-activation, is available using
|
||||
the SPI_IOC_MESSAGE(N) request.
|
||||
|
||||
Several ioctl() requests let your driver read or override the device's current
|
||||
settings for data transfer parameters:
|
||||
|
||||
SPI_IOC_RD_MODE, SPI_IOC_WR_MODE ... pass a pointer to a byte which will
|
||||
return (RD) or assign (WR) the SPI transfer mode. Use the constants
|
||||
SPI_MODE_0..SPI_MODE_3; or if you prefer you can combine SPI_CPOL
|
||||
(clock polarity, idle high iff this is set) or SPI_CPHA (clock phase,
|
||||
sample on trailing edge iff this is set) flags.
|
||||
Note that this request is limited to SPI mode flags that fit in a
|
||||
single byte.
|
||||
|
||||
SPI_IOC_RD_MODE32, SPI_IOC_WR_MODE32 ... pass a pointer to a uin32_t
|
||||
which will return (RD) or assign (WR) the full SPI transfer mode,
|
||||
not limited to the bits that fit in one byte.
|
||||
|
||||
SPI_IOC_RD_LSB_FIRST, SPI_IOC_WR_LSB_FIRST ... pass a pointer to a byte
|
||||
which will return (RD) or assign (WR) the bit justification used to
|
||||
transfer SPI words. Zero indicates MSB-first; other values indicate
|
||||
the less common LSB-first encoding. In both cases the specified value
|
||||
is right-justified in each word, so that unused (TX) or undefined (RX)
|
||||
bits are in the MSBs.
|
||||
|
||||
SPI_IOC_RD_BITS_PER_WORD, SPI_IOC_WR_BITS_PER_WORD ... pass a pointer to
|
||||
a byte which will return (RD) or assign (WR) the number of bits in
|
||||
each SPI transfer word. The value zero signifies eight bits.
|
||||
|
||||
SPI_IOC_RD_MAX_SPEED_HZ, SPI_IOC_WR_MAX_SPEED_HZ ... pass a pointer to a
|
||||
u32 which will return (RD) or assign (WR) the maximum SPI transfer
|
||||
speed, in Hz. The controller can't necessarily assign that specific
|
||||
clock speed.
|
||||
|
||||
NOTES:
|
||||
|
||||
- At this time there is no async I/O support; everything is purely
|
||||
synchronous.
|
||||
|
||||
- There's currently no way to report the actual bit rate used to
|
||||
shift data to/from a given device.
|
||||
|
||||
- From userspace, you can't currently change the chip select polarity;
|
||||
that could corrupt transfers to other devices sharing the SPI bus.
|
||||
Each SPI device is deselected when it's not in active use, allowing
|
||||
other drivers to talk to other devices.
|
||||
|
||||
- There's a limit on the number of bytes each I/O request can transfer
|
||||
to the SPI device. It defaults to one page, but that can be changed
|
||||
using a module parameter.
|
||||
|
||||
- Because SPI has no low-level transfer acknowledgement, you usually
|
||||
won't see any I/O errors when talking to a non-existent device.
|
||||
|
||||
|
||||
FULL DUPLEX CHARACTER DEVICE API
|
||||
================================
|
||||
|
||||
See the spidev_fdx.c sample program for one example showing the use of the
|
||||
full duplex programming interface. (Although it doesn't perform a full duplex
|
||||
transfer.) The model is the same as that used in the kernel spi_sync()
|
||||
request; the individual transfers offer the same capabilities as are
|
||||
available to kernel drivers (except that it's not asynchronous).
|
||||
|
||||
The example shows one half-duplex RPC-style request and response message.
|
||||
These requests commonly require that the chip not be deselected between
|
||||
the request and response. Several such requests could be chained into
|
||||
a single kernel request, even allowing the chip to be deselected after
|
||||
each response. (Other protocol options include changing the word size
|
||||
and bitrate for each transfer segment.)
|
||||
|
||||
To make a full duplex request, provide both rx_buf and tx_buf for the
|
||||
same transfer. It's even OK if those are the same buffer.
