mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-10-29 15:28:50 +01:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
175
Documentation/usb/CREDITS
Normal file
175
Documentation/usb/CREDITS
Normal file
|
|
@ -0,0 +1,175 @@
|
|||
Credits for the Simple Linux USB Driver:
|
||||
|
||||
The following people have contributed to this code (in alphabetical
|
||||
order by last name). I'm sure this list should be longer, its
|
||||
difficult to maintain, add yourself with a patch if desired.
|
||||
|
||||
Georg Acher <acher@informatik.tu-muenchen.de>
|
||||
David Brownell <dbrownell@users.sourceforge.net>
|
||||
Alan Cox <alan@lxorguk.ukuu.org.uk>
|
||||
Randy Dunlap <randy.dunlap@intel.com>
|
||||
Johannes Erdfelt <johannes@erdfelt.com>
|
||||
Deti Fliegl <deti@fliegl.de>
|
||||
ham <ham@unsuave.com>
|
||||
Bradley M Keryan <keryan@andrew.cmu.edu>
|
||||
Greg Kroah-Hartman <greg@kroah.com>
|
||||
Pavel Machek <pavel@suse.cz>
|
||||
Paul Mackerras <paulus@cs.anu.edu.au>
|
||||
Petko Manlolov <petkan@dce.bg>
|
||||
David E. Nelson <dnelson@jump.net>
|
||||
Vojtech Pavlik <vojtech@suse.cz>
|
||||
Bill Ryder <bryder@sgi.com>
|
||||
Thomas Sailer <sailer@ife.ee.ethz.ch>
|
||||
Gregory P. Smith <greg@electricrain.com>
|
||||
Linus Torvalds <torvalds@linux-foundation.org>
|
||||
Roman Weissgaerber <weissg@vienna.at>
|
||||
<Kazuki.Yasumatsu@fujixerox.co.jp>
|
||||
|
||||
Special thanks to:
|
||||
|
||||
Inaky Perez Gonzalez <inaky@peloncho.fis.ucm.es> for starting the
|
||||
Linux USB driver effort and writing much of the larger uusbd driver.
|
||||
Much has been learned from that effort.
|
||||
|
||||
The NetBSD & FreeBSD USB developers. For being on the Linux USB list
|
||||
and offering suggestions and sharing implementation experiences.
|
||||
|
||||
Additional thanks to the following companies and people for donations
|
||||
of hardware, support, time and development (this is from the original
|
||||
THANKS file in Inaky's driver):
|
||||
|
||||
The following corporations have helped us in the development
|
||||
of Linux USB / UUSBD:
|
||||
|
||||
- 3Com GmbH for donating a ISDN Pro TA and supporting me
|
||||
in technical questions and with test equipment. I'd never
|
||||
expect such a great help.
|
||||
|
||||
- USAR Systems provided us with one of their excellent USB
|
||||
Evaluation Kits. It allows us to test the Linux-USB driver
|
||||
for compliance with the latest USB specification. USAR
|
||||
Systems recognized the importance of an up-to-date open
|
||||
Operating System and supports this project with
|
||||
Hardware. Thanks!.
|
||||
|
||||
- Thanks to Intel Corporation for their precious help.
|
||||
|
||||
- We teamed up with Cherry to make Linux the first OS with
|
||||
built-in USB support. Cherry is one of the biggest keyboard
|
||||
makers in the world.
|
||||
|
||||
- CMD Technology, Inc. sponsored us kindly donating a CSA-6700
|
||||
PCI-to-USB Controller Board to test the OHCI implementation.
|
||||
|
||||
- Due to their support to us, Keytronic can be sure that they
|
||||
will sell keyboards to some of the 3 million (at least)
|
||||
Linux users.
|
||||
|
||||
- Many thanks to ing büro h doran [http://www.ibhdoran.com]!
|
||||
It was almost impossible to get a PC backplate USB connector
|
||||
for the motherboard here at Europe (mine, home-made, was
|
||||
quite lousy :). Now I know where to acquire nice USB stuff!
|
||||
|
||||
- Genius Germany donated a USB mouse to test the mouse boot
|
||||
protocol. They've also donated a F-23 digital joystick and a
|
||||
NetMouse Pro. Thanks!
|
||||
|
||||
- AVM GmbH Berlin is supporting the development of the Linux
|
||||
USB driver for the AVM ISDN Controller B1 USB. AVM is a
|
||||
leading manufacturer for active and passive ISDN Controllers
|
||||
and CAPI 2.0-based software. The active design of the AVM B1
|
||||
is open for all OS platforms, including Linux.
|
||||
|
||||
- Thanks to Y-E Data, Inc. for donating their FlashBuster-U
|
||||
USB Floppy Disk Drive, so we could test the bulk transfer
|
||||
code.
|
||||
|
||||
- Many thanks to Logitech for contributing a three axis USB
|
||||
mouse.
|
||||
|
||||
Logitech designs, manufactures and markets
|
||||
Human Interface Devices, having a long history and
|
||||
experience in making devices such as keyboards, mice,
|
||||
trackballs, cameras, loudspeakers and control devices for
|
||||
gaming and professional use.
|
||||
|
||||
Being a recognized vendor and seller for all these devices,
|
||||
they have donated USB mice, a joystick and a scanner, as a
|
||||
way to acknowledge the importance of Linux and to allow
|
||||
Logitech customers to enjoy support in their favorite
|
||||
operating systems and all Linux users to use Logitech and
|
||||
other USB hardware.
|
||||
|
||||
Logitech is official sponsor of the Linux Conference on
|
||||
Feb. 11th 1999 in Vienna, where we'll will present the
|
||||
current state of the Linux USB effort.
|
||||
|
||||
- CATC has provided means to uncover dark corners of the UHCI
|
||||
inner workings with a USB Inspector.
|
||||
|
||||
- Thanks to Entrega for providing PCI to USB cards, hubs and
|
||||
converter products for development.
|
||||
|
||||
- Thanks to ConnectTech for providing a WhiteHEAT usb to
|
||||
serial converter, and the documentation for the device to
|
||||
allow a driver to be written.
|
||||
|
||||
- Thanks to ADMtek for providing Pegasus and Pegasus II
|
||||
evaluation boards, specs and valuable advices during
|
||||
the driver development.
|
||||
|
||||
And thanks go to (hey! in no particular order :)
|
||||
|
||||
- Oren Tirosh <orenti@hishome.net>, for standing so patiently
|
||||
all my doubts'bout USB and giving lots of cool ideas.
|
||||
|
||||
- Jochen Karrer <karrer@wpfd25.physik.uni-wuerzburg.de>, for
|
||||
pointing out mortal bugs and giving advice.
|
||||
|
||||
- Edmund Humemberger <ed@atnet.at>, for it's great work on
|
||||
public relationships and general management stuff for the
|
||||
Linux-USB effort.
|
||||
|
||||
- Alberto Menegazzi <flash@flash.iol.it> is starting the
|
||||
documentation for the UUSBD. Go for it!
|
||||
|
||||
- Ric Klaren <ia_ric@cs.utwente.nl> for doing nice
|
||||
introductory documents (competing with Alberto's :).
|
||||
|
||||
- Christian Groessler <cpg@aladdin.de>, for it's help on those
|
||||
itchy bits ... :)
|
||||
|
||||
- Paul MacKerras for polishing OHCI and pushing me harder for
|
||||
the iMac support, giving improvements and enhancements.
|
||||
|
||||
- Fernando Herrera <fherrera@eurielec.etsit.upm.es> has taken
|
||||
charge of composing, maintaining and feeding the
|
||||
long-awaited, unique and marvelous UUSBD FAQ! Tadaaaa!!!
|
||||
|
||||
- Rasca Gmelch <thron@gmx.de> has revived the raw driver and
|
||||
pointed bugs, as well as started the uusbd-utils package.
|
||||
|
||||
- Peter Dettori <dettori@ozy.dec.com> is uncovering bugs like
|
||||
crazy, as well as making cool suggestions, great :)
|
||||
|
||||
- All the Free Software and Linux community, the FSF & the GNU
|
||||
project, the MIT X consortium, the TeX people ... everyone!
|
||||
You know who you are!
|
||||
|
||||
- Big thanks to Richard Stallman for creating Emacs!
|
||||
|
||||
- The people at the linux-usb mailing list, for reading so
|
||||
many messages :) Ok, no more kidding; for all your advises!
|
||||
|
||||
- All the people at the USB Implementors Forum for their
|
||||
help and assistance.
|
||||
|
||||
- Nathan Myers <ncm@cantrip.org>, for his advice! (hope you
|
||||
liked Cibeles' party).
|
||||
|
||||
- Linus Torvalds, for starting, developing and managing Linux.
|
||||
|
||||
- Mike Smith, Craig Keithley, Thierry Giron and Janet Schank
|
||||
for convincing me USB Standard hubs are not that standard
|
||||
and that's good to allow for vendor specific quirks on the
|
||||
standard hub driver.
|
||||
261
Documentation/usb/URB.txt
Normal file
261
Documentation/usb/URB.txt
Normal file
|
|
@ -0,0 +1,261 @@
|
|||
Revised: 2000-Dec-05.
|
||||
Again: 2002-Jul-06
|
||||
Again: 2005-Sep-19
|
||||
|
||||
NOTE:
|
||||
|
||||
The USB subsystem now has a substantial section in "The Linux Kernel API"
|
||||
guide (in Documentation/DocBook), generated from the current source
|
||||
code. This particular documentation file isn't particularly current or
|
||||
complete; don't rely on it except for a quick overview.
|
||||
|
||||
|
||||
1.1. Basic concept or 'What is an URB?'
|
||||
|
||||
The basic idea of the new driver is message passing, the message itself is
|
||||
called USB Request Block, or URB for short.
|
||||
|
||||
- An URB consists of all relevant information to execute any USB transaction
|
||||
and deliver the data and status back.
|
||||
|
||||
- Execution of an URB is inherently an asynchronous operation, i.e. the
|
||||
usb_submit_urb(urb) call returns immediately after it has successfully
|
||||
queued the requested action.
|
||||
|
||||
- Transfers for one URB can be canceled with usb_unlink_urb(urb) at any time.
|
||||
|
||||
- Each URB has a completion handler, which is called after the action
|
||||
has been successfully completed or canceled. The URB also contains a
|
||||
context-pointer for passing information to the completion handler.
|
||||
|
||||
- Each endpoint for a device logically supports a queue of requests.
|
||||
You can fill that queue, so that the USB hardware can still transfer
|
||||
data to an endpoint while your driver handles completion of another.
|
||||
This maximizes use of USB bandwidth, and supports seamless streaming
|
||||
of data to (or from) devices when using periodic transfer modes.
|
||||
|
||||
|
||||
1.2. The URB structure
|
||||
|
||||
Some of the fields in an URB are:
|
||||
|
||||
struct urb
|
||||
{
|
||||
// (IN) device and pipe specify the endpoint queue
|
||||
struct usb_device *dev; // pointer to associated USB device
|
||||
unsigned int pipe; // endpoint information
|
||||
|
||||
unsigned int transfer_flags; // ISO_ASAP, SHORT_NOT_OK, etc.
|
||||
|
||||
// (IN) all urbs need completion routines
|
||||
void *context; // context for completion routine
|
||||
void (*complete)(struct urb *); // pointer to completion routine
|
||||
|
||||
// (OUT) status after each completion
|
||||
int status; // returned status
|
||||
|
||||
// (IN) buffer used for data transfers
|
||||
void *transfer_buffer; // associated data buffer
|
||||
int transfer_buffer_length; // data buffer length
|
||||
int number_of_packets; // size of iso_frame_desc
|
||||
|
||||
// (OUT) sometimes only part of CTRL/BULK/INTR transfer_buffer is used
|
||||
int actual_length; // actual data buffer length
|
||||
|
||||
// (IN) setup stage for CTRL (pass a struct usb_ctrlrequest)
|
||||
unsigned char* setup_packet; // setup packet (control only)
|
||||
|
||||
// Only for PERIODIC transfers (ISO, INTERRUPT)
|
||||
// (IN/OUT) start_frame is set unless ISO_ASAP isn't set
|
||||
int start_frame; // start frame
|
||||
int interval; // polling interval
|
||||
|
||||
// ISO only: packets are only "best effort"; each can have errors
|
||||
int error_count; // number of errors
|
||||
struct usb_iso_packet_descriptor iso_frame_desc[0];
|
||||
};
|
||||
|
||||
Your driver must create the "pipe" value using values from the appropriate
|
||||
endpoint descriptor in an interface that it's claimed.
|
||||
|
||||
|
||||
1.3. How to get an URB?
|
||||
|
||||
URBs are allocated with the following call
|
||||
|
||||
struct urb *usb_alloc_urb(int isoframes, int mem_flags)
|
||||
|
||||
Return value is a pointer to the allocated URB, 0 if allocation failed.
|
||||
The parameter isoframes specifies the number of isochronous transfer frames
|
||||
you want to schedule. For CTRL/BULK/INT, use 0. The mem_flags parameter
|
||||
holds standard memory allocation flags, letting you control (among other
|
||||
things) whether the underlying code may block or not.
|
||||
|
||||
To free an URB, use
|
||||
|
||||
void usb_free_urb(struct urb *urb)
|
||||
|
||||
You may free an urb that you've submitted, but which hasn't yet been
|
||||
returned to you in a completion callback. It will automatically be
|
||||
deallocated when it is no longer in use.
|
||||
|
||||
|
||||
1.4. What has to be filled in?
|
||||
|
||||
Depending on the type of transaction, there are some inline functions
|
||||
defined in <linux/usb.h> to simplify the initialization, such as
|
||||
fill_control_urb() and fill_bulk_urb(). In general, they need the usb
|
||||
device pointer, the pipe (usual format from usb.h), the transfer buffer,
|
||||
the desired transfer length, the completion handler, and its context.
|
||||
Take a look at the some existing drivers to see how they're used.
|
||||
|
||||
Flags:
|
||||
For ISO there are two startup behaviors: Specified start_frame or ASAP.
|
||||
For ASAP set URB_ISO_ASAP in transfer_flags.
|
||||
|
||||
If short packets should NOT be tolerated, set URB_SHORT_NOT_OK in
|
||||
transfer_flags.
|
||||
|
||||
|
||||
1.5. How to submit an URB?
|
||||
|
||||
Just call
|
||||
|
||||
int usb_submit_urb(struct urb *urb, int mem_flags)
|
||||
|
||||
The mem_flags parameter, such as SLAB_ATOMIC, controls memory allocation,
|
||||
such as whether the lower levels may block when memory is tight.
|
||||
|
||||
It immediately returns, either with status 0 (request queued) or some
|
||||
error code, usually caused by the following:
|
||||
|
||||
- Out of memory (-ENOMEM)
|
||||
- Unplugged device (-ENODEV)
|
||||
- Stalled endpoint (-EPIPE)
|
||||
- Too many queued ISO transfers (-EAGAIN)
|
||||
- Too many requested ISO frames (-EFBIG)
|
||||
- Invalid INT interval (-EINVAL)
|
||||
- More than one packet for INT (-EINVAL)
|
||||
|
||||
After submission, urb->status is -EINPROGRESS; however, you should never
|
||||
look at that value except in your completion callback.
|
||||
|
||||
For isochronous endpoints, your completion handlers should (re)submit
|
||||
URBs to the same endpoint with the ISO_ASAP flag, using multi-buffering,
|
||||
to get seamless ISO streaming.
|
||||
|
||||
|
||||
1.6. How to cancel an already running URB?
|
||||
|
||||
There are two ways to cancel an URB you've submitted but which hasn't
|
||||
been returned to your driver yet. For an asynchronous cancel, call
|
||||
|
||||
int usb_unlink_urb(struct urb *urb)
|
||||
|
||||
It removes the urb from the internal list and frees all allocated
|
||||
HW descriptors. The status is changed to reflect unlinking. Note
|
||||
that the URB will not normally have finished when usb_unlink_urb()
|
||||
returns; you must still wait for the completion handler to be called.
|
||||
|
||||
To cancel an URB synchronously, call
|
||||
|
||||
void usb_kill_urb(struct urb *urb)
|
||||
|
||||
It does everything usb_unlink_urb does, and in addition it waits
|
||||
until after the URB has been returned and the completion handler
|
||||
has finished. It also marks the URB as temporarily unusable, so
|
||||
that if the completion handler or anyone else tries to resubmit it
|
||||
they will get a -EPERM error. Thus you can be sure that when
|
||||
usb_kill_urb() returns, the URB is totally idle.
|
||||
|
||||
There is a lifetime issue to consider. An URB may complete at any
|
||||
time, and the completion handler may free the URB. If this happens
|
||||
while usb_unlink_urb or usb_kill_urb is running, it will cause a
|
||||
memory-access violation. The driver is responsible for avoiding this,
|
||||
which often means some sort of lock will be needed to prevent the URB
|
||||
from being deallocated while it is still in use.
|
||||
|
||||
On the other hand, since usb_unlink_urb may end up calling the
|
||||
completion handler, the handler must not take any lock that is held
|
||||
when usb_unlink_urb is invoked. The general solution to this problem
|
||||
is to increment the URB's reference count while holding the lock, then
|
||||
drop the lock and call usb_unlink_urb or usb_kill_urb, and then
|
||||
decrement the URB's reference count. You increment the reference
|
||||
count by calling
|
||||
|
||||
struct urb *usb_get_urb(struct urb *urb)
|
||||
|
||||
(ignore the return value; it is the same as the argument) and
|
||||
decrement the reference count by calling usb_free_urb. Of course,
|
||||
none of this is necessary if there's no danger of the URB being freed
|
||||
by the completion handler.
|
||||
|
||||
|
||||
1.7. What about the completion handler?
|
||||
|
||||
The handler is of the following type:
|
||||
|
||||
typedef void (*usb_complete_t)(struct urb *)
|
||||
|
||||
I.e., it gets the URB that caused the completion call. In the completion
|
||||
handler, you should have a look at urb->status to detect any USB errors.
|
||||
Since the context parameter is included in the URB, you can pass
|
||||
information to the completion handler.
|
||||
|
||||
Note that even when an error (or unlink) is reported, data may have been
|
||||
transferred. That's because USB transfers are packetized; it might take
|
||||
sixteen packets to transfer your 1KByte buffer, and ten of them might
|
||||
have transferred successfully before the completion was called.
|
||||
|
||||
|
||||
NOTE: ***** WARNING *****
|
||||
NEVER SLEEP IN A COMPLETION HANDLER. These are often called in atomic
|
||||
context.
|
||||
|
||||
In the current kernel, completion handlers run with local interrupts
|
||||
disabled, but in the future this will be changed, so don't assume that
|
||||
local IRQs are always disabled inside completion handlers.
|
||||
|
||||
1.8. How to do isochronous (ISO) transfers?
|
||||
|
||||
For ISO transfers you have to fill a usb_iso_packet_descriptor structure,
|
||||
allocated at the end of the URB by usb_alloc_urb(n,mem_flags), for each
|
||||
packet you want to schedule. You also have to set urb->interval to say
|
||||
how often to make transfers; it's often one per frame (which is once
|
||||
every microframe for highspeed devices). The actual interval used will
|
||||
be a power of two that's no bigger than what you specify.
|
||||
|
||||
The usb_submit_urb() call modifies urb->interval to the implemented interval
|
||||
value that is less than or equal to the requested interval value. If
|
||||
ISO_ASAP scheduling is used, urb->start_frame is also updated.
|
||||
|
||||
For each entry you have to specify the data offset for this frame (base is
|
||||
transfer_buffer), and the length you want to write/expect to read.
|
||||
After completion, actual_length contains the actual transferred length and
|
||||
status contains the resulting status for the ISO transfer for this frame.
|
||||
It is allowed to specify a varying length from frame to frame (e.g. for
|
||||
audio synchronisation/adaptive transfer rates). You can also use the length
|
||||
0 to omit one or more frames (striping).
|
||||
|
||||
For scheduling you can choose your own start frame or ISO_ASAP. As explained
|
||||
earlier, if you always keep at least one URB queued and your completion
|
||||
keeps (re)submitting a later URB, you'll get smooth ISO streaming (if usb
|
||||
bandwidth utilization allows).
|
||||
|
||||
If you specify your own start frame, make sure it's several frames in advance
|
||||
of the current frame. You might want this model if you're synchronizing
|
||||
ISO data with some other event stream.
|
||||
|
||||
|
||||
1.9. How to start interrupt (INT) transfers?
|
||||
|
||||
Interrupt transfers, like isochronous transfers, are periodic, and happen
|
||||
in intervals that are powers of two (1, 2, 4 etc) units. Units are frames
|
||||
for full and low speed devices, and microframes for high speed ones.
|
||||
The usb_submit_urb() call modifies urb->interval to the implemented interval
|
||||
value that is less than or equal to the requested interval value.
|
||||
|
||||
In Linux 2.6, unlike earlier versions, interrupt URBs are not automagically
|
||||
restarted when they complete. They end when the completion handler is
|
||||
called, just like other URBs. If you want an interrupt URB to be restarted,
|
||||
your completion handler must resubmit it.
|
||||
439
Documentation/usb/WUSB-Design-overview.txt
Normal file
439
Documentation/usb/WUSB-Design-overview.txt
Normal file
|
|
@ -0,0 +1,439 @@
|
|||
|
||||
Linux UWB + Wireless USB + WiNET
|
||||
|
||||
(C) 2005-2006 Intel Corporation
|
||||
Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
|
||||
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License version
|
||||
2 as published by the Free Software Foundation.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program; if not, write to the Free Software
|
||||
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
02110-1301, USA.
|
||||
|
||||
|
||||
Please visit http://bughost.org/thewiki/Design-overview.txt-1.8 for
|
||||
updated content.
|
||||
|
||||
* Design-overview.txt-1.8
|
||||
|
||||
This code implements a Ultra Wide Band stack for Linux, as well as
|
||||
drivers for the USB based UWB radio controllers defined in the
|
||||
Wireless USB 1.0 specification (including Wireless USB host controller
|
||||
and an Intel WiNET controller).
|
||||
|
||||
1. Introduction
|
||||
1. HWA: Host Wire adapters, your Wireless USB dongle
|
||||
|
||||
2. DWA: Device Wired Adaptor, a Wireless USB hub for wired
|
||||
devices
|
||||
3. WHCI: Wireless Host Controller Interface, the PCI WUSB host
|
||||
adapter
|
||||
2. The UWB stack
|
||||
1. Devices and hosts: the basic structure
|
||||
|
||||
2. Host Controller life cycle
|
||||
|
||||
3. On the air: beacons and enumerating the radio neighborhood
|
||||
|
||||
4. Device lists
|
||||
5. Bandwidth allocation
|
||||
|
||||
3. Wireless USB Host Controller drivers
|
||||
|
||||
4. Glossary
|
||||
|
||||
|
||||
Introduction
|
||||
|
||||
UWB is a wide-band communication protocol that is to serve also as the
|
||||
low-level protocol for others (much like TCP sits on IP). Currently
|
||||
these others are Wireless USB and TCP/IP, but seems Bluetooth and
|
||||
Firewire/1394 are coming along.
|
||||
|
||||
UWB uses a band from roughly 3 to 10 GHz, transmitting at a max of
|
||||
~-41dB (or 0.074 uW/MHz--geography specific data is still being
|
||||
negotiated w/ regulators, so watch for changes). That band is divided in
|
||||
a bunch of ~1.5 GHz wide channels (or band groups) composed of three
|
||||
subbands/subchannels (528 MHz each). Each channel is independent of each
|
||||
other, so you could consider them different "busses". Initially this
|
||||
driver considers them all a single one.
|
||||
|
||||
Radio time is divided in 65536 us long /superframes/, each one divided
|
||||
in 256 256us long /MASs/ (Media Allocation Slots), which are the basic
|
||||
time/media allocation units for transferring data. At the beginning of
|
||||
each superframe there is a Beacon Period (BP), where every device
|
||||
transmit its beacon on a single MAS. The length of the BP depends on how
|
||||
many devices are present and the length of their beacons.
|
||||
|
||||
Devices have a MAC (fixed, 48 bit address) and a device (changeable, 16
|
||||
bit address) and send periodic beacons to advertise themselves and pass
|
||||
info on what they are and do. They advertise their capabilities and a
|
||||
bunch of other stuff.
|
||||
|
||||
The different logical parts of this driver are:
|
||||
|
||||
*
|
||||
|
||||
*UWB*: the Ultra-Wide-Band stack -- manages the radio and
|
||||
associated spectrum to allow for devices sharing it. Allows to
|
||||
control bandwidth assignment, beaconing, scanning, etc
|
||||
|
||||
*
|
||||
|
||||
*WUSB*: the layer that sits on top of UWB to provide Wireless USB.
|
||||
The Wireless USB spec defines means to control a UWB radio and to
|
||||
do the actual WUSB.
|
||||
|
||||
|
||||
HWA: Host Wire adapters, your Wireless USB dongle
|
||||
|
||||
WUSB also defines a device called a Host Wire Adaptor (HWA), which in
|
||||
mere terms is a USB dongle that enables your PC to have UWB and Wireless
|
||||
USB. The Wireless USB Host Controller in a HWA looks to the host like a
|
||||
[Wireless] USB controller connected via USB (!)
|
||||
|
||||
The HWA itself is broken in two or three main interfaces:
|
||||
|
||||
*
|
||||
|
||||
*RC*: Radio control -- this implements an interface to the
|
||||
Ultra-Wide-Band radio controller. The driver for this implements a
|
||||
USB-based UWB Radio Controller to the UWB stack.
|
||||
|
||||
*
|
||||
|
||||
*HC*: the wireless USB host controller. It looks like a USB host
|
||||
whose root port is the radio and the WUSB devices connect to it.
|
||||
To the system it looks like a separate USB host. The driver (will)
|
||||
implement a USB host controller (similar to UHCI, OHCI or EHCI)
|
||||
for which the root hub is the radio...To reiterate: it is a USB
|
||||
controller that is connected via USB instead of PCI.
|
||||
|
||||
*
|
||||
|
||||
*WINET*: some HW provide a WiNET interface (IP over UWB). This
|
||||
package provides a driver for it (it looks like a network
|
||||
interface, winetX). The driver detects when there is a link up for
|
||||
their type and kick into gear.
|
||||
|
||||
|
||||
DWA: Device Wired Adaptor, a Wireless USB hub for wired devices
|
||||
|
||||
These are the complement to HWAs. They are a USB host for connecting
|
||||
wired devices, but it is connected to your PC connected via Wireless
|
||||
USB. To the system it looks like yet another USB host. To the untrained
|
||||
eye, it looks like a hub that connects upstream wirelessly.
|
||||
|
||||
We still offer no support for this; however, it should share a lot of
|
||||
code with the HWA-RC driver; there is a bunch of factorization work that
|
||||
has been done to support that in upcoming releases.
|
||||
|
||||
|
||||
WHCI: Wireless Host Controller Interface, the PCI WUSB host adapter
|
||||
|
||||
This is your usual PCI device that implements WHCI. Similar in concept
|
||||
to EHCI, it allows your wireless USB devices (including DWAs) to connect
|
||||
to your host via a PCI interface. As in the case of the HWA, it has a
|
||||
Radio Control interface and the WUSB Host Controller interface per se.
|
||||
|
||||
There is still no driver support for this, but will be in upcoming
|
||||
releases.
|
||||
|
||||
|
||||
The UWB stack
|
||||
|
||||
The main mission of the UWB stack is to keep a tally of which devices
|
||||
are in radio proximity to allow drivers to connect to them. As well, it
|
||||
provides an API for controlling the local radio controllers (RCs from
|
||||
now on), such as to start/stop beaconing, scan, allocate bandwidth, etc.
|
||||
|
||||
|
||||
Devices and hosts: the basic structure
|
||||
|
||||
The main building block here is the UWB device (struct uwb_dev). For
|
||||
each device that pops up in radio presence (ie: the UWB host receives a
|
||||
beacon from it) you get a struct uwb_dev that will show up in
|
||||
/sys/bus/uwb/devices.
|
||||
|
||||
For each RC that is detected, a new struct uwb_rc and struct uwb_dev are
|
||||
created. An entry is also created in /sys/class/uwb_rc for each RC.
|
||||
|
||||
Each RC driver is implemented by a separate driver that plugs into the
|
||||
interface that the UWB stack provides through a struct uwb_rc_ops. The
|
||||
spec creators have been nice enough to make the message format the same
|
||||
for HWA and WHCI RCs, so the driver is really a very thin transport that
|
||||
moves the requests from the UWB API to the device [/uwb_rc_ops->cmd()/]
|
||||
and sends the replies and notifications back to the API
|
||||
[/uwb_rc_neh_grok()/]. Notifications are handled to the UWB daemon, that
|
||||
is chartered, among other things, to keep the tab of how the UWB radio
|
||||
neighborhood looks, creating and destroying devices as they show up or
|
||||
disappear.
|
||||
|
||||
Command execution is very simple: a command block is sent and a event
|
||||
block or reply is expected back. For sending/receiving command/events, a
|
||||
handle called /neh/ (Notification/Event Handle) is opened with
|
||||
/uwb_rc_neh_open()/.
|
||||
|
||||
The HWA-RC (USB dongle) driver (drivers/uwb/hwa-rc.c) does this job for
|
||||
the USB connected HWA. Eventually, drivers/whci-rc.c will do the same
|
||||
for the PCI connected WHCI controller.
|
||||
|
||||
|
||||
Host Controller life cycle
|
||||
|
||||
So let's say we connect a dongle to the system: it is detected and
|
||||
firmware uploaded if needed [for Intel's i1480
|
||||
/drivers/uwb/ptc/usb.c:ptc_usb_probe()/] and then it is reenumerated.
|
||||
Now we have a real HWA device connected and
|
||||
/drivers/uwb/hwa-rc.c:hwarc_probe()/ picks it up, that will set up the
|
||||
Wire-Adaptor environment and then suck it into the UWB stack's vision of
|
||||
the world [/drivers/uwb/lc-rc.c:uwb_rc_add()/].
|
||||
|
||||
*
|
||||
|
||||
[*] The stack should put a new RC to scan for devices
|
||||
[/uwb_rc_scan()/] so it finds what's available around and tries to
|
||||
connect to them, but this is policy stuff and should be driven
|
||||
from user space. As of now, the operator is expected to do it
|
||||
manually; see the release notes for documentation on the procedure.
|
||||
|
||||
When a dongle is disconnected, /drivers/uwb/hwa-rc.c:hwarc_disconnect()/
|
||||
takes time of tearing everything down safely (or not...).
|
||||
|
||||
|
||||
On the air: beacons and enumerating the radio neighborhood
|
||||
|
||||
So assuming we have devices and we have agreed for a channel to connect
|
||||
on (let's say 9), we put the new RC to beacon:
|
||||
|
||||
*
|
||||
|
||||
$ echo 9 0 > /sys/class/uwb_rc/uwb0/beacon
|
||||
|
||||
Now it is visible. If there were other devices in the same radio channel
|
||||
and beacon group (that's what the zero is for), the dongle's radio
|
||||
control interface will send beacon notifications on its
|
||||
notification/event endpoint (NEEP). The beacon notifications are part of
|
||||
the event stream that is funneled into the API with
|
||||
/drivers/uwb/neh.c:uwb_rc_neh_grok()/ and delivered to the UWBD, the UWB
|
||||
daemon through a notification list.
|
||||
|
||||
UWBD wakes up and scans the event list; finds a beacon and adds it to
|
||||
the BEACON CACHE (/uwb_beca/). If he receives a number of beacons from
|
||||
the same device, he considers it to be 'onair' and creates a new device
|
||||
[/drivers/uwb/lc-dev.c:uwbd_dev_onair()/]. Similarly, when no beacons
|
||||
are received in some time, the device is considered gone and wiped out
|
||||
[uwbd calls periodically /uwb/beacon.c:uwb_beca_purge()/ that will purge
|
||||
the beacon cache of dead devices].
|
||||
|
||||
|
||||
Device lists
|
||||
|
||||
All UWB devices are kept in the list of the struct bus_type uwb_bus_type.
|
||||
|
||||
|
||||
Bandwidth allocation
|
||||
|
||||
The UWB stack maintains a local copy of DRP availability through
|
||||
processing of incoming *DRP Availability Change* notifications. This
|
||||
local copy is currently used to present the current bandwidth
|
||||
availability to the user through the sysfs file
|
||||
/sys/class/uwb_rc/uwbx/bw_avail. In the future the bandwidth
|
||||
availability information will be used by the bandwidth reservation
|
||||
routines.
|
||||
|
||||
The bandwidth reservation routines are in progress and are thus not
|
||||
present in the current release. When completed they will enable a user
|
||||
to initiate DRP reservation requests through interaction with sysfs. DRP
|
||||
reservation requests from remote UWB devices will also be handled. The
|
||||
bandwidth management done by the UWB stack will include callbacks to the
|
||||
higher layers will enable the higher layers to use the reservations upon
|
||||
completion. [Note: The bandwidth reservation work is in progress and
|
||||
subject to change.]
|
||||
|
||||
|
||||
Wireless USB Host Controller drivers
|
||||
|
||||
*WARNING* This section needs a lot of work!
|
||||
|
||||
As explained above, there are three different types of HCs in the WUSB
|
||||
world: HWA-HC, DWA-HC and WHCI-HC.
|
||||
|
||||
HWA-HC and DWA-HC share that they are Wire-Adapters (USB or WUSB
|
||||
connected controllers), and their transfer management system is almost
|
||||
identical. So is their notification delivery system.
|
||||
|
||||
HWA-HC and WHCI-HC share that they are both WUSB host controllers, so
|
||||
they have to deal with WUSB device life cycle and maintenance, wireless
|
||||
root-hub
|
||||
|
||||
HWA exposes a Host Controller interface (HWA-HC 0xe0/02/02). This has
|
||||
three endpoints (Notifications, Data Transfer In and Data Transfer
|
||||
Out--known as NEP, DTI and DTO in the code).
|
||||
|
||||
We reserve UWB bandwidth for our Wireless USB Cluster, create a Cluster
|
||||
ID and tell the HC to use all that. Then we start it. This means the HC
|
||||
starts sending MMCs.
|
||||
|
||||
*
|
||||
|
||||
The MMCs are blocks of data defined somewhere in the WUSB1.0 spec
|
||||
that define a stream in the UWB channel time allocated for sending
|
||||
WUSB IEs (host to device commands/notifications) and Device
|
||||
Notifications (device initiated to host). Each host defines a
|
||||
unique Wireless USB cluster through MMCs. Devices can connect to a
|
||||
single cluster at the time. The IEs are Information Elements, and
|
||||
among them are the bandwidth allocations that tell each device
|
||||
when can they transmit or receive.
|
||||
|
||||
Now it all depends on external stimuli.
|
||||
|
||||
*New device connection*
|
||||
|
||||
A new device pops up, it scans the radio looking for MMCs that give out
|
||||
the existence of Wireless USB channels. Once one (or more) are found,
|
||||
selects which one to connect to. Sends a /DN_Connect/ (device
|
||||
notification connect) during the DNTS (Device Notification Time
|
||||
Slot--announced in the MMCs
|
||||
|
||||
HC picks the /DN_Connect/ out (nep module sends to notif.c for delivery
|
||||
into /devconnect/). This process starts the authentication process for
|
||||
the device. First we allocate a /fake port/ and assign an
|
||||
unauthenticated address (128 to 255--what we really do is
|
||||
0x80 | fake_port_idx). We fiddle with the fake port status and /hub_wq/
|
||||
sees a new connection, so he moves on to enable the fake port with a reset.
|
||||
|
||||
So now we are in the reset path -- we know we have a non-yet enumerated
|
||||
device with an unauthorized address; we ask user space to authenticate
|
||||
(FIXME: not yet done, similar to bluetooth pairing), then we do the key
|
||||
exchange (FIXME: not yet done) and issue a /set address 0/ to bring the
|
||||
device to the default state. Device is authenticated.
|
||||
|
||||
From here, the USB stack takes control through the usb_hcd ops. hub_wq
|
||||
has seen the port status changes, as we have been toggling them. It will
|
||||
start enumerating and doing transfers through usb_hcd->urb_enqueue() to
|
||||
read descriptors and move our data.
|
||||
|
||||
*Device life cycle and keep alives*
|
||||
|
||||
Every time there is a successful transfer to/from a device, we update a
|
||||
per-device activity timestamp. If not, every now and then we check and
|
||||
if the activity timestamp gets old, we ping the device by sending it a
|
||||
Keep Alive IE; it responds with a /DN_Alive/ pong during the DNTS (this
|
||||
arrives to us as a notification through
|
||||
devconnect.c:wusb_handle_dn_alive(). If a device times out, we
|
||||
disconnect it from the system (cleaning up internal information and
|
||||
toggling the bits in the fake hub port, which kicks hub_wq into removing
|
||||
the rest of the stuff).
|
||||
|
||||
This is done through devconnect:__wusb_check_devs(), which will scan the
|
||||
device list looking for whom needs refreshing.
|
||||
|
||||
If the device wants to disconnect, it will either die (ugly) or send a
|
||||
/DN_Disconnect/ that will prompt a disconnection from the system.
|
||||
|
||||
*Sending and receiving data*
|
||||
|
||||
Data is sent and received through /Remote Pipes/ (rpipes). An rpipe is
|
||||
/aimed/ at an endpoint in a WUSB device. This is the same for HWAs and
|
||||
DWAs.
|
||||
|
||||
Each HC has a number of rpipes and buffers that can be assigned to them;
|
||||
when doing a data transfer (xfer), first the rpipe has to be aimed and
|
||||
prepared (buffers assigned), then we can start queueing requests for
|
||||
data in or out.
|
||||
|
||||
Data buffers have to be segmented out before sending--so we send first a
|
||||
header (segment request) and then if there is any data, a data buffer
|
||||
immediately after to the DTI interface (yep, even the request). If our
|
||||
buffer is bigger than the max segment size, then we just do multiple
|
||||
requests.
|
||||
|
||||
[This sucks, because doing USB scatter gatter in Linux is resource
|
||||
intensive, if any...not that the current approach is not. It just has to
|
||||
be cleaned up a lot :)].
|
||||
|
||||
If reading, we don't send data buffers, just the segment headers saying
|
||||
we want to read segments.
|
||||
|
||||
When the xfer is executed, we receive a notification that says data is
|
||||
ready in the DTI endpoint (handled through
|
||||
xfer.c:wa_handle_notif_xfer()). In there we read from the DTI endpoint a
|
||||
descriptor that gives us the status of the transfer, its identification
|
||||
(given when we issued it) and the segment number. If it was a data read,
|
||||
we issue another URB to read into the destination buffer the chunk of
|
||||
data coming out of the remote endpoint. Done, wait for the next guy. The
|
||||
callbacks for the URBs issued from here are the ones that will declare
|
||||
the xfer complete at some point and call its callback.
|
||||
|
||||
Seems simple, but the implementation is not trivial.
|
||||
|
||||
*
|
||||
|
||||
*WARNING* Old!!
