mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-07 16:58:04 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
133
Documentation/usb/dma.txt
Normal file
133
Documentation/usb/dma.txt
Normal file
|
@ -0,0 +1,133 @@
|
|||
In Linux 2.5 kernels (and later), USB device drivers have additional control
|
||||
over how DMA may be used to perform I/O operations. The APIs are detailed
|
||||
in the kernel usb programming guide (kerneldoc, from the source code).
|
||||
|
||||
|
||||
API OVERVIEW
|
||||
|
||||
The big picture is that USB drivers can continue to ignore most DMA issues,
|
||||
though they still must provide DMA-ready buffers (see
|
||||
Documentation/DMA-API-HOWTO.txt). That's how they've worked through
|
||||
the 2.4 (and earlier) kernels.
|
||||
|
||||
OR: they can now be DMA-aware.
|
||||
|
||||
- New calls enable DMA-aware drivers, letting them allocate dma buffers and
|
||||
manage dma mappings for existing dma-ready buffers (see below).
|
||||
|
||||
- URBs have an additional "transfer_dma" field, as well as a transfer_flags
|
||||
bit saying if it's valid. (Control requests also have "setup_dma", but
|
||||
drivers must not use it.)
|
||||
|
||||
- "usbcore" will map this DMA address, if a DMA-aware driver didn't do
|
||||
it first and set URB_NO_TRANSFER_DMA_MAP. HCDs
|
||||
don't manage dma mappings for URBs.
|
||||
|
||||
- There's a new "generic DMA API", parts of which are usable by USB device
|
||||
drivers. Never use dma_set_mask() on any USB interface or device; that
|
||||
would potentially break all devices sharing that bus.
|
||||
|
||||
|
||||
ELIMINATING COPIES
|
||||
|
||||
It's good to avoid making CPUs copy data needlessly. The costs can add up,
|
||||
and effects like cache-trashing can impose subtle penalties.
|
||||
|
||||
- If you're doing lots of small data transfers from the same buffer all
|
||||
the time, that can really burn up resources on systems which use an
|
||||
IOMMU to manage the DMA mappings. It can cost MUCH more to set up and
|
||||
tear down the IOMMU mappings with each request than perform the I/O!
|
||||
|
||||
For those specific cases, USB has primitives to allocate less expensive
|
||||
memory. They work like kmalloc and kfree versions that give you the right
|
||||
kind of addresses to store in urb->transfer_buffer and urb->transfer_dma.
|
||||
You'd also set URB_NO_TRANSFER_DMA_MAP in urb->transfer_flags:
|
||||
|
||||
void *usb_alloc_coherent (struct usb_device *dev, size_t size,
|
||||
int mem_flags, dma_addr_t *dma);
|
||||
|
||||
void usb_free_coherent (struct usb_device *dev, size_t size,
|
||||
void *addr, dma_addr_t dma);
|
||||
|
||||
Most drivers should *NOT* be using these primitives; they don't need
|
||||
to use this type of memory ("dma-coherent"), and memory returned from
|
||||
kmalloc() will work just fine.
|
||||
|
||||
The memory buffer returned is "dma-coherent"; sometimes you might need to
|
||||
force a consistent memory access ordering by using memory barriers. It's
|
||||
not using a streaming DMA mapping, so it's good for small transfers on
|
||||
systems where the I/O would otherwise thrash an IOMMU mapping. (See
|
||||
Documentation/DMA-API-HOWTO.txt for definitions of "coherent" and
|
||||
"streaming" DMA mappings.)
|
||||
|
||||
Asking for 1/Nth of a page (as well as asking for N pages) is reasonably
|
||||
space-efficient.
|
||||
|
||||
On most systems the memory returned will be uncached, because the
|
||||
semantics of dma-coherent memory require either bypassing CPU caches
|
||||
or using cache hardware with bus-snooping support. While x86 hardware
|
||||
has such bus-snooping, many other systems use software to flush cache
|
||||
lines to prevent DMA conflicts.
|
||||
|
||||
- Devices on some EHCI controllers could handle DMA to/from high memory.
|
||||
|
||||
Unfortunately, the current Linux DMA infrastructure doesn't have a sane
|
||||
way to expose these capabilities ... and in any case, HIGHMEM is mostly a
|
||||
design wart specific to x86_32. So your best bet is to ensure you never
|
||||
pass a highmem buffer into a USB driver. That's easy; it's the default
|
||||
behavior. Just don't override it; e.g. with NETIF_F_HIGHDMA.
|
||||
|
||||
This may force your callers to do some bounce buffering, copying from
|
||||
high memory to "normal" DMA memory. If you can come up with a good way
|
||||
to fix this issue (for x86_32 machines with over 1 GByte of memory),
|
||||
feel free to submit patches.
|
||||
|
||||
|
||||
WORKING WITH EXISTING BUFFERS
|
||||
|
||||
Existing buffers aren't usable for DMA without first being mapped into the
|
||||
DMA address space of the device. However, most buffers passed to your
|
||||
driver can safely be used with such DMA mapping. (See the first section
|
||||
of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?")
|
||||
|
||||
- When you're using scatterlists, you can map everything at once. On some
|
||||
systems, this kicks in an IOMMU and turns the scatterlists into single
|
||||
DMA transactions:
|
||||
|
||||
int usb_buffer_map_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int nents);
|
||||
|
||||
void usb_buffer_dmasync_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int n_hw_ents);
|
||||
|
||||
void usb_buffer_unmap_sg (struct usb_device *dev, unsigned pipe,
|
||||
struct scatterlist *sg, int n_hw_ents);
|
||||
|
||||
It's probably easier to use the new usb_sg_*() calls, which do the DMA
|
||||
mapping and apply other tweaks to make scatterlist i/o be fast.
|
||||
|
||||
- Some drivers may prefer to work with the model that they're mapping large
|
||||
buffers, synchronizing their safe re-use. (If there's no re-use, then let
|
||||
usbcore do the map/unmap.) Large periodic transfers make good examples
|
||||
here, since it's cheaper to just synchronize the buffer than to unmap it
|
||||
each time an urb completes and then re-map it on during resubmission.
|
||||
|
||||
These calls all work with initialized urbs: urb->dev, urb->pipe,
|
||||
urb->transfer_buffer, and urb->transfer_buffer_length must all be
|
||||
valid when these calls are used (urb->setup_packet must be valid too
|
||||
if urb is a control request):
|
||||
|
||||
struct urb *usb_buffer_map (struct urb *urb);
|
||||
|
||||
void usb_buffer_dmasync (struct urb *urb);
|
||||
|
||||
void usb_buffer_unmap (struct urb *urb);
|
||||
|
||||
The calls manage urb->transfer_dma for you, and set URB_NO_TRANSFER_DMA_MAP
|
||||
so that usbcore won't map or unmap the buffer. They cannot be used for
|
||||
setup_packet buffers in control requests.
|
||||
|
||||
Note that several of those interfaces are currently commented out, since
|
||||
they don't have current users. See the source code. Other than the dmasync
|
||||
calls (where the underlying DMA primitives have changed), most of them can
|
||||
easily be commented back in if you want to use them.
|
Loading…
Add table
Add a link
Reference in a new issue