|
158
Documentation/spi/spidev_fdx.c
Normal file
158
Documentation/spi/spidev_fdx.c
Normal file
|
@ -0,0 +1,158 @@
|
|||
#include <stdio.h>
|
||||
#include <unistd.h>
|
||||
#include <stdlib.h>
|
||||
#include <fcntl.h>
|
||||
#include <string.h>
|
||||
|
||||
#include <sys/ioctl.h>
|
||||
#include <sys/types.h>
|
||||
#include <sys/stat.h>
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/spi/spidev.h>
|
||||
|
||||
|
||||
static int verbose;
|
||||
|
||||
static void do_read(int fd, int len)
|
||||
{
|
||||
unsigned char buf[32], *bp;
|
||||
int status;
|
||||
|
||||
/* read at least 2 bytes, no more than 32 */
|
||||
if (len < 2)
|
||||
len = 2;
|
||||
else if (len > sizeof(buf))
|
||||
len = sizeof(buf);
|
||||
memset(buf, 0, sizeof buf);
|
||||
|
||||
status = read(fd, buf, len);
|
||||
if (status < 0) {
|
||||
perror("read");
|
||||
return;
|
||||
}
|
||||
if (status != len) {
|
||||
fprintf(stderr, "short read\n");
|
||||
return;
|
||||
}
|
||||
|
||||
printf("read(%2d, %2d): %02x %02x,", len, status,
|
||||
buf[0], buf[1]);
|
||||
status -= 2;
|
||||
bp = buf + 2;
|
||||
while (status-- > 0)
|
||||
printf(" %02x", *bp++);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void do_msg(int fd, int len)
|
||||
{
|
||||
struct spi_ioc_transfer xfer[2];
|
||||
unsigned char buf[32], *bp;
|
||||
int status;
|
||||
|
||||
memset(xfer, 0, sizeof xfer);
|
||||
memset(buf, 0, sizeof buf);
|
||||
|
||||
if (len > sizeof buf)
|
||||
len = sizeof buf;
|
||||
|
||||
buf[0] = 0xaa;
|
||||
xfer[0].tx_buf = (unsigned long)buf;
|
||||
xfer[0].len = 1;
|
||||
|
||||
xfer[1].rx_buf = (unsigned long) buf;
|
||||
xfer[1].len = len;
|
||||
|
||||
status = ioctl(fd, SPI_IOC_MESSAGE(2), xfer);
|
||||
if (status < 0) {
|
||||
perror("SPI_IOC_MESSAGE");
|
||||
return;
|
||||
}
|
||||
|
||||
printf("response(%2d, %2d): ", len, status);
|
||||
for (bp = buf; len; len--)
|
||||
printf(" %02x", *bp++);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
static void dumpstat(const char *name, int fd)
|
||||
{
|
||||
__u8 lsb, bits;
|
||||
__u32 mode, speed;
|
||||
|
||||
if (ioctl(fd, SPI_IOC_RD_MODE32, &mode) < 0) {
|
||||
perror("SPI rd_mode");
|
||||
return;
|
||||
}
|
||||
if (ioctl(fd, SPI_IOC_RD_LSB_FIRST, &lsb) < 0) {
|
||||
perror("SPI rd_lsb_fist");
|
||||
return;
|
||||
}
|
||||
if (ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits) < 0) {
|
||||
perror("SPI bits_per_word");
|
||||
return;
|
||||
}
|
||||
if (ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed) < 0) {
|
||||
perror("SPI max_speed_hz");
|
||||
return;
|
||||
}
|
||||
|
||||
printf("%s: spi mode 0x%x, %d bits %sper word, %d Hz max\n",
|
||||
name, mode, bits, lsb ? "(lsb first) " : "", speed);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
{
|
||||
int c;
|
||||
int readcount = 0;
|
||||
int msglen = 0;
|
||||
int fd;
|
||||
const char *name;
|
||||
|
||||
while ((c = getopt(argc, argv, "hm:r:v")) != EOF) {
|
||||
switch (c) {
|
||||
case 'm':
|
||||
msglen = atoi(optarg);
|
||||
if (msglen < 0)
|
||||
goto usage;
|
||||
continue;
|
||||
case 'r':
|
||||
readcount = atoi(optarg);
|
||||
if (readcount < 0)
|
||||
goto usage;
|
||||
continue;
|
||||
case 'v':
|
||||
verbose++;
|
||||
continue;
|
||||
case 'h':
|
||||
case '?':
|
||||
usage:
|
||||
fprintf(stderr,
|
||||
"usage: %s [-h] [-m N] [-r N] /dev/spidevB.D\n",
|
||||
argv[0]);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
if ((optind + 1) != argc)
|
||||
goto usage;
|
||||
name = argv[optind];
|
||||
|
||||
fd = open(name, O_RDWR);
|
||||
if (fd < 0) {
|
||||
perror("open");
|
||||
return 1;
|
||||
}
|
||||
|
||||
dumpstat(name, fd);
|
||||
|
||||
if (msglen)
|
||||
do_msg(fd, msglen);
|
||||
|
||||
if (readcount)
|
||||
do_read(fd, readcount);
|
||||
|
||||
close(fd);
|
||||
return 0;
|
||||
}
|
243
Documentation/spi/spidev_test.c
Normal file
243
Documentation/spi/spidev_test.c
Normal file
|
@ -0,0 +1,243 @@
|
|||
/*
|
||||
* SPI testing utility (using spidev driver)
|
||||
*
|
||||
* Copyright (c) 2007 MontaVista Software, Inc.