|
||||
|
||||
The main xfer descriptor, wa_xfer (equivalent to a URB) contains an
|
||||
array of segments, tallys on segments and buffers and callback
|
||||
information. Buried in there is a lot of URBs for executing the segments
|
||||
and buffer transfers.
|
||||
|
||||
For OUT xfers, there is an array of segments, one URB for each, another
|
||||
one of buffer URB. When submitting, we submit URBs for segment request
|
||||
1, buffer 1, segment 2, buffer 2...etc. Then we wait on the DTI for xfer
|
||||
result data; when all the segments are complete, we call the callback to
|
||||
finalize the transfer.
|
||||
|
||||
For IN xfers, we only issue URBs for the segments we want to read and
|
||||
then wait for the xfer result data.
|
||||
|
||||
*URB mapping into xfers*
|
||||
|
||||
This is done by hwahc_op_urb_[en|de]queue(). In enqueue() we aim an
|
||||
rpipe to the endpoint where we have to transmit, create a transfer
|
||||
context (wa_xfer) and submit it. When the xfer is done, our callback is
|
||||
called and we assign the status bits and release the xfer resources.
|
||||
|
||||
In dequeue() we are basically cancelling/aborting the transfer. We issue
|
||||
a xfer abort request to the HC, cancel all the URBs we had submitted
|
||||
and not yet done and when all that is done, the xfer callback will be
|
||||
called--this will call the URB callback.
|
||||
|
||||
|
||||
Glossary
|
||||
|
||||
*DWA* -- Device Wire Adapter
|
||||
|
||||
USB host, wired for downstream devices, upstream connects wirelessly
|
||||
with Wireless USB.
|
||||
|
||||
*EVENT* -- Response to a command on the NEEP
|
||||
|
||||
*HWA* -- Host Wire Adapter / USB dongle for UWB and Wireless USB
|
||||
|
||||
*NEH* -- Notification/Event Handle
|
||||
|
||||
Handle/file descriptor for receiving notifications or events. The WA
|
||||
code requires you to get one of this to listen for notifications or
|
||||
events on the NEEP.
|
||||
|
||||
*NEEP* -- Notification/Event EndPoint
|
||||
|
||||
Stuff related to the management of the first endpoint of a HWA USB
|
||||
dongle that is used to deliver an stream of events and notifications to
|
||||
the host.
|
||||
|
||||
*NOTIFICATION* -- Message coming in the NEEP as response to something.
|
||||
|
||||
*RC* -- Radio Control
|
||||
|
||||
Design-overview.txt-1.8 (last edited 2006-11-04 12:22:24 by
|
||||
InakyPerezGonzalez)
|
||||
|
||||
128
Documentation/usb/acm.txt
Normal file
128
Documentation/usb/acm.txt
Normal file
|
|
@ -0,0 +1,128 @@
|
|||
Linux ACM driver v0.16
|
||||
(c) 1999 Vojtech Pavlik <vojtech@suse.cz>
|
||||
Sponsored by SuSE
|
||||
----------------------------------------------------------------------------
|
||||
|
||||
0. Disclaimer
|
||||
~~~~~~~~~~~~~
|
||||
This program is free software; you can redistribute it and/or modify it
|
||||
under the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 2 of the License, or (at your option)
|
||||
any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||||
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||||
more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License along
|
||||
with this program; if not, write to the Free Software Foundation, Inc., 59
|
||||
Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
|
||||
Should you need to contact me, the author, you can do so either by e-mail
|
||||
- mail your message to <vojtech@suse.cz>, or by paper mail: Vojtech Pavlik,
|
||||
Ucitelska 1576, Prague 8, 182 00 Czech Republic
|
||||
|
||||
For your convenience, the GNU General Public License version 2 is included
|
||||
in the package: See the file COPYING.
|
||||
|
||||
1. Usage
|
||||
~~~~~~~~
|
||||
The drivers/usb/class/cdc-acm.c drivers works with USB modems and USB ISDN terminal
|
||||
adapters that conform to the Universal Serial Bus Communication Device Class
|
||||
Abstract Control Model (USB CDC ACM) specification.
|
||||
|
||||
Many modems do, here is a list of those I know of:
|
||||
|
||||
3Com OfficeConnect 56k
|
||||
3Com Voice FaxModem Pro
|
||||
3Com Sportster
|
||||
MultiTech MultiModem 56k
|
||||
Zoom 2986L FaxModem
|
||||
Compaq 56k FaxModem
|
||||
ELSA Microlink 56k
|
||||
|
||||
I know of one ISDN TA that does work with the acm driver:
|
||||
|
||||
3Com USR ISDN Pro TA
|
||||
|
||||
Some cell phones also connect via USB. I know the following phones work:
|
||||
|
||||
SonyEricsson K800i
|
||||
|
||||
Unfortunately many modems and most ISDN TAs use proprietary interfaces and
|
||||
thus won't work with this drivers. Check for ACM compliance before buying.
|
||||
|
||||
To use the modems you need these modules loaded:
|
||||
|
||||
usbcore.ko
|
||||
uhci-hcd.ko ohci-hcd.ko or ehci-hcd.ko
|
||||
cdc-acm.ko
|
||||
|
||||
After that, the modem[s] should be accessible. You should be able to use
|
||||
minicom, ppp and mgetty with them.
|
||||
|
||||
2. Verifying that it works
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
The first step would be to check /proc/bus/usb/devices, it should look
|
||||
like this:
|
||||
|
||||
T: Bus=01 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
|
||||
B: Alloc= 0/900 us ( 0%), #Int= 0, #Iso= 0
|
||||
D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0000 ProdID=0000 Rev= 0.00
|
||||
S: Product=USB UHCI Root Hub
|
||||
S: SerialNumber=6800
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
|
||||
T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=01 Dev#= 2 Spd=12 MxCh= 0
|
||||
D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2
|
||||
P: Vendor=04c1 ProdID=008f Rev= 2.07
|
||||
S: Manufacturer=3Com Inc.
|
||||
S: Product=3Com U.S. Robotics Pro ISDN TA
|
||||
S: SerialNumber=UFT53A49BVT7
|
||||
C: #Ifs= 1 Cfg#= 1 Atr=60 MxPwr= 0mA
|
||||
I: If#= 0 Alt= 0 #EPs= 3 Cls=ff(vend.) Sub=ff Prot=ff Driver=acm
|
||||
E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
|
||||
E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms
|
||||
C:* #Ifs= 2 Cfg#= 2 Atr=60 MxPwr= 0mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 16 Ivl=128ms
|
||||
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm
|
||||
E: Ad=85(I) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
|
||||
E: Ad=04(O) Atr=02(Bulk) MxPS= 64 Ivl= 0ms
|
||||
|
||||
The presence of these three lines (and the Cls= 'comm' and 'data' classes)
|
||||
is important, it means it's an ACM device. The Driver=acm means the acm
|
||||
driver is used for the device. If you see only Cls=ff(vend.) then you're out
|
||||
of luck, you have a device with vendor specific-interface.
|
||||
|
||||
D: Ver= 1.00 Cls=02(comm.) Sub=00 Prot=00 MxPS= 8 #Cfgs= 2
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
|
||||
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm
|
||||
|
||||
In the system log you should see:
|
||||
|
||||
usb.c: USB new device connect, assigned device number 2
|
||||
usb.c: kmalloc IF c7691fa0, numif 1
|
||||
usb.c: kmalloc IF c7b5f3e0, numif 2
|
||||
usb.c: skipped 4 class/vendor specific interface descriptors
|
||||
usb.c: new device strings: Mfr=1, Product=2, SerialNumber=3
|
||||
usb.c: USB device number 2 default language ID 0x409
|
||||
Manufacturer: 3Com Inc.
|
||||
Product: 3Com U.S. Robotics Pro ISDN TA
|
||||
SerialNumber: UFT53A49BVT7
|
||||
acm.c: probing config 1
|
||||
acm.c: probing config 2
|
||||
ttyACM0: USB ACM device
|
||||
acm.c: acm_control_msg: rq: 0x22 val: 0x0 len: 0x0 result: 0
|
||||
acm.c: acm_control_msg: rq: 0x20 val: 0x0 len: 0x7 result: 7
|
||||
usb.c: acm driver claimed interface c7b5f3e0
|
||||
usb.c: acm driver claimed interface c7b5f3f8
|
||||
usb.c: acm driver claimed interface c7691fa0
|
||||
|
||||
If all this seems to be OK, fire up minicom and set it to talk to the ttyACM
|
||||
device and try typing 'at'. If it responds with 'OK', then everything is
|
||||
working.
|
||||
79
Documentation/usb/anchors.txt
Normal file
79
Documentation/usb/anchors.txt
Normal file
|
|
@ -0,0 +1,79 @@
|
|||
What is anchor?
|
||||
===============
|
||||
|
||||
A USB driver needs to support some callbacks requiring
|
||||
a driver to cease all IO to an interface. To do so, a
|
||||
driver has to keep track of the URBs it has submitted
|
||||
to know they've all completed or to call usb_kill_urb
|
||||
for them. The anchor is a data structure takes care of
|
||||
keeping track of URBs and provides methods to deal with
|
||||
multiple URBs.
|
||||
|
||||
Allocation and Initialisation
|
||||
=============================
|
||||
|
||||
There's no API to allocate an anchor. It is simply declared
|
||||
as struct usb_anchor. init_usb_anchor() must be called to
|
||||
initialise the data structure.
|
||||
|
||||
Deallocation
|
||||
============
|
||||
|
||||
Once it has no more URBs associated with it, the anchor can be
|
||||
freed with normal memory management operations.
|
||||
|
||||
Association and disassociation of URBs with anchors
|
||||
===================================================
|
||||
|
||||
An association of URBs to an anchor is made by an explicit
|
||||
call to usb_anchor_urb(). The association is maintained until
|
||||
an URB is finished by (successful) completion. Thus disassociation
|
||||
is automatic. A function is provided to forcibly finish (kill)
|
||||
all URBs associated with an anchor.
|
||||
Furthermore, disassociation can be made with usb_unanchor_urb()
|
||||
|
||||
Operations on multitudes of URBs
|
||||
================================
|
||||
|
||||
usb_kill_anchored_urbs()
|
||||
------------------------
|
||||
|
||||
This function kills all URBs associated with an anchor. The URBs
|
||||
are called in the reverse temporal order they were submitted.
|
||||
This way no data can be reordered.
|
||||
|
||||
usb_unlink_anchored_urbs()
|
||||
--------------------------
|
||||
|
||||
This function unlinks all URBs associated with an anchor. The URBs
|
||||
are processed in the reverse temporal order they were submitted.
|
||||
This is similar to usb_kill_anchored_urbs(), but it will not sleep.
|
||||
Therefore no guarantee is made that the URBs have been unlinked when
|
||||
the call returns. They may be unlinked later but will be unlinked in
|
||||
finite time.
|
||||
|
||||
usb_scuttle_anchored_urbs()
|
||||
---------------------------
|
||||
|
||||
All URBs of an anchor are unanchored en masse.
|
||||
|
||||
usb_wait_anchor_empty_timeout()
|
||||
-------------------------------
|
||||
|
||||
This function waits for all URBs associated with an anchor to finish
|
||||
or a timeout, whichever comes first. Its return value will tell you
|
||||
whether the timeout was reached.
|
||||
|
||||
usb_anchor_empty()
|
||||
------------------
|
||||
|
||||
Returns true if no URBs are associated with an anchor. Locking
|
||||
is the caller's responsibility.
|
||||
|
||||
usb_get_from_anchor()
|
||||
---------------------
|
||||
|
||||
Returns the oldest anchored URB of an anchor. The URB is unanchored
|
||||
and returned with a reference. As you may mix URBs to several
|
||||
destinations in one anchor you have no guarantee the chronologically
|
||||
first submitted URB is returned.
|
||||
92
Documentation/usb/authorization.txt
Normal file
92
Documentation/usb/authorization.txt
Normal file
|
|
@ -0,0 +1,92 @@
|
|||
|
||||
Authorizing (or not) your USB devices to connect to the system
|
||||
|
||||
(C) 2007 Inaky Perez-Gonzalez <inaky@linux.intel.com> Intel Corporation
|
||||
|
||||
This feature allows you to control if a USB device can be used (or
|
||||
not) in a system. This feature will allow you to implement a lock-down
|
||||
of USB devices, fully controlled by user space.
|
||||
|
||||
As of now, when a USB device is connected it is configured and
|
||||
its interfaces are immediately made available to the users. With this
|
||||
modification, only if root authorizes the device to be configured will
|
||||
then it be possible to use it.
|
||||
|
||||
Usage:
|
||||
|
||||
Authorize a device to connect:
|
||||
|
||||
$ echo 1 > /sys/bus/usb/devices/DEVICE/authorized
|
||||
|
||||
Deauthorize a device:
|
||||
|
||||
$ echo 0 > /sys/bus/usb/devices/DEVICE/authorized
|
||||
|
||||
Set new devices connected to hostX to be deauthorized by default (ie:
|
||||
lock down):
|
||||
|
||||
$ echo 0 > /sys/bus/usb/devices/usbX/authorized_default
|
||||
|
||||
Remove the lock down:
|
||||
|
||||
$ echo 1 > /sys/bus/usb/devices/usbX/authorized_default
|
||||
|
||||
By default, Wired USB devices are authorized by default to
|
||||
connect. Wireless USB hosts deauthorize by default all new connected
|
||||
devices (this is so because we need to do an authentication phase
|
||||
before authorizing).
|
||||
|
||||
|
||||
Example system lockdown (lame)
|
||||
-----------------------
|
||||
|
||||
Imagine you want to implement a lockdown so only devices of type XYZ
|
||||
can be connected (for example, it is a kiosk machine with a visible
|
||||
USB port):
|
||||
|
||||
boot up
|
||||
rc.local ->
|
||||
|
||||
for host in /sys/bus/usb/devices/usb*
|
||||
do
|
||||
echo 0 > $host/authorized_default
|
||||
done
|
||||
|
||||
Hookup an script to udev, for new USB devices
|
||||
|
||||
if device_is_my_type $DEV
|
||||
then
|
||||
echo 1 > $device_path/authorized
|
||||
done
|
||||
|
||||
|
||||
Now, device_is_my_type() is where the juice for a lockdown is. Just
|
||||
checking if the class, type and protocol match something is the worse
|
||||
security verification you can make (or the best, for someone willing
|
||||
to break it). If you need something secure, use crypto and Certificate
|
||||
Authentication or stuff like that. Something simple for an storage key
|
||||
could be:
|
||||
|
||||
function device_is_my_type()
|
||||
{
|
||||
echo 1 > authorized # temporarily authorize it
|
||||
# FIXME: make sure none can mount it
|
||||
mount DEVICENODE /mntpoint
|
||||
sum=$(md5sum /mntpoint/.signature)
|
||||
if [ $sum = $(cat /etc/lockdown/keysum) ]
|
||||
then
|
||||
echo "We are good, connected"
|
||||
umount /mntpoint
|
||||
# Other stuff so others can use it
|
||||
else
|
||||
echo 0 > authorized
|
||||
fi
|
||||
}
|
||||
|
||||
|
||||
Of course, this is lame, you'd want to do a real certificate
|
||||
verification stuff with PKI, so you don't depend on a shared secret,
|
||||
etc, but you get the idea. Anybody with access to a device gadget kit
|
||||
can fake descriptors and device info. Don't trust that. You are
|
||||
welcome.
|
||||
|
||||
78
Documentation/usb/bulk-streams.txt
Normal file
78
Documentation/usb/bulk-streams.txt
Normal file
|
|
@ -0,0 +1,78 @@
|
|||
Background
|
||||
==========
|
||||
|
||||
Bulk endpoint streams were added in the USB 3.0 specification. Streams allow a
|
||||
device driver to overload a bulk endpoint so that multiple transfers can be
|
||||
queued at once.
|
||||
|
||||
Streams are defined in sections 4.4.6.4 and 8.12.1.4 of the Universal Serial Bus
|
||||
3.0 specification at http://www.usb.org/developers/docs/ The USB Attached SCSI
|
||||
Protocol, which uses streams to queue multiple SCSI commands, can be found on
|
||||
the T10 website (http://t10.org/).
|
||||
|
||||
|
||||
Device-side implications
|
||||
========================
|
||||
|
||||
Once a buffer has been queued to a stream ring, the device is notified (through
|
||||
an out-of-band mechanism on another endpoint) that data is ready for that stream
|
||||
ID. The device then tells the host which "stream" it wants to start. The host
|
||||
can also initiate a transfer on a stream without the device asking, but the
|
||||
device can refuse that transfer. Devices can switch between streams at any
|
||||
time.
|
||||
|
||||
|
||||
Driver implications
|
||||
===================
|
||||
|
||||
int usb_alloc_streams(struct usb_interface *interface,
|
||||
struct usb_host_endpoint **eps, unsigned int num_eps,
|
||||
unsigned int num_streams, gfp_t mem_flags);
|
||||
|
||||
Device drivers will call this API to request that the host controller driver
|
||||
allocate memory so the driver can use up to num_streams stream IDs. They must
|
||||
pass an array of usb_host_endpoints that need to be setup with similar stream
|
||||
IDs. This is to ensure that a UASP driver will be able to use the same stream
|
||||
ID for the bulk IN and OUT endpoints used in a Bi-directional command sequence.
|
||||
|
||||
The return value is an error condition (if one of the endpoints doesn't support
|
||||
streams, or the xHCI driver ran out of memory), or the number of streams the
|
||||
host controller allocated for this endpoint. The xHCI host controller hardware
|
||||
declares how many stream IDs it can support, and each bulk endpoint on a
|
||||
SuperSpeed device will say how many stream IDs it can handle. Therefore,
|
||||
drivers should be able to deal with being allocated less stream IDs than they
|
||||
requested.
|
||||
|
||||
Do NOT call this function if you have URBs enqueued for any of the endpoints
|
||||
passed in as arguments. Do not call this function to request less than two
|
||||
streams.
|
||||
|
||||
Drivers will only be allowed to call this API once for the same endpoint
|
||||
without calling usb_free_streams(). This is a simplification for the xHCI host
|
||||
controller driver, and may change in the future.
|
||||
|
||||
|
||||
Picking new Stream IDs to use
|
||||
============================
|
||||
|
||||
Stream ID 0 is reserved, and should not be used to communicate with devices. If
|
||||
usb_alloc_streams() returns with a value of N, you may use streams 1 though N.
|
||||
To queue an URB for a specific stream, set the urb->stream_id value. If the
|
||||
endpoint does not support streams, an error will be returned.
|
||||
|
||||
Note that new API to choose the next stream ID will have to be added if the xHCI
|
||||
driver supports secondary stream IDs.
|
||||
|
||||
|
||||
Clean up
|
||||
========
|
||||
|
||||
If a driver wishes to stop using streams to communicate with the device, it
|
||||
should call
|
||||
|
||||
void usb_free_streams(struct usb_interface *interface,
|
||||
struct usb_host_endpoint **eps, unsigned int num_eps,
|
||||
gfp_t mem_flags);
|
||||
|
||||
All stream IDs will be deallocated when the driver releases the interface, to
|
||||
ensure that drivers that don't support streams will be able to use the endpoint.
|
||||
134
Documentation/usb/callbacks.txt
Normal file
134
Documentation/usb/callbacks.txt
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
What callbacks will usbcore do?
|
||||
===============================
|
||||
|
||||
Usbcore will call into a driver through callbacks defined in the driver
|
||||
structure and through the completion handler of URBs a driver submits.
|
||||
Only the former are in the scope of this document. These two kinds of
|
||||
callbacks are completely independent of each other. Information on the
|
||||
completion callback can be found in Documentation/usb/URB.txt.
|
||||
|
||||
The callbacks defined in the driver structure are:
|
||||
|
||||
1. Hotplugging callbacks:
|
||||
|
||||
* @probe: Called to see if the driver is willing to manage a particular
|
||||
* interface on a device.
|
||||
* @disconnect: Called when the interface is no longer accessible, usually
|
||||
* because its device has been (or is being) disconnected or the
|
||||
* driver module is being unloaded.
|
||||
|
||||
2. Odd backdoor through usbfs:
|
||||
|
||||
* @ioctl: Used for drivers that want to talk to userspace through
|
||||
* the "usbfs" filesystem. This lets devices provide ways to
|
||||
* expose information to user space regardless of where they
|
||||
* do (or don't) show up otherwise in the filesystem.
|
||||
|
||||
3. Power management (PM) callbacks:
|
||||
|
||||
* @suspend: Called when the device is going to be suspended.
|
||||
* @resume: Called when the device is being resumed.
|
||||
* @reset_resume: Called when the suspended device has been reset instead
|
||||
* of being resumed.
|
||||
|
||||
4. Device level operations:
|
||||
|
||||
* @pre_reset: Called when the device is about to be reset.
|
||||
* @post_reset: Called after the device has been reset
|
||||
|
||||
The ioctl interface (2) should be used only if you have a very good
|
||||
reason. Sysfs is preferred these days. The PM callbacks are covered
|
||||
separately in Documentation/usb/power-management.txt.
|
||||
|
||||
Calling conventions
|
||||
===================
|
||||
|
||||
All callbacks are mutually exclusive. There's no need for locking
|
||||
against other USB callbacks. All callbacks are called from a task
|
||||
context. You may sleep. However, it is important that all sleeps have a
|
||||
small fixed upper limit in time. In particular you must not call out to
|
||||
user space and await results.
|
||||
|
||||
Hotplugging callbacks
|
||||
=====================
|
||||
|
||||
These callbacks are intended to associate and disassociate a driver with
|
||||
an interface. A driver's bond to an interface is exclusive.
|
||||
|
||||
The probe() callback
|
||||
--------------------
|
||||
|
||||
int (*probe) (struct usb_interface *intf,
|
||||
const struct usb_device_id *id);
|
||||
|
||||
Accept or decline an interface. If you accept the device return 0,
|
||||
otherwise -ENODEV or -ENXIO. Other error codes should be used only if a
|
||||
genuine error occurred during initialisation which prevented a driver
|
||||
from accepting a device that would else have been accepted.
|
||||
You are strongly encouraged to use usbcore's facility,
|
||||
usb_set_intfdata(), to associate a data structure with an interface, so
|
||||
that you know which internal state and identity you associate with a
|
||||
particular interface. The device will not be suspended and you may do IO
|
||||
to the interface you are called for and endpoint 0 of the device. Device
|
||||
initialisation that doesn't take too long is a good idea here.
|
||||
|
||||
The disconnect() callback
|
||||
-------------------------
|
||||
|
||||
void (*disconnect) (struct usb_interface *intf);
|
||||
|
||||
This callback is a signal to break any connection with an interface.
|
||||
You are not allowed any IO to a device after returning from this
|
||||
callback. You also may not do any other operation that may interfere
|
||||
with another driver bound the interface, eg. a power management
|
||||
operation.
|
||||
If you are called due to a physical disconnection, all your URBs will be
|
||||
killed by usbcore. Note that in this case disconnect will be called some
|
||||
time after the physical disconnection. Thus your driver must be prepared
|
||||
to deal with failing IO even prior to the callback.
|
||||
|
||||
Device level callbacks
|
||||
======================
|
||||
|
||||
pre_reset
|
||||
---------
|
||||
|
||||
int (*pre_reset)(struct usb_interface *intf);
|
||||
|
||||
A driver or user space is triggering a reset on the device which
|
||||
contains the interface passed as an argument. Cease IO, wait for all
|
||||
outstanding URBs to complete, and save any device state you need to
|
||||
restore. No more URBs may be submitted until the post_reset method
|
||||
is called.
|
||||
|
||||
If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you
|
||||
are in atomic context.
|
||||
|
||||
post_reset
|
||||
----------
|
||||
|
||||
int (*post_reset)(struct usb_interface *intf);
|
||||
|
||||
The reset has completed. Restore any saved device state and begin
|
||||
using the device again.
|
||||
|
||||
If you need to allocate memory here, use GFP_NOIO or GFP_ATOMIC, if you
|
||||
are in atomic context.
|
||||
|
||||
Call sequences
|
||||
==============
|
||||
|
||||
No callbacks other than probe will be invoked for an interface
|
||||
that isn't bound to your driver.
|
||||
|
||||
Probe will never be called for an interface bound to a driver.
|
||||
Hence following a successful probe, disconnect will be called
|
||||
before there is another probe for the same interface.
|
||||
|
||||
Once your driver is bound to an interface, disconnect can be
|
||||
called at any time except in between pre_reset and post_reset.
|
||||
pre_reset is always followed by post_reset, even if the reset
|
||||
failed or the device has been unplugged.
|
||||
|
||||
suspend is always followed by one of: resume, reset_resume, or
|
||||
disconnect.
|
||||
71
Documentation/usb/chipidea.txt
Normal file
71
Documentation/usb/chipidea.txt
Normal file
|
|
@ -0,0 +1,71 @@
|
|||
1. How to test OTG FSM(HNP and SRP)
|
||||
-----------------------------------
|
||||
To show how to demo OTG HNP and SRP functions via sys input files
|
||||
with 2 Freescale i.MX6Q sabre SD boards.
|
||||
|
||||
1.1 How to enable OTG FSM in menuconfig
|
||||
---------------------------------------
|
||||
Select CONFIG_USB_OTG_FSM, rebuild kernel Image and modules.
|
||||
If you want to check some internal variables for otg fsm,
|
||||
select CONFIG_USB_CHIPIDEA_DEBUG, there are 2 files which
|
||||
can show otg fsm variables and some controller registers value:
|
||||
cat /sys/kernel/debug/ci_hdrc.0/otg
|
||||
cat /sys/kernel/debug/ci_hdrc.0/registers
|
||||
|
||||
1.2 Test operations
|
||||
-------------------
|
||||
1) Power up 2 Freescale i.MX6Q sabre SD boards with gadget class driver loaded
|
||||
(e.g. g_mass_storage).
|
||||
|
||||
2) Connect 2 boards with usb cable with one end is micro A plug, the other end
|
||||
is micro B plug.
|
||||
|
||||
The A-device(with micro A plug inserted) should enumrate B-device.
|
||||
|
||||
3) Role switch
|
||||
On B-device:
|
||||
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
|
||||
|
||||
if HNP polling is not supported, also need:
|
||||
On A-device:
|
||||
echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
|
||||
|
||||
B-device should take host role and enumrate A-device.
|
||||
|
||||
4) A-device switch back to host.
|
||||
On B-device:
|
||||
echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
|
||||
|
||||
A-device should switch back to host and enumrate B-device.
|
||||
|
||||
5) Remove B-device(unplug micro B plug) and insert again in 10 seconds,
|
||||
A-device should enumrate B-device again.
|
||||
|
||||
6) Remove B-device(unplug micro B plug) and insert again after 10 seconds,
|
||||
A-device should NOT enumrate B-device.
|
||||
|
||||
if A-device wants to use bus:
|
||||
On A-device:
|
||||
echo 0 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
|
||||
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
|
||||
|
||||
if B-device wants to use bus:
|
||||
On B-device:
|
||||
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
|
||||
|
||||
7) A-device power down the bus.
|
||||
On A-device:
|
||||
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
|
||||
|
||||
A-device should disconnect with B-device and power down the bus.
|
||||
|
||||
8) B-device does data pulse for SRP.
|
||||
On B-device:
|
||||
echo 1 > /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
|
||||
|
||||
A-device should resume usb bus and enumrate B-device.
|
||||
|
||||
1.3 Reference document
|
||||
----------------------
|
||||
"On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
|
||||
July 27, 2012 Revision 2.0 version 1.1a"
|
||||
133
Documentation/usb/dma.txt
Normal file
133
Documentation/usb/dma.txt
Normal file
|
|
@ -0,0 +1,133 @@
|
|||
In Linux 2.5 kernels (and later), USB device drivers have additional control
|
||||
over how DMA may be used to perform I/O operations. The APIs are detailed
|
||||
in the kernel usb programming guide (kerneldoc, from the source code).
|
||||
|
||||
|
||||
API OVERVIEW
|
||||
|
||||
The big picture is that USB drivers can continue to ignore most DMA issues,
|
||||
though they still must provide DMA-ready buffers (see
|
||||
Documentation/DMA-API-HOWTO.txt). That's how they've worked through
|
||||
the 2.4 (and earlier) kernels.
|
||||
|
||||
OR: they can now be DMA-aware.
|
||||
|
||||
- New calls enable DMA-aware drivers, letting them allocate dma buffers and
|
||||
manage dma mappings for existing dma-ready buffers (see below).
|
||||
|
||||
- URBs have an additional "transfer_dma" field, as well as a transfer_flags
|
||||
bit saying if it's valid. (Control requests also have "setup_dma", but
|
||||
drivers must not use it.)
|
||||
|
||||
- "usbcore" will map this DMA address, if a DMA-aware driver didn't do
|
||||
it first and set URB_NO_TRANSFER_DMA_MAP. HCDs
|
||||
don't manage dma mappings for URBs.
|
||||
|
||||
- There's a new "generic DMA API", parts of which are usable by USB device
|
||||
drivers. Never use dma_set_mask() on any USB interface or device; that
|
||||
would potentially break all devices sharing that bus.
|
||||
|
||||
|
||||
ELIMINATING COPIES
|
||||
|
||||
It's good to avoid making CPUs copy data needlessly. The costs can add up,
|
||||
and effects like cache-trashing can impose subtle penalties.
|
||||
|
||||
- If you're doing lots of small data transfers from the same buffer all
|
||||
the time, that can really burn up resources on systems which use an
|
||||
IOMMU to manage the DMA mappings. It can cost MUCH more to set up and
|
||||
tear down the IOMMU mappings with each request than perform the I/O!
|
||||
|
||||
For those specific cases, USB has primitives to allocate less expensive
|
||||
memory. They work like kmalloc and kfree versions that give you the right
|
||||
kind of addresses to store in urb->transfer_buffer and urb->transfer_dma.
|
||||
You'd also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags:
|
||||
|
||||
void *usb_alloc_coherent (struct usb_device *dev, size_t size,
|
||||
int mem_flags, dma_addr_t *dma);
|
||||
|
||||
void usb_free_coherent (struct usb_device *dev, size_t size,
|
||||
void *addr, dma_addr_t dma);
|
||||
|
||||
Most drivers should *NOT* be using these primitives; they don't need
|
||||
to use this type of memory ("dma-coherent"), and memory returned from
|
||||
kmalloc() will work just fine.
|
||||
|
||||
The memory buffer returned is "dma-coherent"; sometimes you might need to
|
||||
force a consistent memory access ordering by using memory barriers. It's
|
||||
not using a streaming DMA mapping, so it's good for small transfers on
|
||||
systems where the I/O would otherwise thrash an IOMMU mapping. (See
|
||||
Documentation/DMA-API-HOWTO.txt for definitions of "coherent" and
|
||||
"streaming" DMA mappings.)
|
||||
|
||||
Asking for 1/Nth of a page (as well as asking for N pages) is reasonably
|
||||
space-efficient.
|
||||
|
||||
On most systems the memory returned will be uncached, because the
|
||||
semantics of dma-coherent memory require either bypassing CPU caches
|
||||
or using cache hardware with bus-snooping support. While x86 hardware
|
||||
has such bus-snooping, many other systems use software to flush cache
|
||||
lines to prevent DMA conflicts.
|
||||
|
||||
- Devices on some EHCI controllers could handle DMA to/from high memory.
|
||||
|
||||
Unfortunately, the current Linux DMA infrastructure doesn't have a sane
|
||||
way to expose these capabilities ... and in any case, HIGHMEM is mostly a
|
||||
design wart specific to x86_32. So your best bet is to ensure you never
|
||||
pass a highmem buffer into a USB driver. That's easy; it's the default
|
||||
behavior. Just don't override it; e.g. with NETIF_F_HIGHDMA.
|
||||
|
||||
This may force your callers to do some bounce buffering, copying from
|
||||
high memory to "normal" DMA memory. If you can come up with a good way
|
||||
to fix this issue (for x86_32 machines with over 1 GByte of memory),
|
||||
feel free to submit patches.
|
||||
|
||||
|
||||
WORKING WITH EXISTING BUFFERS
|
||||
|
||||
Existing buffers aren't usable for DMA without first being mapped into the
|
||||
DMA address space of the device. However, most buffers passed to your
|
||||
driver can safely be used with such DMA mapping. (See the first section
|
||||
of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?")
|
||||
|
||||
- When you're using scatterlists, you can map everything at once. On some
|
||||
systems, this kicks in an IOMMU and turns the scatterlists into single
|
||||
DMA transactions:
|
||||
|
||||
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int nents);
|
||||
|
||||
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int n_hw_ents);
|
||||
|
||||
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int n_hw_ents);
|
||||
|
||||
It's probably easier to use the new usb_sg_*() calls, which do the DMA
|
||||
mapping and apply other tweaks to make scatterlist i/o be fast.
|
||||
|
||||
- Some drivers may prefer to work with the model that they're mapping large
|
||||
buffers, synchronizing their safe re-use. (If there's no re-use, then let
|
||||
usbcore do the map/unmap.) Large periodic transfers make good examples
|
||||
here, since it's cheaper to just synchronize the buffer than to unmap it
|
||||
each time an urb completes and then re-map it on during resubmission.
|
||||
|
||||
These calls all work with initialized urbs: urb->dev, urb->pipe,
|
||||
urb->transfer_buffer, and urb->transfer_buffer_length must all be
|
||||
valid when these calls are used (urb->setup_packet must be valid too
|
||||
if urb is a control request):
|
||||
|
||||
struct urb *usb_buffer_map (struct urb *urb);
|
||||
|
||||
void usb_buffer_dmasync (struct urb *urb);
|
||||
|
||||
void usb_buffer_unmap (struct urb *urb);
|
||||
|
||||
The calls manage urb->transfer_dma for you, and set URB_NO_TRANSFER_DMA_MAP
|
||||
so that usbcore won't map or unmap the buffer. They cannot be used for
|
||||
setup_packet buffers in control requests.
|
||||
|
||||
Note that several of those interfaces are currently commented out, since
|
||||
they don't have current users. See the source code. Other than the dmasync
|
||||
calls (where the underlying DMA primitives have changed), most of them can
|
||||
easily be commented back in if you want to use them.
|
||||
45
Documentation/usb/dwc3.txt
Normal file
45
Documentation/usb/dwc3.txt
Normal file
|
|
@ -0,0 +1,45 @@
|
|||
|
||||
TODO
|
||||
~~~~~~
|
||||
Please pick something while reading :)
|
||||
|
||||
- Convert interrupt handler to per-ep-thread-irq
|
||||
|
||||
As it turns out some DWC3-commands ~1ms to complete. Currently we spin
|
||||
until the command completes which is bad.
|
||||
|
||||
Implementation idea:
|
||||
- dwc core implements a demultiplexing irq chip for interrupts per
|
||||
endpoint. The interrupt numbers are allocated during probe and belong
|
||||
to the device. If MSI provides per-endpoint interrupt this dummy
|
||||
interrupt chip can be replaced with "real" interrupts.
|
||||
- interrupts are requested / allocated on usb_ep_enable() and removed on
|
||||
usb_ep_disable(). Worst case are 32 interrupts, the lower limit is two
|
||||
for ep0/1.
|
||||
- dwc3_send_gadget_ep_cmd() will sleep in wait_for_completion_timeout()
|
||||
until the command completes.
|
||||
- the interrupt handler is split into the following pieces:
|
||||
- primary handler of the device
|
||||
goes through every event and calls generic_handle_irq() for event
|
||||
it. On return from generic_handle_irq() in acknowledges the event
|
||||
counter so interrupt goes away (eventually).
|
||||
|
||||
- threaded handler of the device
|
||||
none
|
||||
|
||||
- primary handler of the EP-interrupt
|
||||
reads the event and tries to process it. Everything that requires
|
||||
sleeping is handed over to the Thread. The event is saved in an
|
||||
per-endpoint data-structure.
|
||||
We probably have to pay attention not to process events once we
|
||||
handed something to thread so we don't process event X prio Y
|
||||
where X > Y.
|
||||
|
||||
- threaded handler of the EP-interrupt
|
||||
handles the remaining EP work which might sleep such as waiting
|
||||
for command completion.
|
||||
|
||||
Latency:
|
||||
There should be no increase in latency since the interrupt-thread has a
|
||||
high priority and will be run before an average task in user land
|
||||
(except the user changed priorities).
|
||||
214
Documentation/usb/ehci.txt
Normal file
214
Documentation/usb/ehci.txt
Normal file
|
|
@ -0,0 +1,214 @@
|
|||
27-Dec-2002
|
||||
|
||||
The EHCI driver is used to talk to high speed USB 2.0 devices using
|
||||
USB 2.0-capable host controller hardware. The USB 2.0 standard is
|
||||
compatible with the USB 1.1 standard. It defines three transfer speeds:
|
||||
|
||||
- "High Speed" 480 Mbit/sec (60 MByte/sec)
|
||||
- "Full Speed" 12 Mbit/sec (1.5 MByte/sec)
|
||||
- "Low Speed" 1.5 Mbit/sec
|
||||
|
||||
USB 1.1 only addressed full speed and low speed. High speed devices
|
||||
can be used on USB 1.1 systems, but they slow down to USB 1.1 speeds.
|
||||
|
||||
USB 1.1 devices may also be used on USB 2.0 systems. When plugged
|
||||
into an EHCI controller, they are given to a USB 1.1 "companion"
|
||||
controller, which is a OHCI or UHCI controller as normally used with
|
||||
such devices. When USB 1.1 devices plug into USB 2.0 hubs, they
|
||||
interact with the EHCI controller through a "Transaction Translator"
|
||||
(TT) in the hub, which turns low or full speed transactions into
|
||||
high speed "split transactions" that don't waste transfer bandwidth.
|
||||
|
||||
At this writing, this driver has been seen to work with implementations
|
||||
of EHCI from (in alphabetical order): Intel, NEC, Philips, and VIA.
|
||||
Other EHCI implementations are becoming available from other vendors;
|
||||
you should expect this driver to work with them too.
|
||||
|
||||
While usb-storage devices have been available since mid-2001 (working
|
||||
quite speedily on the 2.4 version of this driver), hubs have only
|
||||
been available since late 2001, and other kinds of high speed devices
|
||||
appear to be on hold until more systems come with USB 2.0 built-in.
|
||||
Such new systems have been available since early 2002, and became much
|
||||
more typical in the second half of 2002.
|
||||
|
||||
Note that USB 2.0 support involves more than just EHCI. It requires
|
||||
other changes to the Linux-USB core APIs, including the hub driver,
|
||||
but those changes haven't needed to really change the basic "usbcore"
|
||||
APIs exposed to USB device drivers.
|
||||
|
||||
- David Brownell
|
||||
<dbrownell@users.sourceforge.net>
|
||||
|
||||
|
||||
FUNCTIONALITY
|
||||
|
||||
This driver is regularly tested on x86 hardware, and has also been
|
||||
used on PPC hardware so big/little endianness issues should be gone.
|
||||
It's believed to do all the right PCI magic so that I/O works even on
|
||||
systems with interesting DMA mapping issues.
