mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-11-02 00:55:37 +01:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
280
arch/arm/include/asm/mcpm.h
Normal file
280
arch/arm/include/asm/mcpm.h
Normal file
|
|
@ -0,0 +1,280 @@
|
|||
/*
|
||||
* arch/arm/include/asm/mcpm.h
|
||||
*
|
||||
* Created by: Nicolas Pitre, April 2012
|
||||
* Copyright: (C) 2012-2013 Linaro Limited
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef MCPM_H
|
||||
#define MCPM_H
|
||||
|
||||
/*
|
||||
* Maximum number of possible clusters / CPUs per cluster.
|
||||
*
|
||||
* This should be sufficient for quite a while, while keeping the
|
||||
* (assembly) code simpler. When this starts to grow then we'll have
|
||||
* to consider dynamic allocation.
|
||||
*/
|
||||
#define MAX_CPUS_PER_CLUSTER 4
|
||||
|
||||
#ifdef CONFIG_MCPM_QUAD_CLUSTER
|
||||
#define MAX_NR_CLUSTERS 4
|
||||
#else
|
||||
#define MAX_NR_CLUSTERS 2
|
||||
#endif
|
||||
|
||||
#ifndef __ASSEMBLY__
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <asm/cacheflush.h>
|
||||
|
||||
/*
|
||||
* Platform specific code should use this symbol to set up secondary
|
||||
* entry location for processors to use when released from reset.
|
||||
*/
|
||||
extern void mcpm_entry_point(void);
|
||||
|
||||
/*
|
||||
* This is used to indicate where the given CPU from given cluster should
|
||||
* branch once it is ready to re-enter the kernel using ptr, or NULL if it
|
||||
* should be gated. A gated CPU is held in a WFE loop until its vector
|
||||
* becomes non NULL.
|
||||
*/
|
||||
void mcpm_set_entry_vector(unsigned cpu, unsigned cluster, void *ptr);
|
||||
|
||||
/*
|
||||
* This sets an early poke i.e a value to be poked into some address
|
||||
* from very early assembly code before the CPU is ungated. The
|
||||
* address must be physical, and if 0 then nothing will happen.
|
||||
*/
|
||||
void mcpm_set_early_poke(unsigned cpu, unsigned cluster,
|
||||
unsigned long poke_phys_addr, unsigned long poke_val);
|
||||
|
||||
/*
|
||||
* CPU/cluster power operations API for higher subsystems to use.
|
||||
*/
|
||||
|
||||
/**
|
||||
* mcpm_is_available - returns whether MCPM is initialized and available
|
||||
*
|
||||
* This returns true or false accordingly.
|
||||
*/
|
||||
bool mcpm_is_available(void);
|
||||
|
||||
/**
|
||||
* mcpm_cpu_power_up - make given CPU in given cluster runable
|
||||
*
|
||||
* @cpu: CPU number within given cluster
|
||||
* @cluster: cluster number for the CPU
|
||||
*
|
||||
* The identified CPU is brought out of reset. If the cluster was powered
|
||||
* down then it is brought up as well, taking care not to let the other CPUs
|
||||
* in the cluster run, and ensuring appropriate cluster setup.
|
||||
*
|
||||
* Caller must ensure the appropriate entry vector is initialized with
|
||||
* mcpm_set_entry_vector() prior to calling this.
|
||||
*
|
||||
* This must be called in a sleepable context. However, the implementation
|
||||
* is strongly encouraged to return early and let the operation happen
|
||||
* asynchronously, especially when significant delays are expected.
|
||||
*
|
||||
* If the operation cannot be performed then an error code is returned.
|
||||
*/
|
||||
int mcpm_cpu_power_up(unsigned int cpu, unsigned int cluster);
|
||||
|
||||
/**
|
||||
* mcpm_cpu_power_down - power the calling CPU down
|
||||
*
|
||||
* The calling CPU is powered down.
|
||||
*
|
||||
* If this CPU is found to be the "last man standing" in the cluster
|
||||
* then the cluster is prepared for power-down too.
|
||||
*
|
||||
* This must be called with interrupts disabled.
|
||||
*
|
||||
* On success this does not return. Re-entry in the kernel is expected
|
||||
* via mcpm_entry_point.
|
||||
*
|
||||
* This will return if mcpm_platform_register() has not been called
|
||||
* previously in which case the caller should take appropriate action.