|
||||
* Copyright (c) 2007 Anton Vorontsov <avorontsov@ru.mvista.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License.
|
||||
*
|
||||
* Cross-compile with cross-gcc -I/path/to/cross-kernel/include
|
||||
*/
|
||||
|
||||
#include <stdint.h>
|
||||
#include <unistd.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <getopt.h>
|
||||
#include <fcntl.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/spi/spidev.h>
|
||||
|
||||
#define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0]))
|
||||
|
||||
static void pabort(const char *s)
|
||||
{
|
||||
perror(s);
|
||||
abort();
|
||||
}
|
||||
|
||||
static const char *device = "/dev/spidev1.1";
|
||||
static uint32_t mode;
|
||||
static uint8_t bits = 8;
|
||||
static uint32_t speed = 500000;
|
||||
static uint16_t delay;
|
||||
|
||||
static void transfer(int fd)
|
||||
{
|
||||
int ret;
|
||||
uint8_t tx[] = {
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0x40, 0x00, 0x00, 0x00, 0x00, 0x95,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||||
0xDE, 0xAD, 0xBE, 0xEF, 0xBA, 0xAD,
|
||||
0xF0, 0x0D,
|
||||
};
|
||||
uint8_t rx[ARRAY_SIZE(tx)] = {0, };
|
||||
struct spi_ioc_transfer tr = {
|
||||
.tx_buf = (unsigned long)tx,
|
||||
.rx_buf = (unsigned long)rx,
|
||||
.len = ARRAY_SIZE(tx),
|
||||
.delay_usecs = delay,
|
||||
.speed_hz = speed,
|
||||
.bits_per_word = bits,
|
||||
};
|
||||
|
||||
if (mode & SPI_TX_QUAD)
|
||||
tr.tx_nbits = 4;
|
||||
else if (mode & SPI_TX_DUAL)
|
||||
tr.tx_nbits = 2;
|
||||
if (mode & SPI_RX_QUAD)
|
||||
tr.rx_nbits = 4;
|
||||
else if (mode & SPI_RX_DUAL)
|
||||
tr.rx_nbits = 2;
|
||||
if (!(mode & SPI_LOOP)) {
|
||||
if (mode & (SPI_TX_QUAD | SPI_TX_DUAL))
|
||||
tr.rx_buf = 0;
|
||||
else if (mode & (SPI_RX_QUAD | SPI_RX_DUAL))
|
||||
tr.tx_buf = 0;
|
||||
}
|
||||
|
||||
ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr);
|
||||
if (ret < 1)
|
||||
pabort("can't send spi message");
|
||||
|
||||
for (ret = 0; ret < ARRAY_SIZE(tx); ret++) {
|
||||
if (!(ret % 6))
|
||||
puts("");
|
||||
printf("%.2X ", rx[ret]);
|
||||
}
|
||||
puts("");
|
||||
}
|
||||
|
||||
static void print_usage(const char *prog)
|
||||
{
|
||||
printf("Usage: %s [-DsbdlHOLC3]\n", prog);
|
||||
puts(" -D --device device to use (default /dev/spidev1.1)\n"
|
||||
" -s --speed max speed (Hz)\n"
|
||||
" -d --delay delay (usec)\n"
|
||||
" -b --bpw bits per word \n"
|
||||
" -l --loop loopback\n"
|
||||
" -H --cpha clock phase\n"
|
||||
" -O --cpol clock polarity\n"
|
||||
" -L --lsb least significant bit first\n"
|
||||
" -C --cs-high chip select active high\n"
|
||||
" -3 --3wire SI/SO signals shared\n"
|
||||
" -N --no-cs no chip select\n"
|
||||
" -R --ready slave pulls low to pause\n"
|
||||
" -2 --dual dual transfer\n"
|
||||
" -4 --quad quad transfer\n");
|
||||
exit(1);
|
||||
}
|
||||
|
||||
static void parse_opts(int argc, char *argv[])
|
||||
{
|
||||
while (1) {
|
||||
static const struct option lopts[] = {
|
||||
{ "device", 1, 0, 'D' },
|
||||
{ "speed", 1, 0, 's' },