|
||||
|
||||
Transfer Types
|
||||
|
||||
At this writing the driver should comfortably handle all control, bulk,
|
||||
and interrupt transfers, including requests to USB 1.1 devices through
|
||||
transaction translators (TTs) in USB 2.0 hubs. But you may find bugs.
|
||||
|
||||
High Speed Isochronous (ISO) transfer support is also functional, but
|
||||
at this writing no Linux drivers have been using that support.
|
||||
|
||||
Full Speed Isochronous transfer support, through transaction translators,
|
||||
is not yet available. Note that split transaction support for ISO
|
||||
transfers can't share much code with the code for high speed ISO transfers,
|
||||
since EHCI represents these with a different data structure. So for now,
|
||||
most USB audio and video devices can't be connected to high speed buses.
|
||||
|
||||
Driver Behavior
|
||||
|
||||
Transfers of all types can be queued. This means that control transfers
|
||||
from a driver on one interface (or through usbfs) won't interfere with
|
||||
ones from another driver, and that interrupt transfers can use periods
|
||||
of one frame without risking data loss due to interrupt processing costs.
|
||||
|
||||
The EHCI root hub code hands off USB 1.1 devices to its companion
|
||||
controller. This driver doesn't need to know anything about those
|
||||
drivers; a OHCI or UHCI driver that works already doesn't need to change
|
||||
just because the EHCI driver is also present.
|
||||
|
||||
There are some issues with power management; suspend/resume doesn't
|
||||
behave quite right at the moment.
|
||||
|
||||
Also, some shortcuts have been taken with the scheduling periodic
|
||||
transactions (interrupt and isochronous transfers). These place some
|
||||
limits on the number of periodic transactions that can be scheduled,
|
||||
and prevent use of polling intervals of less than one frame.
|
||||
|
||||
|
||||
USE BY
|
||||
|
||||
Assuming you have an EHCI controller (on a PCI card or motherboard)
|
||||
and have compiled this driver as a module, load this like:
|
||||
|
||||
# modprobe ehci-hcd
|
||||
|
||||
and remove it by:
|
||||
|
||||
# rmmod ehci-hcd
|
||||
|
||||
You should also have a driver for a "companion controller", such as
|
||||
"ohci-hcd" or "uhci-hcd". In case of any trouble with the EHCI driver,
|
||||
remove its module and then the driver for that companion controller will
|
||||
take over (at lower speed) all the devices that were previously handled
|
||||
by the EHCI driver.
|
||||
|
||||
Module parameters (pass to "modprobe") include:
|
||||
|
||||
log2_irq_thresh (default 0):
|
||||
Log2 of default interrupt delay, in microframes. The default
|
||||
value is 0, indicating 1 microframe (125 usec). Maximum value
|
||||
is 6, indicating 2^6 = 64 microframes. This controls how often
|
||||
the EHCI controller can issue interrupts.
|
||||
|
||||
If you're using this driver on a 2.5 kernel, and you've enabled USB
|
||||
debugging support, you'll see three files in the "sysfs" directory for
|
||||
any EHCI controller:
|
||||
|
||||
"async" dumps the asynchronous schedule, used for control
|
||||
and bulk transfers. Shows each active qh and the qtds
|
||||
pending, usually one qtd per urb. (Look at it with
|
||||
usb-storage doing disk I/O; watch the request queues!)
|
||||
"periodic" dumps the periodic schedule, used for interrupt
|
||||
and isochronous transfers. Doesn't show qtds.
|
||||
"registers" show controller register state, and
|
||||
|
||||
The contents of those files can help identify driver problems.
|
||||
|
||||
|
||||
Device drivers shouldn't care whether they're running over EHCI or not,
|
||||
but they may want to check for "usb_device->speed == USB_SPEED_HIGH".
|
||||
High speed devices can do things that full speed (or low speed) ones
|
||||
can't, such as "high bandwidth" periodic (interrupt or ISO) transfers.
|
||||
Also, some values in device descriptors (such as polling intervals for
|
||||
periodic transfers) use different encodings when operating at high speed.
|
||||
|
||||
However, do make a point of testing device drivers through USB 2.0 hubs.
|
||||
Those hubs report some failures, such as disconnections, differently when
|
||||
transaction translators are in use; some drivers have been seen to behave
|
||||
badly when they see different faults than OHCI or UHCI report.
|
||||
|
||||
|
||||
PERFORMANCE
|
||||
|
||||
USB 2.0 throughput is gated by two main factors: how fast the host
|
||||
controller can process requests, and how fast devices can respond to
|
||||
them. The 480 Mbit/sec "raw transfer rate" is obeyed by all devices,
|
||||
but aggregate throughput is also affected by issues like delays between
|
||||
individual high speed packets, driver intelligence, and of course the
|
||||
overall system load. Latency is also a performance concern.
|
||||
|
||||
Bulk transfers are most often used where throughput is an issue. It's
|
||||
good to keep in mind that bulk transfers are always in 512 byte packets,
|
||||
and at most 13 of those fit into one USB 2.0 microframe. Eight USB 2.0
|
||||
microframes fit in a USB 1.1 frame; a microframe is 1 msec/8 = 125 usec.
|
||||
|
||||
So more than 50 MByte/sec is available for bulk transfers, when both
|
||||
hardware and device driver software allow it. Periodic transfer modes
|
||||
(isochronous and interrupt) allow the larger packet sizes which let you
|
||||
approach the quoted 480 MBit/sec transfer rate.
|
||||
|
||||
Hardware Performance
|
||||
|
||||
At this writing, individual USB 2.0 devices tend to max out at around
|
||||
20 MByte/sec transfer rates. This is of course subject to change;
|
||||
and some devices now go faster, while others go slower.
|
||||
|
||||
The first NEC implementation of EHCI seems to have a hardware bottleneck
|
||||
at around 28 MByte/sec aggregate transfer rate. While this is clearly
|
||||
enough for a single device at 20 MByte/sec, putting three such devices
|
||||
onto one bus does not get you 60 MByte/sec. The issue appears to be
|
||||
that the controller hardware won't do concurrent USB and PCI access,
|
||||
so that it's only trying six (or maybe seven) USB transactions each
|
||||
microframe rather than thirteen. (Seems like a reasonable trade off
|
||||
for a product that beat all the others to market by over a year!)
|
||||
|
||||
It's expected that newer implementations will better this, throwing
|
||||
more silicon real estate at the problem so that new motherboard chip
|
||||
sets will get closer to that 60 MByte/sec target. That includes an
|
||||
updated implementation from NEC, as well as other vendors' silicon.
|
||||
|
||||
There's a minimum latency of one microframe (125 usec) for the host
|
||||
to receive interrupts from the EHCI controller indicating completion
|
||||
of requests. That latency is tunable; there's a module option. By
|
||||
default ehci-hcd driver uses the minimum latency, which means that if
|
||||
you issue a control or bulk request you can often expect to learn that
|
||||
it completed in less than 250 usec (depending on transfer size).
|
||||
|
||||
Software Performance
|
||||
|
||||
To get even 20 MByte/sec transfer rates, Linux-USB device drivers will
|
||||
need to keep the EHCI queue full. That means issuing large requests,
|
||||
or using bulk queuing if a series of small requests needs to be issued.
|
||||
When drivers don't do that, their performance results will show it.
|
||||
|
||||
In typical situations, a usb_bulk_msg() loop writing out 4 KB chunks is
|
||||
going to waste more than half the USB 2.0 bandwidth. Delays between the
|
||||
I/O completion and the driver issuing the next request will take longer
|
||||
than the I/O. If that same loop used 16 KB chunks, it'd be better; a
|
||||
sequence of 128 KB chunks would waste a lot less.
|
||||
|
||||
But rather than depending on such large I/O buffers to make synchronous
|
||||
I/O be efficient, it's better to just queue up several (bulk) requests
|
||||
to the HC, and wait for them all to complete (or be canceled on error).
|
||||
Such URB queuing should work with all the USB 1.1 HC drivers too.
|
||||
|
||||
In the Linux 2.5 kernels, new usb_sg_*() api calls have been defined; they
|
||||
queue all the buffers from a scatterlist. They also use scatterlist DMA
|
||||
mapping (which might apply an IOMMU) and IRQ reduction, all of which will
|
||||
help make high speed transfers run as fast as they can.
|
||||
|
||||
|
||||
TBD: Interrupt and ISO transfer performance issues. Those periodic
|
||||
transfers are fully scheduled, so the main issue is likely to be how
|
||||
to trigger "high bandwidth" modes.
|
||||
|
||||
TBD: More than standard 80% periodic bandwidth allocation is possible
|
||||
through sysfs uframe_periodic_max parameter. Describe that.
|
||||
175
Documentation/usb/error-codes.txt
Normal file
175
Documentation/usb/error-codes.txt
Normal file
|
|
@ -0,0 +1,175 @@
|
|||
Revised: 2004-Oct-21
|
||||
|
||||
This is the documentation of (hopefully) all possible error codes (and
|
||||
their interpretation) that can be returned from usbcore.
|
||||
|
||||
Some of them are returned by the Host Controller Drivers (HCDs), which
|
||||
device drivers only see through usbcore. As a rule, all the HCDs should
|
||||
behave the same except for transfer speed dependent behaviors and the
|
||||
way certain faults are reported.
|
||||
|
||||
|
||||
**************************************************************************
|
||||
* Error codes returned by usb_submit_urb *
|
||||
**************************************************************************
|
||||
|
||||
Non-USB-specific:
|
||||
|
||||
0 URB submission went fine
|
||||
|
||||
-ENOMEM no memory for allocation of internal structures
|
||||
|
||||
USB-specific:
|
||||
|
||||
-EBUSY The URB is already active.
|
||||
|
||||
-ENODEV specified USB-device or bus doesn't exist
|
||||
|
||||
-ENOENT specified interface or endpoint does not exist or
|
||||
is not enabled
|
||||
|
||||
-ENXIO host controller driver does not support queuing of this type
|
||||
of urb. (treat as a host controller bug.)
|
||||
|
||||
-EINVAL a) Invalid transfer type specified (or not supported)
|
||||
b) Invalid or unsupported periodic transfer interval
|
||||
c) ISO: attempted to change transfer interval
|
||||
d) ISO: number_of_packets is < 0
|
||||
e) various other cases
|
||||
|
||||
-EXDEV ISO: URB_ISO_ASAP wasn't specified and all the frames
|
||||
the URB would be scheduled in have already expired.
|
||||
|
||||
-EFBIG Host controller driver can't schedule that many ISO frames.
|
||||
|
||||
-EPIPE The pipe type specified in the URB doesn't match the
|
||||
endpoint's actual type.
|
||||
|
||||
-EMSGSIZE (a) endpoint maxpacket size is zero; it is not usable
|
||||
in the current interface altsetting.
|
||||
(b) ISO packet is larger than the endpoint maxpacket.
|
||||
(c) requested data transfer length is invalid: negative
|
||||
or too large for the host controller.
|
||||
|
||||
-ENOSPC This request would overcommit the usb bandwidth reserved
|
||||
for periodic transfers (interrupt, isochronous).
|
||||
|
||||
-ESHUTDOWN The device or host controller has been disabled due to some
|
||||
problem that could not be worked around.
|
||||
|
||||
-EPERM Submission failed because urb->reject was set.
|
||||
|
||||
-EHOSTUNREACH URB was rejected because the device is suspended.
|
||||
|
||||
-ENOEXEC A control URB doesn't contain a Setup packet.
|
||||
|
||||
|
||||
**************************************************************************
|
||||
* Error codes returned by in urb->status *
|
||||
* or in iso_frame_desc[n].status (for ISO) *
|
||||
**************************************************************************
|
||||
|
||||
USB device drivers may only test urb status values in completion handlers.
|
||||
This is because otherwise there would be a race between HCDs updating
|
||||
these values on one CPU, and device drivers testing them on another CPU.
|
||||
|
||||
A transfer's actual_length may be positive even when an error has been
|
||||
reported. That's because transfers often involve several packets, so that
|
||||
one or more packets could finish before an error stops further endpoint I/O.
|
||||
|
||||
For isochronous URBs, the urb status value is non-zero only if the URB is
|
||||
unlinked, the device is removed, the host controller is disabled, or the total
|
||||
transferred length is less than the requested length and the URB_SHORT_NOT_OK
|
||||
flag is set. Completion handlers for isochronous URBs should only see
|
||||
urb->status set to zero, -ENOENT, -ECONNRESET, -ESHUTDOWN, or -EREMOTEIO.
|
||||
Individual frame descriptor status fields may report more status codes.
|
||||
|
||||
|
||||
0 Transfer completed successfully
|
||||
|
||||
-ENOENT URB was synchronously unlinked by usb_unlink_urb
|
||||
|
||||
-EINPROGRESS URB still pending, no results yet
|
||||
(That is, if drivers see this it's a bug.)
|
||||
|
||||
-EPROTO (*, **) a) bitstuff error
|
||||
b) no response packet received within the
|
||||
prescribed bus turn-around time
|
||||
c) unknown USB error
|
||||
|
||||
-EILSEQ (*, **) a) CRC mismatch
|
||||
b) no response packet received within the
|
||||
prescribed bus turn-around time
|
||||
c) unknown USB error
|
||||
|
||||
Note that often the controller hardware does not
|
||||
distinguish among cases a), b), and c), so a
|
||||
driver cannot tell whether there was a protocol
|
||||
error, a failure to respond (often caused by
|
||||
device disconnect), or some other fault.
|
||||
|
||||
-ETIME (**) No response packet received within the prescribed
|
||||
bus turn-around time. This error may instead be
|
||||
reported as -EPROTO or -EILSEQ.
|
||||
|
||||
-ETIMEDOUT Synchronous USB message functions use this code
|
||||
to indicate timeout expired before the transfer
|
||||
completed, and no other error was reported by HC.
|
||||
|
||||
-EPIPE (**) Endpoint stalled. For non-control endpoints,
|
||||
reset this status with usb_clear_halt().
|
||||
|
||||
-ECOMM During an IN transfer, the host controller
|
||||
received data from an endpoint faster than it
|
||||
could be written to system memory
|
||||
|
||||
-ENOSR During an OUT transfer, the host controller
|
||||
could not retrieve data from system memory fast
|
||||
enough to keep up with the USB data rate
|
||||
|
||||
-EOVERFLOW (*) The amount of data returned by the endpoint was
|
||||
greater than either the max packet size of the
|
||||
endpoint or the remaining buffer size. "Babble".
|
||||
|
||||
-EREMOTEIO The data read from the endpoint did not fill the
|
||||
specified buffer, and URB_SHORT_NOT_OK was set in
|
||||
urb->transfer_flags.
|
||||
|
||||
-ENODEV Device was removed. Often preceded by a burst of
|
||||
other errors, since the hub driver doesn't detect
|
||||
device removal events immediately.
|
||||
|
||||
-EXDEV ISO transfer only partially completed
|
||||
(only set in iso_frame_desc[n].status, not urb->status)
|
||||
|
||||
-EINVAL ISO madness, if this happens: Log off and go home
|
||||
|
||||
-ECONNRESET URB was asynchronously unlinked by usb_unlink_urb
|
||||
|
||||
-ESHUTDOWN The device or host controller has been disabled due
|
||||
to some problem that could not be worked around,
|
||||
such as a physical disconnect.
|
||||
|
||||
|
||||
(*) Error codes like -EPROTO, -EILSEQ and -EOVERFLOW normally indicate
|
||||
hardware problems such as bad devices (including firmware) or cables.
|
||||
|
||||
(**) This is also one of several codes that different kinds of host
|
||||
controller use to indicate a transfer has failed because of device
|
||||
disconnect. In the interval before the hub driver starts disconnect
|
||||
processing, devices may receive such fault reports for every request.
|
||||
|
||||
|
||||
|
||||
**************************************************************************
|
||||
* Error codes returned by usbcore-functions *
|
||||
* (expect also other submit and transfer status codes) *
|
||||
**************************************************************************
|
||||
|
||||
usb_register():
|
||||
-EINVAL error during registering new driver
|
||||
|
||||
usb_get_*/usb_set_*():
|
||||
usb_control_msg():
|
||||
usb_bulk_msg():
|
||||
-ETIMEDOUT Timeout expired before the transfer completed.
|
||||
67
Documentation/usb/functionfs.txt
Normal file
67
Documentation/usb/functionfs.txt
Normal file
|
|
@ -0,0 +1,67 @@
|
|||
*How FunctionFS works*
|
||||
|
||||
From kernel point of view it is just a composite function with some
|
||||
unique behaviour. It may be added to an USB configuration only after
|
||||
the user space driver has registered by writing descriptors and
|
||||
strings (the user space program has to provide the same information
|
||||
that kernel level composite functions provide when they are added to
|
||||
the configuration).
|
||||
|
||||
This in particular means that the composite initialisation functions
|
||||
may not be in init section (ie. may not use the __init tag).
|
||||
|
||||
From user space point of view it is a file system which when
|
||||
mounted provides an "ep0" file. User space driver need to
|
||||
write descriptors and strings to that file. It does not need
|
||||
to worry about endpoints, interfaces or strings numbers but
|
||||
simply provide descriptors such as if the function was the
|
||||
only one (endpoints and strings numbers starting from one and
|
||||
interface numbers starting from zero). The FunctionFS changes
|
||||
them as needed also handling situation when numbers differ in
|
||||
different configurations.
|
||||
|
||||
When descriptors and strings are written "ep#" files appear
|
||||
(one for each declared endpoint) which handle communication on
|
||||
a single endpoint. Again, FunctionFS takes care of the real
|
||||
numbers and changing of the configuration (which means that
|
||||
"ep1" file may be really mapped to (say) endpoint 3 (and when
|
||||
configuration changes to (say) endpoint 2)). "ep0" is used
|
||||
for receiving events and handling setup requests.
|
||||
|
||||
When all files are closed the function disables itself.
|
||||
|
||||
What I also want to mention is that the FunctionFS is designed in such
|
||||
a way that it is possible to mount it several times so in the end
|
||||
a gadget could use several FunctionFS functions. The idea is that
|
||||
each FunctionFS instance is identified by the device name used
|
||||
when mounting.
|
||||
|
||||
One can imagine a gadget that has an Ethernet, MTP and HID interfaces
|
||||
where the last two are implemented via FunctionFS. On user space
|
||||
level it would look like this:
|
||||
|
||||
$ insmod g_ffs.ko idVendor=<ID> iSerialNumber=<string> functions=mtp,hid
|
||||
$ mkdir /dev/ffs-mtp && mount -t functionfs mtp /dev/ffs-mtp
|
||||
$ ( cd /dev/ffs-mtp && mtp-daemon ) &
|
||||
$ mkdir /dev/ffs-hid && mount -t functionfs hid /dev/ffs-hid
|
||||
$ ( cd /dev/ffs-hid && hid-daemon ) &
|
||||
|
||||
On kernel level the gadget checks ffs_data->dev_name to identify
|
||||
whether it's FunctionFS designed for MTP ("mtp") or HID ("hid").
|
||||
|
||||
If no "functions" module parameters is supplied, the driver accepts
|
||||
just one function with any name.
|
||||
|
||||
When "functions" module parameter is supplied, only functions
|
||||
with listed names are accepted. In particular, if the "functions"
|
||||
parameter's value is just a one-element list, then the behaviour
|
||||
is similar to when there is no "functions" at all; however,
|
||||
only a function with the specified name is accepted.
|
||||
|
||||
The gadget is registered only after all the declared function
|
||||
filesystems have been mounted and USB descriptors of all functions
|
||||
have been written to their ep0's.
|
||||
|
||||
Conversely, the gadget is unregistered after the first USB function
|
||||
closes its endpoints.
|
||||
|
||||
384
Documentation/usb/gadget_configfs.txt
Normal file
384
Documentation/usb/gadget_configfs.txt
Normal file
|
|
@ -0,0 +1,384 @@
|
|||
|
||||
|
||||
|
||||
|
||||
Linux USB gadget configured through configfs
|
||||
|
||||
|
||||
25th April 2013
|
||||
|
||||
|
||||
|
||||
|
||||
Overview
|
||||
========
|
||||
|
||||
A USB Linux Gadget is a device which has a UDC (USB Device Controller) and can
|
||||
be connected to a USB Host to extend it with additional functions like a serial
|
||||
port or a mass storage capability.
|
||||
|
||||
A gadget is seen by its host as a set of configurations, each of which contains
|
||||
a number of interfaces which, from the gadget's perspective, are known as
|
||||
functions, each function representing e.g. a serial connection or a SCSI disk.
|
||||
|
||||
Linux provides a number of functions for gadgets to use.
|
||||
|
||||
Creating a gadget means deciding what configurations there will be
|
||||
and which functions each configuration will provide.
|
||||
|
||||
Configfs (please see Documentation/filesystems/configfs/*) lends itself nicely
|
||||
for the purpose of telling the kernel about the above mentioned decision.
|
||||
This document is about how to do it.
|
||||
|
||||
It also describes how configfs integration into gadget is designed.
|
||||
|
||||
|
||||
|
||||
|
||||
Requirements
|
||||
============
|
||||
|
||||
In order for this to work configfs must be available, so CONFIGFS_FS must be
|
||||
'y' or 'm' in .config. As of this writing USB_LIBCOMPOSITE selects CONFIGFS_FS.
|
||||
|
||||
|
||||
|
||||
|
||||
Usage
|
||||
=====
|
||||
|
||||
(The original post describing the first function
|
||||
made available through configfs can be seen here:
|
||||
http://www.spinics.net/lists/linux-usb/msg76388.html)
|
||||
|
||||
$ modprobe libcomposite
|
||||
$ mount none $CONFIGFS_HOME -t configfs
|
||||
|
||||
where CONFIGFS_HOME is the mount point for configfs
|
||||
|
||||
1. Creating the gadgets
|
||||
-----------------------
|
||||
|
||||
For each gadget to be created its corresponding directory must be created:
|
||||
|
||||
$ mkdir $CONFIGFS_HOME/usb_gadget/<gadget name>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ mkdir $CONFIGFS_HOME/usb_gadget/g1
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
$ cd $CONFIGFS_HOME/usb_gadget/g1
|
||||
|
||||
Each gadget needs to have its vendor id <VID> and product id <PID> specified:
|
||||
|
||||
$ echo <VID> > idVendor
|
||||
$ echo <PID> > idProduct
|
||||
|
||||
A gadget also needs its serial number, manufacturer and product strings.
|
||||
In order to have a place to store them, a strings subdirectory must be created
|
||||
for each language, e.g.:
|
||||
|
||||
$ mkdir strings/0x409
|
||||
|
||||
Then the strings can be specified:
|
||||
|
||||
$ echo <serial number> > strings/0x409/serialnumber
|
||||
$ echo <manufacturer> > strings/0x409/manufacturer
|
||||
$ echo <product> > strings/0x409/product
|
||||
|
||||
2. Creating the configurations
|
||||
------------------------------
|
||||
|
||||
Each gadget will consist of a number of configurations, their corresponding
|
||||
directories must be created:
|
||||
|
||||
$ mkdir configs/<name>.<number>
|
||||
|
||||
where <name> can be any string which is legal in a filesystem and the
|
||||
<number> is the configuration's number, e.g.:
|
||||
|
||||
$ mkdir configs/c.1
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
Each configuration also needs its strings, so a subdirectory must be created
|
||||
for each language, e.g.:
|
||||
|
||||
$ mkdir configs/c.1/strings/0x409
|
||||
|
||||
Then the configuration string can be specified:
|
||||
|
||||
$ echo <configuration> > configs/c.1/strings/0x409/configuration
|
||||
|
||||
Some attributes can also be set for a configuration, e.g.:
|
||||
|
||||
$ echo 120 > configs/c.1/MaxPower
|
||||
|
||||
3. Creating the functions
|
||||
-------------------------
|
||||
|
||||
The gadget will provide some functions, for each function its corresponding
|
||||
directory must be created:
|
||||
|
||||
$ mkdir functions/<name>.<instance name>
|
||||
|
||||
where <name> corresponds to one of allowed function names and instance name
|
||||
is an arbitrary string allowed in a filesystem, e.g.:
|
||||
|
||||
$ mkdir functions/ncm.usb0 # usb_f_ncm.ko gets loaded with request_module()
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
Each function provides its specific set of attributes, with either read-only
|
||||
or read-write access. Where applicable they need to be written to as
|
||||
appropriate.
|
||||
Please refer to Documentation/ABI/*/configfs-usb-gadget* for more information.
|
||||
|
||||
4. Associating the functions with their configurations
|
||||
------------------------------------------------------
|
||||
|
||||
At this moment a number of gadgets is created, each of which has a number of
|
||||
configurations specified and a number of functions available. What remains
|
||||
is specifying which function is available in which configuration (the same
|
||||
function can be used in multiple configurations). This is achieved with
|
||||
creating symbolic links:
|
||||
|
||||
$ ln -s functions/<name>.<instance name> configs/<name>.<number>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ ln -s functions/ncm.usb0 configs/c.1
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
5. Enabling the gadget
|
||||
----------------------
|
||||
|
||||
All the above steps serve the purpose of composing the gadget of
|
||||
configurations and functions.
|
||||
|
||||
An example directory structure might look like this:
|
||||
|
||||
.
|
||||
./strings
|
||||
./strings/0x409
|
||||
./strings/0x409/serialnumber
|
||||
./strings/0x409/product
|
||||
./strings/0x409/manufacturer
|
||||
./configs
|
||||
./configs/c.1
|
||||
./configs/c.1/ncm.usb0 -> ../../../../usb_gadget/g1/functions/ncm.usb0
|
||||
./configs/c.1/strings
|
||||
./configs/c.1/strings/0x409
|
||||
./configs/c.1/strings/0x409/configuration
|
||||
./configs/c.1/bmAttributes
|
||||
./configs/c.1/MaxPower
|
||||
./functions
|
||||
./functions/ncm.usb0
|
||||
./functions/ncm.usb0/ifname
|
||||
./functions/ncm.usb0/qmult
|
||||
./functions/ncm.usb0/host_addr
|
||||
./functions/ncm.usb0/dev_addr
|
||||
./UDC
|
||||
./bcdUSB
|
||||
./bcdDevice
|
||||
./idProduct
|
||||
./idVendor
|
||||
./bMaxPacketSize0
|
||||
./bDeviceProtocol
|
||||
./bDeviceSubClass
|
||||
./bDeviceClass
|
||||
|
||||
|
||||
Such a gadget must be finally enabled so that the USB host can enumerate it.
|
||||
In order to enable the gadget it must be bound to a UDC (USB Device Controller).
|
||||
|
||||
$ echo <udc name> > UDC
|
||||
|
||||
where <udc name> is one of those found in /sys/class/udc/*
|
||||
e.g.:
|
||||
|
||||
$ echo s3c-hsotg > UDC
|
||||
|
||||
|
||||
6. Disabling the gadget
|
||||
-----------------------
|
||||
|
||||
$ echo "" > UDC
|
||||
|
||||
7. Cleaning up
|
||||
--------------
|
||||
|
||||
Remove functions from configurations:
|
||||
|
||||
$ rm configs/<config name>.<number>/<function>
|
||||
|
||||
where <config name>.<number> specify the configuration and <function> is
|
||||
a symlink to a function being removed from the configuration, e.g.:
|
||||
|
||||
$ rm configfs/c.1/ncm.usb0
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
Remove strings directories in configurations
|
||||
|
||||
$ rmdir configs/<config name>.<number>/strings/<lang>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ rmdir configs/c.1/strings/0x409
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
and remove the configurations
|
||||
|
||||
$ rmdir configs/<config name>.<number>
|
||||
|
||||
e.g.:
|
||||
|
||||
rmdir configs/c.1
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
Remove functions (function modules are not unloaded, though)
|
||||
|
||||
$ rmdir functions/<name>.<instance name>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ rmdir functions/ncm.usb0
|
||||
|
||||
...
|
||||
...
|
||||
...
|
||||
|
||||
Remove strings directories in the gadget
|
||||
|
||||
$ rmdir strings/<lang>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ rmdir strings/0x409
|
||||
|
||||
and finally remove the gadget:
|
||||
|
||||
$ cd ..
|
||||
$ rmdir <gadget name>
|
||||
|
||||
e.g.:
|
||||
|
||||
$ rmdir g1
|
||||
|
||||
|
||||
|
||||
|
||||
Implementation design
|
||||
=====================
|
||||
|
||||
Below the idea of how configfs works is presented.
|
||||
In configfs there are items and groups, both represented as directories.
|
||||
The difference between an item and a group is that a group can contain
|
||||
other groups. In the picture below only an item is shown.
|
||||
Both items and groups can have attributes, which are represented as files.
|
||||
The user can create and remove directories, but cannot remove files,
|
||||
which can be read-only or read-write, depending on what they represent.
|
||||
|
||||
The filesystem part of configfs operates on config_items/groups and
|
||||
configfs_attributes which are generic and of the same type for all
|
||||
configured elements. However, they are embedded in usage-specific
|
||||
larger structures. In the picture below there is a "cs" which contains
|
||||
a config_item and an "sa" which contains a configfs_attribute.
|
||||
|
||||
The filesystem view would be like this:
|
||||
|
||||
./
|
||||
./cs (directory)
|
||||
|
|
||||
+--sa (file)
|
||||
|
|
||||
.
|
||||
.
|
||||
.
|
||||
|
||||
Whenever a user reads/writes the "sa" file, a function is called
|
||||
which accepts a struct config_item and a struct configfs_attribute.
|
||||
In the said function the "cs" and "sa" are retrieved using the well
|
||||
known container_of technique and an appropriate sa's function (show or
|
||||
store) is called and passed the "cs" and a character buffer. The "show"
|
||||
is for displaying the file's contents (copy data from the cs to the
|
||||
buffer), while the "store" is for modifying the file's contents (copy data
|
||||
from the buffer to the cs), but it is up to the implementer of the
|
||||
two functions to decide what they actually do.
|
||||
|
||||
typedef struct configured_structure cs;
|
||||
typedef struct specific_attribute sa;
|
||||
|
||||
sa
|
||||
+----------------------------------+
|
||||
cs | (*show)(cs *, buffer); |
|
||||
+-----------------+ | (*store)(cs *, buffer, length); |
|
||||
| | | |
|
||||
| +-------------+ | | +------------------+ |
|
||||
| | struct |-|----|------>|struct | |
|
||||
| | config_item | | | |configfs_attribute| |
|
||||
| +-------------+ | | +------------------+ |
|
||||
| | +----------------------------------+
|
||||
| data to be set | .
|
||||
| | .
|
||||
+-----------------+ .
|
||||
|
||||
The file names are decided by the config item/group designer, while
|
||||
the directories in general can be named at will. A group can have
|
||||
a number of its default sub-groups created automatically.
|
||||
|
||||
For more information on configfs please see
|
||||
Documentation/filesystems/configfs/*.
|
||||
|
||||
The concepts described above translate to USB gadgets like this:
|
||||
|
||||
1. A gadget has its config group, which has some attributes (idVendor,
|
||||
idProduct etc) and default sub-groups (configs, functions, strings).
|
||||
Writing to the attributes causes the information to be stored in
|
||||
appropriate locations. In the configs, functions and strings sub-groups
|
||||
a user can create their sub-groups to represent configurations, functions,
|
||||
and groups of strings in a given language.
|
||||
|
||||
2. The user creates configurations and functions, in the configurations
|
||||
creates symbolic links to functions. This information is used when the
|
||||
gadget's UDC attribute is written to, which means binding the gadget
|
||||
to the UDC. The code in drivers/usb/gadget/configfs.c iterates over
|
||||
all configurations, and in each configuration it iterates over all
|
||||
functions and binds them. This way the whole gadget is bound.
|
||||
|
||||
3. The file drivers/usb/gadget/configfs.c contains code for
|
||||
|
||||
- gadget's config_group
|
||||
- gadget's default groups (configs, functions, strings)
|
||||
- associating functions with configurations (symlinks)
|
||||
|
||||
4. Each USB function naturally has its own view of what it wants
|
||||
configured, so config_groups for particular functions are defined
|
||||
in the functions implementation files drivers/usb/gadget/f_*.c.
|
||||
|
||||
5. Funciton's code is written in such a way that it uses
|
||||
|
||||
usb_get_function_instance(), which, in turn, calls request_module.
|
||||
So, provided that modprobe works, modules for particular functions
|
||||
are loaded automatically. Please note that the converse is not true:
|
||||
after a gadget is disabled and torn down, the modules remain loaded.
|
||||
445
Documentation/usb/gadget_hid.txt
Normal file
445
Documentation/usb/gadget_hid.txt
Normal file
|
|
@ -0,0 +1,445 @@
|
|||
|
||||
Linux USB HID gadget driver
|
||||
|
||||
Introduction
|
||||
|
||||
The HID Gadget driver provides emulation of USB Human Interface
|
||||
Devices (HID). The basic HID handling is done in the kernel,
|
||||
and HID reports can be sent/received through I/O on the
|
||||
/dev/hidgX character devices.
|
||||
|
||||
For more details about HID, see the developer page on
|
||||
http://www.usb.org/developers/hidpage/
|
||||
|
||||
Configuration
|
||||
|
||||
g_hid is a platform driver, so to use it you need to add
|
||||
struct platform_device(s) to your platform code defining the
|
||||
HID function descriptors you want to use - E.G. something
|
||||
like:
|
||||
|
||||
#include <linux/platform_device.h>
|
||||
#include <linux/usb/g_hid.h>
|
||||
|
||||
/* hid descriptor for a keyboard */
|
||||
static struct hidg_func_descriptor my_hid_data = {
|
||||
.subclass = 0, /* No subclass */
|
||||
.protocol = 1, /* Keyboard */
|
||||
.report_length = 8,
|
||||
.report_desc_length = 63,
|
||||
.report_desc = {
|
||||
0x05, 0x01, /* USAGE_PAGE (Generic Desktop) */
|
||||
0x09, 0x06, /* USAGE (Keyboard) */
|
||||
0xa1, 0x01, /* COLLECTION (Application) */
|
||||
0x05, 0x07, /* USAGE_PAGE (Keyboard) */
|
||||
0x19, 0xe0, /* USAGE_MINIMUM (Keyboard LeftControl) */
|
||||
0x29, 0xe7, /* USAGE_MAXIMUM (Keyboard Right GUI) */
|
||||
0x15, 0x00, /* LOGICAL_MINIMUM (0) */
|
||||
0x25, 0x01, /* LOGICAL_MAXIMUM (1) */
|
||||
0x75, 0x01, /* REPORT_SIZE (1) */
|
||||
0x95, 0x08, /* REPORT_COUNT (8) */
|
||||
0x81, 0x02, /* INPUT (Data,Var,Abs) */
|
||||
0x95, 0x01, /* REPORT_COUNT (1) */
|
||||
0x75, 0x08, /* REPORT_SIZE (8) */
|
||||
0x81, 0x03, /* INPUT (Cnst,Var,Abs) */
|
||||
0x95, 0x05, /* REPORT_COUNT (5) */
|
||||
0x75, 0x01, /* REPORT_SIZE (1) */
|
||||
0x05, 0x08, /* USAGE_PAGE (LEDs) */
|
||||
0x19, 0x01, /* USAGE_MINIMUM (Num Lock) */
|
||||
0x29, 0x05, /* USAGE_MAXIMUM (Kana) */
|
||||
0x91, 0x02, /* OUTPUT (Data,Var,Abs) */
|
||||
0x95, 0x01, /* REPORT_COUNT (1) */
|
||||
0x75, 0x03, /* REPORT_SIZE (3) */
|
||||
0x91, 0x03, /* OUTPUT (Cnst,Var,Abs) */
|
||||
0x95, 0x06, /* REPORT_COUNT (6) */
|
||||
0x75, 0x08, /* REPORT_SIZE (8) */
|
||||
0x15, 0x00, /* LOGICAL_MINIMUM (0) */
|
||||
0x25, 0x65, /* LOGICAL_MAXIMUM (101) */
|
||||
0x05, 0x07, /* USAGE_PAGE (Keyboard) */
|
||||
0x19, 0x00, /* USAGE_MINIMUM (Reserved) */
|
||||
0x29, 0x65, /* USAGE_MAXIMUM (Keyboard Application) */
|
||||
0x81, 0x00, /* INPUT (Data,Ary,Abs) */
|
||||
0xc0 /* END_COLLECTION */
|
||||
}
|
||||
};
|
||||
|
||||
static struct platform_device my_hid = {
|
||||
.name = "hidg",
|
||||
.id = 0,
|
||||
.num_resources = 0,
|
||||
.resource = 0,
|
||||
.dev.platform_data = &my_hid_data,
|
||||
};
|
||||
|
||||
You can add as many HID functions as you want, only limited by
|
||||
the amount of interrupt endpoints your gadget driver supports.
|
||||
|
||||
Send and receive HID reports
|
||||
|
||||
HID reports can be sent/received using read/write on the
|
||||
/dev/hidgX character devices. See below for an example program
|
||||
to do this.
|
||||
|
||||
hid_gadget_test is a small interactive program to test the HID
|
||||
gadget driver. To use, point it at a hidg device and set the
|
||||
device type (keyboard / mouse / joystick) - E.G.:
|
||||
|
||||
# hid_gadget_test /dev/hidg0 keyboard
|
||||
|
||||
You are now in the prompt of hid_gadget_test. You can type any
|
||||
combination of options and values. Available options and
|
||||
values are listed at program start. In keyboard mode you can
|
||||
send up to six values.
|
||||
|
||||
For example type: g i s t r --left-shift
|
||||
|
||||
Hit return and the corresponding report will be sent by the
|
||||
HID gadget.
|
||||
|
||||
Another interesting example is the caps lock test. Type
|
||||
--caps-lock and hit return. A report is then sent by the
|
||||
gadget and you should receive the host answer, corresponding
|
||||
to the caps lock LED status.
|
||||
|
||||
--caps-lock
|
||||
recv report:2
|
||||
|
||||
With this command:
|
||||
|
||||
# hid_gadget_test /dev/hidg1 mouse
|
||||
|
||||
You can test the mouse emulation. Values are two signed numbers.
|
||||
|
||||
|
||||
Sample code
|
||||
|
||||
/* hid_gadget_test */
|
||||
|
||||
#include <pthread.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <ctype.h>
|
||||
#include <fcntl.h>
|
||||
#include <errno.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#define BUF_LEN 512
|
||||
|
||||
struct options {
|
||||
const char *opt;
|
||||
unsigned char val;
|
||||
};
|
||||
|
||||
static struct options kmod[] = {
|
||||
{.opt = "--left-ctrl", .val = 0x01},
|
||||
{.opt = "--right-ctrl", .val = 0x10},
|
||||
{.opt = "--left-shift", .val = 0x02},
|
||||
{.opt = "--right-shift", .val = 0x20},
|
||||
{.opt = "--left-alt", .val = 0x04},
|
||||
{.opt = "--right-alt", .val = 0x40},
|
||||
{.opt = "--left-meta", .val = 0x08},
|
||||
{.opt = "--right-meta", .val = 0x80},
|
||||
{.opt = NULL}
|
||||
};
|
||||
|
||||
static struct options kval[] = {
|
||||
{.opt = "--return", .val = 0x28},
|
||||
{.opt = "--esc", .val = 0x29},
|
||||
{.opt = "--bckspc", .val = 0x2a},
|
||||
{.opt = "--tab", .val = 0x2b},
|
||||
{.opt = "--spacebar", .val = 0x2c},
|
||||
{.opt = "--caps-lock", .val = 0x39},
|
||||
{.opt = "--f1", .val = 0x3a},
|
||||
{.opt = "--f2", .val = 0x3b},
|
||||
{.opt = "--f3", .val = 0x3c},
|
||||
{.opt = "--f4", .val = 0x3d},
|
||||
{.opt = "--f5", .val = 0x3e},
|
||||
{.opt = "--f6", .val = 0x3f},
|
||||
{.opt = "--f7", .val = 0x40},
|
||||
{.opt = "--f8", .val = 0x41},
|
||||
{.opt = "--f9", .val = 0x42},
|
||||
{.opt = "--f10", .val = 0x43},
|
||||
{.opt = "--f11", .val = 0x44},
|
||||
{.opt = "--f12", .val = 0x45},
|
||||
{.opt = "--insert", .val = 0x49},
|
||||
{.opt = "--home", .val = 0x4a},
|
||||
{.opt = "--pageup", .val = 0x4b},
|
||||
{.opt = "--del", .val = 0x4c},
|
||||
{.opt = "--end", .val = 0x4d},
|
||||
{.opt = "--pagedown", .val = 0x4e},
|
||||
{.opt = "--right", .val = 0x4f},
|
||||
{.opt = "--left", .val = 0x50},
|
||||
{.opt = "--down", .val = 0x51},
|
||||
{.opt = "--kp-enter", .val = 0x58},
|
||||
{.opt = "--up", .val = 0x52},
|
||||
{.opt = "--num-lock", .val = 0x53},
|
||||
{.opt = NULL}
|
||||
};
|
||||
|
||||
int keyboard_fill_report(char report[8], char buf[BUF_LEN], int *hold)
|
||||
{
|
||||
char *tok = strtok(buf, " ");
|
||||
int key = 0;
|
||||
int i = 0;
|
||||
|
||||
for (; tok != NULL; tok = strtok(NULL, " ")) {
|
||||
|
||||
if (strcmp(tok, "--quit") == 0)
|
||||
return -1;
|
||||
|
||||
if (strcmp(tok, "--hold") == 0) {
|
||||
*hold = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (key < 6) {
|
||||
for (i = 0; kval[i].opt != NULL; i++)
|
||||
if (strcmp(tok, kval[i].opt) == 0) {
|
||||
report[2 + key++] = kval[i].val;
|
||||
break;
|
||||
}
|
||||
if (kval[i].opt != NULL)
|
||||
continue;
|
||||
}
|
||||
|
||||
if (key < 6)
|
||||
if (islower(tok[0])) {
|
||||
report[2 + key++] = (tok[0] - ('a' - 0x04));
|
||||
continue;
|
||||
}
|
||||
|
||||
for (i = 0; kmod[i].opt != NULL; i++)
|
||||
if (strcmp(tok, kmod[i].opt) == 0) {
|
||||
report[0] = report[0] | kmod[i].val;
|
||||
break;
|
||||
}
|
||||
if (kmod[i].opt != NULL)
|
||||
continue;
|
||||
|
||||
if (key < 6)
|
||||
fprintf(stderr, "unknown option: %s\n", tok);
|
||||
}
|
||||
return 8;
|
||||
}
|
||||
|
||||
static struct options mmod[] = {
|
||||
{.opt = "--b1", .val = 0x01},
|
||||
{.opt = "--b2", .val = 0x02},
|
||||
{.opt = "--b3", .val = 0x04},
|
||||
{.opt = NULL}
|
||||
};
|
||||
|
||||
int mouse_fill_report(char report[8], char buf[BUF_LEN], int *hold)
|
||||
{
|
||||
char *tok = strtok(buf, " ");
|
||||
int mvt = 0;
|
||||
int i = 0;
|
||||
for (; tok != NULL; tok = strtok(NULL, " ")) {
|
||||
|
||||
if (strcmp(tok, "--quit") == 0)
|
||||
return -1;
|
||||
|
||||
if (strcmp(tok, "--hold") == 0) {
|
||||
*hold = 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
for (i = 0; mmod[i].opt != NULL; i++)
|
||||
if (strcmp(tok, mmod[i].opt) == 0) {
|
||||
report[0] = report[0] | mmod[i].val;
|
||||
break;
|
||||
}
|
||||
if (mmod[i].opt != NULL)
|
||||
continue;
|
||||
|
||||
if (!(tok[0] == '-' && tok[1] == '-') && mvt < 2) {
|
||||
errno = 0;
|
||||
report[1 + mvt++] = (char)strtol(tok, NULL, 0);
|
||||
if (errno != 0) {
|
||||
fprintf(stderr, "Bad value:'%s'\n", tok);
|
||||
report[1 + mvt--] = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
fprintf(stderr, "unknown option: %s\n", tok);
|
||||
}
|
||||
return 3;
|
||||
}
|
||||
|
||||
static struct options jmod[] = {
|
||||
{.opt = "--b1", .val = 0x10},
|
||||
{.opt = "--b2", .val = 0x20},
|
||||
{.opt = "--b3", .val = 0x40},
|
||||
{.opt = "--b4", .val = 0x80},
|
||||
{.opt = "--hat1", .val = 0x00},
|
||||
{.opt = "--hat2", .val = 0x01},
|
||||
{.opt = "--hat3", .val = 0x02},
|
||||
{.opt = "--hat4", .val = 0x03},
|
||||
{.opt = "--hatneutral", .val = 0x04},
|
||||
{.opt = NULL}
|
||||
};
|
||||
|
||||
int joystick_fill_report(char report[8], char buf[BUF_LEN], int *hold)
|
||||
{
|
||||
char *tok = strtok(buf, " ");
|
||||
int mvt = 0;
|
||||
int i = 0;
|
||||
|
||||
*hold = 1;
|
||||
|
||||
/* set default hat position: neutral */
|
||||
report[3] = 0x04;
|
||||
|
||||
for (; tok != NULL; tok = strtok(NULL, " ")) {
|
||||
|
||||
if (strcmp(tok, "--quit") == 0)
|
||||
return -1;
|
||||
|
||||
for (i = 0; jmod[i].opt != NULL; i++)
|
||||
if (strcmp(tok, jmod[i].opt) == 0) {
|
||||
report[3] = (report[3] & 0xF0) | jmod[i].val;
|
||||
break;
|
||||
}
|
||||
if (jmod[i].opt != NULL)
|
||||
continue;
|
||||
|
||||
if (!(tok[0] == '-' && tok[1] == '-') && mvt < 3) {
|
||||
errno = 0;
|
||||
report[mvt++] = (char)strtol(tok, NULL, 0);
|
||||
if (errno != 0) {
|
||||
fprintf(stderr, "Bad value:'%s'\n", tok);
|
||||
report[mvt--] = 0;
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
fprintf(stderr, "unknown option: %s\n", tok);
|
||||
}
|
||||
return 4;
|
||||
}
|
||||
|
||||
void print_options(char c)
|
||||
{
|
||||
int i = 0;
|
||||
|
||||
if (c == 'k') {
|
||||
printf(" keyboard options:\n"
|
||||
" --hold\n");
|
||||
for (i = 0; kmod[i].opt != NULL; i++)
|
||||
printf("\t\t%s\n", kmod[i].opt);
|
||||
printf("\n keyboard values:\n"
|
||||
" [a-z] or\n");
|
||||
for (i = 0; kval[i].opt != NULL; i++)
|
||||
printf("\t\t%-8s%s", kval[i].opt, i % 2 ? "\n" : "");
|
||||
printf("\n");
|
||||
} else if (c == 'm') {
|
||||
printf(" mouse options:\n"
|
||||
" --hold\n");
|
||||
for (i = 0; mmod[i].opt != NULL; i++)
|
||||
printf("\t\t%s\n", mmod[i].opt);
|
||||
printf("\n mouse values:\n"
|
||||
" Two signed numbers\n"
|
||||
"--quit to close\n");
|
||||
} else {
|
||||
printf(" joystick options:\n");
|
||||
for (i = 0; jmod[i].opt != NULL; i++)
|
||||
printf("\t\t%s\n", jmod[i].opt);
|
||||
printf("\n joystick values:\n"
|
||||
" three signed numbers\n"
|
||||
"--quit to close\n");
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
const char *filename = NULL;
|
||||
int fd = 0;
|
||||
char buf[BUF_LEN];
|
||||
int cmd_len;
|
||||
char report[8];
|
||||
int to_send = 8;
|
||||
int hold = 0;
|
||||
fd_set rfds;
|
||||
int retval, i;
|
||||
|
||||
if (argc < 3) {
|
||||
fprintf(stderr, "Usage: %s devname mouse|keyboard|joystick\n",
|
||||
argv[0]);
|
||||
return 1;
|
||||
}
|
||||
|
||||
if (argv[2][0] != 'k' && argv[2][0] != 'm' && argv[2][0] != 'j')
|
||||
return 2;
|
||||
|
||||
filename = argv[1];
|
||||
|
||||
if ((fd = open(filename, O_RDWR, 0666)) == -1) {
|
||||
perror(filename);
|
||||
return 3;
|
||||
}
|
||||
|
||||
print_options(argv[2][0]);
|
||||
|
||||
while (42) {
|
||||
|
||||
FD_ZERO(&rfds);
|
||||
FD_SET(STDIN_FILENO, &rfds);
|
||||
FD_SET(fd, &rfds);
|
||||
|
||||
retval = select(fd + 1, &rfds, NULL, NULL, NULL);
|
||||
if (retval == -1 && errno == EINTR)
|
||||
continue;
|
||||
if (retval < 0) {
|
||||
perror("select()");
|
||||
return 4;
|
||||
}
|
||||
|
||||
if (FD_ISSET(fd, &rfds)) {
|
||||
cmd_len = read(fd, buf, BUF_LEN - 1);
|
||||
printf("recv report:");
|
||||
for (i = 0; i < cmd_len; i++)
|
||||
printf(" %02x", buf[i]);
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
if (FD_ISSET(STDIN_FILENO, &rfds)) {
|
||||
memset(report, 0x0, sizeof(report));
|
||||
cmd_len = read(STDIN_FILENO, buf, BUF_LEN - 1);
|
||||
|
||||
if (cmd_len == 0)
|
||||
break;
|
||||
|
||||
buf[cmd_len - 1] = '\0';
|
||||
hold = 0;
|
||||
|
||||
memset(report, 0x0, sizeof(report));
|
||||
if (argv[2][0] == 'k')
|
||||
to_send = keyboard_fill_report(report, buf, &hold);
|
||||
else if (argv[2][0] == 'm')
|
||||
to_send = mouse_fill_report(report, buf, &hold);
|
||||
else
|
||||
to_send = joystick_fill_report(report, buf, &hold);
|
||||
|
||||
if (to_send == -1)
|
||||
break;
|
||||
|
||||
if (write(fd, report, to_send) != to_send) {
|
||||
perror(filename);
|
||||
return 5;
|
||||
}
|
||||
if (!hold) {
|
||||
memset(report, 0x0, sizeof(report));
|
||||
if (write(fd, report, to_send) != to_send) {
|
||||
perror(filename);
|
||||
return 6;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return 0;
|
||||
}
|
||||
150
Documentation/usb/gadget_multi.txt
Normal file
150
Documentation/usb/gadget_multi.txt
Normal file
|
|
@ -0,0 +1,150 @@
|
|||
-*- org -*-
|
||||
|
||||
* Overview
|
||||
|
||||
The Multifunction Composite Gadget (or g_multi) is a composite gadget
|
||||
that makes extensive use of the composite framework to provide
|
||||
a... multifunction gadget.
|
||||
|
||||
In it's standard configuration it provides a single USB configuration
|
||||
with RNDIS[1] (that is Ethernet), USB CDC[2] ACM (that is serial) and
|
||||
USB Mass Storage functions.
|
||||
|
||||
A CDC ECM (Ethernet) function may be turned on via a Kconfig option
|
||||
and RNDIS can be turned off. If they are both enabled the gadget will
|
||||
have two configurations -- one with RNDIS and another with CDC ECM[3].
|
||||
|
||||
Please note that if you use non-standard configuration (that is enable
|
||||
CDC ECM) you may need to change vendor and/or product ID.
|
||||
|
||||
* Host drivers
|
||||
|
||||
To make use of the gadget one needs to make it work on host side --
|
||||
without that there's no hope of achieving anything with the gadget.
|
||||
As one might expect, things one need to do very from system to system.
|
||||
|
||||
** Linux host drivers
|
||||
|
||||
Since the gadget uses standard composite framework and appears as such
|
||||
to Linux host it does not need any additional drivers on Linux host
|
||||
side. All the functions are handled by respective drivers developed
|
||||
for them.
|
||||
|
||||
This is also true for two configuration set-up with RNDIS
|
||||
configuration being the first one. Linux host will use the second
|
||||
configuration with CDC ECM which should work better under Linux.
|
||||
|
||||
** Windows host drivers
|
||||
|
||||
For the gadget two work under Windows two conditions have to be met:
|
||||
|
||||
*** Detecting as composite gadget
|
||||
|
||||
First of all, Windows need to detect the gadget as an USB composite
|
||||
gadget which on its own have some conditions[4]. If they are met,
|
||||
Windows lets USB Generic Parent Driver[5] handle the device which then
|
||||
tries to much drivers for each individual interface (sort of, don't
|
||||
get into too many details).
|
||||
|
||||
The good news is: you do not have to worry about most of the
|
||||
conditions!
|
||||
|
||||
The only thing to worry is that the gadget has to have a single
|
||||
configuration so a dual RNDIS and CDC ECM gadget won't work unless you
|
||||
create a proper INF -- and of course, if you do submit it!
|
||||
|
||||
*** Installing drivers for each function
|
||||
|
||||
The other, trickier thing is making Windows install drivers for each
|
||||
individual function.
|
||||
|
||||
For mass storage it is trivial since Windows detect it's an interface
|
||||
implementing USB Mass Storage class and selects appropriate driver.
|
||||
|
||||
Things are harder with RDNIS and CDC ACM.
|
||||
|
||||
**** RNDIS
|
||||
|
||||
To make Windows select RNDIS drivers for the first function in the
|
||||
gadget, one needs to use the [[file:linux.inf]] file provided with this
|
||||
document. It "attaches" Window's RNDIS driver to the first interface
|
||||
of the gadget.
|
||||
|
||||
Please note, that while testing we encountered some issues[6] when
|
||||
RNDIS was not the first interface. You do not need to worry abut it
|
||||
unless you are trying to develop your own gadget in which case watch
|
||||
out for this bug.
|
||||
|
||||
**** CDC ACM
|
||||
|
||||
Similarly, [[file:linux-cdc-acm.inf]] is provided for CDC ACM.
|
||||
|
||||
**** Customising the gadget
|
||||
|
||||
If you intend to hack the g_multi gadget be advised that rearranging
|
||||
functions will obviously change interface numbers for each of the
|
||||
functionality. As an effect provided INFs won't work since they have
|
||||
interface numbers hard-coded in them (it's not hard to change those
|
||||
though[7]).
|
||||
|
||||
This also means, that after experimenting with g_multi and changing
|
||||
provided functions one should change gadget's vendor and/or product ID
|
||||
so there will be no collision with other customised gadgets or the
|
||||
original gadget.
|
||||
|
||||
Failing to comply may cause brain damage after wondering for hours why
|
||||
things don't work as intended before realising Windows have cached
|
||||
some drivers information (changing USB port may sometimes help plus
|
||||
you might try using USBDeview[8] to remove the phantom device).
|
||||
|
||||
**** INF testing
|
||||
|
||||
Provided INF files have been tested on Windows XP SP3, Windows Vista
|
||||
and Windows 7, all 32-bit versions. It should work on 64-bit versions
|
||||
as well. It most likely won't work on Windows prior to Windows XP
|
||||
SP2.
|
||||
|
||||
** Other systems
|
||||
|
||||
At this moment, drivers for any other systems have not been tested.
|
||||
Knowing how MacOS is based on BSD and BSD is an Open Source it is
|
||||
believed that it should (read: "I have no idea whether it will") work
|
||||
out-of-the-box.
|
||||
|
||||
For more exotic systems I have even less to say...
|
||||
|
||||
Any testing and drivers *are* *welcome*!
|
||||
|
||||
* Authors
|
||||
|
||||
This document has been written by Michal Nazarewicz
|
||||
([[mailto:mina86@mina86.com]]). INF files have been hacked with
|
||||
support of Marek Szyprowski ([[mailto:m.szyprowski@samsung.com]]) and
|
||||
Xiaofan Chen ([[mailto:xiaofanc@gmail.com]]) basing on the MS RNDIS
|
||||
template[9], Microchip's CDC ACM INF file and David Brownell's
|
||||
([[mailto:dbrownell@users.sourceforge.net]]) original INF files.
|
||||
|
||||
* Footnotes
|
||||
|
||||
[1] Remote Network Driver Interface Specification,
|
||||
[[http://msdn.microsoft.com/en-us/library/ee484414.aspx]].
|
||||
|
||||
[2] Communications Device Class Abstract Control Model, spec for this
|
||||
and other USB classes can be found at
|
||||
[[http://www.usb.org/developers/devclass_docs/]].
|
||||
|
||||
[3] CDC Ethernet Control Model.
|
||||
|
||||
[4] [[http://msdn.microsoft.com/en-us/library/ff537109(v=VS.85).aspx]]
|
||||
|
||||
[5] [[http://msdn.microsoft.com/en-us/library/ff539234(v=VS.85).aspx]]
|
||||
|
||||
[6] To put it in some other nice words, Windows failed to respond to
|
||||
any user input.
|
||||
|
||||
[7] You may find [[http://www.cygnal.org/ubb/Forum9/HTML/001050.html]]
|
||||
useful.
|
||||
|
||||
[8] http://www.nirsoft.net/utils/usb_devices_view.html
|
||||
|
||||
[9] [[http://msdn.microsoft.com/en-us/library/ff570620.aspx]]
|
||||
510
Documentation/usb/gadget_printer.txt
Normal file
510
Documentation/usb/gadget_printer.txt
Normal file
|
|
@ -0,0 +1,510 @@
|
|||
|
||||
Linux USB Printer Gadget Driver
|
||||
06/04/2007
|
||||
|
||||
Copyright (C) 2007 Craig W. Nadler <craig@nadler.us>
|
||||
|
||||
|
||||
|
||||
GENERAL
|
||||
=======
|
||||
|
||||
This driver may be used if you are writing printer firmware using Linux as
|
||||
the embedded OS. This driver has nothing to do with using a printer with
|
||||
your Linux host system.
|
||||
|
||||
You will need a USB device controller and a Linux driver for it that accepts
|
||||
a gadget / "device class" driver using the Linux USB Gadget API. After the
|
||||
USB device controller driver is loaded then load the printer gadget driver.
|
||||
This will present a printer interface to the USB Host that your USB Device
|
||||
port is connected to.
|
||||
|
||||
This driver is structured for printer firmware that runs in user mode. The
|
||||
user mode printer firmware will read and write data from the kernel mode
|
||||
printer gadget driver using a device file. The printer returns a printer status
|
||||
byte when the USB HOST sends a device request to get the printer status. The
|
||||
user space firmware can read or write this status byte using a device file
|
||||
/dev/g_printer . Both blocking and non-blocking read/write calls are supported.
|
||||
|
||||
|
||||
|
||||
|
||||
HOWTO USE THIS DRIVER
|
||||
=====================
|
||||
|
||||
To load the USB device controller driver and the printer gadget driver. The
|
||||
following example uses the Netchip 2280 USB device controller driver:
|
||||
|
||||
modprobe net2280
|
||||
modprobe g_printer
|
||||
|
||||
|
||||
The follow command line parameter can be used when loading the printer gadget
|
||||
(ex: modprobe g_printer idVendor=0x0525 idProduct=0xa4a8 ):
|
||||
|
||||
idVendor - This is the Vendor ID used in the device descriptor. The default is
|
||||
the Netchip vendor id 0x0525. YOU MUST CHANGE TO YOUR OWN VENDOR ID
|
||||
BEFORE RELEASING A PRODUCT. If you plan to release a product and don't
|
||||
already have a Vendor ID please see www.usb.org for details on how to
|
||||
get one.
|
||||
|
||||
idProduct - This is the Product ID used in the device descriptor. The default
|
||||
is 0xa4a8, you should change this to an ID that's not used by any of
|
||||
your other USB products if you have any. It would be a good idea to
|
||||
start numbering your products starting with say 0x0001.
|
||||
|
||||
bcdDevice - This is the version number of your product. It would be a good idea
|
||||
to put your firmware version here.
|
||||
|
||||
iManufacturer - A string containing the name of the Vendor.
|
||||
|
||||
iProduct - A string containing the Product Name.
|
||||
|
||||
iSerialNum - A string containing the Serial Number. This should be changed for
|
||||
each unit of your product.
|
||||
|
||||
iPNPstring - The PNP ID string used for this printer. You will want to set
|
||||
either on the command line or hard code the PNP ID string used for
|
||||
your printer product.
|
||||
|
||||
qlen - The number of 8k buffers to use per endpoint. The default is 10, you
|
||||
should tune this for your product. You may also want to tune the
|
||||
size of each buffer for your product.
|
||||
|
||||
|
||||
|
||||
|
||||
USING THE EXAMPLE CODE
|
||||
======================
|
||||
|
||||
This example code talks to stdout, instead of a print engine.
|
||||
|
||||
To compile the test code below:
|
||||
|
||||
1) save it to a file called prn_example.c
|
||||
2) compile the code with the follow command:
|
||||
gcc prn_example.c -o prn_example
|
||||
|
||||
|
||||
|
||||
To read printer data from the host to stdout:
|
||||
|
||||
# prn_example -read_data
|
||||
|
||||
|
||||
To write printer data from a file (data_file) to the host:
|
||||
|
||||
# cat data_file | prn_example -write_data
|
||||
|
||||
|
||||
To get the current printer status for the gadget driver:
|
||||
|
||||
# prn_example -get_status
|
||||
|
||||
Printer status is:
|
||||
Printer is NOT Selected
|
||||
Paper is Out
|
||||
Printer OK
|
||||
|
||||
|
||||
To set printer to Selected/On-line:
|
||||
|
||||
# prn_example -selected
|
||||
|
||||
|
||||
To set printer to Not Selected/Off-line:
|
||||
|
||||
# prn_example -not_selected
|
||||
|
||||
|
||||
To set paper status to paper out:
|
||||
|
||||
# prn_example -paper_out
|
||||
|
||||
|
||||
To set paper status to paper loaded:
|
||||
|
||||
# prn_example -paper_loaded
|
||||
|
||||
|
||||
To set error status to printer OK:
|
||||
|
||||
# prn_example -no_error
|
||||
|
||||
|
||||
To set error status to ERROR:
|
||||
|
||||
# prn_example -error
|
||||
|
||||
|
||||
|
||||
|
||||
EXAMPLE CODE
|
||||
============
|
||||
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <fcntl.h>
|
||||
#include <linux/poll.h>
|
||||
#include <sys/ioctl.h>
|
||||
#include <linux/usb/g_printer.h>
|
||||
|
||||
#define PRINTER_FILE "/dev/g_printer"
|
||||
#define BUF_SIZE 512
|
||||
|
||||
|
||||
/*
|
||||
* 'usage()' - Show program usage.
|
||||
*/
|
||||
|
||||
static void
|
||||
usage(const char *option) /* I - Option string or NULL */
|
||||
{
|
||||
if (option) {
|
||||
fprintf(stderr,"prn_example: Unknown option \"%s\"!\n",
|
||||
option);
|
||||
}
|
||||
|
||||
fputs("\n", stderr);
|
||||
fputs("Usage: prn_example -[options]\n", stderr);
|
||||
fputs("Options:\n", stderr);
|
||||
fputs("\n", stderr);
|
||||
fputs("-get_status Get the current printer status.\n", stderr);
|
||||
fputs("-selected Set the selected status to selected.\n", stderr);
|
||||
fputs("-not_selected Set the selected status to NOT selected.\n",
|
||||
stderr);
|
||||
fputs("-error Set the error status to error.\n", stderr);
|
||||
fputs("-no_error Set the error status to NO error.\n", stderr);
|
||||
fputs("-paper_out Set the paper status to paper out.\n", stderr);
|
||||
fputs("-paper_loaded Set the paper status to paper loaded.\n",
|
||||
stderr);
|
||||
fputs("-read_data Read printer data from driver.\n", stderr);
|
||||
fputs("-write_data Write printer sata to driver.\n", stderr);
|
||||
fputs("-NB_read_data (Non-Blocking) Read printer data from driver.\n",
|
||||
stderr);
|
||||
fputs("\n\n", stderr);
|
||||
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
read_printer_data()
|
||||
{
|
||||
struct pollfd fd[1];
|
||||
|
||||
/* Open device file for printer gadget. */
|
||||
fd[0].fd = open(PRINTER_FILE, O_RDWR);
|
||||
if (fd[0].fd < 0) {
|
||||
printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE);
|
||||
close(fd[0].fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
fd[0].events = POLLIN | POLLRDNORM;
|
||||
|
||||
while (1) {
|
||||
static char buf[BUF_SIZE];
|
||||
int bytes_read;
|
||||
int retval;
|
||||
|
||||
/* Wait for up to 1 second for data. */
|
||||
retval = poll(fd, 1, 1000);
|
||||
|
||||
if (retval && (fd[0].revents & POLLRDNORM)) {
|
||||
|
||||
/* Read data from printer gadget driver. */
|
||||
bytes_read = read(fd[0].fd, buf, BUF_SIZE);
|
||||
|
||||
if (bytes_read < 0) {
|
||||
printf("Error %d reading from %s\n",
|
||||
fd[0].fd, PRINTER_FILE);
|
||||
close(fd[0].fd);
|
||||
return(-1);
|
||||
} else if (bytes_read > 0) {
|
||||
/* Write data to standard OUTPUT (stdout). */
|
||||
fwrite(buf, 1, bytes_read, stdout);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Close the device file. */
|
||||
close(fd[0].fd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
write_printer_data()
|
||||
{
|
||||
struct pollfd fd[1];
|
||||
|
||||
/* Open device file for printer gadget. */
|
||||
fd[0].fd = open (PRINTER_FILE, O_RDWR);
|
||||
if (fd[0].fd < 0) {
|
||||
printf("Error %d opening %s\n", fd[0].fd, PRINTER_FILE);
|
||||
close(fd[0].fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
fd[0].events = POLLOUT | POLLWRNORM;
|
||||
|
||||
while (1) {
|
||||
int retval;
|
||||
static char buf[BUF_SIZE];
|
||||
/* Read data from standard INPUT (stdin). */
|
||||
int bytes_read = fread(buf, 1, BUF_SIZE, stdin);
|
||||
|
||||
if (!bytes_read) {
|
||||
break;
|
||||
}
|
||||
|
||||
while (bytes_read) {
|
||||
|
||||
/* Wait for up to 1 second to sent data. */
|
||||
retval = poll(fd, 1, 1000);
|
||||
|
||||
/* Write data to printer gadget driver. */
|
||||
if (retval && (fd[0].revents & POLLWRNORM)) {
|
||||
retval = write(fd[0].fd, buf, bytes_read);
|
||||
if (retval < 0) {
|
||||
printf("Error %d writing to %s\n",
|
||||
fd[0].fd,
|
||||
PRINTER_FILE);
|
||||
close(fd[0].fd);
|
||||
return(-1);
|
||||
} else {
|
||||
bytes_read -= retval;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/* Wait until the data has been sent. */
|
||||
fsync(fd[0].fd);
|
||||
|
||||
/* Close the device file. */
|
||||
close(fd[0].fd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
read_NB_printer_data()
|
||||
{
|
||||
int fd;
|
||||
static char buf[BUF_SIZE];
|
||||
int bytes_read;
|
||||
|
||||
/* Open device file for printer gadget. */
|
||||
fd = open(PRINTER_FILE, O_RDWR|O_NONBLOCK);
|
||||
if (fd < 0) {
|
||||
printf("Error %d opening %s\n", fd, PRINTER_FILE);
|
||||
close(fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
while (1) {
|
||||
/* Read data from printer gadget driver. */
|
||||
bytes_read = read(fd, buf, BUF_SIZE);
|
||||
if (bytes_read <= 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
/* Write data to standard OUTPUT (stdout). */
|
||||
fwrite(buf, 1, bytes_read, stdout);
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
/* Close the device file. */
|
||||
close(fd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
get_printer_status()
|
||||
{
|
||||
int retval;
|
||||
int fd;
|
||||
|
||||
/* Open device file for printer gadget. */
|
||||
fd = open(PRINTER_FILE, O_RDWR);
|
||||
if (fd < 0) {
|
||||
printf("Error %d opening %s\n", fd, PRINTER_FILE);
|
||||
close(fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
/* Make the IOCTL call. */
|
||||
retval = ioctl(fd, GADGET_GET_PRINTER_STATUS);
|
||||
if (retval < 0) {
|
||||
fprintf(stderr, "ERROR: Failed to set printer status\n");
|
||||
return(-1);
|
||||
}
|
||||
|
||||
/* Close the device file. */
|
||||
close(fd);
|
||||
|
||||
return(retval);
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
set_printer_status(unsigned char buf, int clear_printer_status_bit)
|
||||
{
|
||||
int retval;
|
||||
int fd;
|
||||
|
||||
retval = get_printer_status();
|
||||
if (retval < 0) {
|
||||
fprintf(stderr, "ERROR: Failed to get printer status\n");
|
||||
return(-1);
|
||||
}
|
||||
|
||||
/* Open device file for printer gadget. */
|
||||
fd = open(PRINTER_FILE, O_RDWR);
|
||||
|
||||
if (fd < 0) {
|
||||
printf("Error %d opening %s\n", fd, PRINTER_FILE);
|
||||
close(fd);
|
||||
return(-1);
|
||||
}
|
||||
|
||||
if (clear_printer_status_bit) {
|
||||
retval &= ~buf;
|
||||
} else {
|
||||
retval |= buf;
|
||||
}
|
||||
|
||||
/* Make the IOCTL call. */
|
||||
if (ioctl(fd, GADGET_SET_PRINTER_STATUS, (unsigned char)retval)) {
|
||||
fprintf(stderr, "ERROR: Failed to set printer status\n");
|
||||
return(-1);
|
||||
}
|
||||
|
||||
/* Close the device file. */
|
||||
close(fd);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static int
|
||||
display_printer_status()
|
||||
{
|
||||
char printer_status;
|
||||
|
||||
printer_status = get_printer_status();
|
||||
if (printer_status < 0) {
|
||||
fprintf(stderr, "ERROR: Failed to get printer status\n");
|
||||
return(-1);
|
||||
}
|
||||
|
||||
printf("Printer status is:\n");
|
||||
if (printer_status & PRINTER_SELECTED) {
|
||||
printf(" Printer is Selected\n");
|
||||
} else {
|
||||
printf(" Printer is NOT Selected\n");
|
||||
}
|
||||
if (printer_status & PRINTER_PAPER_EMPTY) {
|
||||
printf(" Paper is Out\n");
|
||||
} else {
|
||||
printf(" Paper is Loaded\n");
|
||||
}
|
||||
if (printer_status & PRINTER_NOT_ERROR) {
|
||||
printf(" Printer OK\n");
|
||||
} else {
|
||||
printf(" Printer ERROR\n");
|
||||
}
|
||||
|
||||
return(0);
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
main(int argc, char *argv[])
|
||||
{
|
||||
int i; /* Looping var */
|
||||
int retval = 0;
|
||||
|
||||
/* No Args */
|
||||
if (argc == 1) {
|
||||
usage(0);
|
||||
exit(0);
|
||||
}
|
||||
|
||||
for (i = 1; i < argc && !retval; i ++) {
|
||||
|
||||
if (argv[i][0] != '-') {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (!strcmp(argv[i], "-get_status")) {
|
||||
if (display_printer_status()) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-paper_loaded")) {
|
||||
if (set_printer_status(PRINTER_PAPER_EMPTY, 1)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-paper_out")) {
|
||||
if (set_printer_status(PRINTER_PAPER_EMPTY, 0)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-selected")) {
|
||||
if (set_printer_status(PRINTER_SELECTED, 0)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-not_selected")) {
|
||||
if (set_printer_status(PRINTER_SELECTED, 1)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-error")) {
|
||||
if (set_printer_status(PRINTER_NOT_ERROR, 1)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-no_error")) {
|
||||
if (set_printer_status(PRINTER_NOT_ERROR, 0)) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-read_data")) {
|
||||
if (read_printer_data()) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-write_data")) {
|
||||
if (write_printer_data()) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else if (!strcmp(argv[i], "-NB_read_data")) {
|
||||
if (read_NB_printer_data()) {
|
||||
retval = 1;
|
||||
}
|
||||
|
||||
} else {
|
||||
usage(argv[i]);
|
||||
retval = 1;
|
||||
}
|
||||
}
|
||||
|
||||
exit(retval);
|
||||
}
|
||||
282
Documentation/usb/gadget_serial.txt
Normal file
282
Documentation/usb/gadget_serial.txt
Normal file
|
|
@ -0,0 +1,282 @@
|
|||
|
||||
Linux Gadget Serial Driver v2.0
|
||||
11/20/2004
|
||||
(updated 8-May-2008 for v2.3)
|
||||
|
||||
|
||||
License and Disclaimer
|
||||
----------------------
|
||||
This program is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU General Public License as
|
||||
published by the Free Software Foundation; either version 2 of
|
||||
the License, or (at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public
|
||||
License along with this program; if not, write to the Free
|
||||
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston,
|
||||
MA 02111-1307 USA.
|
||||
|
||||
This document and the gadget serial driver itself are
|
||||
Copyright (C) 2004 by Al Borchers (alborchers@steinerpoint.com).
|
||||
|
||||
If you have questions, problems, or suggestions for this driver
|
||||
please contact Al Borchers at alborchers@steinerpoint.com.
|
||||
|
||||
|
||||
Prerequisites
|
||||
-------------
|
||||
Versions of the gadget serial driver are available for the
|
||||
2.4 Linux kernels, but this document assumes you are using
|
||||
version 2.3 or later of the gadget serial driver in a 2.6
|
||||
Linux kernel.
|
||||
|
||||
This document assumes that you are familiar with Linux and
|
||||
Windows and know how to configure and build Linux kernels, run
|
||||
standard utilities, use minicom and HyperTerminal, and work with
|
||||
USB and serial devices. It also assumes you configure the Linux
|
||||
gadget and usb drivers as modules.
|
||||
|
||||
With version 2.3 of the driver, major and minor device nodes are
|
||||
no longer statically defined. Your Linux based system should mount
|
||||
sysfs in /sys, and use "mdev" (in Busybox) or "udev" to make the
|
||||
/dev nodes matching the sysfs /sys/class/tty files.
|
||||
|
||||
|
||||
|
||||
Overview
|
||||
--------
|
||||
The gadget serial driver is a Linux USB gadget driver, a USB device
|
||||
side driver. It runs on a Linux system that has USB device side
|
||||
hardware; for example, a PDA, an embedded Linux system, or a PC
|
||||
with a USB development card.
|
||||
|
||||
The gadget serial driver talks over USB to either a CDC ACM driver
|
||||
or a generic USB serial driver running on a host PC.
|
||||
|
||||
Host
|
||||
--------------------------------------
|
||||
| Host-Side CDC ACM USB Host |
|
||||
| Operating | or | Controller | USB
|
||||
| System | Generic USB | Driver |--------
|
||||
| (Linux or | Serial | and | |
|
||||
| Windows) Driver USB Stack | |
|
||||
-------------------------------------- |
|
||||
|
|
||||
|
|
||||
|
|
||||
Gadget |
|
||||
-------------------------------------- |
|
||||
| Gadget USB Periph. | |
|
||||
| Device-Side | Gadget | Controller | |
|
||||
| Linux | Serial | Driver |--------
|
||||
| Operating | Driver | and |
|
||||
| System USB Stack |
|
||||
--------------------------------------
|
||||
|
||||
On the device-side Linux system, the gadget serial driver looks
|
||||
like a serial device.
|
||||
|
||||
On the host-side system, the gadget serial device looks like a
|
||||
CDC ACM compliant class device or a simple vendor specific device
|
||||
with bulk in and bulk out endpoints, and it is treated similarly
|
||||
to other serial devices.
|
||||
|
||||
The host side driver can potentially be any ACM compliant driver
|
||||
or any driver that can talk to a device with a simple bulk in/out
|
||||
interface. Gadget serial has been tested with the Linux ACM driver,
|
||||
the Windows usbser.sys ACM driver, and the Linux USB generic serial
|
||||
driver.
|
||||
|
||||
With the gadget serial driver and the host side ACM or generic
|
||||
serial driver running, you should be able to communicate between
|
||||
the host and the gadget side systems as if they were connected by a
|
||||
serial cable.
|
||||
|
||||
The gadget serial driver only provides simple unreliable data
|
||||
communication. It does not yet handle flow control or many other
|
||||
features of normal serial devices.
|
||||
|
||||
|
||||
Installing the Gadget Serial Driver
|
||||
-----------------------------------
|
||||
To use the gadget serial driver you must configure the Linux gadget
|
||||
side kernel for "Support for USB Gadgets", for a "USB Peripheral
|
||||
Controller" (for example, net2280), and for the "Serial Gadget"
|
||||
driver. All this are listed under "USB Gadget Support" when
|
||||
configuring the kernel. Then rebuild and install the kernel or
|
||||
modules.
|
||||
|
||||
Then you must load the gadget serial driver. To load it as an
|
||||
ACM device (recommended for interoperability), do this:
|
||||
|
||||
modprobe g_serial
|
||||
|
||||
To load it as a vendor specific bulk in/out device, do this:
|
||||
|
||||
modprobe g_serial use_acm=0
|
||||
|
||||
This will also automatically load the underlying gadget peripheral
|
||||
controller driver. This must be done each time you reboot the gadget
|
||||
side Linux system. You can add this to the start up scripts, if
|
||||
desired.
|
||||
|
||||
Your system should use mdev (from busybox) or udev to make the
|
||||
device nodes. After this gadget driver has been set up you should
|
||||
then see a /dev/ttyGS0 node:
|
||||
|
||||
# ls -l /dev/ttyGS0 | cat
|
||||
crw-rw---- 1 root root 253, 0 May 8 14:10 /dev/ttyGS0
|
||||
#
|
||||
|
||||
Note that the major number (253, above) is system-specific. If
|
||||
you need to create /dev nodes by hand, the right numbers to use
|
||||
will be in the /sys/class/tty/ttyGS0/dev file.
|
||||
|
||||
When you link this gadget driver early, perhaps even statically,
|
||||
you may want to set up an /etc/inittab entry to run "getty" on it.
|
||||
The /dev/ttyGS0 line should work like most any other serial port.
|
||||
|
||||
|
||||
If gadget serial is loaded as an ACM device you will want to use
|
||||
either the Windows or Linux ACM driver on the host side. If gadget
|
||||
serial is loaded as a bulk in/out device, you will want to use the
|
||||
Linux generic serial driver on the host side. Follow the appropriate
|
||||
instructions below to install the host side driver.
|
||||
|
||||
|
||||
Installing the Windows Host ACM Driver
|
||||
--------------------------------------
|
||||
To use the Windows ACM driver you must have the "linux-cdc-acm.inf"
|
||||
file (provided along this document) which supports all recent versions
|
||||
of Windows.
|
||||
|
||||
When the gadget serial driver is loaded and the USB device connected
|
||||
to the Windows host with a USB cable, Windows should recognize the
|
||||
gadget serial device and ask for a driver. Tell Windows to find the
|
||||
driver in the folder that contains the "linux-cdc-acm.inf" file.
|
||||
|
||||
For example, on Windows XP, when the gadget serial device is first
|
||||
plugged in, the "Found New Hardware Wizard" starts up. Select
|
||||
"Install from a list or specific location (Advanced)", then on the
|
||||
next screen select "Include this location in the search" and enter the
|
||||
path or browse to the folder containing the "linux-cdc-acm.inf" file.
|
||||
Windows will complain that the Gadget Serial driver has not passed
|
||||
Windows Logo testing, but select "Continue anyway" and finish the
|
||||
driver installation.
|
||||
|
||||
On Windows XP, in the "Device Manager" (under "Control Panel",
|
||||
"System", "Hardware") expand the "Ports (COM & LPT)" entry and you
|
||||
should see "Gadget Serial" listed as the driver for one of the COM
|
||||
ports.
|
||||
|
||||
To uninstall the Windows XP driver for "Gadget Serial", right click
|
||||
on the "Gadget Serial" entry in the "Device Manager" and select
|
||||
"Uninstall".
|
||||
|
||||
|
||||
Installing the Linux Host ACM Driver
|
||||
------------------------------------
|
||||
To use the Linux ACM driver you must configure the Linux host side
|
||||
kernel for "Support for Host-side USB" and for "USB Modem (CDC ACM)
|
||||
support".
|
||||
|
||||
Once the gadget serial driver is loaded and the USB device connected
|
||||
to the Linux host with a USB cable, the host system should recognize
|
||||
the gadget serial device. For example, the command
|
||||
|
||||
cat /proc/bus/usb/devices
|
||||
|
||||
should show something like this:
|
||||
|
||||
T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 5 Spd=480 MxCh= 0
|
||||
D: Ver= 2.00 Cls=02(comm.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
|
||||
P: Vendor=0525 ProdID=a4a7 Rev= 2.01
|
||||
S: Manufacturer=Linux 2.6.8.1 with net2280
|
||||
S: Product=Gadget Serial
|
||||
S: SerialNumber=0
|
||||
C:* #Ifs= 2 Cfg#= 2 Atr=c0 MxPwr= 2mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=02(comm.) Sub=02 Prot=01 Driver=acm
|
||||
E: Ad=83(I) Atr=03(Int.) MxPS= 8 Ivl=32ms
|
||||
I: If#= 1 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=acm
|
||||
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
|
||||
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
|
||||
|
||||
If the host side Linux system is configured properly, the ACM driver
|
||||
should be loaded automatically. The command "lsmod" should show the
|
||||
"acm" module is loaded.
|
||||
|
||||
|
||||
Installing the Linux Host Generic USB Serial Driver
|
||||
---------------------------------------------------
|
||||
To use the Linux generic USB serial driver you must configure the
|
||||
Linux host side kernel for "Support for Host-side USB", for "USB
|
||||
Serial Converter support", and for the "USB Generic Serial Driver".
|
||||
|
||||
Once the gadget serial driver is loaded and the USB device connected
|
||||
to the Linux host with a USB cable, the host system should recognize
|
||||
the gadget serial device. For example, the command
|
||||
|
||||
cat /proc/bus/usb/devices
|
||||
|
||||
should show something like this:
|
||||
|
||||
T: Bus=01 Lev=01 Prnt=01 Port=01 Cnt=02 Dev#= 6 Spd=480 MxCh= 0
|
||||
D: Ver= 2.00 Cls=ff(vend.) Sub=00 Prot=00 MxPS=64 #Cfgs= 1
|
||||
P: Vendor=0525 ProdID=a4a6 Rev= 2.01
|
||||
S: Manufacturer=Linux 2.6.8.1 with net2280
|
||||
S: Product=Gadget Serial
|
||||
S: SerialNumber=0
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=c0 MxPwr= 2mA
|
||||
I: If#= 0 Alt= 0 #EPs= 2 Cls=0a(data ) Sub=00 Prot=00 Driver=serial
|
||||
E: Ad=81(I) Atr=02(Bulk) MxPS= 512 Ivl=0ms
|
||||
E: Ad=02(O) Atr=02(Bulk) MxPS= 512 Ivl=0ms
|
||||
|
||||
You must explicitly load the usbserial driver with parameters to
|
||||
configure it to recognize the gadget serial device, like this:
|
||||
|
||||
modprobe usbserial vendor=0x0525 product=0xA4A6
|
||||
|
||||
If everything is working, usbserial will print a message in the
|
||||
system log saying something like "Gadget Serial converter now
|
||||
attached to ttyUSB0".
|
||||
|
||||
|
||||
Testing with Minicom or HyperTerminal
|
||||
-------------------------------------
|
||||
Once the gadget serial driver and the host driver are both installed,
|
||||
and a USB cable connects the gadget device to the host, you should
|
||||
be able to communicate over USB between the gadget and host systems.
|
||||
You can use minicom or HyperTerminal to try this out.
|
||||
|
||||
On the gadget side run "minicom -s" to configure a new minicom
|
||||
session. Under "Serial port setup" set "/dev/ttygserial" as the
|
||||
"Serial Device". Set baud rate, data bits, parity, and stop bits,
|
||||
to 9600, 8, none, and 1--these settings mostly do not matter.
|
||||
Under "Modem and dialing" erase all the modem and dialing strings.
|
||||
|
||||
On a Linux host running the ACM driver, configure minicom similarly
|
||||
but use "/dev/ttyACM0" as the "Serial Device". (If you have other
|
||||
ACM devices connected, change the device name appropriately.)
|
||||
|
||||
On a Linux host running the USB generic serial driver, configure
|
||||
minicom similarly, but use "/dev/ttyUSB0" as the "Serial Device".
|
||||
(If you have other USB serial devices connected, change the device
|
||||
name appropriately.)
|
||||
|
||||
On a Windows host configure a new HyperTerminal session to use the
|
||||
COM port assigned to Gadget Serial. The "Port Settings" will be
|
||||
set automatically when HyperTerminal connects to the gadget serial
|
||||
device, so you can leave them set to the default values--these
|
||||
settings mostly do not matter.
|
||||
|
||||
With minicom configured and running on the gadget side and with
|
||||
minicom or HyperTerminal configured and running on the host side,
|
||||
you should be able to send data back and forth between the gadget
|
||||
side and host side systems. Anything you type on the terminal
|
||||
window on the gadget side should appear in the terminal window on
|
||||
the host side and vice versa.
|
||||
148
Documentation/usb/hotplug.txt
Normal file
148
Documentation/usb/hotplug.txt
Normal file
|
|
@ -0,0 +1,148 @@
|
|||
LINUX HOTPLUGGING
|
||||
|
||||
In hotpluggable busses like USB (and Cardbus PCI), end-users plug devices
|
||||
into the bus with power on. In most cases, users expect the devices to become
|
||||
immediately usable. That means the system must do many things, including:
|
||||
|
||||
- Find a driver that can handle the device. That may involve
|
||||
loading a kernel module; newer drivers can use module-init-tools
|
||||
to publish their device (and class) support to user utilities.
|
||||
|
||||
- Bind a driver to that device. Bus frameworks do that using a
|
||||
device driver's probe() routine.
|
||||
|
||||
- Tell other subsystems to configure the new device. Print
|
||||
queues may need to be enabled, networks brought up, disk
|
||||
partitions mounted, and so on. In some cases these will
|
||||
be driver-specific actions.
|
||||
|
||||
This involves a mix of kernel mode and user mode actions. Making devices
|
||||
be immediately usable means that any user mode actions can't wait for an
|
||||
administrator to do them: the kernel must trigger them, either passively
|
||||
(triggering some monitoring daemon to invoke a helper program) or
|
||||
actively (calling such a user mode helper program directly).
|
||||
|
||||
Those triggered actions must support a system's administrative policies;
|
||||
such programs are called "policy agents" here. Typically they involve
|
||||
shell scripts that dispatch to more familiar administration tools.
|
||||
|
||||
Because some of those actions rely on information about drivers (metadata)
|
||||
that is currently available only when the drivers are dynamically linked,
|
||||
you get the best hotplugging when you configure a highly modular system.
|
||||
|
||||
|
||||
KERNEL HOTPLUG HELPER (/sbin/hotplug)
|
||||
|
||||
There is a kernel parameter: /proc/sys/kernel/hotplug, which normally
|
||||
holds the pathname "/sbin/hotplug". That parameter names a program
|
||||
which the kernel may invoke at various times.
|
||||
|
||||
The /sbin/hotplug program can be invoked by any subsystem as part of its
|
||||
reaction to a configuration change, from a thread in that subsystem.
|
||||
Only one parameter is required: the name of a subsystem being notified of
|
||||
some kernel event. That name is used as the first key for further event
|
||||
dispatch; any other argument and environment parameters are specified by
|
||||
the subsystem making that invocation.
|
||||
|
||||
Hotplug software and other resources is available at:
|
||||
|
||||
http://linux-hotplug.sourceforge.net
|
||||
|
||||
Mailing list information is also available at that site.
|
||||
|
||||
|
||||
--------------------------------------------------------------------------
|
||||
|
||||
|
||||
USB POLICY AGENT
|
||||
|
||||
The USB subsystem currently invokes /sbin/hotplug when USB devices
|
||||
are added or removed from system. The invocation is done by the kernel
|
||||
hub workqueue [hub_wq], or else as part of root hub initialization
|
||||
(done by init, modprobe, kapmd, etc). Its single command line parameter
|
||||
is the string "usb", and it passes these environment variables:
|
||||
|
||||
ACTION ... "add", "remove"
|
||||
PRODUCT ... USB vendor, product, and version codes (hex)
|
||||
TYPE ... device class codes (decimal)
|
||||
INTERFACE ... interface 0 class codes (decimal)
|
||||
|
||||
If "usbdevfs" is configured, DEVICE and DEVFS are also passed. DEVICE is
|
||||
the pathname of the device, and is useful for devices with multiple and/or
|
||||
alternate interfaces that complicate driver selection. By design, USB
|
||||
hotplugging is independent of "usbdevfs": you can do most essential parts
|
||||
of USB device setup without using that filesystem, and without running a
|
||||
user mode daemon to detect changes in system configuration.
|
||||
|
||||
Currently available policy agent implementations can load drivers for
|
||||
modules, and can invoke driver-specific setup scripts. The newest ones
|
||||
leverage USB module-init-tools support. Later agents might unload drivers.
|
||||
|
||||
|
||||
USB MODUTILS SUPPORT
|
||||
|
||||
Current versions of module-init-tools will create a "modules.usbmap" file
|
||||
which contains the entries from each driver's MODULE_DEVICE_TABLE. Such
|
||||
files can be used by various user mode policy agents to make sure all the
|
||||
right driver modules get loaded, either at boot time or later.
|
||||
|
||||
See <linux/usb.h> for full information about such table entries; or look
|
||||
at existing drivers. Each table entry describes one or more criteria to
|
||||
be used when matching a driver to a device or class of devices. The
|
||||
specific criteria are identified by bits set in "match_flags", paired
|
||||
with field values. You can construct the criteria directly, or with
|
||||
macros such as these, and use driver_info to store more information.
|
||||
|
||||
USB_DEVICE (vendorId, productId)
|
||||
... matching devices with specified vendor and product ids
|
||||
USB_DEVICE_VER (vendorId, productId, lo, hi)
|
||||
... like USB_DEVICE with lo <= productversion <= hi
|
||||
USB_INTERFACE_INFO (class, subclass, protocol)
|
||||
... matching specified interface class info
|
||||
USB_DEVICE_INFO (class, subclass, protocol)
|
||||
... matching specified device class info
|
||||
|
||||
A short example, for a driver that supports several specific USB devices
|
||||
and their quirks, might have a MODULE_DEVICE_TABLE like this:
|
||||
|
||||
static const struct usb_device_id mydriver_id_table[] = {
|
||||
{ USB_DEVICE (0x9999, 0xaaaa), driver_info: QUIRK_X },
|
||||
{ USB_DEVICE (0xbbbb, 0x8888), driver_info: QUIRK_Y|QUIRK_Z },
|
||||
...
|
||||
{ } /* end with an all-zeroes entry */
|
||||
};
|
||||
MODULE_DEVICE_TABLE(usb, mydriver_id_table);
|
||||
|
||||
Most USB device drivers should pass these tables to the USB subsystem as
|
||||
well as to the module management subsystem. Not all, though: some driver
|
||||
frameworks connect using interfaces layered over USB, and so they won't
|
||||
need such a "struct usb_driver".
|
||||
|
||||
Drivers that connect directly to the USB subsystem should be declared
|
||||
something like this:
|
||||
|
||||
static struct usb_driver mydriver = {
|
||||
.name = "mydriver",
|
||||
.id_table = mydriver_id_table,
|
||||
.probe = my_probe,
|
||||
.disconnect = my_disconnect,
|
||||
|
||||
/*
|
||||
if using the usb chardev framework:
|
||||
.minor = MY_USB_MINOR_START,
|
||||
.fops = my_file_ops,
|
||||
if exposing any operations through usbdevfs:
|
||||
.ioctl = my_ioctl,
|
||||
*/
|
||||
};
|
||||
|
||||
When the USB subsystem knows about a driver's device ID table, it's used when
|
||||
choosing drivers to probe(). The thread doing new device processing checks
|
||||
drivers' device ID entries from the MODULE_DEVICE_TABLE against interface and
|
||||
device descriptors for the device. It will only call probe() if there is a
|
||||
match, and the third argument to probe() will be the entry that matched.
|
||||
|
||||
If you don't provide an id_table for your driver, then your driver may get
|
||||
probed for each new device; the third parameter to probe() will be null.
|
||||
|
||||
|
||||
84
Documentation/usb/iuu_phoenix.txt
Normal file
84
Documentation/usb/iuu_phoenix.txt
Normal file
|
|
@ -0,0 +1,84 @@
|
|||
Infinity Usb Unlimited Readme
|
||||
-----------------------------
|
||||
|
||||
Hi all,
|
||||
|
||||
|
||||
This module provide a serial interface to use your
|
||||
IUU unit in phoenix mode. Loading this module will
|
||||
bring a ttyUSB[0-x] interface. This driver must be
|
||||
used by your favorite application to pilot the IUU
|
||||
|
||||
This driver is still in beta stage, so bugs can
|
||||
occur and your system may freeze. As far I now,
|
||||
I never had any problem with it, but I'm not a real
|
||||
guru, so don't blame me if your system is unstable
|
||||
|
||||
You can plug more than one IUU. Every unit will
|
||||
have his own device file(/dev/ttyUSB0,/dev/ttyUSB1,...)
|
||||
|
||||
|
||||
|
||||
How to tune the reader speed ?
|
||||
|
||||
A few parameters can be used at load time
|
||||
To use parameters, just unload the module if it is
|
||||
already loaded and use modprobe iuu_phoenix param=value.
|
||||
In case of prebuilt module, use the command
|
||||
insmod iuu_phoenix param=value.
|
||||
|
||||
Example:
|
||||
|
||||
modprobe iuu_phoenix clockmode=3
|
||||
|
||||
The parameters are:
|
||||
|
||||
parm: clockmode:1=3Mhz579,2=3Mhz680,3=6Mhz (int)
|
||||
parm: boost:overclock boost percent 100 to 500 (int)
|
||||
parm: cdmode:Card detect mode 0=none, 1=CD, 2=!CD, 3=DSR, 4=!DSR, 5=CTS, 6=!CTS, 7=RING, 8=!RING (int)
|
||||
parm: xmas:xmas color enabled or not (bool)
|
||||
parm: debug:Debug enabled or not (bool)
|
||||
|
||||
- clockmode will provide 3 different base settings commonly adopted by
|
||||
different software:
|
||||
1. 3Mhz579
|
||||
2. 3Mhz680
|
||||
3. 6Mhz
|
||||
|
||||
- boost provide a way to overclock the reader ( my favorite :-) )
|
||||
For example to have best performance than a simple clockmode=3, try this:
|
||||
|
||||
modprobe boost=195
|
||||
|
||||
This will put the reader in a base of 3Mhz579 but boosted a 195 % !
|
||||
the real clock will be now : 6979050 Hz ( 6Mhz979 ) and will increase
|
||||
the speed to a score 10 to 20% better than the simple clockmode=3 !!!
|
||||
|
||||
|
||||
- cdmode permit to setup the signal used to inform the userland ( ioctl answer )
|
||||
if the card is present or not. Eight signals are possible.
|
||||
|
||||
- xmas is completely useless except for your eyes. This is one of my friend who was
|
||||
so sad to have a nice device like the iuu without seeing all color range available.
|
||||
So I have added this option to permit him to see a lot of color ( each activity change the color
|
||||
and the frequency randomly )
|
||||
|
||||
- debug will produce a lot of debugging messages...
|
||||
|
||||
|
||||
Last notes:
|
||||
|
||||
Don't worry about the serial settings, the serial emulation
|
||||
is an abstraction, so use any speed or parity setting will
|
||||
work. ( This will not change anything ).Later I will perhaps
|
||||
use this settings to deduce de boost but is that feature
|
||||
really necessary ?
|
||||
The autodetect feature used is the serial CD. If that doesn't
|
||||
work for your software, disable detection mechanism in it.
|
||||
|
||||
|
||||
Have fun !
|
||||
|
||||
Alain Degreffe
|
||||
|
||||
eczema(at)ecze.com
|
||||
107
Documentation/usb/linux-cdc-acm.inf
Normal file
107
Documentation/usb/linux-cdc-acm.inf
Normal file
|
|
@ -0,0 +1,107 @@
|
|||
; Windows USB CDC ACM Setup File
|
||||
|
||||
; Based on INF template which was:
|
||||
; Copyright (c) 2000 Microsoft Corporation
|
||||
; Copyright (c) 2007 Microchip Technology Inc.
|
||||
; likely to be covered by the MLPL as found at:
|
||||
; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
|
||||
; For use only on Windows operating systems.
|
||||
|
||||
[Version]
|
||||
Signature="$Windows NT$"
|
||||
Class=Ports
|
||||
ClassGuid={4D36E978-E325-11CE-BFC1-08002BE10318}
|
||||
Provider=%Linux%
|
||||
DriverVer=11/15/2007,5.1.2600.0
|
||||
|
||||
[Manufacturer]
|
||||
%Linux%=DeviceList, NTamd64
|
||||
|
||||
[DestinationDirs]
|
||||
DefaultDestDir=12
|
||||
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Windows 2000/XP/Vista-32bit Sections
|
||||
;------------------------------------------------------------------------------
|
||||
|
||||
[DriverInstall.nt]
|
||||
include=mdmcpq.inf
|
||||
CopyFiles=DriverCopyFiles.nt
|
||||
AddReg=DriverInstall.nt.AddReg
|
||||
|
||||
[DriverCopyFiles.nt]
|
||||
usbser.sys,,,0x20
|
||||
|
||||
[DriverInstall.nt.AddReg]
|
||||
HKR,,DevLoader,,*ntkern
|
||||
HKR,,NTMPDriver,,USBSER.sys
|
||||
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
|
||||
|
||||
[DriverInstall.nt.Services]
|
||||
AddService=usbser, 0x00000002, DriverService.nt
|
||||
|
||||
[DriverService.nt]
|
||||
DisplayName=%SERVICE%
|
||||
ServiceType=1
|
||||
StartType=3
|
||||
ErrorControl=1
|
||||
ServiceBinary=%12%\USBSER.sys
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Vista-64bit Sections
|
||||
;------------------------------------------------------------------------------
|
||||
|
||||
[DriverInstall.NTamd64]
|
||||
include=mdmcpq.inf
|
||||
CopyFiles=DriverCopyFiles.NTamd64
|
||||
AddReg=DriverInstall.NTamd64.AddReg
|
||||
|
||||
[DriverCopyFiles.NTamd64]
|
||||
USBSER.sys,,,0x20
|
||||
|
||||
[DriverInstall.NTamd64.AddReg]
|
||||
HKR,,DevLoader,,*ntkern
|
||||
HKR,,NTMPDriver,,USBSER.sys
|
||||
HKR,,EnumPropPages32,,"MsPorts.dll,SerialPortPropPageProvider"
|
||||
|
||||
[DriverInstall.NTamd64.Services]
|
||||
AddService=usbser, 0x00000002, DriverService.NTamd64
|
||||
|
||||
[DriverService.NTamd64]
|
||||
DisplayName=%SERVICE%
|
||||
ServiceType=1
|
||||
StartType=3
|
||||
ErrorControl=1
|
||||
ServiceBinary=%12%\USBSER.sys
|
||||
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; Vendor and Product ID Definitions
|
||||
;------------------------------------------------------------------------------
|
||||
; When developing your USB device, the VID and PID used in the PC side
|
||||
; application program and the firmware on the microcontroller must match.
|
||||
; Modify the below line to use your VID and PID. Use the format as shown
|
||||
; below.
|
||||
; Note: One INF file can be used for multiple devices with different
|
||||
; VID and PIDs. For each supported device, append
|
||||
; ",USB\VID_xxxx&PID_yyyy" to the end of the line.
|
||||
;------------------------------------------------------------------------------
|
||||
[SourceDisksFiles]
|
||||
[SourceDisksNames]
|
||||
[DeviceList]
|
||||
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00
|
||||
|
||||
[DeviceList.NTamd64]
|
||||
%DESCRIPTION%=DriverInstall, USB\VID_0525&PID_A4A7, USB\VID_1D6B&PID_0104&MI_02, USB\VID_1D6B&PID_0106&MI_00
|
||||
|
||||
|
||||
;------------------------------------------------------------------------------
|
||||
; String Definitions
|
||||
;------------------------------------------------------------------------------
|
||||
;Modify these strings to customize your device
|
||||
;------------------------------------------------------------------------------
|
||||
[Strings]
|
||||
Linux = "Linux Developer Community"
|
||||
DESCRIPTION = "Gadget Serial"
|
||||
SERVICE = "USB RS-232 Emulation Driver"
|
||||
66
Documentation/usb/linux.inf
Normal file
66
Documentation/usb/linux.inf
Normal file
|
|
@ -0,0 +1,66 @@
|
|||
; Based on template INF file found at
|
||||
; <http://msdn.microsoft.com/en-us/library/ff570620.aspx>
|
||||
; which was:
|
||||
; Copyright (c) Microsoft Corporation
|
||||
; and released under the MLPL as found at:
|
||||
; <http://msdn.microsoft.com/en-us/cc300389.aspx#MLPL>.
|
||||
; For use only on Windows operating systems.
|
||||
|
||||
[Version]
|
||||
Signature = "$Windows NT$"
|
||||
Class = Net
|
||||
ClassGUID = {4d36e972-e325-11ce-bfc1-08002be10318}
|
||||
Provider = %Linux%
|
||||
DriverVer = 06/21/2006,6.0.6000.16384
|
||||
|
||||
[Manufacturer]
|
||||
%Linux% = LinuxDevices,NTx86,NTamd64,NTia64
|
||||
|
||||
; Decoration for x86 architecture
|
||||
[LinuxDevices.NTx86]
|
||||
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
|
||||
|
||||
; Decoration for x64 architecture
|
||||
[LinuxDevices.NTamd64]
|
||||
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
|
||||
|
||||
; Decoration for ia64 architecture
|
||||
[LinuxDevices.NTia64]
|
||||
%LinuxDevice% = RNDIS.NT.5.1, USB\VID_0525&PID_a4a2, USB\VID_1d6b&PID_0104&MI_00
|
||||
|
||||
;@@@ This is the common setting for setup
|
||||
[ControlFlags]
|
||||
ExcludeFromSelect=*
|
||||
|
||||
; DDInstall section
|
||||
; References the in-build Netrndis.inf
|
||||
[RNDIS.NT.5.1]
|
||||
Characteristics = 0x84 ; NCF_PHYSICAL + NCF_HAS_UI
|
||||
BusType = 15
|
||||
; NEVER REMOVE THE FOLLOWING REFERENCE FOR NETRNDIS.INF
|
||||
include = netrndis.inf
|
||||
needs = Usb_Rndis.ndi
|
||||
AddReg = Rndis_AddReg_Vista
|
||||
|
||||
; DDInstal.Services section
|
||||
[RNDIS.NT.5.1.Services]
|
||||
include = netrndis.inf
|
||||
needs = Usb_Rndis.ndi.Services
|
||||
|
||||
; Optional registry settings. You can modify as needed.
|
||||
[RNDIS_AddReg_Vista]
|
||||
HKR, NDI\params\VistaProperty, ParamDesc, 0, %Vista_Property%
|
||||
HKR, NDI\params\VistaProperty, type, 0, "edit"
|
||||
HKR, NDI\params\VistaProperty, LimitText, 0, "12"
|
||||
HKR, NDI\params\VistaProperty, UpperCase, 0, "1"
|
||||
HKR, NDI\params\VistaProperty, default, 0, " "
|
||||
HKR, NDI\params\VistaProperty, optional, 0, "1"
|
||||
|
||||
; No sys copyfiles - the sys files are already in-build
|
||||
; (part of the operating system).
|
||||
; We do not support XP SP1-, 2003 SP1-, ME, 9x.
|
||||
|
||||
[Strings]
|
||||
Linux = "Linux Developer Community"
|
||||
LinuxDevice = "Linux USB Ethernet/RNDIS Gadget"
|
||||
Vista_Property = "Optional Vista Property"
|
||||
225
Documentation/usb/mass-storage.txt
Normal file
225
Documentation/usb/mass-storage.txt
Normal file
|
|
@ -0,0 +1,225 @@
|
|||
* Overview
|
||||
|
||||
Mass Storage Gadget (or MSG) acts as a USB Mass Storage device,
|
||||
appearing to the host as a disk or a CD-ROM drive. It supports
|
||||
multiple logical units (LUNs). Backing storage for each LUN is
|
||||
provided by a regular file or a block device, access can be limited
|
||||
to read-only, and gadget can indicate that it is removable and/or
|
||||
CD-ROM (the latter implies read-only access).
|
||||
|
||||
Its requirements are modest; only a bulk-in and a bulk-out endpoint
|
||||
are needed. The memory requirement amounts to two 16K buffers.
|
||||
Support is included for full-speed, high-speed and SuperSpeed
|
||||
operation.
|
||||
|
||||
Note that the driver is slightly non-portable in that it assumes
|
||||
a single memory/DMA buffer will be usable for bulk-in and bulk-out
|
||||
endpoints. With most device controllers this is not an issue, but
|
||||
there may be some with hardware restrictions that prevent a buffer
|
||||
from being used by more than one endpoint.
|
||||
|
||||
This document describes how to use the gadget from user space, its
|
||||
relation to mass storage function (or MSF) and different gadgets
|
||||
using it, and how it differs from File Storage Gadget (or FSG)
|
||||
(which is no longer included in Linux). It will talk only briefly
|
||||
about how to use MSF within composite gadgets.
|
||||
|
||||
* Module parameters
|
||||
|
||||
The mass storage gadget accepts the following mass storage specific
|
||||
module parameters:
|
||||
|
||||
- file=filename[,filename...]
|
||||
|
||||
This parameter lists paths to files or block devices used for
|
||||
backing storage for each logical unit. There may be at most
|
||||
FSG_MAX_LUNS (8) LUNs set. If more files are specified, they will
|
||||
be silently ignored. See also “luns” parameter.
|
||||
|
||||
*BEWARE* that if a file is used as a backing storage, it may not
|
||||
be modified by any other process. This is because the host
|
||||
assumes the data does not change without its knowledge. It may be
|
||||
read, but (if the logical unit is writable) due to buffering on
|
||||
the host side, the contents are not well defined.
|
||||
|
||||
The size of the logical unit will be rounded down to a full
|
||||
logical block. The logical block size is 2048 bytes for LUNs
|
||||
simulating CD-ROM, block size of the device if the backing file is
|
||||
a block device, or 512 bytes otherwise.
|
||||
|
||||
- removable=b[,b...]
|
||||
|
||||
This parameter specifies whether each logical unit should be
|
||||
removable. “b” here is either “y”, “Y” or “1” for true or “n”,
|
||||
“N” or “0” for false.
|
||||
|
||||
If this option is set for a logical unit, gadget will accept an
|
||||
“eject” SCSI request (Start/Stop Unit). When it is sent, the
|
||||
backing file will be closed to simulate ejection and the logical
|
||||
unit will not be mountable by the host until a new backing file is
|
||||
specified by userspace on the device (see “sysfs entries”
|
||||
section).
|
||||
|
||||
If a logical unit is not removable (the default), a backing file
|
||||
must be specified for it with the “file” parameter as the module
|
||||
is loaded. The same applies if the module is built in, no
|
||||
exceptions.
|
||||
|
||||
The default value of the flag is false, *HOWEVER* it used to be
|
||||
true. This has been changed to better match File Storage Gadget
|
||||
and because it seems like a saner default after all. Thus to
|
||||
maintain compatibility with older kernels, it's best to specify
|
||||
the default values. Also, if one relied on old default, explicit
|
||||
“n” needs to be specified now.
|
||||
|
||||
Note that “removable” means the logical unit's media can be
|
||||
ejected or removed (as is true for a CD-ROM drive or a card
|
||||
reader). It does *not* mean that the entire gadget can be
|
||||
unplugged from the host; the proper term for that is
|
||||
“hot-unpluggable”.
|
||||
|
||||
- cdrom=b[,b...]
|
||||
|
||||
This parameter specifies whether each logical unit should simulate
|
||||
CD-ROM. The default is false.
|
||||
|
||||
- ro=b[,b...]
|
||||
|
||||
This parameter specifies whether each logical unit should be
|
||||
reported as read only. This will prevent host from modifying the
|
||||
backing files.
|
||||
|
||||
Note that if this flag for given logical unit is false but the
|
||||
backing file could not be opened in read/write mode, the gadget
|
||||
will fall back to read only mode anyway.
|
||||
|
||||
The default value for non-CD-ROM logical units is false; for
|
||||
logical units simulating CD-ROM it is forced to true.
|
||||
|
||||
- nofua=b[,b...]
|
||||
|
||||
This parameter specifies whether FUA flag should be ignored in SCSI
|
||||
Write10 and Write12 commands sent to given logical units.
|
||||
|
||||
MS Windows mounts removable storage in “Removal optimised mode” by
|
||||
default. All the writes to the media are synchronous, which is
|
||||
achieved by setting the FUA (Force Unit Access) bit in SCSI
|
||||
Write(10,12) commands. This forces each write to wait until the
|
||||
data has actually been written out and prevents I/O requests
|
||||
aggregation in block layer dramatically decreasing performance.
|
||||
|
||||
Note that this may mean that if the device is powered from USB and
|
||||
the user unplugs the device without unmounting it first (which at
|
||||
least some Windows users do), the data may be lost.
|
||||
|
||||
The default value is false.
|
||||
|
||||
- luns=N
|
||||
|
||||
This parameter specifies number of logical units the gadget will
|
||||
have. It is limited by FSG_MAX_LUNS (8) and higher value will be
|
||||
capped.
|
||||
|
||||
If this parameter is provided, and the number of files specified
|
||||
in “file” argument is greater then the value of “luns”, all excess
|
||||
files will be ignored.
|
||||
|
||||
If this parameter is not present, the number of logical units will
|
||||
be deduced from the number of files specified in the “file”
|
||||
parameter. If the file parameter is missing as well, one is
|
||||
assumed.
|
||||
|
||||
- stall=b
|
||||
|
||||
Specifies whether the gadget is allowed to halt bulk endpoints.
|
||||
The default is determined according to the type of USB device
|
||||
controller, but usually true.
|
||||
|
||||
In addition to the above, the gadget also accepts the following
|
||||
parameters defined by the composite framework (they are common to
|
||||
all composite gadgets so just a quick listing):
|
||||
|
||||
- idVendor -- USB Vendor ID (16 bit integer)
|
||||
- idProduct -- USB Product ID (16 bit integer)
|
||||
- bcdDevice -- USB Device version (BCD) (16 bit integer)
|
||||
- iManufacturer -- USB Manufacturer string (string)
|
||||
- iProduct -- USB Product string (string)
|
||||
- iSerialNumber -- SerialNumber string (sting)
|
||||
|
||||
* sysfs entries
|
||||
|
||||
For each logical unit, the gadget creates a directory in the sysfs
|
||||
hierarchy. Inside of it the following three files are created:
|
||||
|
||||
- file
|
||||
|
||||
When read it returns the path to the backing file for the given
|
||||
logical unit. If there is no backing file (possible only if the
|
||||
logical unit is removable), the content is empty.
|
||||
|
||||
When written into, it changes the backing file for given logical
|
||||
unit. This change can be performed even if given logical unit is
|
||||
not specified as removable (but that may look strange to the
|
||||
host). It may fail, however, if host disallowed medium removal
|
||||
with the Prevent-Allow Medium Removal SCSI command.
|
||||
|
||||
- ro
|
||||
|
||||
Reflects the state of ro flag for the given logical unit. It can
|
||||
be read any time, and written to when there is no backing file
|
||||
open for given logical unit.
|
||||
|
||||
- nofua
|
||||
|
||||
Reflects the state of nofua flag for given logical unit. It can
|
||||
be read and written.
|
||||
|
||||
Other then those, as usual, the values of module parameters can be
|
||||
read from /sys/module/g_mass_storage/parameters/* files.
|
||||
|
||||
* Other gadgets using mass storage function
|
||||
|
||||
The Mass Storage Gadget uses the Mass Storage Function to handle
|
||||
mass storage protocol. As a composite function, MSF may be used by
|
||||
other gadgets as well (eg. g_multi and acm_ms).
|
||||
|
||||
All of the information in previous sections are valid for other
|
||||
gadgets using MSF, except that support for mass storage related
|
||||
module parameters may be missing, or the parameters may have
|
||||
a prefix. To figure out whether any of this is true one needs to
|
||||
consult the gadget's documentation or its source code.
|
||||
|
||||
For examples of how to include mass storage function in gadgets, one
|
||||
may take a look at mass_storage.c, acm_ms.c and multi.c (sorted by
|
||||
complexity).
|
||||
|
||||
* Relation to file storage gadget
|
||||
|
||||
The Mass Storage Function and thus the Mass Storage Gadget has been
|
||||
based on the File Storage Gadget. The difference between the two is
|
||||
that MSG is a composite gadget (ie. uses the composite framework)
|
||||
while file storage gadget was a traditional gadget. From userspace
|
||||
point of view this distinction does not really matter, but from
|
||||
kernel hacker's point of view, this means that (i) MSG does not
|
||||
duplicate code needed for handling basic USB protocol commands and
|
||||
(ii) MSF can be used in any other composite gadget.
|
||||
|
||||
Because of that, File Storage Gadget has been removed in Linux 3.8.
|
||||
All users need to transition to the Mass Storage Gadget. The two
|
||||
gadgets behave mostly the same from the outside except:
|
||||
|
||||
1. In FSG the “removable” and “cdrom” module parameters set the flag
|
||||
for all logical units whereas in MSG they accept a list of y/n
|
||||
values for each logical unit. If one uses only a single logical
|
||||
unit this does not matter, but if there are more, the y/n value
|
||||
needs to be repeated for each logical unit.
|
||||
|
||||
2. FSG's “serial”, “vendor”, “product” and “release” module
|
||||
parameters are handled in MSG by the composite layer's parameters
|
||||
named respectively: “iSerialnumber”, “idVendor”, “idProduct” and
|
||||
“bcdDevice”.
|
||||
|
||||
3. MSG does not support FSG's test mode, thus “transport”,
|
||||
“protocol” and “buflen” FSG's module parameters are not
|
||||
supported. MSG always uses SCSI protocol with bulk only
|
||||
transport mode and 16 KiB buffers.
|
||||
46
Documentation/usb/misc_usbsevseg.txt
Normal file
46
Documentation/usb/misc_usbsevseg.txt
Normal file
|
|
@ -0,0 +1,46 @@
|
|||
USB 7-Segment Numeric Display
|
||||
Manufactured by Delcom Engineering
|
||||
|
||||
Device Information
|
||||
------------------
|
||||
USB VENDOR_ID 0x0fc5
|
||||
USB PRODUCT_ID 0x1227
|
||||
Both the 6 character and 8 character displays have PRODUCT_ID,
|
||||
and according to Delcom Engineering no queryable information
|
||||
can be obtained from the device to tell them apart.
|
||||
|
||||
Device Modes
|
||||
------------
|
||||
By default, the driver assumes the display is only 6 characters
|
||||
The mode for 6 characters is:
|
||||
MSB 0x06; LSB 0x3f
|
||||
For the 8 character display:
|
||||
MSB 0x08; LSB 0xff
|
||||
The device can accept "text" either in raw, hex, or ascii textmode.
|
||||
raw controls each segment manually,
|
||||
hex expects a value between 0-15 per character,
|
||||
ascii expects a value between '0'-'9' and 'A'-'F'.
|
||||
The default is ascii.
|
||||
|
||||
Device Operation
|
||||
----------------
|
||||
1. Turn on the device:
|
||||
echo 1 > /sys/bus/usb/.../powered
|
||||
2. Set the device's mode:
|
||||
echo $mode_msb > /sys/bus/usb/.../mode_msb
|
||||
echo $mode_lsb > /sys/bus/usb/.../mode_lsb
|
||||
3. Set the textmode:
|
||||
echo $textmode > /sys/bus/usb/.../textmode
|
||||
4. set the text (for example):
|
||||
echo "123ABC" > /sys/bus/usb/.../text (ascii)
|
||||
echo "A1B2" > /sys/bus/usb/.../text (ascii)
|
||||
echo -ne "\x01\x02\x03" > /sys/bus/usb/.../text (hex)
|
||||
5. Set the decimal places.
|
||||
The device has either 6 or 8 decimal points.
|
||||
to set the nth decimal place calculate 10 ** n
|
||||
and echo it in to /sys/bus/usb/.../decimals
|
||||
To set multiple decimals points sum up each power.
|
||||
For example, to set the 0th and 3rd decimal place
|
||||
echo 1001 > /sys/bus/usb/.../decimals
|
||||
|
||||
|
||||
72
Documentation/usb/mtouchusb.txt
Normal file
72
Documentation/usb/mtouchusb.txt
Normal file
|
|
@ -0,0 +1,72 @@
|
|||
CHANGES
|
||||
|
||||
- 0.3 - Created based off of scanner & INSTALL from the original touchscreen
|
||||
driver on freecode (http://freecode.com/projects/3mtouchscreendriver)
|
||||
- Amended for linux-2.4.18, then 2.4.19
|
||||
|
||||
- 0.5 - Complete rewrite using Linux Input in 2.6.3
|
||||
Unfortunately no calibration support at this time
|
||||
|
||||
- 1.4 - Multiple changes to support the EXII 5000UC and house cleaning
|
||||
Changed reset from standard USB dev reset to vendor reset
|
||||
Changed data sent to host from compensated to raw coordinates
|
||||
Eliminated vendor/product module params
|
||||
Performed multiple successful tests with an EXII-5010UC
|
||||
|
||||
SUPPORTED HARDWARE:
|
||||
|
||||
All controllers have the Vendor: 0x0596 & Product: 0x0001
|
||||
|
||||
|
||||
Controller Description Part Number
|
||||
------------------------------------------------------
|
||||
|
||||
USB Capacitive - Pearl Case 14-205 (Discontinued)
|
||||
USB Capacitive - Black Case 14-124 (Discontinued)
|
||||
USB Capacitive - No Case 14-206 (Discontinued)
|
||||
|
||||
USB Capacitive - Pearl Case EXII-5010UC
|
||||
USB Capacitive - Black Case EXII-5030UC
|
||||
USB Capacitive - No Case EXII-5050UC
|
||||
|
||||
DRIVER NOTES:
|
||||
|
||||
Installation is simple, you only need to add Linux Input, Linux USB, and the
|
||||
driver to the kernel. The driver can also be optionally built as a module.
|
||||
|
||||
This driver appears to be one of possible 2 Linux USB Input Touchscreen
|
||||
drivers. Although 3M produces a binary only driver available for
|
||||
download, I persist in updating this driver since I would like to use the
|
||||
touchscreen for embedded apps using QTEmbedded, DirectFB, etc. So I feel the
|
||||
logical choice is to use Linux Input.
|
||||
|
||||
Currently there is no way to calibrate the device via this driver. Even if
|
||||
the device could be calibrated, the driver pulls to raw coordinate data from
|
||||
the controller. This means calibration must be performed within the
|
||||
userspace.
|
||||
|
||||
The controller screen resolution is now 0 to 16384 for both X and Y reporting
|
||||
the raw touch data. This is the same for the old and new capacitive USB
|
||||
controllers.
|
||||
|
||||
Perhaps at some point an abstract function will be placed into evdev so
|
||||
generic functions like calibrations, resets, and vendor information can be
|
||||
requested from the userspace (And the drivers would handle the vendor specific
|
||||
tasks).
|
||||
|
||||
TODO:
|
||||
|
||||
Implement a control urb again to handle requests to and from the device
|
||||
such as calibration, etc once/if it becomes available.
|
||||
|
||||
DISCLAIMER:
|
||||
|
||||
I am not a MicroTouch/3M employee, nor have I ever been. 3M does not support
|
||||
this driver! If you want touch drivers only supported within X, please go to:
|
||||
|
||||
http://www.3m.com/3MTouchSystems/
|
||||
|
||||
THANKS:
|
||||
|
||||
A huge thank you to 3M Touch Systems for the EXII-5010UC controllers for
|
||||
testing!
|
||||
32
Documentation/usb/ohci.txt
Normal file
32
Documentation/usb/ohci.txt
Normal file
|
|
@ -0,0 +1,32 @@
|
|||
23-Aug-2002
|
||||
|
||||
The "ohci-hcd" driver is a USB Host Controller Driver (HCD) that is derived
|
||||
from the "usb-ohci" driver from the 2.4 kernel series. The "usb-ohci" code
|
||||
was written primarily by Roman Weissgaerber <weissg@vienna.at> but with
|
||||
contributions from many others (read its copyright/licencing header).
|
||||
|
||||
It supports the "Open Host Controller Interface" (OHCI), which standardizes
|
||||
hardware register protocols used to talk to USB 1.1 host controllers. As
|
||||
compared to the earlier "Universal Host Controller Interface" (UHCI) from
|
||||
Intel, it pushes more intelligence into the hardware. USB 1.1 controllers
|
||||
from vendors other than Intel and VIA generally use OHCI.
|
||||
|
||||
Changes since the 2.4 kernel include
|
||||
|
||||
- improved robustness; bugfixes; and less overhead
|
||||
- supports the updated and simplified usbcore APIs
|
||||
- interrupt transfers can be larger, and can be queued
|
||||
- less code, by using the upper level "hcd" framework
|
||||
- supports some non-PCI implementations of OHCI
|
||||
- ... more
|
||||
|
||||
The "ohci-hcd" driver handles all USB 1.1 transfer types. Transfers of all
|
||||
types can be queued. That was also true in "usb-ohci", except for interrupt
|
||||
transfers. Previously, using periods of one frame would risk data loss due
|
||||
to overhead in IRQ processing. When interrupt transfers are queued, those
|
||||
risks can be minimized by making sure the hardware always has transfers to
|
||||
work on while the OS is getting around to the relevant IRQ processing.
|
||||
|
||||
- David Brownell
|
||||
<dbrownell@users.sourceforge.net>
|
||||
|
||||
165
Documentation/usb/persist.txt
Normal file
165
Documentation/usb/persist.txt
Normal file
|
|
@ -0,0 +1,165 @@
|
|||
USB device persistence during system suspend
|
||||
|
||||
Alan Stern <stern@rowland.harvard.edu>
|
||||
|
||||
September 2, 2006 (Updated February 25, 2008)
|
||||
|
||||
|
||||
What is the problem?
|
||||
|
||||
According to the USB specification, when a USB bus is suspended the
|
||||
bus must continue to supply suspend current (around 1-5 mA). This
|
||||
is so that devices can maintain their internal state and hubs can
|
||||
detect connect-change events (devices being plugged in or unplugged).
|
||||
The technical term is "power session".
|
||||
|
||||
If a USB device's power session is interrupted then the system is
|
||||
required to behave as though the device has been unplugged. It's a
|
||||
conservative approach; in the absence of suspend current the computer
|
||||
has no way to know what has actually happened. Perhaps the same
|
||||
device is still attached or perhaps it was removed and a different
|
||||
device plugged into the port. The system must assume the worst.
|
||||
|
||||
By default, Linux behaves according to the spec. If a USB host
|
||||
controller loses power during a system suspend, then when the system
|
||||
wakes up all the devices attached to that controller are treated as
|
||||
though they had disconnected. This is always safe and it is the
|
||||
"officially correct" thing to do.
|
||||
|
||||
For many sorts of devices this behavior doesn't matter in the least.
|
||||
If the kernel wants to believe that your USB keyboard was unplugged
|
||||
while the system was asleep and a new keyboard was plugged in when the
|
||||
system woke up, who cares? It'll still work the same when you type on
|
||||
it.
|
||||
|
||||
Unfortunately problems _can_ arise, particularly with mass-storage
|
||||
devices. The effect is exactly the same as if the device really had
|
||||
been unplugged while the system was suspended. If you had a mounted
|
||||
filesystem on the device, you're out of luck -- everything in that
|
||||
filesystem is now inaccessible. This is especially annoying if your
|
||||
root filesystem was located on the device, since your system will
|
||||
instantly crash.
|
||||
|
||||
Loss of power isn't the only mechanism to worry about. Anything that
|
||||
interrupts a power session will have the same effect. For example,
|
||||
even though suspend current may have been maintained while the system
|
||||
was asleep, on many systems during the initial stages of wakeup the
|
||||
firmware (i.e., the BIOS) resets the motherboard's USB host
|
||||
controllers. Result: all the power sessions are destroyed and again
|
||||
it's as though you had unplugged all the USB devices. Yes, it's
|
||||
entirely the BIOS's fault, but that doesn't do _you_ any good unless
|
||||
you can convince the BIOS supplier to fix the problem (lots of luck!).
|
||||
|
||||
On many systems the USB host controllers will get reset after a
|
||||
suspend-to-RAM. On almost all systems, no suspend current is
|
||||
available during hibernation (also known as swsusp or suspend-to-disk).
|
||||
You can check the kernel log after resuming to see if either of these
|
||||
has happened; look for lines saying "root hub lost power or was reset".
|
||||
|
||||
In practice, people are forced to unmount any filesystems on a USB
|
||||
device before suspending. If the root filesystem is on a USB device,
|
||||
the system can't be suspended at all. (All right, it _can_ be
|
||||
suspended -- but it will crash as soon as it wakes up, which isn't
|
||||
much better.)
|
||||
|
||||
|
||||
What is the solution?
|
||||
|
||||
The kernel includes a feature called USB-persist. It tries to work
|
||||
around these issues by allowing the core USB device data structures to
|
||||
persist across a power-session disruption.
|
||||
|
||||
It works like this. If the kernel sees that a USB host controller is
|
||||
not in the expected state during resume (i.e., if the controller was
|
||||
reset or otherwise had lost power) then it applies a persistence check
|
||||
to each of the USB devices below that controller for which the
|
||||
"persist" attribute is set. It doesn't try to resume the device; that
|
||||
can't work once the power session is gone. Instead it issues a USB
|
||||
port reset and then re-enumerates the device. (This is exactly the
|
||||
same thing that happens whenever a USB device is reset.) If the
|
||||
re-enumeration shows that the device now attached to that port has the
|
||||
same descriptors as before, including the Vendor and Product IDs, then
|
||||
the kernel continues to use the same device structure. In effect, the
|
||||
kernel treats the device as though it had merely been reset instead of
|
||||
unplugged.
|
||||
|
||||
The same thing happens if the host controller is in the expected state
|
||||
but a USB device was unplugged and then replugged, or if a USB device
|
||||
fails to carry out a normal resume.
|
||||
|
||||
If no device is now attached to the port, or if the descriptors are
|
||||
different from what the kernel remembers, then the treatment is what
|
||||
you would expect. The kernel destroys the old device structure and
|
||||
behaves as though the old device had been unplugged and a new device
|
||||
plugged in.
|
||||
|
||||
The end result is that the USB device remains available and usable.
|
||||
Filesystem mounts and memory mappings are unaffected, and the world is
|
||||
now a good and happy place.
|
||||
|
||||
Note that the "USB-persist" feature will be applied only to those
|
||||
devices for which it is enabled. You can enable the feature by doing
|
||||
(as root):
|
||||
|
||||
echo 1 >/sys/bus/usb/devices/.../power/persist
|
||||
|
||||
where the "..." should be filled in the with the device's ID. Disable
|
||||
the feature by writing 0 instead of 1. For hubs the feature is
|
||||
automatically and permanently enabled and the power/persist file
|
||||
doesn't even exist, so you only have to worry about setting it for
|
||||
devices where it really matters.
|
||||
|
||||
|
||||
Is this the best solution?
|
||||
|
||||
Perhaps not. Arguably, keeping track of mounted filesystems and
|
||||
memory mappings across device disconnects should be handled by a
|
||||
centralized Logical Volume Manager. Such a solution would allow you
|
||||
to plug in a USB flash device, create a persistent volume associated
|
||||
with it, unplug the flash device, plug it back in later, and still
|
||||
have the same persistent volume associated with the device. As such
|
||||
it would be more far-reaching than USB-persist.
|
||||
|
||||
On the other hand, writing a persistent volume manager would be a big
|
||||
job and using it would require significant input from the user. This
|
||||
solution is much quicker and easier -- and it exists now, a giant
|
||||
point in its favor!
|
||||
|
||||
Furthermore, the USB-persist feature applies to _all_ USB devices, not
|
||||
just mass-storage devices. It might turn out to be equally useful for
|
||||
other device types, such as network interfaces.
|
||||
|
||||
|
||||
WARNING: USB-persist can be dangerous!!
|
||||
|
||||
When recovering an interrupted power session the kernel does its best
|
||||
to make sure the USB device hasn't been changed; that is, the same
|
||||
device is still plugged into the port as before. But the checks
|
||||
aren't guaranteed to be 100% accurate.
|
||||
|
||||
If you replace one USB device with another of the same type (same
|
||||
manufacturer, same IDs, and so on) there's an excellent chance the
|
||||
kernel won't detect the change. The serial number string and other
|
||||
descriptors are compared with the kernel's stored values, but this
|
||||
might not help since manufacturers frequently omit serial numbers
|
||||
entirely in their devices.
|
||||
|
||||
Furthermore it's quite possible to leave a USB device exactly the same
|
||||
while changing its media. If you replace the flash memory card in a
|
||||
USB card reader while the system is asleep, the kernel will have no
|
||||
way to know you did it. The kernel will assume that nothing has
|
||||
happened and will continue to use the partition tables, inodes, and
|
||||
memory mappings for the old card.
|
||||
|
||||
If the kernel gets fooled in this way, it's almost certain to cause
|
||||
data corruption and to crash your system. You'll have no one to blame
|
||||
but yourself.
|
||||
|
||||
For those devices with avoid_reset_quirk attribute being set, persist
|
||||
maybe fail because they may morph after reset.
|
||||
|
||||
YOU HAVE BEEN WARNED! USE AT YOUR OWN RISK!
|
||||
|
||||
That having been said, most of the time there shouldn't be any trouble
|
||||
at all. The USB-persist feature can be extremely useful. Make the
|
||||
most of it.
|
||||
759
Documentation/usb/power-management.txt
Normal file
759
Documentation/usb/power-management.txt
Normal file
|
|
@ -0,0 +1,759 @@
|
|||
Power Management for USB
|
||||
|
||||
Alan Stern <stern@rowland.harvard.edu>
|
||||
|
||||
Last-updated: February 2014
|
||||
|
||||
|
||||
Contents:
|
||||
---------
|
||||
* What is Power Management?
|
||||
* What is Remote Wakeup?
|
||||
* When is a USB device idle?
|
||||
* Forms of dynamic PM
|
||||
* The user interface for dynamic PM
|
||||
* Changing the default idle-delay time
|
||||
* Warnings
|
||||
* The driver interface for Power Management
|
||||
* The driver interface for autosuspend and autoresume
|
||||
* Other parts of the driver interface
|
||||
* Mutual exclusion
|
||||
* Interaction between dynamic PM and system PM
|
||||
* xHCI hardware link PM
|
||||
* USB Port Power Control
|
||||
* User Interface for Port Power Control
|
||||
* Suggested Userspace Port Power Policy
|
||||
|
||||
|
||||
What is Power Management?
|
||||
-------------------------
|
||||
|
||||
Power Management (PM) is the practice of saving energy by suspending
|
||||
parts of a computer system when they aren't being used. While a
|
||||
component is "suspended" it is in a nonfunctional low-power state; it
|
||||
might even be turned off completely. A suspended component can be
|
||||
"resumed" (returned to a functional full-power state) when the kernel
|
||||
needs to use it. (There also are forms of PM in which components are
|
||||
placed in a less functional but still usable state instead of being
|
||||
suspended; an example would be reducing the CPU's clock rate. This
|
||||
document will not discuss those other forms.)
|
||||
|
||||
When the parts being suspended include the CPU and most of the rest of
|
||||
the system, we speak of it as a "system suspend". When a particular
|
||||
device is turned off while the system as a whole remains running, we
|
||||
call it a "dynamic suspend" (also known as a "runtime suspend" or
|
||||
"selective suspend"). This document concentrates mostly on how
|
||||
dynamic PM is implemented in the USB subsystem, although system PM is
|
||||
covered to some extent (see Documentation/power/*.txt for more
|
||||
information about system PM).
|
||||
|
||||
Note: Dynamic PM support for USB is present only if the kernel was
|
||||
built with CONFIG_USB_SUSPEND enabled (which depends on
|
||||
CONFIG_PM_RUNTIME). System PM support is present only if the kernel
|
||||
was built with CONFIG_SUSPEND or CONFIG_HIBERNATION enabled.
|
||||
|
||||
(Starting with the 3.10 kernel release, dynamic PM support for USB is
|
||||
present whenever the kernel was built with CONFIG_PM_RUNTIME enabled.
|
||||
The CONFIG_USB_SUSPEND option has been eliminated.)
|
||||
|
||||
|
||||
What is Remote Wakeup?
|
||||
----------------------
|
||||
|
||||
When a device has been suspended, it generally doesn't resume until
|
||||
the computer tells it to. Likewise, if the entire computer has been
|
||||
suspended, it generally doesn't resume until the user tells it to, say
|
||||
by pressing a power button or opening the cover.
|
||||
|
||||
However some devices have the capability of resuming by themselves, or
|
||||
asking the kernel to resume them, or even telling the entire computer
|
||||
to resume. This capability goes by several names such as "Wake On
|
||||
LAN"; we will refer to it generically as "remote wakeup". When a
|
||||
device is enabled for remote wakeup and it is suspended, it may resume
|
||||
itself (or send a request to be resumed) in response to some external
|
||||
event. Examples include a suspended keyboard resuming when a key is
|
||||
pressed, or a suspended USB hub resuming when a device is plugged in.
|
||||
|
||||
|
||||
When is a USB device idle?
|
||||
--------------------------
|
||||
|
||||
A device is idle whenever the kernel thinks it's not busy doing
|
||||
anything important and thus is a candidate for being suspended. The
|
||||
exact definition depends on the device's driver; drivers are allowed
|
||||
to declare that a device isn't idle even when there's no actual
|
||||
communication taking place. (For example, a hub isn't considered idle
|
||||
unless all the devices plugged into that hub are already suspended.)
|
||||
In addition, a device isn't considered idle so long as a program keeps
|
||||
its usbfs file open, whether or not any I/O is going on.
|
||||
|
||||
If a USB device has no driver, its usbfs file isn't open, and it isn't
|
||||
being accessed through sysfs, then it definitely is idle.
|
||||
|
||||
|
||||
Forms of dynamic PM
|
||||
-------------------
|
||||
|
||||
Dynamic suspends occur when the kernel decides to suspend an idle
|
||||
device. This is called "autosuspend" for short. In general, a device
|
||||
won't be autosuspended unless it has been idle for some minimum period
|
||||
of time, the so-called idle-delay time.
|
||||
|
||||
Of course, nothing the kernel does on its own initiative should
|
||||
prevent the computer or its devices from working properly. If a
|
||||
device has been autosuspended and a program tries to use it, the
|
||||
kernel will automatically resume the device (autoresume). For the
|
||||
same reason, an autosuspended device will usually have remote wakeup
|
||||
enabled, if the device supports remote wakeup.
|
||||
|
||||
It is worth mentioning that many USB drivers don't support
|
||||
autosuspend. In fact, at the time of this writing (Linux 2.6.23) the
|
||||
only drivers which do support it are the hub driver, kaweth, asix,
|
||||
usblp, usblcd, and usb-skeleton (which doesn't count). If a
|
||||
non-supporting driver is bound to a device, the device won't be
|
||||
autosuspended. In effect, the kernel pretends the device is never
|
||||
idle.
|
||||
|
||||
We can categorize power management events in two broad classes:
|
||||
external and internal. External events are those triggered by some
|
||||
agent outside the USB stack: system suspend/resume (triggered by
|
||||
userspace), manual dynamic resume (also triggered by userspace), and
|
||||
remote wakeup (triggered by the device). Internal events are those
|
||||
triggered within the USB stack: autosuspend and autoresume. Note that
|
||||
all dynamic suspend events are internal; external agents are not
|
||||
allowed to issue dynamic suspends.
|
||||
|
||||
|
||||
The user interface for dynamic PM
|
||||
---------------------------------
|
||||
|
||||
The user interface for controlling dynamic PM is located in the power/
|
||||
subdirectory of each USB device's sysfs directory, that is, in
|
||||
/sys/bus/usb/devices/.../power/ where "..." is the device's ID. The
|
||||
relevant attribute files are: wakeup, control, and
|
||||
autosuspend_delay_ms. (There may also be a file named "level"; this
|
||||
file was deprecated as of the 2.6.35 kernel and replaced by the
|
||||
"control" file. In 2.6.38 the "autosuspend" file will be deprecated
|
||||
and replaced by the "autosuspend_delay_ms" file. The only difference
|
||||
is that the newer file expresses the delay in milliseconds whereas the
|
||||
older file uses seconds. Confusingly, both files are present in 2.6.37
|
||||
but only "autosuspend" works.)
|
||||
|
||||
power/wakeup
|
||||
|
||||
This file is empty if the device does not support
|
||||
remote wakeup. Otherwise the file contains either the
|
||||
word "enabled" or the word "disabled", and you can
|
||||
write those words to the file. The setting determines
|
||||
whether or not remote wakeup will be enabled when the
|
||||
device is next suspended. (If the setting is changed
|
||||
while the device is suspended, the change won't take
|
||||
effect until the following suspend.)
|
||||
|
||||
power/control
|
||||
|
||||
This file contains one of two words: "on" or "auto".
|
||||
You can write those words to the file to change the
|
||||
device's setting.
|
||||
|
||||
"on" means that the device should be resumed and
|
||||
autosuspend is not allowed. (Of course, system
|
||||
suspends are still allowed.)
|
||||
|
||||
"auto" is the normal state in which the kernel is
|
||||
allowed to autosuspend and autoresume the device.
|
||||
|
||||
(In kernels up to 2.6.32, you could also specify
|
||||
"suspend", meaning that the device should remain
|
||||
suspended and autoresume was not allowed. This
|
||||
setting is no longer supported.)
|
||||
|
||||
power/autosuspend_delay_ms
|
||||
|
||||
This file contains an integer value, which is the
|
||||
number of milliseconds the device should remain idle
|
||||
before the kernel will autosuspend it (the idle-delay
|
||||
time). The default is 2000. 0 means to autosuspend
|
||||
as soon as the device becomes idle, and negative
|
||||
values mean never to autosuspend. You can write a
|
||||
number to the file to change the autosuspend
|
||||
idle-delay time.
|
||||
|
||||
Writing "-1" to power/autosuspend_delay_ms and writing "on" to
|
||||
power/control do essentially the same thing -- they both prevent the
|
||||
device from being autosuspended. Yes, this is a redundancy in the
|
||||
API.
|
||||
|
||||
(In 2.6.21 writing "0" to power/autosuspend would prevent the device
|
||||
from being autosuspended; the behavior was changed in 2.6.22. The
|
||||
power/autosuspend attribute did not exist prior to 2.6.21, and the
|
||||
power/level attribute did not exist prior to 2.6.22. power/control
|
||||
was added in 2.6.34, and power/autosuspend_delay_ms was added in
|
||||
2.6.37 but did not become functional until 2.6.38.)
|
||||
|
||||
|
||||
Changing the default idle-delay time
|
||||
------------------------------------
|
||||
|
||||
The default autosuspend idle-delay time (in seconds) is controlled by
|
||||
a module parameter in usbcore. You can specify the value when usbcore
|
||||
is loaded. For example, to set it to 5 seconds instead of 2 you would
|
||||
do:
|
||||
|
||||
modprobe usbcore autosuspend=5
|
||||
|
||||
Equivalently, you could add to a configuration file in /etc/modprobe.d
|
||||
a line saying:
|
||||
|
||||
options usbcore autosuspend=5
|
||||
|
||||
Some distributions load the usbcore module very early during the boot
|
||||
process, by means of a program or script running from an initramfs
|
||||
image. To alter the parameter value you would have to rebuild that
|
||||
image.
|
||||
|
||||
If usbcore is compiled into the kernel rather than built as a loadable
|
||||
module, you can add
|
||||
|
||||
usbcore.autosuspend=5
|
||||
|
||||
to the kernel's boot command line.
|
||||
|
||||
Finally, the parameter value can be changed while the system is
|
||||
running. If you do:
|
||||
|
||||
echo 5 >/sys/module/usbcore/parameters/autosuspend
|
||||
|
||||
then each new USB device will have its autosuspend idle-delay
|
||||
initialized to 5. (The idle-delay values for already existing devices
|
||||
will not be affected.)
|
||||
|
||||
Setting the initial default idle-delay to -1 will prevent any
|
||||
autosuspend of any USB device. This has the benefit of allowing you
|
||||
then to enable autosuspend for selected devices.
|
||||
|
||||
|
||||
Warnings
|
||||
--------
|
||||
|
||||
The USB specification states that all USB devices must support power
|
||||
management. Nevertheless, the sad fact is that many devices do not
|
||||
support it very well. You can suspend them all right, but when you
|
||||
try to resume them they disconnect themselves from the USB bus or
|
||||
they stop working entirely. This seems to be especially prevalent
|
||||
among printers and scanners, but plenty of other types of device have
|
||||
the same deficiency.
|
||||
|
||||
For this reason, by default the kernel disables autosuspend (the
|
||||
power/control attribute is initialized to "on") for all devices other
|
||||
than hubs. Hubs, at least, appear to be reasonably well-behaved in
|
||||
this regard.
|
||||
|
||||
(In 2.6.21 and 2.6.22 this wasn't the case. Autosuspend was enabled
|
||||
by default for almost all USB devices. A number of people experienced
|
||||
problems as a result.)
|
||||
|
||||
This means that non-hub devices won't be autosuspended unless the user
|
||||
or a program explicitly enables it. As of this writing there aren't
|
||||
any widespread programs which will do this; we hope that in the near
|
||||
future device managers such as HAL will take on this added
|
||||
responsibility. In the meantime you can always carry out the
|
||||
necessary operations by hand or add them to a udev script. You can
|
||||
also change the idle-delay time; 2 seconds is not the best choice for
|
||||
every device.
|
||||
|
||||
If a driver knows that its device has proper suspend/resume support,
|
||||
it can enable autosuspend all by itself. For example, the video
|
||||
driver for a laptop's webcam might do this (in recent kernels they
|
||||
do), since these devices are rarely used and so should normally be
|
||||
autosuspended.
|
||||
|
||||
Sometimes it turns out that even when a device does work okay with
|
||||
autosuspend there are still problems. For example, the usbhid driver,
|
||||
which manages keyboards and mice, has autosuspend support. Tests with
|
||||
a number of keyboards show that typing on a suspended keyboard, while
|
||||
causing the keyboard to do a remote wakeup all right, will nonetheless
|
||||
frequently result in lost keystrokes. Tests with mice show that some
|
||||
of them will issue a remote-wakeup request in response to button
|
||||
presses but not to motion, and some in response to neither.
|
||||
|
||||
The kernel will not prevent you from enabling autosuspend on devices
|
||||
that can't handle it. It is even possible in theory to damage a
|
||||
device by suspending it at the wrong time. (Highly unlikely, but
|
||||
possible.) Take care.
|
||||
|
||||
|
||||
The driver interface for Power Management
|
||||
-----------------------------------------
|
||||
|
||||
The requirements for a USB driver to support external power management
|
||||
are pretty modest; the driver need only define
|
||||
|
||||
.suspend
|
||||
.resume
|
||||
.reset_resume
|
||||
|
||||
methods in its usb_driver structure, and the reset_resume method is
|
||||
optional. The methods' jobs are quite simple:
|
||||
|
||||
The suspend method is called to warn the driver that the
|
||||
device is going to be suspended. If the driver returns a
|
||||
negative error code, the suspend will be aborted. Normally
|
||||
the driver will return 0, in which case it must cancel all
|
||||
outstanding URBs (usb_kill_urb()) and not submit any more.
|
||||
|
||||
The resume method is called to tell the driver that the
|
||||
device has been resumed and the driver can return to normal
|
||||
operation. URBs may once more be submitted.
|
||||
|
||||
The reset_resume method is called to tell the driver that
|
||||
the device has been resumed and it also has been reset.
|
||||
The driver should redo any necessary device initialization,
|
||||
since the device has probably lost most or all of its state
|
||||
(although the interfaces will be in the same altsettings as
|
||||
before the suspend).
|
||||
|
||||
If the device is disconnected or powered down while it is suspended,
|
||||
the disconnect method will be called instead of the resume or
|
||||
reset_resume method. This is also quite likely to happen when
|
||||
waking up from hibernation, as many systems do not maintain suspend
|
||||
current to the USB host controllers during hibernation. (It's
|
||||
possible to work around the hibernation-forces-disconnect problem by
|
||||
using the USB Persist facility.)
|
||||
|
||||
The reset_resume method is used by the USB Persist facility (see
|
||||
Documentation/usb/persist.txt) and it can also be used under certain
|
||||
circumstances when CONFIG_USB_PERSIST is not enabled. Currently, if a
|
||||
device is reset during a resume and the driver does not have a
|
||||
reset_resume method, the driver won't receive any notification about
|
||||
the resume. Later kernels will call the driver's disconnect method;
|
||||
2.6.23 doesn't do this.
|
||||
|
||||
USB drivers are bound to interfaces, so their suspend and resume
|
||||
methods get called when the interfaces are suspended or resumed. In
|
||||
principle one might want to suspend some interfaces on a device (i.e.,
|
||||
force the drivers for those interface to stop all activity) without
|
||||
suspending the other interfaces. The USB core doesn't allow this; all
|
||||
interfaces are suspended when the device itself is suspended and all
|
||||
interfaces are resumed when the device is resumed. It isn't possible
|
||||
to suspend or resume some but not all of a device's interfaces. The
|
||||
closest you can come is to unbind the interfaces' drivers.
|
||||
|
||||
|
||||
The driver interface for autosuspend and autoresume
|
||||
---------------------------------------------------
|
||||
|
||||
To support autosuspend and autoresume, a driver should implement all
|
||||
three of the methods listed above. In addition, a driver indicates
|
||||
that it supports autosuspend by setting the .supports_autosuspend flag
|
||||
in its usb_driver structure. It is then responsible for informing the
|
||||
USB core whenever one of its interfaces becomes busy or idle. The
|
||||
driver does so by calling these six functions:
|
||||
|
||||
int usb_autopm_get_interface(struct usb_interface *intf);
|
||||
void usb_autopm_put_interface(struct usb_interface *intf);
|
||||
int usb_autopm_get_interface_async(struct usb_interface *intf);
|
||||
void usb_autopm_put_interface_async(struct usb_interface *intf);
|
||||
void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
|
||||
void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
|
||||
|
||||
The functions work by maintaining a usage counter in the
|
||||
usb_interface's embedded device structure. When the counter is > 0
|
||||
then the interface is deemed to be busy, and the kernel will not
|
||||
autosuspend the interface's device. When the usage counter is = 0
|
||||
then the interface is considered to be idle, and the kernel may
|
||||
autosuspend the device.
|
||||
|
||||
Drivers need not be concerned about balancing changes to the usage
|
||||
counter; the USB core will undo any remaining "get"s when a driver
|
||||
is unbound from its interface. As a corollary, drivers must not call
|
||||
any of the usb_autopm_* functions after their disconnect() routine has
|
||||
returned.
|
||||
|
||||
Drivers using the async routines are responsible for their own
|
||||
synchronization and mutual exclusion.
|
||||
|
||||
usb_autopm_get_interface() increments the usage counter and
|
||||
does an autoresume if the device is suspended. If the
|
||||
autoresume fails, the counter is decremented back.
|
||||
|
||||
usb_autopm_put_interface() decrements the usage counter and
|
||||
attempts an autosuspend if the new value is = 0.
|
||||
|
||||
usb_autopm_get_interface_async() and
|
||||
usb_autopm_put_interface_async() do almost the same things as
|
||||
their non-async counterparts. The big difference is that they
|
||||
use a workqueue to do the resume or suspend part of their
|
||||
jobs. As a result they can be called in an atomic context,
|
||||
such as an URB's completion handler, but when they return the
|
||||
device will generally not yet be in the desired state.
|
||||
|
||||
usb_autopm_get_interface_no_resume() and
|
||||
usb_autopm_put_interface_no_suspend() merely increment or
|
||||
decrement the usage counter; they do not attempt to carry out
|
||||
an autoresume or an autosuspend. Hence they can be called in
|
||||
an atomic context.
|
||||
|
||||
The simplest usage pattern is that a driver calls
|
||||
usb_autopm_get_interface() in its open routine and
|
||||
usb_autopm_put_interface() in its close or release routine. But other
|
||||
patterns are possible.
|
||||
|
||||
The autosuspend attempts mentioned above will often fail for one
|
||||
reason or another. For example, the power/control attribute might be
|
||||
set to "on", or another interface in the same device might not be
|
||||
idle. This is perfectly normal. If the reason for failure was that
|
||||
the device hasn't been idle for long enough, a timer is scheduled to
|
||||
carry out the operation automatically when the autosuspend idle-delay
|
||||
has expired.
|
||||
|
||||
Autoresume attempts also can fail, although failure would mean that
|
||||
the device is no longer present or operating properly. Unlike
|
||||
autosuspend, there's no idle-delay for an autoresume.
|
||||
|
||||
|
||||
Other parts of the driver interface
|
||||
-----------------------------------
|
||||
|
||||
Drivers can enable autosuspend for their devices by calling
|
||||
|
||||
usb_enable_autosuspend(struct usb_device *udev);
|
||||
|
||||
in their probe() routine, if they know that the device is capable of
|
||||
suspending and resuming correctly. This is exactly equivalent to
|
||||
writing "auto" to the device's power/control attribute. Likewise,
|
||||
drivers can disable autosuspend by calling
|
||||
|
||||
usb_disable_autosuspend(struct usb_device *udev);
|
||||
|
||||
This is exactly the same as writing "on" to the power/control attribute.
|
||||
|
||||
Sometimes a driver needs to make sure that remote wakeup is enabled
|
||||
during autosuspend. For example, there's not much point
|
||||
autosuspending a keyboard if the user can't cause the keyboard to do a
|
||||
remote wakeup by typing on it. If the driver sets
|
||||
intf->needs_remote_wakeup to 1, the kernel won't autosuspend the
|
||||
device if remote wakeup isn't available. (If the device is already
|
||||
autosuspended, though, setting this flag won't cause the kernel to
|
||||
autoresume it. Normally a driver would set this flag in its probe
|
||||
method, at which time the device is guaranteed not to be
|
||||
autosuspended.)
|
||||
|
||||
If a driver does its I/O asynchronously in interrupt context, it
|
||||
should call usb_autopm_get_interface_async() before starting output and
|
||||
usb_autopm_put_interface_async() when the output queue drains. When
|
||||
it receives an input event, it should call
|
||||
|
||||
usb_mark_last_busy(struct usb_device *udev);
|
||||
|
||||
in the event handler. This tells the PM core that the device was just
|
||||
busy and therefore the next autosuspend idle-delay expiration should
|
||||
be pushed back. Many of the usb_autopm_* routines also make this call,
|
||||
so drivers need to worry only when interrupt-driven input arrives.
|
||||
|
||||
Asynchronous operation is always subject to races. For example, a
|
||||
driver may call the usb_autopm_get_interface_async() routine at a time
|
||||
when the core has just finished deciding the device has been idle for
|
||||
long enough but not yet gotten around to calling the driver's suspend
|
||||
method. The suspend method must be responsible for synchronizing with
|
||||
the I/O request routine and the URB completion handler; it should
|
||||
cause autosuspends to fail with -EBUSY if the driver needs to use the
|
||||
device.
|
||||
|
||||
External suspend calls should never be allowed to fail in this way,
|
||||
only autosuspend calls. The driver can tell them apart by applying
|
||||
the PMSG_IS_AUTO() macro to the message argument to the suspend
|
||||
method; it will return True for internal PM events (autosuspend) and
|
||||
False for external PM events.
|
||||
|
||||
|
||||
Mutual exclusion
|
||||
----------------
|
||||
|
||||
For external events -- but not necessarily for autosuspend or
|
||||
autoresume -- the device semaphore (udev->dev.sem) will be held when a
|
||||
suspend or resume method is called. This implies that external
|
||||
suspend/resume events are mutually exclusive with calls to probe,
|
||||
disconnect, pre_reset, and post_reset; the USB core guarantees that
|
||||
this is true of autosuspend/autoresume events as well.
|
||||
|
||||
If a driver wants to block all suspend/resume calls during some
|
||||
critical section, the best way is to lock the device and call
|
||||
usb_autopm_get_interface() (and do the reverse at the end of the
|
||||
critical section). Holding the device semaphore will block all
|
||||
external PM calls, and the usb_autopm_get_interface() will prevent any
|
||||
internal PM calls, even if it fails. (Exercise: Why?)
|
||||
|
||||
|
||||
Interaction between dynamic PM and system PM
|
||||
--------------------------------------------
|
||||
|
||||
Dynamic power management and system power management can interact in
|
||||
a couple of ways.
|
||||
|
||||
Firstly, a device may already be autosuspended when a system suspend
|
||||
occurs. Since system suspends are supposed to be as transparent as
|
||||
possible, the device should remain suspended following the system
|
||||
resume. But this theory may not work out well in practice; over time
|
||||
the kernel's behavior in this regard has changed. As of 2.6.37 the
|
||||
policy is to resume all devices during a system resume and let them
|
||||
handle their own runtime suspends afterward.
|
||||
|
||||
Secondly, a dynamic power-management event may occur as a system
|
||||
suspend is underway. The window for this is short, since system
|
||||
suspends don't take long (a few seconds usually), but it can happen.
|
||||
For example, a suspended device may send a remote-wakeup signal while
|
||||
the system is suspending. The remote wakeup may succeed, which would
|
||||
cause the system suspend to abort. If the remote wakeup doesn't
|
||||
succeed, it may still remain active and thus cause the system to
|
||||
resume as soon as the system suspend is complete. Or the remote
|
||||
wakeup may fail and get lost. Which outcome occurs depends on timing
|
||||
and on the hardware and firmware design.
|
||||
|
||||
|
||||
xHCI hardware link PM
|
||||
---------------------
|
||||
|
||||
xHCI host controller provides hardware link power management to usb2.0
|
||||
(xHCI 1.0 feature) and usb3.0 devices which support link PM. By
|
||||
enabling hardware LPM, the host can automatically put the device into
|
||||
lower power state(L1 for usb2.0 devices, or U1/U2 for usb3.0 devices),
|
||||
which state device can enter and resume very quickly.
|
||||
|
||||
The user interface for controlling USB2 hardware LPM is located in the
|
||||
power/ subdirectory of each USB device's sysfs directory, that is, in
|
||||
/sys/bus/usb/devices/.../power/ where "..." is the device's ID. The
|
||||
relevant attribute files is usb2_hardware_lpm.
|
||||
|
||||
power/usb2_hardware_lpm
|
||||
|
||||
When a USB2 device which support LPM is plugged to a
|
||||
xHCI host root hub which support software LPM, the
|
||||
host will run a software LPM test for it; if the device
|
||||
enters L1 state and resume successfully and the host
|
||||
supports USB2 hardware LPM, this file will show up and
|
||||
driver will enable hardware LPM for the device. You
|
||||
can write y/Y/1 or n/N/0 to the file to enable/disable
|
||||
USB2 hardware LPM manually. This is for test purpose mainly.
|
||||
|
||||
|
||||
USB Port Power Control
|
||||
----------------------
|
||||
|
||||
In addition to suspending endpoint devices and enabling hardware
|
||||
controlled link power management, the USB subsystem also has the
|
||||
capability to disable power to ports under some conditions. Power is
|
||||
controlled through Set/ClearPortFeature(PORT_POWER) requests to a hub.
|
||||
In the case of a root or platform-internal hub the host controller
|
||||
driver translates PORT_POWER requests into platform firmware (ACPI)
|
||||
method calls to set the port power state. For more background see the
|
||||
Linux Plumbers Conference 2012 slides [1] and video [2]:
|
||||
|
||||
Upon receiving a ClearPortFeature(PORT_POWER) request a USB port is
|
||||
logically off, and may trigger the actual loss of VBUS to the port [3].
|
||||
VBUS may be maintained in the case where a hub gangs multiple ports into
|
||||
a shared power well causing power to remain until all ports in the gang
|
||||
are turned off. VBUS may also be maintained by hub ports configured for
|
||||
a charging application. In any event a logically off port will lose
|
||||
connection with its device, not respond to hotplug events, and not
|
||||
respond to remote wakeup events*.
|
||||
|
||||
WARNING: turning off a port may result in the inability to hot add a device.
|
||||
Please see "User Interface for Port Power Control" for details.
|
||||
|
||||
As far as the effect on the device itself it is similar to what a device
|
||||
goes through during system suspend, i.e. the power session is lost. Any
|
||||
USB device or driver that misbehaves with system suspend will be
|
||||
similarly affected by a port power cycle event. For this reason the
|
||||
implementation shares the same device recovery path (and honors the same
|
||||
quirks) as the system resume path for the hub.
|
||||
|
||||
[1]: http://dl.dropbox.com/u/96820575/sarah-sharp-lpt-port-power-off2-mini.pdf
|
||||
[2]: http://linuxplumbers.ubicast.tv/videos/usb-port-power-off-kerneluserspace-api/
|
||||
[3]: USB 3.1 Section 10.12
|
||||
* wakeup note: if a device is configured to send wakeup events the port
|
||||
power control implementation will block poweroff attempts on that
|
||||
port.
|
||||
|
||||
|
||||
User Interface for Port Power Control
|
||||
-------------------------------------
|
||||
|
||||
The port power control mechanism uses the PM runtime system. Poweroff is
|
||||
requested by clearing the power/pm_qos_no_power_off flag of the port device
|
||||
(defaults to 1). If the port is disconnected it will immediately receive a
|
||||
ClearPortFeature(PORT_POWER) request. Otherwise, it will honor the pm runtime
|
||||
rules and require the attached child device and all descendants to be suspended.
|
||||
This mechanism is dependent on the hub advertising port power switching in its
|
||||
hub descriptor (wHubCharacteristics logical power switching mode field).
|
||||
|
||||
Note, some interface devices/drivers do not support autosuspend. Userspace may
|
||||
need to unbind the interface drivers before the usb_device will suspend. An
|
||||
unbound interface device is suspended by default. When unbinding, be careful
|
||||
to unbind interface drivers, not the driver of the parent usb device. Also,
|
||||
leave hub interface drivers bound. If the driver for the usb device (not
|
||||
interface) is unbound the kernel is no longer able to resume the device. If a
|
||||
hub interface driver is unbound, control of its child ports is lost and all
|
||||
attached child-devices will disconnect. A good rule of thumb is that if the
|
||||
'driver/module' link for a device points to /sys/module/usbcore then unbinding
|
||||
it will interfere with port power control.
|
||||
|
||||
Example of the relevant files for port power control. Note, in this example
|
||||
these files are relative to a usb hub device (prefix).
|
||||
|
||||
prefix=/sys/devices/pci0000:00/0000:00:14.0/usb3/3-1
|
||||
|
||||
attached child device +
|
||||
hub port device + |
|
||||
hub interface device + | |
|
||||
v v v
|
||||
$prefix/3-1:1.0/3-1-port1/device
|
||||
|
||||
$prefix/3-1:1.0/3-1-port1/power/pm_qos_no_power_off
|
||||
$prefix/3-1:1.0/3-1-port1/device/power/control
|
||||
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf0>/driver/unbind
|
||||
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intf1>/driver/unbind
|
||||
...
|
||||
$prefix/3-1:1.0/3-1-port1/device/3-1.1:<intfN>/driver/unbind
|
||||
|
||||
In addition to these files some ports may have a 'peer' link to a port on
|
||||
another hub. The expectation is that all superspeed ports have a
|
||||
hi-speed peer.
|
||||
|
||||
$prefix/3-1:1.0/3-1-port1/peer -> ../../../../usb2/2-1/2-1:1.0/2-1-port1
|
||||
../../../../usb2/2-1/2-1:1.0/2-1-port1/peer -> ../../../../usb3/3-1/3-1:1.0/3-1-port1
|
||||
|
||||
Distinct from 'companion ports', or 'ehci/xhci shared switchover ports'
|
||||
peer ports are simply the hi-speed and superspeed interface pins that
|
||||
are combined into a single usb3 connector. Peer ports share the same
|
||||
ancestor XHCI device.
|
||||
|
||||
While a superspeed port is powered off a device may downgrade its
|
||||
connection and attempt to connect to the hi-speed pins. The
|
||||
implementation takes steps to prevent this:
|
||||
|
||||
1/ Port suspend is sequenced to guarantee that hi-speed ports are powered-off
|
||||
before their superspeed peer is permitted to power-off. The implication is
|
||||
that the setting pm_qos_no_power_off to zero on a superspeed port may not cause
|
||||
the port to power-off until its highspeed peer has gone to its runtime suspend
|
||||
state. Userspace must take care to order the suspensions if it wants to
|
||||
guarantee that a superspeed port will power-off.
|
||||
|
||||
2/ Port resume is sequenced to force a superspeed port to power-on prior to its
|
||||
highspeed peer.
|
||||
|
||||
3/ Port resume always triggers an attached child device to resume. After a
|
||||
power session is lost the device may have been removed, or need reset.
|
||||
Resuming the child device when the parent port regains power resolves those
|
||||
states and clamps the maximum port power cycle frequency at the rate the child
|
||||
device can suspend (autosuspend-delay) and resume (reset-resume latency).
|
||||
|
||||
Sysfs files relevant for port power control:
|
||||
<hubdev-portX>/power/pm_qos_no_power_off:
|
||||
This writable flag controls the state of an idle port.
|
||||
Once all children and descendants have suspended the
|
||||
port may suspend/poweroff provided that
|
||||
pm_qos_no_power_off is '0'. If pm_qos_no_power_off is
|
||||
'1' the port will remain active/powered regardless of
|
||||
the stats of descendants. Defaults to 1.
|
||||
|
||||
<hubdev-portX>/power/runtime_status:
|
||||
This file reflects whether the port is 'active' (power is on)
|
||||
or 'suspended' (logically off). There is no indication to
|
||||
userspace whether VBUS is still supplied.
|
||||
|
||||
<hubdev-portX>/connect_type:
|
||||
An advisory read-only flag to userspace indicating the
|
||||
location and connection type of the port. It returns
|
||||
one of four values 'hotplug', 'hardwired', 'not used',
|
||||
and 'unknown'. All values, besides unknown, are set by
|
||||
platform firmware.
|
||||
|
||||
"hotplug" indicates an externally connectable/visible
|
||||
port on the platform. Typically userspace would choose
|
||||
to keep such a port powered to handle new device
|
||||
connection events.
|
||||
|
||||
"hardwired" refers to a port that is not visible but
|
||||
connectable. Examples are internal ports for USB
|
||||
bluetooth that can be disconnected via an external
|
||||
switch or a port with a hardwired USB camera. It is
|
||||
expected to be safe to allow these ports to suspend
|
||||
provided pm_qos_no_power_off is coordinated with any
|
||||
switch that gates connections. Userspace must arrange
|
||||
for the device to be connected prior to the port
|
||||
powering off, or to activate the port prior to enabling
|
||||
connection via a switch.
|
||||
|
||||
"not used" refers to an internal port that is expected
|
||||
to never have a device connected to it. These may be
|
||||
empty internal ports, or ports that are not physically
|
||||
exposed on a platform. Considered safe to be
|
||||
powered-off at all times.
|
||||
|
||||
"unknown" means platform firmware does not provide
|
||||
information for this port. Most commonly refers to
|
||||
external hub ports which should be considered 'hotplug'
|
||||
for policy decisions.
|
||||
|
||||
NOTE1: since we are relying on the BIOS to get this ACPI
|
||||
information correct, the USB port descriptions may be
|
||||
missing or wrong.
|
||||
|
||||
NOTE2: Take care in clearing pm_qos_no_power_off. Once
|
||||
power is off this port will
|
||||
not respond to new connect events.
|
||||
|
||||
Once a child device is attached additional constraints are
|
||||
applied before the port is allowed to poweroff.
|
||||
|
||||
<child>/power/control:
|
||||
Must be 'auto', and the port will not
|
||||
power down until <child>/power/runtime_status
|
||||
reflects the 'suspended' state. Default
|
||||
value is controlled by child device driver.
|
||||
|
||||
<child>/power/persist:
|
||||
This defaults to '1' for most devices and indicates if
|
||||
kernel can persist the device's configuration across a
|
||||
power session loss (suspend / port-power event). When
|
||||
this value is '0' (quirky devices), port poweroff is
|
||||
disabled.
|
||||
|
||||
<child>/driver/unbind:
|
||||
Wakeup capable devices will block port poweroff. At
|
||||
this time the only mechanism to clear the usb-internal
|
||||
wakeup-capability for an interface device is to unbind
|
||||
its driver.
|
||||
|
||||
Summary of poweroff pre-requisite settings relative to a port device:
|
||||
|
||||
echo 0 > power/pm_qos_no_power_off
|
||||
echo 0 > peer/power/pm_qos_no_power_off # if it exists
|
||||
echo auto > power/control # this is the default value
|
||||
echo auto > <child>/power/control
|
||||
echo 1 > <child>/power/persist # this is the default value
|
||||
|
||||
Suggested Userspace Port Power Policy
|
||||
-------------------------------------
|
||||
|
||||
As noted above userspace needs to be careful and deliberate about what
|
||||
ports are enabled for poweroff.
|
||||
|
||||
The default configuration is that all ports start with
|
||||
power/pm_qos_no_power_off set to '1' causing ports to always remain
|
||||
active.
|
||||
|
||||
Given confidence in the platform firmware's description of the ports
|
||||
(ACPI _PLD record for a port populates 'connect_type') userspace can
|
||||
clear pm_qos_no_power_off for all 'not used' ports. The same can be
|
||||
done for 'hardwired' ports provided poweroff is coordinated with any
|
||||
connection switch for the port.
|
||||
|
||||
A more aggressive userspace policy is to enable USB port power off for
|
||||
all ports (set <hubdev-portX>/power/pm_qos_no_power_off to '0') when
|
||||
some external factor indicates the user has stopped interacting with the
|
||||
system. For example, a distro may want to enable power off all USB
|
||||
ports when the screen blanks, and re-power them when the screen becomes
|
||||
active. Smart phones and tablets may want to power off USB ports when
|
||||
the user pushes the power button.
|
||||
390
Documentation/usb/proc_usb_info.txt
Normal file
390
Documentation/usb/proc_usb_info.txt
Normal file
|
|
@ -0,0 +1,390 @@
|
|||
/proc/bus/usb filesystem output
|
||||
===============================
|
||||
(version 2010.09.13)
|
||||
|
||||
|
||||
The usbfs filesystem for USB devices is traditionally mounted at
|
||||
/proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as
|
||||
the /proc/bus/usb/BBB/DDD files.
|
||||
|
||||
In many modern systems the usbfs filesystem isn't used at all. Instead
|
||||
USB device nodes are created under /dev/usb/ or someplace similar. The
|
||||
"devices" file is available in debugfs, typically as
|
||||
/sys/kernel/debug/usb/devices.
|
||||
|
||||
|
||||
**NOTE**: If /proc/bus/usb appears empty, and a host controller
|
||||
driver has been linked, then you need to mount the
|
||||
filesystem. Issue the command (as root):
|
||||
|
||||
mount -t usbfs none /proc/bus/usb
|
||||
|
||||
An alternative and more permanent method would be to add
|
||||
|
||||
none /proc/bus/usb usbfs defaults 0 0
|
||||
|
||||
to /etc/fstab. This will mount usbfs at each reboot.
|
||||
You can then issue `cat /proc/bus/usb/devices` to extract
|
||||
USB device information, and user mode drivers can use usbfs
|
||||
to interact with USB devices.
|
||||
|
||||
There are a number of mount options supported by usbfs.
|
||||
Consult the source code (linux/drivers/usb/core/inode.c) for
|
||||
information about those options.
|
||||
|
||||
**NOTE**: The filesystem has been renamed from "usbdevfs" to
|
||||
"usbfs", to reduce confusion with "devfs". You may
|
||||
still see references to the older "usbdevfs" name.
|
||||
|
||||
For more information on mounting the usbfs file system, see the
|
||||
"USB Device Filesystem" section of the USB Guide. The latest copy
|
||||
of the USB Guide can be found at http://www.linux-usb.org/
|
||||
|
||||
|
||||
THE /proc/bus/usb/BBB/DDD FILES:
|
||||
--------------------------------
|
||||
Each connected USB device has one file. The BBB indicates the bus
|
||||
number. The DDD indicates the device address on that bus. Both
|
||||
of these numbers are assigned sequentially, and can be reused, so
|
||||
you can't rely on them for stable access to devices. For example,
|
||||
it's relatively common for devices to re-enumerate while they are
|
||||
still connected (perhaps someone jostled their power supply, hub,
|
||||
or USB cable), so a device might be 002/027 when you first connect
|
||||
it and 002/048 sometime later.
|
||||
|
||||
These files can be read as binary data. The binary data consists
|
||||
of first the device descriptor, then the descriptors for each
|
||||
configuration of the device. Multi-byte fields in the device descriptor
|
||||
are converted to host endianness by the kernel. The configuration
|
||||
descriptors are in bus endian format! The configuration descriptor
|
||||
are wTotalLength bytes apart. If a device returns less configuration
|
||||
descriptor data than indicated by wTotalLength there will be a hole in
|
||||
the file for the missing bytes. This information is also shown
|
||||
in text form by the /proc/bus/usb/devices file, described later.
|
||||
|
||||
These files may also be used to write user-level drivers for the USB
|
||||
devices. You would open the /proc/bus/usb/BBB/DDD file read/write,
|
||||
read its descriptors to make sure it's the device you expect, and then
|
||||
bind to an interface (or perhaps several) using an ioctl call. You
|
||||
would issue more ioctls to the device to communicate to it using
|
||||
control, bulk, or other kinds of USB transfers. The IOCTLs are
|
||||
listed in the <linux/usbdevice_fs.h> file, and at this writing the
|
||||
source code (linux/drivers/usb/core/devio.c) is the primary reference
|
||||
for how to access devices through those files.
|
||||
|
||||
Note that since by default these BBB/DDD files are writable only by
|
||||
root, only root can write such user mode drivers. You can selectively
|
||||
grant read/write permissions to other users by using "chmod". Also,
|
||||
usbfs mount options such as "devmode=0666" may be helpful.
|
||||
|
||||
|
||||
|
||||
THE /proc/bus/usb/devices FILE:
|
||||
-------------------------------
|
||||
In /proc/bus/usb/devices, each device's output has multiple
|
||||
lines of ASCII output.
|
||||
I made it ASCII instead of binary on purpose, so that someone
|
||||
can obtain some useful data from it without the use of an
|
||||
auxiliary program. However, with an auxiliary program, the numbers
|
||||
in the first 4 columns of each "T:" line (topology info:
|
||||
Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.
|
||||
|
||||
Each line is tagged with a one-character ID for that line:
|
||||
|
||||
T = Topology (etc.)
|
||||
B = Bandwidth (applies only to USB host controllers, which are
|
||||
virtualized as root hubs)
|
||||
D = Device descriptor info.
|
||||
P = Product ID info. (from Device descriptor, but they won't fit
|
||||
together on one line)
|
||||
S = String descriptors.
|
||||
C = Configuration descriptor info. (* = active configuration)
|
||||
I = Interface descriptor info.
|
||||
E = Endpoint descriptor info.
|
||||
|
||||
=======================================================================
|
||||
|
||||
/proc/bus/usb/devices output format:
|
||||
|
||||
Legend:
|
||||
d = decimal number (may have leading spaces or 0's)
|
||||
x = hexadecimal number (may have leading spaces or 0's)
|
||||
s = string
|
||||
|
||||
|
||||
Topology info:
|
||||
|
||||
T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd
|
||||
| | | | | | | | |__MaxChildren
|
||||
| | | | | | | |__Device Speed in Mbps
|
||||
| | | | | | |__DeviceNumber
|
||||
| | | | | |__Count of devices at this level
|
||||
| | | | |__Connector/Port on Parent for this device
|
||||
| | | |__Parent DeviceNumber
|
||||
| | |__Level in topology for this bus
|
||||
| |__Bus number
|
||||
|__Topology info tag
|
||||
|
||||
Speed may be:
|
||||
1.5 Mbit/s for low speed USB
|
||||
12 Mbit/s for full speed USB
|
||||
480 Mbit/s for high speed USB (added for USB 2.0);
|
||||
also used for Wireless USB, which has no fixed speed
|
||||
5000 Mbit/s for SuperSpeed USB (added for USB 3.0)
|
||||
|
||||
For reasons lost in the mists of time, the Port number is always
|
||||
too low by 1. For example, a device plugged into port 4 will
|
||||
show up with "Port=03".
|
||||
|
||||
Bandwidth info:
|
||||
B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
|
||||
| | | |__Number of isochronous requests
|
||||
| | |__Number of interrupt requests
|
||||
| |__Total Bandwidth allocated to this bus
|
||||
|__Bandwidth info tag
|
||||
|
||||
Bandwidth allocation is an approximation of how much of one frame
|
||||
(millisecond) is in use. It reflects only periodic transfers, which
|
||||
are the only transfers that reserve bandwidth. Control and bulk
|
||||
transfers use all other bandwidth, including reserved bandwidth that
|
||||
is not used for transfers (such as for short packets).
|
||||
|
||||
The percentage is how much of the "reserved" bandwidth is scheduled by
|
||||
those transfers. For a low or full speed bus (loosely, "USB 1.1"),
|
||||
90% of the bus bandwidth is reserved. For a high speed bus (loosely,
|
||||
"USB 2.0") 80% is reserved.
|
||||
|
||||
|
||||
Device descriptor info & Product ID info:
|
||||
|
||||
D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
|
||||
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
|
||||
|
||||
where
|
||||
D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
|
||||
| | | | | | |__NumberConfigurations
|
||||
| | | | | |__MaxPacketSize of Default Endpoint
|
||||
| | | | |__DeviceProtocol
|
||||
| | | |__DeviceSubClass
|
||||
| | |__DeviceClass
|
||||
| |__Device USB version
|
||||
|__Device info tag #1
|
||||
|
||||
where
|
||||
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
|
||||
| | | |__Product revision number
|
||||
| | |__Product ID code
|
||||
| |__Vendor ID code
|
||||
|__Device info tag #2
|
||||
|
||||
|
||||
String descriptor info:
|
||||
|
||||
S: Manufacturer=ssss
|
||||
| |__Manufacturer of this device as read from the device.
|
||||
| For USB host controller drivers (virtual root hubs) this may
|
||||
| be omitted, or (for newer drivers) will identify the kernel
|
||||
| version and the driver which provides this hub emulation.
|
||||
|__String info tag
|
||||
|
||||
S: Product=ssss
|
||||
| |__Product description of this device as read from the device.
|
||||
| For older USB host controller drivers (virtual root hubs) this
|
||||
| indicates the driver; for newer ones, it's a product (and vendor)
|
||||
| description that often comes from the kernel's PCI ID database.
|
||||
|__String info tag
|
||||
|
||||
S: SerialNumber=ssss
|
||||
| |__Serial Number of this device as read from the device.
|
||||
| For USB host controller drivers (virtual root hubs) this is
|
||||
| some unique ID, normally a bus ID (address or slot name) that
|
||||
| can't be shared with any other device.
|
||||
|__String info tag
|
||||
|
||||
|
||||
|
||||
Configuration descriptor info:
|
||||
|
||||
C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
|
||||
| | | | | |__MaxPower in mA
|
||||
| | | | |__Attributes
|
||||
| | | |__ConfiguratioNumber
|
||||
| | |__NumberOfInterfaces
|
||||
| |__ "*" indicates the active configuration (others are " ")
|
||||
|__Config info tag
|
||||
|
||||
USB devices may have multiple configurations, each of which act
|
||||
rather differently. For example, a bus-powered configuration
|
||||
might be much less capable than one that is self-powered. Only
|
||||
one device configuration can be active at a time; most devices
|
||||
have only one configuration.
|
||||
|
||||
Each configuration consists of one or more interfaces. Each
|
||||
interface serves a distinct "function", which is typically bound
|
||||
to a different USB device driver. One common example is a USB
|
||||
speaker with an audio interface for playback, and a HID interface
|
||||
for use with software volume control.
|
||||
|
||||
|
||||
Interface descriptor info (can be multiple per Config):
|
||||
|
||||
I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
|
||||
| | | | | | | | |__Driver name
|
||||
| | | | | | | | or "(none)"
|
||||
| | | | | | | |__InterfaceProtocol
|
||||
| | | | | | |__InterfaceSubClass
|
||||
| | | | | |__InterfaceClass
|
||||
| | | | |__NumberOfEndpoints
|
||||
| | | |__AlternateSettingNumber
|
||||
| | |__InterfaceNumber
|
||||
| |__ "*" indicates the active altsetting (others are " ")
|
||||
|__Interface info tag
|
||||
|
||||
A given interface may have one or more "alternate" settings.
|
||||
For example, default settings may not use more than a small
|
||||
amount of periodic bandwidth. To use significant fractions
|
||||
of bus bandwidth, drivers must select a non-default altsetting.
|
||||
|
||||
Only one setting for an interface may be active at a time, and
|
||||
only one driver may bind to an interface at a time. Most devices
|
||||
have only one alternate setting per interface.
|
||||
|
||||
|
||||
Endpoint descriptor info (can be multiple per Interface):
|
||||
|
||||
E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss
|
||||
| | | | |__Interval (max) between transfers
|
||||
| | | |__EndpointMaxPacketSize
|
||||
| | |__Attributes(EndpointType)
|
||||
| |__EndpointAddress(I=In,O=Out)
|
||||
|__Endpoint info tag
|
||||
|
||||
The interval is nonzero for all periodic (interrupt or isochronous)
|
||||
endpoints. For high speed endpoints the transfer interval may be
|
||||
measured in microseconds rather than milliseconds.
|
||||
|
||||
For high speed periodic endpoints, the "MaxPacketSize" reflects
|
||||
the per-microframe data transfer size. For "high bandwidth"
|
||||
endpoints, that can reflect two or three packets (for up to
|
||||
3KBytes every 125 usec) per endpoint.
|
||||
|
||||
With the Linux-USB stack, periodic bandwidth reservations use the
|
||||
transfer intervals and sizes provided by URBs, which can be less
|
||||
than those found in endpoint descriptor.
|
||||
|
||||
|
||||
=======================================================================
|
||||
|
||||
|
||||
If a user or script is interested only in Topology info, for
|
||||
example, use something like "grep ^T: /proc/bus/usb/devices"
|
||||
for only the Topology lines. A command like
|
||||
"grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list
|
||||
only the lines that begin with the characters in square brackets,
|
||||
where the valid characters are TDPCIE. With a slightly more able
|
||||
script, it can display any selected lines (for example, only T, D,
|
||||
and P lines) and change their output format. (The "procusb"
|
||||
Perl script is the beginning of this idea. It will list only
|
||||
selected lines [selected from TBDPSCIE] or "All" lines from
|
||||
/proc/bus/usb/devices.)
|
||||
|
||||
The Topology lines can be used to generate a graphic/pictorial
|
||||
of the USB devices on a system's root hub. (See more below
|
||||
on how to do this.)
|
||||
|
||||
The Interface lines can be used to determine what driver is
|
||||
being used for each device, and which altsetting it activated.
|
||||
|
||||
The Configuration lines could be used to list maximum power
|
||||
(in milliamps) that a system's USB devices are using.
|
||||
For example, "grep ^C: /proc/bus/usb/devices".
|
||||
|
||||
|
||||
Here's an example, from a system which has a UHCI root hub,
|
||||
an external hub connected to the root hub, and a mouse and
|
||||
a serial converter connected to the external hub.
|
||||
|
||||
T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
|
||||
B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0
|
||||
D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0000 ProdID=0000 Rev= 0.00
|
||||
S: Product=USB UHCI Root Hub
|
||||
S: SerialNumber=dce0
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
|
||||
|
||||
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
|
||||
D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0451 ProdID=1446 Rev= 1.00
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms
|
||||
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
|
||||
D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=04b4 ProdID=0001 Rev= 0.00
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms
|
||||
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
|
||||
D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0565 ProdID=0001 Rev= 1.08
|
||||
S: Manufacturer=Peracom Networks, Inc.
|
||||
S: Product=Peracom USB to Serial Converter
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
|
||||
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
|
||||
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
|
||||
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms
|
||||
|
||||
|
||||
Selecting only the "T:" and "I:" lines from this (for example, by using
|
||||
"procusb ti"), we have:
|
||||
|
||||
T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
|
||||
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
|
||||
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
|
||||
|
||||
|
||||
Physically this looks like (or could be converted to):
|
||||
|
||||
+------------------+
|
||||
| PC/root_hub (12)| Dev# = 1
|
||||
+------------------+ (nn) is Mbps.
|
||||
Level 0 | CN.0 | CN.1 | [CN = connector/port #]
|
||||
+------------------+
|
||||
/
|
||||
/
|
||||
+-----------------------+
|
||||
Level 1 | Dev#2: 4-port hub (12)|
|
||||
+-----------------------+
|
||||
|CN.0 |CN.1 |CN.2 |CN.3 |
|
||||
+-----------------------+
|
||||
\ \____________________
|
||||
\_____ \
|
||||
\ \
|
||||
+--------------------+ +--------------------+
|
||||
Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|
|
||||
+--------------------+ +--------------------+
|
||||
|
||||
|
||||
|
||||
Or, in a more tree-like structure (ports [Connectors] without
|
||||
connections could be omitted):
|
||||
|
||||
PC: Dev# 1, root hub, 2 ports, 12 Mbps
|
||||
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps
|
||||
|_ CN.0: Dev #3, mouse, 1.5 Mbps
|
||||
|_ CN.1:
|
||||
|_ CN.2: Dev #4, serial, 12 Mbps
|
||||
|_ CN.3:
|
||||
|_ CN.1:
|
||||
|
||||
|
||||
### END ###
|
||||
138
Documentation/usb/rio.txt
Normal file
138
Documentation/usb/rio.txt
Normal file
|
|
@ -0,0 +1,138 @@
|
|||
Copyright (C) 1999, 2000 Bruce Tenison
|
||||
Portions Copyright (C) 1999, 2000 David Nelson
|
||||
Thanks to David Nelson for guidance and the usage of the scanner.txt
|
||||
and scanner.c files to model our driver and this informative file.
|
||||
|
||||
Mar. 2, 2000
|
||||
|
||||
CHANGES
|
||||
|
||||
- Initial Revision
|
||||
|
||||
|
||||
OVERVIEW
|
||||
|
||||
This README will address issues regarding how to configure the kernel
|
||||
to access a RIO 500 mp3 player.
|
||||
Before I explain how to use this to access the Rio500 please be warned:
|
||||
|
||||
W A R N I N G:
|
||||
--------------
|
||||
|
||||
Please note that this software is still under development. The authors
|
||||
are in no way responsible for any damage that may occur, no matter how
|
||||
inconsequential.
|
||||
|
||||
It seems that the Rio has a problem when sending .mp3 with low batteries.
|
||||
I suggest when the batteries are low and you want to transfer stuff that you
|
||||
replace it with a fresh one. In my case, what happened is I lost two 16kb
|
||||
blocks (they are no longer usable to store information to it). But I don't
|
||||
know if that's normal or not; it could simply be a problem with the flash
|
||||
memory.
|
||||
|
||||
In an extreme case, I left my Rio playing overnight and the batteries wore
|
||||
down to nothing and appear to have corrupted the flash memory. My RIO
|
||||
needed to be replaced as a result. Diamond tech support is aware of the
|
||||
problem. Do NOT allow your batteries to wear down to nothing before
|
||||
changing them. It appears RIO 500 firmware does not handle low battery
|
||||
power well at all.
|
||||
|
||||
On systems with OHCI controllers, the kernel OHCI code appears to have
|
||||
power on problems with some chipsets. If you are having problems
|
||||
connecting to your RIO 500, try turning it on first and then plugging it
|
||||
into the USB cable.
|
||||
|
||||
Contact information:
|
||||
--------------------
|
||||
|
||||
The main page for the project is hosted at sourceforge.net in the following
|
||||
URL: <http://rio500.sourceforge.net>. You can also go to the project's
|
||||
sourceforge home page at: <http://sourceforge.net/projects/rio500/>.
|
||||
There is also a mailing list: rio500-users@lists.sourceforge.net
|
||||
|
||||
Authors:
|
||||
-------
|
||||
|
||||
Most of the code was written by Cesar Miquel <miquel@df.uba.ar>. Keith
|
||||
Clayton <kclayton@jps.net> is incharge of the PPC port and making sure
|
||||
things work there. Bruce Tenison <btenison@dibbs.net> is adding support
|
||||
for .fon files and also does testing. The program will mostly sure be
|
||||
re-written and Pete Ikusz along with the rest will re-design it. I would
|
||||
also like to thank Tri Nguyen <tmn_3022000@hotmail.com> who provided use
|
||||
with some important information regarding the communication with the Rio.
|
||||
|
||||
ADDITIONAL INFORMATION and Userspace tools
|
||||
|
||||
http://rio500.sourceforge.net/
|
||||
|
||||
|
||||
REQUIREMENTS
|
||||
|
||||
A host with a USB port. Ideally, either a UHCI (Intel) or OHCI
|
||||
(Compaq and others) hardware port should work.
|
||||
|
||||
A Linux development kernel (2.3.x) with USB support enabled or a
|
||||
backported version to linux-2.2.x. See http://www.linux-usb.org for
|
||||
more information on accomplishing this.
|
||||
|
||||
A Linux kernel with RIO 500 support enabled.
|
||||
|
||||
'lspci' which is only needed to determine the type of USB hardware
|
||||
available in your machine.
|
||||
|
||||
CONFIGURATION
|
||||
|
||||
Using `lspci -v`, determine the type of USB hardware available.
|
||||
|
||||
If you see something like:
|
||||
|
||||
USB Controller: ......
|
||||
Flags: .....
|
||||
I/O ports at ....
|
||||
|
||||
Then you have a UHCI based controller.
|
||||
|
||||
If you see something like:
|
||||
|
||||
USB Controller: .....
|
||||
Flags: ....
|
||||
Memory at .....
|
||||
|
||||
Then you have a OHCI based controller.
|
||||
|
||||
Using `make menuconfig` or your preferred method for configuring the
|
||||
kernel, select 'Support for USB', 'OHCI/UHCI' depending on your
|
||||
hardware (determined from the steps above), 'USB Diamond Rio500 support', and
|
||||
'Preliminary USB device filesystem'. Compile and install the modules
|
||||
(you may need to execute `depmod -a` to update the module
|
||||
dependencies).
|
||||
|
||||
Add a device for the USB rio500:
|
||||
`mknod /dev/usb/rio500 c 180 64`
|
||||
|
||||
Set appropriate permissions for /dev/usb/rio500 (don't forget about
|
||||
group and world permissions). Both read and write permissions are
|
||||
required for proper operation.
|
||||
|
||||
Load the appropriate modules (if compiled as modules):
|
||||
|
||||
OHCI:
|
||||
modprobe usbcore
|
||||
modprobe usb-ohci
|
||||
modprobe rio500
|
||||
|
||||
UHCI:
|
||||
modprobe usbcore
|
||||
modprobe usb-uhci (or uhci)
|
||||
modprobe rio500
|
||||
|
||||
That's it. The Rio500 Utils at: http://rio500.sourceforge.net should
|
||||
be able to access the rio500.
|
||||
|
||||
BUGS
|
||||
|
||||
If you encounter any problems feel free to drop me an email.
|
||||
|
||||
Bruce Tenison
|
||||
btenison@dibbs.net
|
||||
|
||||
16
Documentation/usb/usb-help.txt
Normal file
16
Documentation/usb/usb-help.txt
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
usb-help.txt
|
||||
2008-Mar-7
|
||||
|
||||
For USB help other than the readme files that are located in
|
||||
Documentation/usb/*, see the following:
|
||||
|
||||
Linux-USB project: http://www.linux-usb.org
|
||||
mirrors at http://usb.in.tum.de/linux-usb/
|
||||
and http://it.linux-usb.org
|
||||
Linux USB Guide: http://linux-usb.sourceforge.net
|
||||
Linux-USB device overview (working devices and drivers):
|
||||
http://www.qbik.ch/usb/devices/
|
||||
|
||||
The Linux-USB mailing list is at linux-usb@vger.kernel.org
|
||||
|
||||
###
|
||||
493
Documentation/usb/usb-serial.txt
Normal file
493
Documentation/usb/usb-serial.txt
Normal file
|
|
@ -0,0 +1,493 @@
|
|||
INTRODUCTION
|
||||
|
||||
The USB serial driver currently supports a number of different USB to
|
||||
serial converter products, as well as some devices that use a serial
|
||||
interface from userspace to talk to the device.
|
||||
|
||||
See the individual product section below for specific information about
|
||||
the different devices.
|
||||
|
||||
|
||||
CONFIGURATION
|
||||
|
||||
Currently the driver can handle up to 256 different serial interfaces at
|
||||
one time.
|
||||
|
||||
The major number that the driver uses is 188 so to use the driver,
|
||||
create the following nodes:
|
||||
mknod /dev/ttyUSB0 c 188 0
|
||||
mknod /dev/ttyUSB1 c 188 1
|
||||
mknod /dev/ttyUSB2 c 188 2
|
||||
mknod /dev/ttyUSB3 c 188 3
|
||||
.
|
||||
.
|
||||
.
|
||||
mknod /dev/ttyUSB254 c 188 254
|
||||
mknod /dev/ttyUSB255 c 188 255
|
||||
|
||||
When the device is connected and recognized by the driver, the driver
|
||||
will print to the system log, which node(s) the device has been bound
|
||||
to.
|
||||
|
||||
|
||||
SPECIFIC DEVICES SUPPORTED
|
||||
|
||||
|
||||
ConnectTech WhiteHEAT 4 port converter
|
||||
|
||||
ConnectTech has been very forthcoming with information about their
|
||||
device, including providing a unit to test with.
|
||||
|
||||
The driver is officially supported by Connect Tech Inc.
|
||||
http://www.connecttech.com
|
||||
|
||||
For any questions or problems with this driver, please contact
|
||||
Connect Tech's Support Department at support@connecttech.com
|
||||
|
||||
|
||||
HandSpring Visor, Palm USB, and Clié USB driver
|
||||
|
||||
This driver works with all HandSpring USB, Palm USB, and Sony Clié USB
|
||||
devices.
|
||||
|
||||
Only when the device tries to connect to the host, will the device show
|
||||
up to the host as a valid USB device. When this happens, the device is
|
||||
properly enumerated, assigned a port, and then communication _should_ be
|
||||
possible. The driver cleans up properly when the device is removed, or
|
||||
the connection is canceled on the device.
|
||||
|
||||
NOTE:
|
||||
This means that in order to talk to the device, the sync button must be
|
||||
pressed BEFORE trying to get any program to communicate to the device.
|
||||
This goes against the current documentation for pilot-xfer and other
|
||||
packages, but is the only way that it will work due to the hardware
|
||||
in the device.
|
||||
|
||||
When the device is connected, try talking to it on the second port
|
||||
(this is usually /dev/ttyUSB1 if you do not have any other usb-serial
|
||||
devices in the system.) The system log should tell you which port is
|
||||
the port to use for the HotSync transfer. The "Generic" port can be used
|
||||
for other device communication, such as a PPP link.
|
||||
|
||||
For some Sony Clié devices, /dev/ttyUSB0 must be used to talk to the
|
||||
device. This is true for all OS version 3.5 devices, and most devices
|
||||
that have had a flash upgrade to a newer version of the OS. See the
|
||||
kernel system log for information on which is the correct port to use.
|
||||
|
||||
If after pressing the sync button, nothing shows up in the system log,
|
||||
try resetting the device, first a hot reset, and then a cold reset if
|
||||
necessary. Some devices need this before they can talk to the USB port
|
||||
properly.
|
||||
|
||||
Devices that are not compiled into the kernel can be specified with module
|
||||
parameters. e.g. modprobe visor vendor=0x54c product=0x66
|
||||
|
||||
There is a webpage and mailing lists for this portion of the driver at:
|
||||
http://sourceforge.net/projects/usbvisor/
|
||||
|
||||
For any questions or problems with this driver, please contact Greg
|
||||
Kroah-Hartman at greg@kroah.com
|
||||
|
||||
|
||||
PocketPC PDA Driver
|
||||
|
||||
This driver can be used to connect to Compaq iPAQ, HP Jornada, Casio EM500
|
||||
and other PDAs running Windows CE 3.0 or PocketPC 2002 using a USB
|
||||
cable/cradle.
|
||||
Most devices supported by ActiveSync are supported out of the box.
|
||||
For others, please use module parameters to specify the product and vendor
|
||||
id. e.g. modprobe ipaq vendor=0x3f0 product=0x1125
|
||||
|
||||
The driver presents a serial interface (usually on /dev/ttyUSB0) over
|
||||
which one may run ppp and establish a TCP/IP link to the PDA. Once this
|
||||
is done, you can transfer files, backup, download email etc. The most
|
||||
significant advantage of using USB is speed - I can get 73 to 113
|
||||
kbytes/sec for download/upload to my iPAQ.
|
||||
|
||||
This driver is only one of a set of components required to utilize
|
||||
the USB connection. Please visit http://synce.sourceforge.net which
|
||||
contains the necessary packages and a simple step-by-step howto.
|
||||
|
||||
Once connected, you can use Win CE programs like ftpView, Pocket Outlook
|
||||
from the PDA and xcerdisp, synce utilities from the Linux side.
|
||||
|
||||
To use Pocket IE, follow the instructions given at
|
||||
http://www.tekguru.co.uk/EM500/usbtonet.htm to achieve the same thing
|
||||
on Win98. Omit the proxy server part; Linux is quite capable of forwarding
|
||||
packets unlike Win98. Another modification is required at least for the
|
||||
iPAQ - disable autosync by going to the Start/Settings/Connections menu
|
||||
and unchecking the "Automatically synchronize ..." box. Go to
|
||||
Start/Programs/Connections, connect the cable and select "usbdial" (or
|
||||
whatever you named your new USB connection). You should finally wind
|
||||
up with a "Connected to usbdial" window with status shown as connected.
|
||||
Now start up PIE and browse away.
|
||||
|
||||
If it doesn't work for some reason, load both the usbserial and ipaq module
|
||||
with the module parameter "debug" set to 1 and examine the system log.
|
||||
You can also try soft-resetting your PDA before attempting a connection.
|
||||
|
||||
Other functionality may be possible depending on your PDA. According to
|
||||
Wes Cilldhaire <billybobjoehenrybob@hotmail.com>, with the Toshiba E570,
|
||||
...if you boot into the bootloader (hold down the power when hitting the
|
||||
reset button, continuing to hold onto the power until the bootloader screen
|
||||
is displayed), then put it in the cradle with the ipaq driver loaded, open
|
||||
a terminal on /dev/ttyUSB0, it gives you a "USB Reflash" terminal, which can
|
||||
be used to flash the ROM, as well as the microP code.. so much for needing
|
||||
Toshiba's $350 serial cable for flashing!! :D
|
||||
NOTE: This has NOT been tested. Use at your own risk.
|
||||
|
||||
For any questions or problems with the driver, please contact Ganesh
|
||||
Varadarajan <ganesh@veritas.com>
|
||||
|
||||
|
||||
Keyspan PDA Serial Adapter
|
||||
|
||||
Single port DB-9 serial adapter, pushed as a PDA adapter for iMacs (mostly
|
||||
sold in Macintosh catalogs, comes in a translucent white/green dongle).
|
||||
Fairly simple device. Firmware is homebrew.
|
||||
This driver also works for the Xircom/Entrgra single port serial adapter.
|
||||
|
||||
Current status:
|
||||
Things that work:
|
||||
basic input/output (tested with 'cu')
|
||||
blocking write when serial line can't keep up
|
||||
changing baud rates (up to 115200)
|
||||
getting/setting modem control pins (TIOCM{GET,SET,BIS,BIC})
|
||||
sending break (although duration looks suspect)
|
||||
Things that don't:
|
||||
device strings (as logged by kernel) have trailing binary garbage
|
||||
device ID isn't right, might collide with other Keyspan products
|
||||
changing baud rates ought to flush tx/rx to avoid mangled half characters
|
||||
Big Things on the todo list:
|
||||
parity, 7 vs 8 bits per char, 1 or 2 stop bits
|
||||
HW flow control
|
||||
not all of the standard USB descriptors are handled: Get_Status, Set_Feature
|
||||
O_NONBLOCK, select()
|
||||
|
||||
For any questions or problems with this driver, please contact Brian
|
||||
Warner at warner@lothar.com
|
||||
|
||||
|
||||
Keyspan USA-series Serial Adapters
|
||||
|
||||
Single, Dual and Quad port adapters - driver uses Keyspan supplied
|
||||
firmware and is being developed with their support.
|
||||
|
||||
Current status:
|
||||
The USA-18X, USA-28X, USA-19, USA-19W and USA-49W are supported and
|
||||
have been pretty thoroughly tested at various baud rates with 8-N-1
|
||||
character settings. Other character lengths and parity setups are
|
||||
presently untested.
|
||||
|
||||
The USA-28 isn't yet supported though doing so should be pretty
|
||||
straightforward. Contact the maintainer if you require this
|
||||
functionality.
|
||||
|
||||
More information is available at:
|
||||
http://www.carnationsoftware.com/carnation/Keyspan.html
|
||||
|
||||
For any questions or problems with this driver, please contact Hugh
|
||||
Blemings at hugh@misc.nu
|
||||
|
||||
|
||||
FTDI Single Port Serial Driver
|
||||
|
||||
This is a single port DB-25 serial adapter.
|
||||
|
||||
Devices supported include:
|
||||
-TripNav TN-200 USB GPS
|
||||
-Navis Engineering Bureau CH-4711 USB GPS
|
||||
|
||||
For any questions or problems with this driver, please contact Bill Ryder.
|
||||
|
||||
|
||||
ZyXEL omni.net lcd plus ISDN TA
|
||||
|
||||
This is an ISDN TA. Please report both successes and troubles to
|
||||
azummo@towertech.it
|
||||
|
||||
|
||||
Cypress M8 CY4601 Family Serial Driver
|
||||
|
||||
This driver was in most part developed by Neil "koyama" Whelchel. It
|
||||
has been improved since that previous form to support dynamic serial
|
||||
line settings and improved line handling. The driver is for the most
|
||||
part stable and has been tested on an smp machine. (dual p2)
|
||||
|
||||
Chipsets supported under CY4601 family:
|
||||
|
||||
CY7C63723, CY7C63742, CY7C63743, CY7C64013
|
||||
|
||||
Devices supported:
|
||||
|
||||
-DeLorme's USB Earthmate GPS (SiRF Star II lp arch)
|
||||
-Cypress HID->COM RS232 adapter
|
||||
|
||||
Note: Cypress Semiconductor claims no affiliation with the
|
||||
hid->com device.
|
||||
|
||||
Most devices using chipsets under the CY4601 family should
|
||||
work with the driver. As long as they stay true to the CY4601
|
||||
usbserial specification.
|
||||
|
||||
Technical notes:
|
||||
|
||||
The Earthmate starts out at 4800 8N1 by default... the driver will
|
||||
upon start init to this setting. usbserial core provides the rest
|
||||
of the termios settings, along with some custom termios so that the
|
||||
output is in proper format and parsable.
|
||||
|
||||
The device can be put into sirf mode by issuing NMEA command:
|
||||
$PSRF100,<protocol>,<baud>,<databits>,<stopbits>,<parity>*CHECKSUM
|
||||
$PSRF100,0,9600,8,1,0*0C
|
||||
|
||||
It should then be sufficient to change the port termios to match this
|
||||
to begin communicating.
|
||||
|
||||
As far as I can tell it supports pretty much every sirf command as
|
||||
documented online available with firmware 2.31, with some unknown
|
||||
message ids.
|
||||
|
||||
The hid->com adapter can run at a maximum baud of 115200bps. Please note
|
||||
that the device has trouble or is incapable of raising line voltage properly.
|
||||
It will be fine with null modem links, as long as you do not try to link two
|
||||
together without hacking the adapter to set the line high.
|
||||
|
||||
The driver is smp safe. Performance with the driver is rather low when using
|
||||
it for transferring files. This is being worked on, but I would be willing to
|
||||
accept patches. An urb queue or packet buffer would likely fit the bill here.
|
||||
|
||||
If you have any questions, problems, patches, feature requests, etc. you can
|
||||
contact me here via email:
|
||||
dignome@gmail.com
|
||||
(your problems/patches can alternately be submitted to usb-devel)
|
||||
|
||||
|
||||
Digi AccelePort Driver
|
||||
|
||||
This driver supports the Digi AccelePort USB 2 and 4 devices, 2 port
|
||||
(plus a parallel port) and 4 port USB serial converters. The driver
|
||||
does NOT yet support the Digi AccelePort USB 8.
|
||||
|
||||
This driver works under SMP with the usb-uhci driver. It does not
|
||||
work under SMP with the uhci driver.
|
||||
|
||||
The driver is generally working, though we still have a few more ioctls
|
||||
to implement and final testing and debugging to do. The parallel port
|
||||
on the USB 2 is supported as a serial to parallel converter; in other
|
||||
words, it appears as another USB serial port on Linux, even though
|
||||
physically it is really a parallel port. The Digi Acceleport USB 8
|
||||
is not yet supported.
|
||||
|
||||
Please contact Peter Berger (pberger@brimson.com) or Al Borchers
|
||||
(alborchers@steinerpoint.com) for questions or problems with this
|
||||
driver.
|
||||
|
||||
|
||||
Belkin USB Serial Adapter F5U103
|
||||
|
||||
Single port DB-9/PS-2 serial adapter from Belkin with firmware by eTEK Labs.
|
||||
The Peracom single port serial adapter also works with this driver, as
|
||||
well as the GoHubs adapter.
|
||||
|
||||
Current status:
|
||||
The following have been tested and work:
|
||||
Baud rate 300-230400
|
||||
Data bits 5-8
|
||||
Stop bits 1-2
|
||||
Parity N,E,O,M,S
|
||||
Handshake None, Software (XON/XOFF), Hardware (CTSRTS,CTSDTR)*
|
||||
Break Set and clear
|
||||
Line control Input/Output query and control **
|
||||
|
||||
* Hardware input flow control is only enabled for firmware
|
||||
levels above 2.06. Read source code comments describing Belkin
|
||||
firmware errata. Hardware output flow control is working for all
|
||||
firmware versions.
|
||||
** Queries of inputs (CTS,DSR,CD,RI) show the last
|
||||
reported state. Queries of outputs (DTR,RTS) show the last
|
||||
requested state and may not reflect current state as set by
|
||||
automatic hardware flow control.
|
||||
|
||||
TO DO List:
|
||||
-- Add true modem control line query capability. Currently tracks the
|
||||
states reported by the interrupt and the states requested.
|
||||
-- Add error reporting back to application for UART error conditions.
|
||||
-- Add support for flush ioctls.
|
||||
-- Add everything else that is missing :)
|
||||
|
||||
For any questions or problems with this driver, please contact William
|
||||
Greathouse at wgreathouse@smva.com
|
||||
|
||||
|
||||
Empeg empeg-car Mark I/II Driver
|
||||
|
||||
This is an experimental driver to provide connectivity support for the
|
||||
client synchronization tools for an Empeg empeg-car mp3 player.
|
||||
|
||||
Tips:
|
||||
* Don't forget to create the device nodes for ttyUSB{0,1,2,...}
|
||||
* modprobe empeg (modprobe is your friend)
|
||||
* emptool --usb /dev/ttyUSB0 (or whatever you named your device node)
|
||||
|
||||
For any questions or problems with this driver, please contact Gary
|
||||
Brubaker at xavyer@ix.netcom.com
|
||||
|
||||
|
||||
MCT USB Single Port Serial Adapter U232
|
||||
|
||||
This driver is for the MCT USB-RS232 Converter (25 pin, Model No.
|
||||
U232-P25) from Magic Control Technology Corp. (there is also a 9 pin
|
||||
Model No. U232-P9). More information about this device can be found at
|
||||
the manufacturer's web-site: http://www.mct.com.tw.
|
||||
|
||||
The driver is generally working, though it still needs some more testing.
|
||||
It is derived from the Belkin USB Serial Adapter F5U103 driver and its
|
||||
TODO list is valid for this driver as well.
|
||||
|
||||
This driver has also been found to work for other products, which have
|
||||
the same Vendor ID but different Product IDs. Sitecom's U232-P25 serial
|
||||
converter uses Product ID 0x230 and Vendor ID 0x711 and works with this
|
||||
driver. Also, D-Link's DU-H3SP USB BAY also works with this driver.
|
||||
|
||||
For any questions or problems with this driver, please contact Wolfgang
|
||||
Grandegger at wolfgang@ces.ch
|
||||
|
||||
|
||||
Inside Out Networks Edgeport Driver
|
||||
|
||||
This driver supports all devices made by Inside Out Networks, specifically
|
||||
the following models:
|
||||
Edgeport/4
|
||||
Rapidport/4
|
||||
Edgeport/4t
|
||||
Edgeport/2
|
||||
Edgeport/4i
|
||||
Edgeport/2i
|
||||
Edgeport/421
|
||||
Edgeport/21
|
||||
Edgeport/8
|
||||
Edgeport/8 Dual
|
||||
Edgeport/2D8
|
||||
Edgeport/4D8
|
||||
Edgeport/8i
|
||||
Edgeport/2 DIN
|
||||
Edgeport/4 DIN
|
||||
Edgeport/16 Dual
|
||||
|
||||
For any questions or problems with this driver, please contact Greg
|
||||
Kroah-Hartman at greg@kroah.com
|
||||
|
||||
|
||||
REINER SCT cyberJack pinpad/e-com USB chipcard reader
|
||||
|
||||
Interface to ISO 7816 compatible contactbased chipcards, e.g. GSM SIMs.
|
||||
|
||||
Current status:
|
||||
This is the kernel part of the driver for this USB card reader.
|
||||
There is also a user part for a CT-API driver available. A site
|
||||
for downloading is TBA. For now, you can request it from the
|
||||
maintainer (linux-usb@sii.li).
|
||||
|
||||
For any questions or problems with this driver, please contact
|
||||
linux-usb@sii.li
|
||||
|
||||
|
||||
Prolific PL2303 Driver
|
||||
|
||||
This driver supports any device that has the PL2303 chip from Prolific
|
||||
in it. This includes a number of single port USB to serial converters,
|
||||
more than 70% of USB GPS devices (in 2010), and some USB UPSes. Devices
|
||||
from Aten (the UC-232) and IO-Data work with this driver, as does
|
||||
the DCU-11 mobile-phone cable.
|
||||
|
||||
For any questions or problems with this driver, please contact Greg
|
||||
Kroah-Hartman at greg@kroah.com
|
||||
|
||||
|
||||
KL5KUSB105 chipset / PalmConnect USB single-port adapter
|
||||
|
||||
Current status:
|
||||
The driver was put together by looking at the usb bus transactions
|
||||
done by Palm's driver under Windows, so a lot of functionality is
|
||||
still missing. Notably, serial ioctls are sometimes faked or not yet
|
||||
implemented. Support for finding out about DSR and CTS line status is
|
||||
however implemented (though not nicely), so your favorite autopilot(1)
|
||||
and pilot-manager -daemon calls will work. Baud rates up to 115200
|
||||
are supported, but handshaking (software or hardware) is not, which is
|
||||
why it is wise to cut down on the rate used is wise for large
|
||||
transfers until this is settled.
|
||||
|
||||
Options supported:
|
||||
If this driver is compiled as a module you can pass the following
|
||||
options to it:
|
||||
debug - extra verbose debugging info
|
||||
(default: 0; nonzero enables)
|
||||
use_lowlatency - use low_latency flag to speed up tty layer
|
||||
when reading from the device.
|
||||
(default: 0; nonzero enables)
|
||||
|
||||
See http://www.uuhaus.de/linux/palmconnect.html for up-to-date
|
||||
information on this driver.
|
||||
|
||||
Winchiphead CH341 Driver
|
||||
|
||||
This driver is for the Winchiphead CH341 USB-RS232 Converter. This chip
|
||||
also implements an IEEE 1284 parallel port, I2C and SPI, but that is not
|
||||
supported by the driver. The protocol was analyzed from the behaviour
|
||||
of the Windows driver, no datasheet is available at present.
|
||||
The manufacturer's website: http://www.winchiphead.com/.
|
||||
For any questions or problems with this driver, please contact
|
||||
frank@kingswood-consulting.co.uk.
|
||||
|
||||
Moschip MCS7720, MCS7715 driver
|
||||
|
||||
These chips are present in devices sold by various manufacturers, such as Syba
|
||||
and Cables Unlimited. There may be others. The 7720 provides two serial
|
||||
ports, and the 7715 provides one serial and one standard PC parallel port.
|
||||
Support for the 7715's parallel port is enabled by a separate option, which
|
||||
will not appear unless parallel port support is first enabled at the top-level
|
||||
of the Device Drivers config menu. Currently only compatibility mode is
|
||||
supported on the parallel port (no ECP/EPP).
|
||||
|
||||
TODO:
|
||||
- Implement ECP/EPP modes for the parallel port.
|
||||
- Baud rates higher than 115200 are currently broken.
|
||||
- Devices with a single serial port based on the Moschip MCS7703 may work
|
||||
with this driver with a simple addition to the usb_device_id table. I
|
||||
don't have one of these devices, so I can't say for sure.
|
||||
|
||||
Generic Serial driver
|
||||
|
||||
If your device is not one of the above listed devices, compatible with
|
||||
the above models, you can try out the "generic" interface. This
|
||||
interface does not provide any type of control messages sent to the
|
||||
device, and does not support any kind of device flow control. All that
|
||||
is required of your device is that it has at least one bulk in endpoint,
|
||||
or one bulk out endpoint.
|
||||
|
||||
To enable the generic driver to recognize your device, build the driver
|
||||
as a module and load it by the following invocation:
|
||||
insmod usbserial vendor=0x#### product=0x####
|
||||
where the #### is replaced with the hex representation of your device's
|
||||
vendor id and product id.
|
||||
|
||||
This driver has been successfully used to connect to the NetChip USB
|
||||
development board, providing a way to develop USB firmware without
|
||||
having to write a custom driver.
|
||||
|
||||
For any questions or problems with this driver, please contact Greg
|
||||
Kroah-Hartman at greg@kroah.com
|
||||
|
||||
|
||||
CONTACT:
|
||||
|
||||
If anyone has any problems using these drivers, with any of the above
|
||||
specified products, please contact the specific driver's author listed
|
||||
above, or join the Linux-USB mailing list (information on joining the
|
||||
mailing list, as well as a link to its searchable archive is at
|
||||
http://www.linux-usb.org/ )
|
||||
|
||||
|
||||
Greg Kroah-Hartman
|
||||
greg@kroah.com
|
||||
355
Documentation/usb/usbmon.txt
Normal file
355
Documentation/usb/usbmon.txt
Normal file
|
|
@ -0,0 +1,355 @@
|
|||
* Introduction
|
||||
|
||||
The name "usbmon" in lowercase refers to a facility in kernel which is
|
||||
used to collect traces of I/O on the USB bus. This function is analogous
|
||||
to a packet socket used by network monitoring tools such as tcpdump(1)
|
||||
or Ethereal. Similarly, it is expected that a tool such as usbdump or
|
||||
USBMon (with uppercase letters) is used to examine raw traces produced
|
||||
by usbmon.
|
||||
|
||||
The usbmon reports requests made by peripheral-specific drivers to Host
|
||||
Controller Drivers (HCD). So, if HCD is buggy, the traces reported by
|
||||
usbmon may not correspond to bus transactions precisely. This is the same
|
||||
situation as with tcpdump.
|
||||
|
||||
Two APIs are currently implemented: "text" and "binary". The binary API
|
||||
is available through a character device in /dev namespace and is an ABI.
|
||||
The text API is deprecated since 2.6.35, but available for convenience.
|
||||
|
||||
* How to use usbmon to collect raw text traces
|
||||
|
||||
Unlike the packet socket, usbmon has an interface which provides traces
|
||||
in a text format. This is used for two purposes. First, it serves as a
|
||||
common trace exchange format for tools while more sophisticated formats
|
||||
are finalized. Second, humans can read it in case tools are not available.
|
||||
|
||||
To collect a raw text trace, execute following steps.
|
||||
|
||||
1. Prepare
|
||||
|
||||
Mount debugfs (it has to be enabled in your kernel configuration), and
|
||||
load the usbmon module (if built as module). The second step is skipped
|
||||
if usbmon is built into the kernel.
|
||||
|
||||
# mount -t debugfs none_debugs /sys/kernel/debug
|
||||
# modprobe usbmon
|
||||
#
|
||||
|
||||
Verify that bus sockets are present.
|
||||
|
||||
# ls /sys/kernel/debug/usb/usbmon
|
||||
0s 0u 1s 1t 1u 2s 2t 2u 3s 3t 3u 4s 4t 4u
|
||||
#
|
||||
|
||||
Now you can choose to either use the socket '0u' (to capture packets on all
|
||||
buses), and skip to step #3, or find the bus used by your device with step #2.
|
||||
This allows to filter away annoying devices that talk continuously.
|
||||
|
||||
2. Find which bus connects to the desired device
|
||||
|
||||
Run "cat /sys/kernel/debug/usb/devices", and find the T-line which corresponds
|
||||
to the device. Usually you do it by looking for the vendor string. If you have
|
||||
many similar devices, unplug one and compare the two
|
||||
/sys/kernel/debug/usb/devices outputs. The T-line will have a bus number.
|
||||
Example:
|
||||
|
||||
T: Bus=03 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 0
|
||||
D: Ver= 1.10 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0557 ProdID=2004 Rev= 1.00
|
||||
S: Manufacturer=ATEN
|
||||
S: Product=UC100KM V2.00
|
||||
|
||||
"Bus=03" means it's bus 3. Alternatively, you can look at the output from
|
||||
"lsusb" and get the bus number from the appropriate line. Example:
|
||||
|
||||
Bus 003 Device 002: ID 0557:2004 ATEN UC100KM V2.00
|
||||
|
||||
3. Start 'cat'
|
||||
|
||||
# cat /sys/kernel/debug/usb/usbmon/3u > /tmp/1.mon.out
|
||||
|
||||
to listen on a single bus, otherwise, to listen on all buses, type:
|
||||
|
||||
# cat /sys/kernel/debug/usb/usbmon/0u > /tmp/1.mon.out
|
||||
|
||||
This process will be reading until killed. Naturally, the output can be
|
||||
redirected to a desirable location. This is preferred, because it is going
|
||||
to be quite long.
|
||||
|
||||
4. Perform the desired operation on the USB bus
|
||||
|
||||
This is where you do something that creates the traffic: plug in a flash key,
|
||||
copy files, control a webcam, etc.
|
||||
|
||||
5. Kill cat
|
||||
|
||||
Usually it's done with a keyboard interrupt (Control-C).
|
||||
|
||||
At this point the output file (/tmp/1.mon.out in this example) can be saved,
|
||||
sent by e-mail, or inspected with a text editor. In the last case make sure
|
||||
that the file size is not excessive for your favourite editor.
|
||||
|
||||
* Raw text data format
|
||||
|
||||
Two formats are supported currently: the original, or '1t' format, and
|
||||
the '1u' format. The '1t' format is deprecated in kernel 2.6.21. The '1u'
|
||||
format adds a few fields, such as ISO frame descriptors, interval, etc.
|
||||
It produces slightly longer lines, but otherwise is a perfect superset
|
||||
of '1t' format.
|
||||
|
||||
If it is desired to recognize one from the other in a program, look at the
|
||||
"address" word (see below), where '1u' format adds a bus number. If 2 colons
|
||||
are present, it's the '1t' format, otherwise '1u'.
|
||||
|
||||
Any text format data consists of a stream of events, such as URB submission,
|
||||
URB callback, submission error. Every event is a text line, which consists
|
||||
of whitespace separated words. The number or position of words may depend
|
||||
on the event type, but there is a set of words, common for all types.
|
||||
|
||||
Here is the list of words, from left to right:
|
||||
|
||||
- URB Tag. This is used to identify URBs, and is normally an in-kernel address
|
||||
of the URB structure in hexadecimal, but can be a sequence number or any
|
||||
other unique string, within reason.
|
||||
|
||||
- Timestamp in microseconds, a decimal number. The timestamp's resolution
|
||||
depends on available clock, and so it can be much worse than a microsecond
|
||||
(if the implementation uses jiffies, for example).
|
||||
|
||||
- Event Type. This type refers to the format of the event, not URB type.
|
||||
Available types are: S - submission, C - callback, E - submission error.
|
||||
|
||||
- "Address" word (formerly a "pipe"). It consists of four fields, separated by
|
||||
colons: URB type and direction, Bus number, Device address, Endpoint number.
|
||||
Type and direction are encoded with two bytes in the following manner:
|
||||
Ci Co Control input and output
|
||||
Zi Zo Isochronous input and output
|
||||
Ii Io Interrupt input and output
|
||||
Bi Bo Bulk input and output
|
||||
Bus number, Device address, and Endpoint are decimal numbers, but they may
|
||||
have leading zeros, for the sake of human readers.
|
||||
|
||||
- URB Status word. This is either a letter, or several numbers separated
|
||||
by colons: URB status, interval, start frame, and error count. Unlike the
|
||||
"address" word, all fields save the status are optional. Interval is printed
|
||||
only for interrupt and isochronous URBs. Start frame is printed only for
|
||||
isochronous URBs. Error count is printed only for isochronous callback
|
||||
events.
|
||||
|
||||
The status field is a decimal number, sometimes negative, which represents
|
||||
a "status" field of the URB. This field makes no sense for submissions, but
|
||||
is present anyway to help scripts with parsing. When an error occurs, the
|
||||
field contains the error code.
|
||||
|
||||
In case of a submission of a Control packet, this field contains a Setup Tag
|
||||
instead of an group of numbers. It is easy to tell whether the Setup Tag is
|
||||
present because it is never a number. Thus if scripts find a set of numbers
|
||||
in this word, they proceed to read Data Length (except for isochronous URBs).
|
||||
If they find something else, like a letter, they read the setup packet before
|
||||
reading the Data Length or isochronous descriptors.
|
||||
|
||||
- Setup packet, if present, consists of 5 words: one of each for bmRequestType,
|
||||
bRequest, wValue, wIndex, wLength, as specified by the USB Specification 2.0.
|
||||
These words are safe to decode if Setup Tag was 's'. Otherwise, the setup
|
||||
packet was present, but not captured, and the fields contain filler.
|
||||
|
||||
- Number of isochronous frame descriptors and descriptors themselves.
|
||||
If an Isochronous transfer event has a set of descriptors, a total number
|
||||
of them in an URB is printed first, then a word per descriptor, up to a
|
||||
total of 5. The word consists of 3 colon-separated decimal numbers for
|
||||
status, offset, and length respectively. For submissions, initial length
|
||||
is reported. For callbacks, actual length is reported.
|
||||
|
||||
- Data Length. For submissions, this is the requested length. For callbacks,
|
||||
this is the actual length.
|
||||
|
||||
- Data tag. The usbmon may not always capture data, even if length is nonzero.
|
||||
The data words are present only if this tag is '='.
|
||||
|
||||
- Data words follow, in big endian hexadecimal format. Notice that they are
|
||||
not machine words, but really just a byte stream split into words to make
|
||||
it easier to read. Thus, the last word may contain from one to four bytes.
|
||||
The length of collected data is limited and can be less than the data length
|
||||
reported in the Data Length word. In the case of an Isochronous input (Zi)
|
||||
completion where the received data is sparse in the buffer, the length of
|
||||
the collected data can be greater than the Data Length value (because Data
|
||||
Length counts only the bytes that were received whereas the Data words
|
||||
contain the entire transfer buffer).
|
||||
|
||||
Examples:
|
||||
|
||||
An input control transfer to get a port status.
|
||||
|
||||
d5ea89a0 3575914555 S Ci:1:001:0 s a3 00 0000 0003 0004 4 <
|
||||
d5ea89a0 3575914560 C Ci:1:001:0 0 4 = 01050000
|
||||
|
||||
An output bulk transfer to send a SCSI command 0x28 (READ_10) in a 31-byte
|
||||
Bulk wrapper to a storage device at address 5:
|
||||
|
||||
dd65f0e8 4128379752 S Bo:1:005:2 -115 31 = 55534243 ad000000 00800000 80010a28 20000000 20000040 00000000 000000
|
||||
dd65f0e8 4128379808 C Bo:1:005:2 0 31 >
|
||||
|
||||
* Raw binary format and API
|
||||
|
||||
The overall architecture of the API is about the same as the one above,
|
||||
only the events are delivered in binary format. Each event is sent in
|
||||
the following structure (its name is made up, so that we can refer to it):
|
||||
|
||||
struct usbmon_packet {
|
||||
u64 id; /* 0: URB ID - from submission to callback */
|
||||
unsigned char type; /* 8: Same as text; extensible. */
|
||||
unsigned char xfer_type; /* ISO (0), Intr, Control, Bulk (3) */
|
||||
unsigned char epnum; /* Endpoint number and transfer direction */
|
||||
unsigned char devnum; /* Device address */
|
||||
u16 busnum; /* 12: Bus number */
|
||||
char flag_setup; /* 14: Same as text */
|
||||
char flag_data; /* 15: Same as text; Binary zero is OK. */
|
||||
s64 ts_sec; /* 16: gettimeofday */
|
||||
s32 ts_usec; /* 24: gettimeofday */
|
||||
int status; /* 28: */
|
||||
unsigned int length; /* 32: Length of data (submitted or actual) */
|
||||
unsigned int len_cap; /* 36: Delivered length */
|
||||
union { /* 40: */
|
||||
unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
|
||||
struct iso_rec { /* Only for ISO */
|
||||
int error_count;
|
||||
int numdesc;
|
||||
} iso;
|
||||
} s;
|
||||
int interval; /* 48: Only for Interrupt and ISO */
|
||||
int start_frame; /* 52: For ISO */
|
||||
unsigned int xfer_flags; /* 56: copy of URB's transfer_flags */
|
||||
unsigned int ndesc; /* 60: Actual number of ISO descriptors */
|
||||
}; /* 64 total length */
|
||||
|
||||
These events can be received from a character device by reading with read(2),
|
||||
with an ioctl(2), or by accessing the buffer with mmap. However, read(2)
|
||||
only returns first 48 bytes for compatibility reasons.
|
||||
|
||||
The character device is usually called /dev/usbmonN, where N is the USB bus
|
||||
number. Number zero (/dev/usbmon0) is special and means "all buses".
|
||||
Note that specific naming policy is set by your Linux distribution.
|
||||
|
||||
If you create /dev/usbmon0 by hand, make sure that it is owned by root
|
||||
and has mode 0600. Otherwise, unpriviledged users will be able to snoop
|
||||
keyboard traffic.
|
||||
|
||||
The following ioctl calls are available, with MON_IOC_MAGIC 0x92:
|
||||
|
||||
MON_IOCQ_URB_LEN, defined as _IO(MON_IOC_MAGIC, 1)
|
||||
|
||||
This call returns the length of data in the next event. Note that majority of
|
||||
events contain no data, so if this call returns zero, it does not mean that
|
||||
no events are available.
|
||||
|
||||
MON_IOCG_STATS, defined as _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
|
||||
|
||||
The argument is a pointer to the following structure:
|
||||
|
||||
struct mon_bin_stats {
|
||||
u32 queued;
|
||||
u32 dropped;
|
||||
};
|
||||
|
||||
The member "queued" refers to the number of events currently queued in the
|
||||
buffer (and not to the number of events processed since the last reset).
|
||||
|
||||
The member "dropped" is the number of events lost since the last call
|
||||
to MON_IOCG_STATS.
|
||||
|
||||
MON_IOCT_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 4)
|
||||
|
||||
This call sets the buffer size. The argument is the size in bytes.
|
||||
The size may be rounded down to the next chunk (or page). If the requested
|
||||
size is out of [unspecified] bounds for this kernel, the call fails with
|
||||
-EINVAL.
|
||||
|
||||
MON_IOCQ_RING_SIZE, defined as _IO(MON_IOC_MAGIC, 5)
|
||||
|
||||
This call returns the current size of the buffer in bytes.
|
||||
|
||||
MON_IOCX_GET, defined as _IOW(MON_IOC_MAGIC, 6, struct mon_get_arg)
|
||||
MON_IOCX_GETX, defined as _IOW(MON_IOC_MAGIC, 10, struct mon_get_arg)
|
||||
|
||||
These calls wait for events to arrive if none were in the kernel buffer,
|
||||
then return the first event. The argument is a pointer to the following
|
||||
structure:
|
||||
|
||||
struct mon_get_arg {
|
||||
struct usbmon_packet *hdr;
|
||||
void *data;
|
||||
size_t alloc; /* Length of data (can be zero) */
|
||||
};
|
||||
|
||||
Before the call, hdr, data, and alloc should be filled. Upon return, the area
|
||||
pointed by hdr contains the next event structure, and the data buffer contains
|
||||
the data, if any. The event is removed from the kernel buffer.
|
||||
|
||||
The MON_IOCX_GET copies 48 bytes to hdr area, MON_IOCX_GETX copies 64 bytes.
|
||||
|
||||
MON_IOCX_MFETCH, defined as _IOWR(MON_IOC_MAGIC, 7, struct mon_mfetch_arg)
|
||||
|
||||
This ioctl is primarily used when the application accesses the buffer
|
||||
with mmap(2). Its argument is a pointer to the following structure:
|
||||
|
||||
struct mon_mfetch_arg {
|
||||
uint32_t *offvec; /* Vector of events fetched */
|
||||
uint32_t nfetch; /* Number of events to fetch (out: fetched) */
|
||||
uint32_t nflush; /* Number of events to flush */
|
||||
};
|
||||
|
||||
The ioctl operates in 3 stages.
|
||||
|
||||
First, it removes and discards up to nflush events from the kernel buffer.
|
||||
The actual number of events discarded is returned in nflush.
|
||||
|
||||
Second, it waits for an event to be present in the buffer, unless the pseudo-
|
||||
device is open with O_NONBLOCK.
|
||||
|
||||
Third, it extracts up to nfetch offsets into the mmap buffer, and stores
|
||||
them into the offvec. The actual number of event offsets is stored into
|
||||
the nfetch.
|
||||
|
||||
MON_IOCH_MFLUSH, defined as _IO(MON_IOC_MAGIC, 8)
|
||||
|
||||
This call removes a number of events from the kernel buffer. Its argument
|
||||
is the number of events to remove. If the buffer contains fewer events
|
||||
than requested, all events present are removed, and no error is reported.
|
||||
This works when no events are available too.
|
||||
|
||||
FIONBIO
|
||||
|
||||
The ioctl FIONBIO may be implemented in the future, if there's a need.
|
||||
|
||||
In addition to ioctl(2) and read(2), the special file of binary API can
|
||||
be polled with select(2) and poll(2). But lseek(2) does not work.
|
||||
|
||||
* Memory-mapped access of the kernel buffer for the binary API
|
||||
|
||||
The basic idea is simple:
|
||||
|
||||
To prepare, map the buffer by getting the current size, then using mmap(2).
|
||||
Then, execute a loop similar to the one written in pseudo-code below:
|
||||
|
||||
struct mon_mfetch_arg fetch;
|
||||
struct usbmon_packet *hdr;
|
||||
int nflush = 0;
|
||||
for (;;) {
|
||||
fetch.offvec = vec; // Has N 32-bit words
|
||||
fetch.nfetch = N; // Or less than N
|
||||
fetch.nflush = nflush;
|
||||
ioctl(fd, MON_IOCX_MFETCH, &fetch); // Process errors, too
|
||||
nflush = fetch.nfetch; // This many packets to flush when done
|
||||
for (i = 0; i < nflush; i++) {
|
||||
hdr = (struct ubsmon_packet *) &mmap_area[vec[i]];
|
||||
if (hdr->type == '@') // Filler packet
|
||||
continue;
|
||||
caddr_t data = &mmap_area[vec[i]] + 64;
|
||||
process_packet(hdr, data);
|
||||
}
|
||||
}
|
||||
|
||||
Thus, the main idea is to execute only one ioctl per N events.
|
||||
|
||||
Although the buffer is circular, the returned headers and data do not cross
|
||||
the end of the buffer, so the above pseudo-code does not need any gathering.
|
||||
130
Documentation/usb/wusb-cbaf
Normal file
130
Documentation/usb/wusb-cbaf
Normal file
|
|
@ -0,0 +1,130 @@
|
|||
#! /bin/bash
|
||||
#
|
||||
|
||||
set -e
|
||||
|
||||
progname=$(basename $0)
|
||||
function help
|
||||
{
|
||||
cat <<EOF
|
||||
Usage: $progname COMMAND DEVICEs [ARGS]
|
||||
|
||||
Command for manipulating the pairing/authentication credentials of a
|
||||
Wireless USB device that supports wired-mode Cable-Based-Association.
|
||||
|
||||
Works in conjunction with the wusb-cba.ko driver from http://linuxuwb.org.
|
||||
|
||||
|
||||
DEVICE
|
||||
|
||||
sysfs path to the device to authenticate; for example, both this
|
||||
guys are the same:
|
||||
|
||||
/sys/devices/pci0000:00/0000:00:1d.7/usb1/1-4/1-4.4/1-4.4:1.1
|
||||
/sys/bus/usb/drivers/wusb-cbaf/1-4.4:1.1
|
||||
|
||||
COMMAND/ARGS are
|
||||
|
||||
start
|
||||
|
||||
Start a WUSB host controller (by setting up a CHID)
|
||||
|
||||
set-chid DEVICE HOST-CHID HOST-BANDGROUP HOST-NAME
|
||||
|
||||
Sets host information in the device; after this you can call the
|
||||
get-cdid to see how does this device report itself to us.
|
||||
|
||||
get-cdid DEVICE
|
||||
|
||||
Get the device ID associated to the HOST-CHID we sent with
|
||||
'set-chid'. We might not know about it.
|
||||
|
||||
set-cc DEVICE
|
||||
|
||||
If we allow the device to connect, set a random new CDID and CK
|
||||
(connection key). Device saves them for the next time it wants to
|
||||
connect wireless. We save them for that next time also so we can
|
||||
authenticate the device (when we see the CDID he uses to id
|
||||
itself) and the CK to crypto talk to it.
|
||||
|
||||
CHID is always 16 hex bytes in 'XX YY ZZ...' form
|
||||
BANDGROUP is almost always 0001
|
||||
|
||||
Examples:
|
||||
|
||||
You can default most arguments to '' to get a sane value:
|
||||
|
||||
$ $progname set-chid '' '' '' "My host name"
|
||||
|
||||
A full sequence:
|
||||
|
||||
$ $progname set-chid '' '' '' "My host name"
|
||||
$ $progname get-cdid ''
|
||||
$ $progname set-cc ''
|
||||
|
||||
EOF
|
||||
}
|
||||
|
||||
|
||||
# Defaults
|
||||
# FIXME: CHID should come from a database :), band group from the host
|
||||
host_CHID="00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff"
|
||||
host_band_group="0001"
|
||||
host_name=$(hostname)
|
||||
|
||||
devs="$(echo /sys/bus/usb/drivers/wusb-cbaf/[0-9]*)"
|
||||
hdevs="$(for h in /sys/class/uwb_rc/*/wusbhc; do readlink -f $h; done)"
|
||||
|
||||
result=0
|
||||
case $1 in
|
||||
start)
|
||||
for dev in ${2:-$hdevs}
|
||||
do
|
||||
echo $host_CHID > $dev/wusb_chid
|
||||
echo I: started host $(basename $dev) >&2
|
||||
done
|
||||
;;
|
||||
stop)
|
||||
for dev in ${2:-$hdevs}
|
||||
do
|
||||
echo 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 > $dev/wusb_chid
|
||||
echo I: stopped host $(basename $dev) >&2
|
||||
done
|
||||
;;
|
||||
set-chid)
|
||||
shift
|
||||
for dev in ${2:-$devs}; do
|
||||
echo "${4:-$host_name}" > $dev/wusb_host_name
|
||||
echo "${3:-$host_band_group}" > $dev/wusb_host_band_groups
|
||||
echo ${2:-$host_CHID} > $dev/wusb_chid
|
||||
done
|
||||
;;
|
||||
get-cdid)
|
||||
for dev in ${2:-$devs}
|
||||
do
|
||||
cat $dev/wusb_cdid
|
||||
done
|
||||
;;
|
||||
set-cc)
|
||||
for dev in ${2:-$devs}; do
|
||||
shift
|
||||
CDID="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
|
||||
CK="$(head --bytes=16 /dev/urandom | od -tx1 -An)"
|
||||
echo "$CDID" > $dev/wusb_cdid
|
||||
echo "$CK" > $dev/wusb_ck
|
||||
|
||||
echo I: CC set >&2
|
||||
echo "CHID: $(cat $dev/wusb_chid)"
|
||||
echo "CDID:$CDID"
|
||||
echo "CK: $CK"
|
||||
done
|
||||
;;
|
||||
help|h|--help|-h)
|
||||
help
|
||||
;;
|
||||
*)
|
||||
echo "E: Unknown usage" 1>&2
|
||||
help 1>&2
|
||||
result=1
|
||||
esac
|
||||
exit $result
|
||||
Loading…
Add table
Add a link
Reference in a new issue