|
||||
*
|
||||
* On success, the CPU is not guaranteed to be truly halted until
|
||||
* mcpm_wait_for_cpu_powerdown() subsequently returns non-zero for the
|
||||
* specified cpu. Until then, other CPUs should make sure they do not
|
||||
* trash memory the target CPU might be executing/accessing.
|
||||
*/
|
||||
void mcpm_cpu_power_down(void);
|
||||
|
||||
/**
|
||||
* mcpm_wait_for_cpu_powerdown - wait for a specified CPU to halt, and
|
||||
* make sure it is powered off
|
||||
*
|
||||
* @cpu: CPU number within given cluster
|
||||
* @cluster: cluster number for the CPU
|
||||
*
|
||||
* Call this function to ensure that a pending powerdown has taken
|
||||
* effect and the CPU is safely parked before performing non-mcpm
|
||||
* operations that may affect the CPU (such as kexec trashing the
|
||||
* kernel text).
|
||||
*
|
||||
* It is *not* necessary to call this function if you only need to
|
||||
* serialise a pending powerdown with mcpm_cpu_power_up() or a wakeup
|
||||
* event.
|
||||
*
|
||||
* Do not call this function unless the specified CPU has already
|
||||
* called mcpm_cpu_power_down() or has committed to doing so.
|
||||
*
|
||||
* @return:
|
||||
* - zero if the CPU is in a safely parked state
|
||||
* - nonzero otherwise (e.g., timeout)
|
||||
*/
|
||||
int mcpm_wait_for_cpu_powerdown(unsigned int cpu, unsigned int cluster);
|
||||
|
||||
/**
|
||||
* mcpm_cpu_suspend - bring the calling CPU in a suspended state
|
||||
*
|
||||
* @expected_residency: duration in microseconds the CPU is expected
|
||||
* to remain suspended, or 0 if unknown/infinity.
|
||||
*
|
||||
* The calling CPU is suspended. The expected residency argument is used
|
||||
* as a hint by the platform specific backend to implement the appropriate
|
||||
* sleep state level according to the knowledge it has on wake-up latency
|
||||
* for the given hardware.
|
||||
*
|
||||
* If this CPU is found to be the "last man standing" in the cluster
|
||||
* then the cluster may be prepared for power-down too, if the expected
|
||||
* residency makes it worthwhile.
|
||||
*
|
||||
* This must be called with interrupts disabled.
|
||||
*
|
||||
* On success this does not return. Re-entry in the kernel is expected
|
||||
* via mcpm_entry_point.
|
||||
*
|
||||
* This will return if mcpm_platform_register() has not been called
|
||||
* previously in which case the caller should take appropriate action.
|
||||
*/
|
||||
void mcpm_cpu_suspend(u64 expected_residency);
|
||||
|
||||
/**
|
||||
* mcpm_cpu_powered_up - housekeeping workafter a CPU has been powered up
|
||||
*
|
||||
* This lets the platform specific backend code perform needed housekeeping
|
||||
* work. This must be called by the newly activated CPU as soon as it is
|
||||
* fully operational in kernel space, before it enables interrupts.
|
||||
*
|
||||
* If the operation cannot be performed then an error code is returned.
|
||||
*/
|
||||
int mcpm_cpu_powered_up(void);
|
||||
|
||||
/*
|
||||
* Platform specific methods used in the implementation of the above API.
|
||||
*/
|
||||
struct mcpm_platform_ops {
|
||||
int (*power_up)(unsigned int cpu, unsigned int cluster);
|
||||
void (*power_down)(void);
|
||||
int (*wait_for_powerdown)(unsigned int cpu, unsigned int cluster);
|
||||
void (*suspend)(u64);
|
||||
void (*powered_up)(void);
|
||||
};
|
||||
|
||||
/**
|
||||
* mcpm_platform_register - register platform specific power methods
|
||||
*
|
||||
* @ops: mcpm_platform_ops structure to register
|
||||
*
|
||||
* An error is returned if the registration has been done previously.
|
||||
*/
|
||||
int __init mcpm_platform_register(const struct mcpm_platform_ops *ops);
|
||||
|
||||
/* Synchronisation structures for coordinating safe cluster setup/teardown: */
|
||||
|
||||
/*
|
||||
* When modifying this structure, make sure you update the MCPM_SYNC_ defines
|
||||
* to match.
|
||||
*/
|
||||
struct mcpm_sync_struct {
|
||||
/* individual CPU states */
|
||||
struct {
|
||||
s8 cpu __aligned(__CACHE_WRITEBACK_GRANULE);
|
||||
} cpus[MAX_CPUS_PER_CLUSTER];
|
||||
|
||||
/* cluster state */
|
||||
s8 cluster __aligned(__CACHE_WRITEBACK_GRANULE);
|
||||
|
||||
/* inbound-side state */
|
||||
s8 inbound __aligned(__CACHE_WRITEBACK_GRANULE);
|
||||
};
|
||||
|
||||
struct sync_struct {
|
||||
struct mcpm_sync_struct clusters[MAX_NR_CLUSTERS];
|
||||
};
|
||||
|
||||
void __mcpm_cpu_going_down(unsigned int cpu, unsigned int cluster);
|
||||
void __mcpm_cpu_down(unsigned int cpu, unsigned int cluster);
|
||||
void __mcpm_outbound_leave_critical(unsigned int cluster, int state);
|
||||
bool __mcpm_outbound_enter_critical(unsigned int this_cpu, unsigned int cluster);
|
||||
int __mcpm_cluster_state(unsigned int cluster);
|
||||
|
||||
int __init mcpm_sync_init(
|
||||
void (*power_up_setup)(unsigned int affinity_level));
|
||||
|
||||
/**
|
||||
* mcpm_loopback - make a run through the MCPM low-level code
|
||||
*
|
||||
* @cache_disable: pointer to function performing cache disabling
|
||||
*
|
||||
* This exercises the MCPM machinery by soft resetting the CPU and branching
|
||||
* to the MCPM low-level entry code before returning to the caller.
|
||||
* The @cache_disable function must do the necessary cache disabling to
|
||||
* let the regular kernel init code turn it back on as if the CPU was
|
||||
* hotplugged in. The MCPM state machine is set as if the cluster was
|
||||
* initialized meaning the power_up_setup callback passed to mcpm_sync_init()
|
||||
* will be invoked for all affinity levels. This may be useful to initialize
|
||||
* some resources such as enabling the CCI that requires the cache to be off, or simply for testing purposes.
|
||||
*/
|
||||
int __init mcpm_loopback(void (*cache_disable)(void));
|
||||
|
||||
void __init mcpm_smp_set_ops(void);
|
||||
|
||||
#else
|
||||
|
||||
/*
|
||||
* asm-offsets.h causes trouble when included in .c files, and cacheflush.h
|
||||
* cannot be included in asm files. Let's work around the conflict like this.
|
||||
*/
|
||||
#include <asm/asm-offsets.h>
|
||||
#define __CACHE_WRITEBACK_GRANULE CACHE_WRITEBACK_GRANULE
|
||||
|
||||
#endif /* ! __ASSEMBLY__ */
|
||||
|
||||
/* Definitions for mcpm_sync_struct */
|
||||
#define CPU_DOWN 0x11
|
||||
#define CPU_COMING_UP 0x12
|
||||
#define CPU_UP 0x13
|
||||
#define CPU_GOING_DOWN 0x14
|
||||
|
||||
#define CLUSTER_DOWN 0x21
|
||||
#define CLUSTER_UP 0x22
|
||||
#define CLUSTER_GOING_DOWN 0x23
|
||||
|
||||
#define INBOUND_NOT_COMING_UP 0x31
|
||||
#define INBOUND_COMING_UP 0x32
|
||||
|
||||
/*
|
||||
* Offsets for the mcpm_sync_struct members, for use in asm.
|
||||
* We don't want to make them global to the kernel via asm-offsets.c.
|
||||
*/
|
||||
#define MCPM_SYNC_CLUSTER_CPUS 0
|
||||
#define MCPM_SYNC_CPU_SIZE __CACHE_WRITEBACK_GRANULE
|
||||
#define MCPM_SYNC_CLUSTER_CLUSTER \
|
||||
(MCPM_SYNC_CLUSTER_CPUS + MCPM_SYNC_CPU_SIZE * MAX_CPUS_PER_CLUSTER)
|
||||
#define MCPM_SYNC_CLUSTER_INBOUND \
|
||||
(MCPM_SYNC_CLUSTER_CLUSTER + __CACHE_WRITEBACK_GRANULE)
|
||||
#define MCPM_SYNC_CLUSTER_SIZE \
|
||||
(MCPM_SYNC_CLUSTER_INBOUND + __CACHE_WRITEBACK_GRANULE)
|
||||
|
||||
#endif
|
||||
Loading…
Add table
Add a link
Reference in a new issue