mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-06 08:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
390
Documentation/usb/proc_usb_info.txt
Normal file
390
Documentation/usb/proc_usb_info.txt
Normal file
|
@ -0,0 +1,390 @@
|
|||
/proc/bus/usb filesystem output
|
||||
===============================
|
||||
(version 2010.09.13)
|
||||
|
||||
|
||||
The usbfs filesystem for USB devices is traditionally mounted at
|
||||
/proc/bus/usb. It provides the /proc/bus/usb/devices file, as well as
|
||||
the /proc/bus/usb/BBB/DDD files.
|
||||
|
||||
In many modern systems the usbfs filesystem isn't used at all. Instead
|
||||
USB device nodes are created under /dev/usb/ or someplace similar. The
|
||||
"devices" file is available in debugfs, typically as
|
||||
/sys/kernel/debug/usb/devices.
|
||||
|
||||
|
||||
**NOTE**: If /proc/bus/usb appears empty, and a host controller
|
||||
driver has been linked, then you need to mount the
|
||||
filesystem. Issue the command (as root):
|
||||
|
||||
mount -t usbfs none /proc/bus/usb
|
||||
|
||||
An alternative and more permanent method would be to add
|
||||
|
||||
none /proc/bus/usb usbfs defaults 0 0
|
||||
|
||||
to /etc/fstab. This will mount usbfs at each reboot.
|
||||
You can then issue `cat /proc/bus/usb/devices` to extract
|
||||
USB device information, and user mode drivers can use usbfs
|
||||
to interact with USB devices.
|
||||
|
||||
There are a number of mount options supported by usbfs.
|
||||
Consult the source code (linux/drivers/usb/core/inode.c) for
|
||||
information about those options.
|
||||
|
||||
**NOTE**: The filesystem has been renamed from "usbdevfs" to
|
||||
"usbfs", to reduce confusion with "devfs". You may
|
||||
still see references to the older "usbdevfs" name.
|
||||
|
||||
For more information on mounting the usbfs file system, see the
|
||||
"USB Device Filesystem" section of the USB Guide. The latest copy
|
||||
of the USB Guide can be found at http://www.linux-usb.org/
|
||||
|
||||
|
||||
THE /proc/bus/usb/BBB/DDD FILES:
|
||||
--------------------------------
|
||||
Each connected USB device has one file. The BBB indicates the bus
|
||||
number. The DDD indicates the device address on that bus. Both
|
||||
of these numbers are assigned sequentially, and can be reused, so
|
||||
you can't rely on them for stable access to devices. For example,
|
||||
it's relatively common for devices to re-enumerate while they are
|
||||
still connected (perhaps someone jostled their power supply, hub,
|
||||
or USB cable), so a device might be 002/027 when you first connect
|
||||
it and 002/048 sometime later.
|
||||
|
||||
These files can be read as binary data. The binary data consists
|
||||
of first the device descriptor, then the descriptors for each
|
||||
configuration of the device. Multi-byte fields in the device descriptor
|
||||
are converted to host endianness by the kernel. The configuration
|
||||
descriptors are in bus endian format! The configuration descriptor
|
||||
are wTotalLength bytes apart. If a device returns less configuration
|
||||
descriptor data than indicated by wTotalLength there will be a hole in
|
||||
the file for the missing bytes. This information is also shown
|
||||
in text form by the /proc/bus/usb/devices file, described later.
|
||||
|
||||
These files may also be used to write user-level drivers for the USB
|
||||
devices. You would open the /proc/bus/usb/BBB/DDD file read/write,
|
||||
read its descriptors to make sure it's the device you expect, and then
|
||||
bind to an interface (or perhaps several) using an ioctl call. You
|
||||
would issue more ioctls to the device to communicate to it using
|
||||
control, bulk, or other kinds of USB transfers. The IOCTLs are
|
||||
listed in the <linux/usbdevice_fs.h> file, and at this writing the
|
||||
source code (linux/drivers/usb/core/devio.c) is the primary reference
|
||||
for how to access devices through those files.
|
||||
|
||||
Note that since by default these BBB/DDD files are writable only by
|
||||
root, only root can write such user mode drivers. You can selectively
|
||||
grant read/write permissions to other users by using "chmod". Also,
|
||||
usbfs mount options such as "devmode=0666" may be helpful.
|
||||
|
||||
|
||||
|
||||
THE /proc/bus/usb/devices FILE:
|
||||
-------------------------------
|
||||
In /proc/bus/usb/devices, each device's output has multiple
|
||||
lines of ASCII output.
|
||||
I made it ASCII instead of binary on purpose, so that someone
|
||||
can obtain some useful data from it without the use of an
|
||||
auxiliary program. However, with an auxiliary program, the numbers
|
||||
in the first 4 columns of each "T:" line (topology info:
|
||||
Lev, Prnt, Port, Cnt) can be used to build a USB topology diagram.