|
||||
{ "delay", 1, 0, 'd' },
|
||||
{ "bpw", 1, 0, 'b' },
|
||||
{ "loop", 0, 0, 'l' },
|
||||
{ "cpha", 0, 0, 'H' },
|
||||
{ "cpol", 0, 0, 'O' },
|
||||
{ "lsb", 0, 0, 'L' },
|
||||
{ "cs-high", 0, 0, 'C' },
|
||||
{ "3wire", 0, 0, '3' },
|
||||
{ "no-cs", 0, 0, 'N' },
|
||||
{ "ready", 0, 0, 'R' },
|
||||
{ "dual", 0, 0, '2' },
|
||||
{ "quad", 0, 0, '4' },
|
||||
{ NULL, 0, 0, 0 },
|
||||
};
|
||||
int c;
|
||||
|
||||
c = getopt_long(argc, argv, "D:s:d:b:lHOLC3NR24", lopts, NULL);
|
||||
|
||||
if (c == -1)
|
||||
break;
|
||||
|
||||
switch (c) {
|
||||
case 'D':
|
||||
device = optarg;
|
||||
break;
|
||||
case 's':
|
||||
speed = atoi(optarg);
|
||||
break;
|
||||
case 'd':
|
||||
delay = atoi(optarg);
|
||||
break;
|
||||
case 'b':
|
||||
bits = atoi(optarg);
|
||||
break;
|
||||
case 'l':
|
||||
mode |= SPI_LOOP;
|
||||
break;
|
||||
case 'H':
|
||||
mode |= SPI_CPHA;
|
||||
break;
|
||||
case 'O':
|
||||
mode |= SPI_CPOL;
|
||||
break;
|
||||
case 'L':
|
||||
mode |= SPI_LSB_FIRST;
|
||||
break;
|
||||
case 'C':
|
||||
mode |= SPI_CS_HIGH;
|
||||
break;
|
||||
case '3':
|
||||
mode |= SPI_3WIRE;
|
||||
break;
|
||||
case 'N':
|
||||
mode |= SPI_NO_CS;
|
||||
break;
|
||||
case 'R':
|
||||
mode |= SPI_READY;
|
||||
break;
|
||||
case '2':
|
||||
mode |= SPI_TX_DUAL;
|
||||
break;
|
||||
case '4':
|
||||
mode |= SPI_TX_QUAD;
|
||||
break;
|
||||
default:
|
||||
print_usage(argv[0]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
if (mode & SPI_LOOP) {
|
||||
if (mode & SPI_TX_DUAL)
|
||||
mode |= SPI_RX_DUAL;
|
||||
if (mode & SPI_TX_QUAD)
|
||||
mode |= SPI_RX_QUAD;
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
int ret = 0;
|
||||
int fd;
|
||||
|
||||
parse_opts(argc, argv);
|
||||
|
||||
fd = open(device, O_RDWR);
|
||||
if (fd < 0)
|
||||
pabort("can't open device");
|
||||
|
||||
/*
|
||||
* spi mode
|
||||
*/
|
||||
ret = ioctl(fd, SPI_IOC_WR_MODE32, &mode);
|
||||
if (ret == -1)
|
||||
pabort("can't set spi mode");
|
||||
|
||||
ret = ioctl(fd, SPI_IOC_RD_MODE32, &mode);
|
||||
if (ret == -1)
|
||||
pabort("can't get spi mode");
|
||||
|
||||
/*
|
||||
* bits per word
|
||||
*/
|
||||
ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits);
|
||||
if (ret == -1)
|
||||
pabort("can't set bits per word");
|
||||
|
||||
ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits);
|
||||
if (ret == -1)
|
||||
pabort("can't get bits per word");
|
||||
|
||||
/*
|
||||
* max speed hz
|
||||
*/
|
||||
ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed);
|
||||
if (ret == -1)
|
||||
pabort("can't set max speed hz");
|
||||
|
||||
ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed);
|
||||
if (ret == -1)
|
||||
pabort("can't get max speed hz");
|
||||
|
||||
printf("spi mode: 0x%x\n", mode);
|
||||
printf("bits per word: %d\n", bits);
|
||||
printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000);
|
||||
|
||||
transfer(fd);
|
||||
|
||||
close(fd);
|
||||
|
||||
return ret;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue