mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-07 16:58:04 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
820
Documentation/sysctl/vm.txt
Normal file
820
Documentation/sysctl/vm.txt
Normal file
|
@ -0,0 +1,820 @@
|
|||
Documentation for /proc/sys/vm/* kernel version 2.6.29
|
||||
(c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
|
||||
(c) 2008 Peter W. Morreale <pmorreale@novell.com>
|
||||
|
||||
For general info and legal blurb, please look in README.
|
||||
|
||||
==============================================================
|
||||
|
||||
This file contains the documentation for the sysctl files in
|
||||
/proc/sys/vm and is valid for Linux kernel version 2.6.29.
|
||||
|
||||
The files in this directory can be used to tune the operation
|
||||
of the virtual memory (VM) subsystem of the Linux kernel and
|
||||
the writeout of dirty data to disk.
|
||||
|
||||
Default values and initialization routines for most of these
|
||||
files can be found in mm/swap.c.
|
||||
|
||||
Currently, these files are in /proc/sys/vm:
|
||||
|
||||
- admin_reserve_kbytes
|
||||
- block_dump
|
||||
- compact_memory
|
||||
- dirty_background_bytes
|
||||
- dirty_background_ratio
|
||||
- dirty_bytes
|
||||
- dirty_expire_centisecs
|
||||
- dirty_ratio
|
||||
- dirty_writeback_centisecs
|
||||
- drop_caches
|
||||
- extfrag_threshold
|
||||
- extra_free_kbytes
|
||||
- hugepages_treat_as_movable
|
||||
- hugetlb_shm_group
|
||||
- laptop_mode
|
||||
- legacy_va_layout
|
||||
- lowmem_reserve_ratio
|
||||
- max_map_count
|
||||
- memory_failure_early_kill
|
||||
- memory_failure_recovery
|
||||
- min_free_kbytes
|
||||
- min_slab_ratio
|
||||
- min_unmapped_ratio
|
||||
- mmap_min_addr
|
||||
- nr_hugepages
|
||||
- nr_overcommit_hugepages
|
||||
- nr_trim_pages (only if CONFIG_MMU=n)
|
||||
- numa_zonelist_order
|
||||
- oom_dump_tasks
|
||||
- oom_kill_allocating_task
|
||||
- overcommit_kbytes
|
||||
- overcommit_memory
|
||||
- overcommit_ratio
|
||||
- page-cluster
|
||||
- panic_on_oom
|
||||
- percpu_pagelist_fraction
|
||||
- stat_interval
|
||||
- swappiness
|
||||
- user_reserve_kbytes
|
||||
- vfs_cache_pressure
|
||||
- zone_reclaim_mode
|
||||
|
||||
==============================================================
|
||||
|
||||
admin_reserve_kbytes
|
||||
|
||||
The amount of free memory in the system that should be reserved for users
|
||||
with the capability cap_sys_admin.
|
||||
|
||||
admin_reserve_kbytes defaults to min(3% of free pages, 8MB)
|
||||
|
||||
That should provide enough for the admin to log in and kill a process,
|
||||
if necessary, under the default overcommit 'guess' mode.
|
||||
|
||||
Systems running under overcommit 'never' should increase this to account
|
||||
for the full Virtual Memory Size of programs used to recover. Otherwise,
|
||||
root may not be able to log in to recover the system.
|
||||
|
||||
How do you calculate a minimum useful reserve?
|
||||
|
||||
sshd or login + bash (or some other shell) + top (or ps, kill, etc.)
|
||||
|
||||
For overcommit 'guess', we can sum resident set sizes (RSS).
|
||||
On x86_64 this is about 8MB.
|
||||
|
||||
For overcommit 'never', we can take the max of their virtual sizes (VSZ)
|
||||
and add the sum of their RSS.
|
||||
On x86_64 this is about 128MB.
|
||||
|
||||
Changing this takes effect whenever an application requests memory.
|
||||
|
||||
==============================================================
|
||||
|
||||
block_dump
|
||||
|
||||
block_dump enables block I/O debugging when set to a nonzero value. More
|
||||
information on block I/O debugging is in Documentation/laptops/laptop-mode.txt.
|
||||
|
||||
==============================================================
|
||||
|
||||
compact_memory
|
||||
|
||||
Available only when CONFIG_COMPACTION is set. When 1 is written to the file,
|
||||
all zones are compacted such that free memory is available in contiguous
|
||||
blocks where possible. This can be important for example in the allocation of
|
||||
huge pages although processes will also directly compact memory as required.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_background_bytes
|
||||
|
||||
Contains the amount of dirty memory at which the background kernel
|
||||
flusher threads will start writeback.
|
||||
|
||||
Note: dirty_background_bytes is the counterpart of dirty_background_ratio. Only
|
||||
one of them may be specified at a time. When one sysctl is written it is
|
||||
immediately taken into account to evaluate the dirty memory limits and the
|
||||
other appears as 0 when read.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_background_ratio
|
||||
|
||||
Contains, as a percentage of total available memory that contains free pages
|
||||
and reclaimable pages, the number of pages at which the background kernel
|
||||
flusher threads will start writing out dirty data.
|
||||
|
||||
The total avaiable memory is not equal to total system memory.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_bytes
|
||||
|
||||
Contains the amount of dirty memory at which a process generating disk writes
|
||||
will itself start writeback.
|
||||
|
||||
Note: dirty_bytes is the counterpart of dirty_ratio. Only one of them may be
|
||||
specified at a time. When one sysctl is written it is immediately taken into
|
||||
account to evaluate the dirty memory limits and the other appears as 0 when
|
||||
read.
|
||||
|
||||
Note: the minimum value allowed for dirty_bytes is two pages (in bytes); any
|
||||
value lower than this limit will be ignored and the old configuration will be
|
||||
retained.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_expire_centisecs
|
||||
|
||||
This tunable is used to define when dirty data is old enough to be eligible
|
||||
for writeout by the kernel flusher threads. It is expressed in 100'ths
|
||||
of a second. Data which has been dirty in-memory for longer than this
|
||||
interval will be written out next time a flusher thread wakes up.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_ratio
|
||||
|
||||
Contains, as a percentage of total available memory that contains free pages
|
||||
and reclaimable pages, the number of pages at which a process which is
|
||||
generating disk writes will itself start writing out dirty data.
|
||||
|
||||
The total avaiable memory is not equal to total system memory.
|
||||
|
||||
==============================================================
|
||||
|
||||
dirty_writeback_centisecs
|
||||
|
||||
The kernel flusher threads will periodically wake up and write `old' data
|
||||
out to disk. This tunable expresses the interval between those wakeups, in
|
||||
100'ths of a second.
|
||||
|
||||
Setting this to zero disables periodic writeback altogether.
|
||||
|
||||
==============================================================
|
||||
|
||||
drop_caches
|
||||
|
||||
Writing to this will cause the kernel to drop clean caches, as well as
|
||||
reclaimable slab objects like dentries and inodes. Once dropped, their
|
||||
memory becomes free.
|
||||
|
||||
To free pagecache:
|
||||
echo 1 > /proc/sys/vm/drop_caches
|
||||
To free reclaimable slab objects (includes dentries and inodes):
|
||||
echo 2 > /proc/sys/vm/drop_caches
|
||||
To free slab objects and pagecache:
|
||||
echo 3 > /proc/sys/vm/drop_caches
|
||||
|
||||
This is a non-destructive operation and will not free any dirty objects.
|
||||
To increase the number of objects freed by this operation, the user may run
|
||||
`sync' prior to writing to /proc/sys/vm/drop_caches. This will minimize the
|
||||
number of dirty objects on the system and create more candidates to be
|
||||
dropped.
|
||||
|
||||
This file is not a means to control the growth of the various kernel caches
|
||||
(inodes, dentries, pagecache, etc...) These objects are automatically
|
||||
reclaimed by the kernel when memory is needed elsewhere on the system.
|
||||
|
||||
Use of this file can cause performance problems. Since it discards cached
|
||||
objects, it may cost a significant amount of I/O and CPU to recreate the
|
||||
dropped objects, especially if they were under heavy use. Because of this,
|
||||
use outside of a testing or debugging environment is not recommended.
|
||||
|
||||
You may see informational messages in your kernel log when this file is
|
||||
used:
|
||||
|
||||
cat (1234): drop_caches: 3
|
||||
|
||||
These are informational only. They do not mean that anything is wrong
|
||||
with your system. To disable them, echo 4 (bit 3) into drop_caches.
|
||||
|
||||
==============================================================
|
||||
|
||||
extfrag_threshold
|
||||
|
||||
This parameter affects whether the kernel will compact memory or direct
|
||||
reclaim to satisfy a high-order allocation. /proc/extfrag_index shows what
|
||||
the fragmentation index for each order is in each zone in the system. Values
|
||||
tending towards 0 imply allocations would fail due to lack of memory,
|
||||
values towards 1000 imply failures are due to fragmentation and -1 implies
|
||||
that the allocation will succeed as long as watermarks are met.
|
||||
|
||||
The kernel will not compact memory in a zone if the
|
||||
fragmentation index is <= extfrag_threshold. The default value is 500.
|
||||
|
||||
==============================================================
|
||||
|
||||
extra_free_kbytes
|
||||
|
||||
This parameter tells the VM to keep extra free memory between the threshold
|
||||
where background reclaim (kswapd) kicks in, and the threshold where direct
|
||||
reclaim (by allocating processes) kicks in.
|
||||
|
||||
This is useful for workloads that require low latency memory allocations
|
||||
and have a bounded burstiness in memory allocations, for example a
|
||||
realtime application that receives and transmits network traffic
|
||||
(causing in-kernel memory allocations) with a maximum total message burst
|
||||
size of 200MB may need 200MB of extra free memory to avoid direct reclaim
|
||||
related latencies.
|
||||
|
||||
==============================================================
|
||||
|
||||
hugepages_treat_as_movable
|
||||
|
||||
This parameter controls whether we can allocate hugepages from ZONE_MOVABLE
|
||||
or not. If set to non-zero, hugepages can be allocated from ZONE_MOVABLE.
|
||||
ZONE_MOVABLE is created when kernel boot parameter kernelcore= is specified,
|
||||
so this parameter has no effect if used without kernelcore=.
|
||||
|
||||
Hugepage migration is now available in some situations which depend on the
|
||||
architecture and/or the hugepage size. If a hugepage supports migration,
|
||||
allocation from ZONE_MOVABLE is always enabled for the hugepage regardless
|
||||
of the value of this parameter.
|
||||
IOW, this parameter affects only non-migratable hugepages.
|
||||
|
||||
Assuming that hugepages are not migratable in your system, one usecase of
|
||||
this parameter is that users can make hugepage pool more extensible by
|
||||
enabling the allocation from ZONE_MOVABLE. This is because on ZONE_MOVABLE
|
||||
page reclaim/migration/compaction work more and you can get contiguous
|
||||
memory more likely. Note that using ZONE_MOVABLE for non-migratable
|
||||
hugepages can do harm to other features like memory hotremove (because
|
||||
memory hotremove expects that memory blocks on ZONE_MOVABLE are always
|
||||
removable,) so it's a trade-off responsible for the users.
|
||||
|
||||
==============================================================
|
||||
|
||||
hugetlb_shm_group
|
||||
|
||||
hugetlb_shm_group contains group id that is allowed to create SysV
|
||||
shared memory segment using hugetlb page.
|
||||
|
||||
==============================================================
|
||||
|
||||
laptop_mode
|
||||
|
||||
laptop_mode is a knob that controls "laptop mode". All the things that are
|
||||
controlled by this knob are discussed in Documentation/laptops/laptop-mode.txt.
|
||||
|
||||
==============================================================
|
||||
|
||||
legacy_va_layout
|
||||
|
||||
If non-zero, this sysctl disables the new 32-bit mmap layout - the kernel
|
||||
will use the legacy (2.4) layout for all processes.
|
||||
|
||||
==============================================================
|
||||
|
||||
lowmem_reserve_ratio
|
||||
|
||||
For some specialised workloads on highmem machines it is dangerous for
|
||||
the kernel to allow process memory to be allocated from the "lowmem"
|
||||
zone. This is because that memory could then be pinned via the mlock()
|
||||
system call, or by unavailability of swapspace.
|
||||
|
||||
And on large highmem machines this lack of reclaimable lowmem memory
|
||||
can be fatal.
|
||||
|
||||
So the Linux page allocator has a mechanism which prevents allocations
|
||||
which _could_ use highmem from using too much lowmem. This means that
|
||||
a certain amount of lowmem is defended from the possibility of being
|
||||
captured into pinned user memory.
|
||||
|
||||
(The same argument applies to the old 16 megabyte ISA DMA region. This
|
||||
mechanism will also defend that region from allocations which could use
|
||||
highmem or lowmem).
|
||||
|
||||
The `lowmem_reserve_ratio' tunable determines how aggressive the kernel is
|
||||
in defending these lower zones.
|
||||
|
||||
If you have a machine which uses highmem or ISA DMA and your
|
||||
applications are using mlock(), or if you are running with no swap then
|
||||
you probably should change the lowmem_reserve_ratio setting.
|
||||
|
||||
The lowmem_reserve_ratio is an array. You can see them by reading this file.
|
||||
-
|
||||
% cat /proc/sys/vm/lowmem_reserve_ratio
|
||||
256 256 32
|
||||
-
|
||||
Note: # of this elements is one fewer than number of zones. Because the highest
|
||||
zone's value is not necessary for following calculation.
|
||||
|
||||
But, these values are not used directly. The kernel calculates # of protection
|
||||
pages for each zones from them. These are shown as array of protection pages
|
||||
in /proc/zoneinfo like followings. (This is an example of x86-64 box).
|
||||
Each zone has an array of protection pages like this.
|
||||
|
||||
-
|
||||
Node 0, zone DMA
|
||||
pages free 1355
|
||||
min 3
|
||||
low 3
|
||||
high 4
|
||||
:
|
||||
:
|
||||
numa_other 0
|
||||
protection: (0, 2004, 2004, 2004)
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
pagesets
|
||||
cpu: 0 pcp: 0
|
||||
:
|
||||
-
|
||||
These protections are added to score to judge whether this zone should be used
|
||||
for page allocation or should be reclaimed.
|
||||
|
||||
In this example, if normal pages (index=2) are required to this DMA zone and
|
||||
watermark[WMARK_HIGH] is used for watermark, the kernel judges this zone should
|
||||
not be used because pages_free(1355) is smaller than watermark + protection[2]
|
||||
(4 + 2004 = 2008). If this protection value is 0, this zone would be used for
|
||||
normal page requirement. If requirement is DMA zone(index=0), protection[0]
|
||||
(=0) is used.
|
||||
|
||||
zone[i]'s protection[j] is calculated by following expression.
|
||||
|
||||
(i < j):
|
||||
zone[i]->protection[j]
|
||||
= (total sums of present_pages from zone[i+1] to zone[j] on the node)
|
||||
/ lowmem_reserve_ratio[i];
|
||||
(i = j):
|
||||
(should not be protected. = 0;
|
||||
(i > j):
|
||||
(not necessary, but looks 0)
|
||||
|
||||
The default values of lowmem_reserve_ratio[i] are
|
||||
256 (if zone[i] means DMA or DMA32 zone)
|
||||
32 (others).
|
||||
As above expression, they are reciprocal number of ratio.
|
||||
256 means 1/256. # of protection pages becomes about "0.39%" of total present
|
||||
pages of higher zones on the node.
|
||||
|
||||
If you would like to protect more pages, smaller values are effective.
|
||||
The minimum value is 1 (1/1 -> 100%).
|
||||
|
||||
==============================================================
|
||||
|
||||
max_map_count:
|
||||
|
||||
This file contains the maximum number of memory map areas a process
|
||||
may have. Memory map areas are used as a side-effect of calling
|
||||
malloc, directly by mmap and mprotect, and also when loading shared
|
||||
libraries.
|
||||
|
||||
While most applications need less than a thousand maps, certain
|
||||
programs, particularly malloc debuggers, may consume lots of them,
|
||||
e.g., up to one or two maps per allocation.
|
||||
|
||||
The default value is 65536.
|
||||
|
||||
=============================================================
|
||||
|
||||
memory_failure_early_kill:
|
||||
|
||||
Control how to kill processes when uncorrected memory error (typically
|
||||
a 2bit error in a memory module) is detected in the background by hardware
|
||||
that cannot be handled by the kernel. In some cases (like the page
|
||||
still having a valid copy on disk) the kernel will handle the failure
|
||||
transparently without affecting any applications. But if there is
|
||||
no other uptodate copy of the data it will kill to prevent any data
|
||||
corruptions from propagating.
|
||||
|
||||
1: Kill all processes that have the corrupted and not reloadable page mapped
|
||||
as soon as the corruption is detected. Note this is not supported
|
||||
for a few types of pages, like kernel internally allocated data or
|
||||
the swap cache, but works for the majority of user pages.
|
||||
|
||||
0: Only unmap the corrupted page from all processes and only kill a process
|
||||
who tries to access it.
|
||||
|
||||
The kill is done using a catchable SIGBUS with BUS_MCEERR_AO, so processes can
|
||||
handle this if they want to.
|
||||
|
||||
This is only active on architectures/platforms with advanced machine
|
||||
check handling and depends on the hardware capabilities.
|
||||
|
||||
Applications can override this setting individually with the PR_MCE_KILL prctl
|
||||
|
||||
==============================================================
|
||||
|
||||
memory_failure_recovery
|
||||
|
||||
Enable memory failure recovery (when supported by the platform)
|
||||
|
||||
1: Attempt recovery.
|
||||
|
||||
0: Always panic on a memory failure.
|
||||
|
||||
==============================================================
|
||||
|
||||
min_free_kbytes:
|
||||
|
||||
This is used to force the Linux VM to keep a minimum number
|
||||
of kilobytes free. The VM uses this number to compute a
|
||||
watermark[WMARK_MIN] value for each lowmem zone in the system.
|
||||
Each lowmem zone gets a number of reserved free pages based
|
||||
proportionally on its size.
|
||||
|
||||
Some minimal amount of memory is needed to satisfy PF_MEMALLOC
|
||||
allocations; if you set this to lower than 1024KB, your system will
|
||||
become subtly broken, and prone to deadlock under high loads.
|
||||
|
||||
Setting this too high will OOM your machine instantly.
|
||||
|
||||
=============================================================
|
||||
|
||||
min_slab_ratio:
|
||||
|
||||
This is available only on NUMA kernels.
|
||||
|
||||
A percentage of the total pages in each zone. On Zone reclaim
|
||||
(fallback from the local zone occurs) slabs will be reclaimed if more
|
||||
than this percentage of pages in a zone are reclaimable slab pages.
|
||||
This insures that the slab growth stays under control even in NUMA
|
||||
systems that rarely perform global reclaim.
|
||||
|
||||
The default is 5 percent.
|
||||
|
||||
Note that slab reclaim is triggered in a per zone / node fashion.
|
||||
The process of reclaiming slab memory is currently not node specific
|
||||
and may not be fast.
|
||||
|
||||
=============================================================
|
||||
|
||||
min_unmapped_ratio:
|
||||
|
||||
This is available only on NUMA kernels.
|
||||
|
||||
This is a percentage of the total pages in each zone. Zone reclaim will
|
||||
only occur if more than this percentage of pages are in a state that
|
||||
zone_reclaim_mode allows to be reclaimed.
|
||||
|
||||
If zone_reclaim_mode has the value 4 OR'd, then the percentage is compared
|
||||
against all file-backed unmapped pages including swapcache pages and tmpfs
|
||||
files. Otherwise, only unmapped pages backed by normal files but not tmpfs
|
||||
files and similar are considered.
|
||||
|
||||
The default is 1 percent.
|
||||
|
||||
==============================================================
|
||||
|
||||
mmap_min_addr
|
||||
|
||||
This file indicates the amount of address space which a user process will
|
||||
be restricted from mmapping. Since kernel null dereference bugs could
|
||||
accidentally operate based on the information in the first couple of pages
|
||||
of memory userspace processes should not be allowed to write to them. By
|
||||
default this value is set to 0 and no protections will be enforced by the
|
||||
security module. Setting this value to something like 64k will allow the
|
||||
vast majority of applications to work correctly and provide defense in depth
|
||||
against future potential kernel bugs.
|
||||
|
||||
==============================================================
|
||||
|
||||
nr_hugepages
|
||||
|
||||
Change the minimum size of the hugepage pool.
|
||||
|
||||
See Documentation/vm/hugetlbpage.txt
|
||||
|
||||
==============================================================
|
||||
|
||||
nr_overcommit_hugepages
|
||||
|
||||
Change the maximum size of the hugepage pool. The maximum is
|
||||
nr_hugepages + nr_overcommit_hugepages.
|
||||
|
||||
See Documentation/vm/hugetlbpage.txt
|
||||
|
||||
==============================================================
|
||||
|
||||
nr_trim_pages
|
||||
|
||||
This is available only on NOMMU kernels.
|
||||
|
||||
This value adjusts the excess page trimming behaviour of power-of-2 aligned
|
||||
NOMMU mmap allocations.
|
||||
|
||||
A value of 0 disables trimming of allocations entirely, while a value of 1
|
||||
trims excess pages aggressively. Any value >= 1 acts as the watermark where
|
||||
trimming of allocations is initiated.
|
||||
|
||||
The default value is 1.
|
||||
|
||||
See Documentation/nommu-mmap.txt for more information.
|
||||
|
||||
==============================================================
|
||||
|
||||
numa_zonelist_order
|
||||
|
||||
This sysctl is only for NUMA.
|
||||
'where the memory is allocated from' is controlled by zonelists.
|
||||
(This documentation ignores ZONE_HIGHMEM/ZONE_DMA32 for simple explanation.
|
||||
you may be able to read ZONE_DMA as ZONE_DMA32...)
|
||||
|
||||
In non-NUMA case, a zonelist for GFP_KERNEL is ordered as following.
|
||||
ZONE_NORMAL -> ZONE_DMA
|
||||
This means that a memory allocation request for GFP_KERNEL will
|
||||
get memory from ZONE_DMA only when ZONE_NORMAL is not available.
|
||||
|
||||
In NUMA case, you can think of following 2 types of order.
|
||||
Assume 2 node NUMA and below is zonelist of Node(0)'s GFP_KERNEL
|
||||
|
||||
(A) Node(0) ZONE_NORMAL -> Node(0) ZONE_DMA -> Node(1) ZONE_NORMAL
|
||||
(B) Node(0) ZONE_NORMAL -> Node(1) ZONE_NORMAL -> Node(0) ZONE_DMA.
|
||||
|
||||
Type(A) offers the best locality for processes on Node(0), but ZONE_DMA
|
||||
will be used before ZONE_NORMAL exhaustion. This increases possibility of
|
||||
out-of-memory(OOM) of ZONE_DMA because ZONE_DMA is tend to be small.
|
||||
|
||||
Type(B) cannot offer the best locality but is more robust against OOM of
|
||||
the DMA zone.
|
||||
|
||||
Type(A) is called as "Node" order. Type (B) is "Zone" order.
|
||||
|
||||
"Node order" orders the zonelists by node, then by zone within each node.
|
||||
Specify "[Nn]ode" for node order
|
||||
|
||||
"Zone Order" orders the zonelists by zone type, then by node within each
|
||||
zone. Specify "[Zz]one" for zone order.
|
||||
|
||||
Specify "[Dd]efault" to request automatic configuration. Autoconfiguration
|
||||
will select "node" order in following case.
|
||||
(1) if the DMA zone does not exist or
|
||||
(2) if the DMA zone comprises greater than 50% of the available memory or
|
||||
(3) if any node's DMA zone comprises greater than 70% of its local memory and
|
||||
the amount of local memory is big enough.
|
||||
|
||||
Otherwise, "zone" order will be selected. Default order is recommended unless
|
||||
this is causing problems for your system/application.
|
||||
|
||||
==============================================================
|
||||
|
||||
oom_dump_tasks
|
||||
|
||||
Enables a system-wide task dump (excluding kernel threads) to be
|
||||
produced when the kernel performs an OOM-killing and includes such
|
||||
information as pid, uid, tgid, vm size, rss, nr_ptes, swapents,
|
||||
oom_score_adj score, and name. This is helpful to determine why the
|
||||
OOM killer was invoked, to identify the rogue task that caused it,
|
||||
and to determine why the OOM killer chose the task it did to kill.
|
||||
|
||||
If this is set to zero, this information is suppressed. On very
|
||||
large systems with thousands of tasks it may not be feasible to dump
|
||||
the memory state information for each one. Such systems should not
|
||||
be forced to incur a performance penalty in OOM conditions when the
|
||||
information may not be desired.
|
||||
|
||||
If this is set to non-zero, this information is shown whenever the
|
||||
OOM killer actually kills a memory-hogging task.
|
||||
|
||||
The default value is 1 (enabled).
|
||||
|
||||
==============================================================
|
||||
|
||||
oom_kill_allocating_task
|
||||
|
||||
This enables or disables killing the OOM-triggering task in
|
||||
out-of-memory situations.
|
||||
|
||||
If this is set to zero, the OOM killer will scan through the entire
|
||||
tasklist and select a task based on heuristics to kill. This normally
|
||||
selects a rogue memory-hogging task that frees up a large amount of
|
||||
memory when killed.
|
||||
|
||||
If this is set to non-zero, the OOM killer simply kills the task that
|
||||
triggered the out-of-memory condition. This avoids the expensive
|
||||
tasklist scan.
|
||||
|
||||
If panic_on_oom is selected, it takes precedence over whatever value
|
||||
is used in oom_kill_allocating_task.
|
||||
|
||||
The default value is 0.
|
||||
|
||||
==============================================================
|
||||
|
||||
overcommit_kbytes:
|
||||
|
||||
When overcommit_memory is set to 2, the committed address space is not
|
||||
permitted to exceed swap plus this amount of physical RAM. See below.
|
||||
|
||||
Note: overcommit_kbytes is the counterpart of overcommit_ratio. Only one
|
||||
of them may be specified at a time. Setting one disables the other (which
|
||||
then appears as 0 when read).
|
||||
|
||||
==============================================================
|
||||
|
||||
overcommit_memory:
|
||||
|
||||
This value contains a flag that enables memory overcommitment.
|
||||
|
||||
When this flag is 0, the kernel attempts to estimate the amount
|
||||
of free memory left when userspace requests more memory.
|
||||
|
||||
When this flag is 1, the kernel pretends there is always enough
|
||||
memory until it actually runs out.
|
||||
|
||||
When this flag is 2, the kernel uses a "never overcommit"
|
||||
policy that attempts to prevent any overcommit of memory.
|
||||
Note that user_reserve_kbytes affects this policy.
|
||||
|
||||
This feature can be very useful because there are a lot of
|
||||
programs that malloc() huge amounts of memory "just-in-case"
|
||||
and don't use much of it.
|
||||
|
||||
The default value is 0.
|
||||
|
||||
See Documentation/vm/overcommit-accounting and
|
||||
security/commoncap.c::cap_vm_enough_memory() for more information.
|
||||
|
||||
==============================================================
|
||||
|
||||
overcommit_ratio:
|
||||
|
||||
When overcommit_memory is set to 2, the committed address
|
||||
space is not permitted to exceed swap plus this percentage
|
||||
of physical RAM. See above.
|
||||
|
||||
==============================================================
|
||||
|
||||
page-cluster
|
||||
|
||||
page-cluster controls the number of pages up to which consecutive pages
|
||||
are read in from swap in a single attempt. This is the swap counterpart
|
||||
to page cache readahead.
|
||||
The mentioned consecutivity is not in terms of virtual/physical addresses,
|
||||
but consecutive on swap space - that means they were swapped out together.
|
||||
|
||||
It is a logarithmic value - setting it to zero means "1 page", setting
|
||||
it to 1 means "2 pages", setting it to 2 means "4 pages", etc.
|
||||
Zero disables swap readahead completely.
|
||||
|
||||
The default value is three (eight pages at a time). There may be some
|
||||
small benefits in tuning this to a different value if your workload is
|
||||
swap-intensive.
|
||||
|
||||
Lower values mean lower latencies for initial faults, but at the same time
|
||||
extra faults and I/O delays for following faults if they would have been part of
|
||||
that consecutive pages readahead would have brought in.
|
||||
|
||||
=============================================================
|
||||
|
||||
panic_on_oom
|
||||
|
||||
This enables or disables panic on out-of-memory feature.
|
||||
|
||||
If this is set to 0, the kernel will kill some rogue process,
|
||||
called oom_killer. Usually, oom_killer can kill rogue processes and
|
||||
system will survive.
|
||||
|
||||
If this is set to 1, the kernel panics when out-of-memory happens.
|
||||
However, if a process limits using nodes by mempolicy/cpusets,
|
||||
and those nodes become memory exhaustion status, one process
|
||||
may be killed by oom-killer. No panic occurs in this case.
|
||||
Because other nodes' memory may be free. This means system total status
|
||||
may be not fatal yet.
|
||||
|
||||
If this is set to 2, the kernel panics compulsorily even on the
|
||||
above-mentioned. Even oom happens under memory cgroup, the whole
|
||||
system panics.
|
||||
|
||||
The default value is 0.
|
||||
1 and 2 are for failover of clustering. Please select either
|
||||
according to your policy of failover.
|
||||
panic_on_oom=2+kdump gives you very strong tool to investigate
|
||||
why oom happens. You can get snapshot.
|
||||
|
||||
=============================================================
|
||||
|
||||
percpu_pagelist_fraction
|
||||
|
||||
This is the fraction of pages at most (high mark pcp->high) in each zone that
|
||||
are allocated for each per cpu page list. The min value for this is 8. It
|
||||
means that we don't allow more than 1/8th of pages in each zone to be
|
||||
allocated in any single per_cpu_pagelist. This entry only changes the value
|
||||
of hot per cpu pagelists. User can specify a number like 100 to allocate
|
||||
1/100th of each zone to each per cpu page list.
|
||||
|
||||
The batch value of each per cpu pagelist is also updated as a result. It is
|
||||
set to pcp->high/4. The upper limit of batch is (PAGE_SHIFT * 8)
|
||||
|
||||
The initial value is zero. Kernel does not use this value at boot time to set
|
||||
the high water marks for each per cpu page list. If the user writes '0' to this
|
||||
sysctl, it will revert to this default behavior.
|
||||
|
||||
==============================================================
|
||||
|
||||
stat_interval
|
||||
|
||||
The time interval between which vm statistics are updated. The default
|
||||
is 1 second.
|
||||
|
||||
==============================================================
|
||||
|
||||
swappiness
|
||||
|
||||
This control is used to define how aggressive the kernel will swap
|
||||
memory pages. Higher values will increase agressiveness, lower values
|
||||
decrease the amount of swap. A value of 0 instructs the kernel not to
|
||||
initiate swap until the amount of free and file-backed pages is less
|
||||
than the high water mark in a zone.
|
||||
|
||||
The default value is 60.
|
||||
|
||||
==============================================================
|
||||
|
||||
- user_reserve_kbytes
|
||||
|
||||
When overcommit_memory is set to 2, "never overommit" mode, reserve
|
||||
min(3% of current process size, user_reserve_kbytes) of free memory.
|
||||
This is intended to prevent a user from starting a single memory hogging
|
||||
process, such that they cannot recover (kill the hog).
|
||||
|
||||
user_reserve_kbytes defaults to min(3% of the current process size, 128MB).
|
||||
|
||||
If this is reduced to zero, then the user will be allowed to allocate
|
||||
all free memory with a single process, minus admin_reserve_kbytes.
|
||||
Any subsequent attempts to execute a command will result in
|
||||
"fork: Cannot allocate memory".
|
||||
|
||||
Changing this takes effect whenever an application requests memory.
|
||||
|
||||
==============================================================
|
||||
|
||||
vfs_cache_pressure
|
||||
------------------
|
||||
|
||||
This percentage value controls the tendency of the kernel to reclaim
|
||||
the memory which is used for caching of directory and inode objects.
|
||||
|
||||
At the default value of vfs_cache_pressure=100 the kernel will attempt to
|
||||
reclaim dentries and inodes at a "fair" rate with respect to pagecache and
|
||||
swapcache reclaim. Decreasing vfs_cache_pressure causes the kernel to prefer
|
||||
to retain dentry and inode caches. When vfs_cache_pressure=0, the kernel will
|
||||
never reclaim dentries and inodes due to memory pressure and this can easily
|
||||
lead to out-of-memory conditions. Increasing vfs_cache_pressure beyond 100
|
||||
causes the kernel to prefer to reclaim dentries and inodes.
|
||||
|
||||
Increasing vfs_cache_pressure significantly beyond 100 may have negative
|
||||
performance impact. Reclaim code needs to take various locks to find freeable
|
||||
directory and inode objects. With vfs_cache_pressure=1000, it will look for
|
||||
ten times more freeable objects than there are.
|
||||
|
||||
==============================================================
|
||||
|
||||
zone_reclaim_mode:
|
||||
|
||||
Zone_reclaim_mode allows someone to set more or less aggressive approaches to
|
||||
reclaim memory when a zone runs out of memory. If it is set to zero then no
|
||||
zone reclaim occurs. Allocations will be satisfied from other zones / nodes
|
||||
in the system.
|
||||
|
||||
This is value ORed together of
|
||||
|
||||
1 = Zone reclaim on
|
||||
2 = Zone reclaim writes dirty pages out
|
||||
4 = Zone reclaim swaps pages
|
||||
|
||||
zone_reclaim_mode is disabled by default. For file servers or workloads
|
||||
that benefit from having their data cached, zone_reclaim_mode should be
|
||||
left disabled as the caching effect is likely to be more important than
|
||||
data locality.
|
||||
|
||||
zone_reclaim may be enabled if it's known that the workload is partitioned
|
||||
such that each partition fits within a NUMA node and that accessing remote
|
||||
memory would cause a measurable performance reduction. The page allocator
|
||||
will then reclaim easily reusable pages (those page cache pages that are
|
||||
currently not used) before allocating off node pages.
|
||||
|
||||
Allowing zone reclaim to write out pages stops processes that are
|
||||
writing large amounts of data from dirtying pages on other nodes. Zone
|
||||
reclaim will write out dirty pages if a zone fills up and so effectively
|
||||
throttle the process. This may decrease the performance of a single process
|
||||
since it cannot use all of system memory to buffer the outgoing writes
|
||||
anymore but it preserve the memory on other nodes so that the performance
|
||||
of other processes running on other nodes will not be affected.
|
||||
|
||||
Allowing regular swap effectively restricts allocations to the local
|
||||
node unless explicitly overridden by memory policies or cpuset
|
||||
configurations.
|
||||
|
||||
============ End of Document =================================
|
Loading…
Add table
Add a link
Reference in a new issue