|
||||
|
||||
Each line is tagged with a one-character ID for that line:
|
||||
|
||||
T = Topology (etc.)
|
||||
B = Bandwidth (applies only to USB host controllers, which are
|
||||
virtualized as root hubs)
|
||||
D = Device descriptor info.
|
||||
P = Product ID info. (from Device descriptor, but they won't fit
|
||||
together on one line)
|
||||
S = String descriptors.
|
||||
C = Configuration descriptor info. (* = active configuration)
|
||||
I = Interface descriptor info.
|
||||
E = Endpoint descriptor info.
|
||||
|
||||
=======================================================================
|
||||
|
||||
/proc/bus/usb/devices output format:
|
||||
|
||||
Legend:
|
||||
d = decimal number (may have leading spaces or 0's)
|
||||
x = hexadecimal number (may have leading spaces or 0's)
|
||||
s = string
|
||||
|
||||
|
||||
Topology info:
|
||||
|
||||
T: Bus=dd Lev=dd Prnt=dd Port=dd Cnt=dd Dev#=ddd Spd=dddd MxCh=dd
|
||||
| | | | | | | | |__MaxChildren
|
||||
| | | | | | | |__Device Speed in Mbps
|
||||
| | | | | | |__DeviceNumber
|
||||
| | | | | |__Count of devices at this level
|
||||
| | | | |__Connector/Port on Parent for this device
|
||||
| | | |__Parent DeviceNumber
|
||||
| | |__Level in topology for this bus
|
||||
| |__Bus number
|
||||
|__Topology info tag
|
||||
|
||||
Speed may be:
|
||||
1.5 Mbit/s for low speed USB
|
||||
12 Mbit/s for full speed USB
|
||||
480 Mbit/s for high speed USB (added for USB 2.0);
|
||||
also used for Wireless USB, which has no fixed speed
|
||||
5000 Mbit/s for SuperSpeed USB (added for USB 3.0)
|
||||
|
||||
For reasons lost in the mists of time, the Port number is always
|
||||
too low by 1. For example, a device plugged into port 4 will
|
||||
show up with "Port=03".
|
||||
|
||||
Bandwidth info:
|
||||
B: Alloc=ddd/ddd us (xx%), #Int=ddd, #Iso=ddd
|
||||
| | | |__Number of isochronous requests
|
||||
| | |__Number of interrupt requests
|
||||
| |__Total Bandwidth allocated to this bus
|
||||
|__Bandwidth info tag
|
||||
|
||||
Bandwidth allocation is an approximation of how much of one frame
|
||||
(millisecond) is in use. It reflects only periodic transfers, which
|
||||
are the only transfers that reserve bandwidth. Control and bulk
|
||||
transfers use all other bandwidth, including reserved bandwidth that
|
||||
is not used for transfers (such as for short packets).
|
||||
|
||||
The percentage is how much of the "reserved" bandwidth is scheduled by
|
||||
those transfers. For a low or full speed bus (loosely, "USB 1.1"),
|
||||
90% of the bus bandwidth is reserved. For a high speed bus (loosely,
|
||||
"USB 2.0") 80% is reserved.
|
||||
|
||||
|
||||
Device descriptor info & Product ID info:
|
||||
|
||||
D: Ver=x.xx Cls=xx(s) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
|
||||
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
|
||||
|
||||
where
|
||||
D: Ver=x.xx Cls=xx(sssss) Sub=xx Prot=xx MxPS=dd #Cfgs=dd
|
||||
| | | | | | |__NumberConfigurations
|
||||
| | | | | |__MaxPacketSize of Default Endpoint
|
||||
| | | | |__DeviceProtocol
|
||||
| | | |__DeviceSubClass
|
||||
| | |__DeviceClass
|
||||
| |__Device USB version
|
||||
|__Device info tag #1
|
||||
|
||||
where
|
||||
P: Vendor=xxxx ProdID=xxxx Rev=xx.xx
|
||||
| | | |__Product revision number
|
||||
| | |__Product ID code
|
||||
| |__Vendor ID code
|
||||
|__Device info tag #2
|
||||
|
||||
|
||||
String descriptor info:
|
||||
|
||||
S: Manufacturer=ssss
|
||||
| |__Manufacturer of this device as read from the device.
|
||||
| For USB host controller drivers (virtual root hubs) this may
|
||||
| be omitted, or (for newer drivers) will identify the kernel
|
||||
| version and the driver which provides this hub emulation.
|
||||
|__String info tag
|
||||
|
||||
S: Product=ssss
|
||||
| |__Product description of this device as read from the device.
|
||||
| For older USB host controller drivers (virtual root hubs) this
|
||||
| indicates the driver; for newer ones, it's a product (and vendor)
|
||||
| description that often comes from the kernel's PCI ID database.
|
||||
|__String info tag
|
||||
|
||||
S: SerialNumber=ssss
|
||||
| |__Serial Number of this device as read from the device.
|
||||
| For USB host controller drivers (virtual root hubs) this is
|
||||
| some unique ID, normally a bus ID (address or slot name) that
|
||||
| can't be shared with any other device.
|
||||
|__String info tag
|
||||
|
||||
|
||||
|
||||
Configuration descriptor info:
|
||||
|
||||
C:* #Ifs=dd Cfg#=dd Atr=xx MPwr=dddmA
|
||||
| | | | | |__MaxPower in mA
|
||||
| | | | |__Attributes
|
||||
| | | |__ConfiguratioNumber
|
||||
| | |__NumberOfInterfaces
|
||||
| |__ "*" indicates the active configuration (others are " ")
|
||||
|__Config info tag
|
||||
|
||||
USB devices may have multiple configurations, each of which act
|
||||
rather differently. For example, a bus-powered configuration
|
||||
might be much less capable than one that is self-powered. Only
|
||||
one device configuration can be active at a time; most devices
|
||||
have only one configuration.
|
||||
|
||||
Each configuration consists of one or more interfaces. Each
|
||||
interface serves a distinct "function", which is typically bound
|
||||
to a different USB device driver. One common example is a USB
|
||||
speaker with an audio interface for playback, and a HID interface
|
||||
for use with software volume control.
|
||||
|
||||
|
||||
Interface descriptor info (can be multiple per Config):
|
||||
|
||||
I:* If#=dd Alt=dd #EPs=dd Cls=xx(sssss) Sub=xx Prot=xx Driver=ssss
|
||||
| | | | | | | | |__Driver name
|
||||
| | | | | | | | or "(none)"
|
||||
| | | | | | | |__InterfaceProtocol
|
||||
| | | | | | |__InterfaceSubClass
|
||||
| | | | | |__InterfaceClass
|
||||
| | | | |__NumberOfEndpoints
|
||||
| | | |__AlternateSettingNumber
|
||||
| | |__InterfaceNumber
|
||||
| |__ "*" indicates the active altsetting (others are " ")
|
||||
|__Interface info tag
|
||||
|
||||
A given interface may have one or more "alternate" settings.
|
||||
For example, default settings may not use more than a small
|
||||
amount of periodic bandwidth. To use significant fractions
|
||||
of bus bandwidth, drivers must select a non-default altsetting.
|
||||
|
||||
Only one setting for an interface may be active at a time, and
|
||||
only one driver may bind to an interface at a time. Most devices
|
||||
have only one alternate setting per interface.
|
||||
|
||||
|
||||
Endpoint descriptor info (can be multiple per Interface):
|
||||
|
||||
E: Ad=xx(s) Atr=xx(ssss) MxPS=dddd Ivl=dddss
|
||||
| | | | |__Interval (max) between transfers
|
||||
| | | |__EndpointMaxPacketSize
|
||||
| | |__Attributes(EndpointType)
|
||||
| |__EndpointAddress(I=In,O=Out)
|
||||
|__Endpoint info tag
|
||||
|
||||
The interval is nonzero for all periodic (interrupt or isochronous)
|
||||
endpoints. For high speed endpoints the transfer interval may be
|
||||
measured in microseconds rather than milliseconds.
|
||||
|
||||
For high speed periodic endpoints, the "MaxPacketSize" reflects
|
||||
the per-microframe data transfer size. For "high bandwidth"
|
||||
endpoints, that can reflect two or three packets (for up to
|
||||
3KBytes every 125 usec) per endpoint.
|
||||
|
||||
With the Linux-USB stack, periodic bandwidth reservations use the
|
||||
transfer intervals and sizes provided by URBs, which can be less
|
||||
than those found in endpoint descriptor.
|
||||
|
||||
|
||||
=======================================================================
|
||||
|
||||
|
||||
If a user or script is interested only in Topology info, for
|
||||
example, use something like "grep ^T: /proc/bus/usb/devices"
|
||||
for only the Topology lines. A command like
|
||||
"grep -i ^[tdp]: /proc/bus/usb/devices" can be used to list
|
||||
only the lines that begin with the characters in square brackets,
|
||||
where the valid characters are TDPCIE. With a slightly more able
|
||||
script, it can display any selected lines (for example, only T, D,
|
||||
and P lines) and change their output format. (The "procusb"
|
||||
Perl script is the beginning of this idea. It will list only
|
||||
selected lines [selected from TBDPSCIE] or "All" lines from
|
||||
/proc/bus/usb/devices.)
|
||||
|
||||
The Topology lines can be used to generate a graphic/pictorial
|
||||
of the USB devices on a system's root hub. (See more below
|
||||
on how to do this.)
|
||||
|
||||
The Interface lines can be used to determine what driver is
|
||||
being used for each device, and which altsetting it activated.
|
||||
|
||||
The Configuration lines could be used to list maximum power
|
||||
(in milliamps) that a system's USB devices are using.
|
||||
For example, "grep ^C: /proc/bus/usb/devices".
|
||||
|
||||
|
||||
Here's an example, from a system which has a UHCI root hub,
|
||||
an external hub connected to the root hub, and a mouse and
|
||||
a serial converter connected to the external hub.
|
||||
|
||||
T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
|
||||
B: Alloc= 28/900 us ( 3%), #Int= 2, #Iso= 0
|
||||
D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0000 ProdID=0000 Rev= 0.00
|
||||
S: Product=USB UHCI Root Hub
|
||||
S: SerialNumber=dce0
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=40 MxPwr= 0mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 8 Ivl=255ms
|
||||
|
||||
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
|
||||
D: Ver= 1.00 Cls=09(hub ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0451 ProdID=1446 Rev= 1.00
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=e0 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 1 Ivl=255ms
|
||||
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
|
||||
D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=04b4 ProdID=0001 Rev= 0.00
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse
|
||||
E: Ad=81(I) Atr=03(Int.) MxPS= 3 Ivl= 10ms
|
||||
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
|
||||
D: Ver= 1.00 Cls=00(>ifc ) Sub=00 Prot=00 MxPS= 8 #Cfgs= 1
|
||||
P: Vendor=0565 ProdID=0001 Rev= 1.08
|
||||
S: Manufacturer=Peracom Networks, Inc.
|
||||
S: Product=Peracom USB to Serial Converter
|
||||
C:* #Ifs= 1 Cfg#= 1 Atr=a0 MxPwr=100mA
|
||||
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
|
||||
E: Ad=81(I) Atr=02(Bulk) MxPS= 64 Ivl= 16ms
|
||||
E: Ad=01(O) Atr=02(Bulk) MxPS= 16 Ivl= 16ms
|
||||
E: Ad=82(I) Atr=03(Int.) MxPS= 8 Ivl= 8ms
|
||||
|
||||
|
||||
Selecting only the "T:" and "I:" lines from this (for example, by using
|
||||
"procusb ti"), we have:
|
||||
|
||||
T: Bus=00 Lev=00 Prnt=00 Port=00 Cnt=00 Dev#= 1 Spd=12 MxCh= 2
|
||||
T: Bus=00 Lev=01 Prnt=01 Port=00 Cnt=01 Dev#= 2 Spd=12 MxCh= 4
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=09(hub ) Sub=00 Prot=00 Driver=hub
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=00 Cnt=01 Dev#= 3 Spd=1.5 MxCh= 0
|
||||
I: If#= 0 Alt= 0 #EPs= 1 Cls=03(HID ) Sub=01 Prot=02 Driver=mouse
|
||||
T: Bus=00 Lev=02 Prnt=02 Port=02 Cnt=02 Dev#= 4 Spd=12 MxCh= 0
|
||||
I: If#= 0 Alt= 0 #EPs= 3 Cls=00(>ifc ) Sub=00 Prot=00 Driver=serial
|
||||
|
||||
|
||||
Physically this looks like (or could be converted to):
|
||||
|
||||
+------------------+
|
||||
| PC/root_hub (12)| Dev# = 1
|
||||
+------------------+ (nn) is Mbps.
|
||||
Level 0 | CN.0 | CN.1 | [CN = connector/port #]
|
||||
+------------------+
|
||||
/
|
||||
/
|
||||
+-----------------------+
|
||||
Level 1 | Dev#2: 4-port hub (12)|
|
||||
+-----------------------+
|
||||
|CN.0 |CN.1 |CN.2 |CN.3 |
|
||||
+-----------------------+
|
||||
\ \____________________
|
||||
\_____ \
|
||||
\ \
|
||||
+--------------------+ +--------------------+
|
||||
Level 2 | Dev# 3: mouse (1.5)| | Dev# 4: serial (12)|
|
||||
+--------------------+ +--------------------+
|
||||
|
||||
|
||||
|
||||
Or, in a more tree-like structure (ports [Connectors] without
|
||||
connections could be omitted):
|
||||
|
||||
PC: Dev# 1, root hub, 2 ports, 12 Mbps
|
||||
|_ CN.0: Dev# 2, hub, 4 ports, 12 Mbps
|
||||
|_ CN.0: Dev #3, mouse, 1.5 Mbps
|
||||
|_ CN.1:
|
||||
|_ CN.2: Dev #4, serial, 12 Mbps
|
||||
|_ CN.3:
|
||||
|_ CN.1:
|
||||
|
||||
|
||||
### END ###
|
Loading…
Add table
Add a link
Reference in a new issue