mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 09:08:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
777
arch/arm/kernel/smp.c
Normal file
777
arch/arm/kernel/smp.c
Normal file
|
@ -0,0 +1,777 @@
|
|||
/*
|
||||
* linux/arch/arm/kernel/smp.c
|
||||
*
|
||||
* Copyright (C) 2002 ARM Limited, All Rights Reserved.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
#include <linux/module.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/cache.h>
|
||||
#include <linux/profile.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/cpu.h>
|
||||
#include <linux/seq_file.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/percpu.h>
|
||||
#include <linux/clockchips.h>
|
||||
#include <linux/completion.h>
|
||||
#include <linux/cpufreq.h>
|
||||
#include <linux/irq_work.h>
|
||||
|
||||
#include <linux/atomic.h>
|
||||
#include <asm/smp.h>
|
||||
#include <asm/cacheflush.h>
|
||||
#include <asm/cpu.h>
|
||||
#include <asm/cputype.h>
|
||||
#include <asm/exception.h>
|
||||
#include <asm/idmap.h>
|
||||
#include <asm/topology.h>
|
||||
#include <asm/mmu_context.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/sections.h>
|
||||
#include <asm/tlbflush.h>
|
||||
#include <asm/ptrace.h>
|
||||
#include <asm/smp_plat.h>
|
||||
#include <asm/virt.h>
|
||||
#include <asm/mach/arch.h>
|
||||
#include <asm/mpu.h>
|
||||
|
||||
#define CREATE_TRACE_POINTS
|
||||
#include <trace/events/ipi.h>
|
||||
|
||||
/*
|
||||
* as from 2.5, kernels no longer have an init_tasks structure
|
||||
* so we need some other way of telling a new secondary core
|
||||
* where to place its SVC stack
|
||||
*/
|
||||
struct secondary_data secondary_data;
|
||||
|
||||
/*
|
||||
* control for which core is the next to come out of the secondary
|
||||
* boot "holding pen"
|
||||
*/
|
||||
volatile int pen_release = -1;
|
||||
|
||||
enum ipi_msg_type {
|
||||
IPI_WAKEUP,
|
||||
IPI_TIMER,
|
||||
IPI_RESCHEDULE,
|
||||
IPI_CALL_FUNC,
|
||||
IPI_CALL_FUNC_SINGLE,
|
||||
IPI_CPU_STOP,
|
||||
IPI_IRQ_WORK,
|
||||
IPI_COMPLETION,
|
||||
IPI_CPU_BACKTRACE,
|
||||
};
|
||||
|
||||
static DECLARE_COMPLETION(cpu_running);
|
||||
|
||||
static struct smp_operations smp_ops;
|
||||
|
||||
void __init smp_set_ops(struct smp_operations *ops)
|
||||
{
|
||||
if (ops)
|
||||
smp_ops = *ops;
|
||||
};
|
||||
|
||||
static unsigned long get_arch_pgd(pgd_t *pgd)
|
||||
{
|
||||
phys_addr_t pgdir = virt_to_idmap(pgd);
|
||||
BUG_ON(pgdir & ARCH_PGD_MASK);
|
||||
return pgdir >> ARCH_PGD_SHIFT;
|
||||
}
|
||||
|
||||
int __cpu_up(unsigned int cpu, struct task_struct *idle)
|
||||
{
|
||||
int ret;
|
||||
|
||||
if (!smp_ops.smp_boot_secondary)
|
||||
return -ENOSYS;
|
||||
|
||||
/*
|
||||
* We need to tell the secondary core where to find
|
||||
* its stack and the page tables.
|
||||
*/
|
||||
secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
|
||||
#ifdef CONFIG_ARM_MPU
|
||||
secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_MMU
|
||||
secondary_data.pgdir = get_arch_pgd(idmap_pgd);
|
||||
secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
|
||||
#endif
|
||||
sync_cache_w(&secondary_data);
|
||||
|
||||
/*
|
||||
* Now bring the CPU into our world.
|
||||
*/
|
||||
ret = smp_ops.smp_boot_secondary(cpu, idle);
|
||||
if (ret == 0) {
|
||||
/*
|
||||
* CPU was successfully started, wait for it
|
||||
* to come online or time out.
|
||||
*/
|
||||
wait_for_completion_timeout(&cpu_running,
|
||||
msecs_to_jiffies(1000));
|
||||
|
||||
if (!cpu_online(cpu)) {
|
||||
pr_crit("CPU%u: failed to come online\n", cpu);
|
||||
ret = -EIO;
|
||||
}
|
||||
} else {
|
||||
pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
|
||||
}
|
||||
|
||||
|
||||
memset(&secondary_data, 0, sizeof(secondary_data));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* platform specific SMP operations */
|
||||
void __init smp_init_cpus(void)
|
||||
{
|
||||
if (smp_ops.smp_init_cpus)
|
||||
smp_ops.smp_init_cpus();
|
||||
}
|
||||
|
||||
int platform_can_cpu_hotplug(void)
|
||||
{
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
if (smp_ops.cpu_kill)
|
||||
return 1;
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_HOTPLUG_CPU
|
||||
static int platform_cpu_kill(unsigned int cpu)
|
||||
{
|
||||
if (smp_ops.cpu_kill)
|
||||
return smp_ops.cpu_kill(cpu);
|
||||
return 1;
|
||||
}
|
||||
|
||||
static int platform_cpu_disable(unsigned int cpu)
|
||||
{
|
||||
if (smp_ops.cpu_disable)
|
||||
return smp_ops.cpu_disable(cpu);
|
||||
|
||||
/*
|
||||
* By default, allow disabling all CPUs except the first one,
|
||||
* since this is special on a lot of platforms, e.g. because
|
||||
* of clock tick interrupts.
|
||||
*/
|
||||
return cpu == 0 ? -EPERM : 0;
|
||||
}
|
||||
/*
|
||||
* __cpu_disable runs on the processor to be shutdown.
|
||||
*/
|
||||
int __cpu_disable(void)
|
||||
{
|
||||
unsigned int cpu = smp_processor_id();
|
||||
int ret;
|
||||
|
||||
ret = platform_cpu_disable(cpu);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
/*
|
||||
* Take this CPU offline. Once we clear this, we can't return,
|
||||
* and we must not schedule until we're ready to give up the cpu.
|
||||
*/
|
||||
set_cpu_online(cpu, false);
|
||||
|
||||
/*
|
||||
* OK - migrate IRQs away from this CPU
|
||||
*/
|
||||
migrate_irqs();
|
||||
|
||||
/*
|
||||
* Flush user cache and TLB mappings, and then remove this CPU
|
||||
* from the vm mask set of all processes.
|
||||
*
|
||||
* Caches are flushed to the Level of Unification Inner Shareable
|
||||
* to write-back dirty lines to unified caches shared by all CPUs.
|
||||
*/
|
||||
flush_cache_louis();
|
||||
local_flush_tlb_all();
|
||||
|
||||
clear_tasks_mm_cpumask(cpu);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static DECLARE_COMPLETION(cpu_died);
|
||||
|
||||
/*
|
||||
* called on the thread which is asking for a CPU to be shutdown -
|
||||
* waits until shutdown has completed, or it is timed out.
|
||||
*/
|
||||
void __cpu_die(unsigned int cpu)
|
||||
{
|
||||
if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
|
||||
pr_err("CPU%u: cpu didn't die\n", cpu);
|
||||
return;
|
||||
}
|
||||
printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
|
||||
|
||||
/*
|
||||
* platform_cpu_kill() is generally expected to do the powering off
|
||||
* and/or cutting of clocks to the dying CPU. Optionally, this may
|
||||
* be done by the CPU which is dying in preference to supporting
|
||||
* this call, but that means there is _no_ synchronisation between
|
||||
* the requesting CPU and the dying CPU actually losing power.
|
||||
*/
|
||||
if (!platform_cpu_kill(cpu))
|
||||
printk("CPU%u: unable to kill\n", cpu);
|
||||
}
|
||||
|
||||
/*
|
||||
* Called from the idle thread for the CPU which has been shutdown.
|
||||
*
|
||||
* Note that we disable IRQs here, but do not re-enable them
|
||||
* before returning to the caller. This is also the behaviour
|
||||
* of the other hotplug-cpu capable cores, so presumably coming
|
||||
* out of idle fixes this.
|
||||
*/
|
||||
void __ref cpu_die(void)
|
||||
{
|
||||
unsigned int cpu = smp_processor_id();
|
||||
|
||||
idle_task_exit();
|
||||
|
||||
local_irq_disable();
|
||||
|
||||
/*
|
||||
* Flush the data out of the L1 cache for this CPU. This must be
|
||||
* before the completion to ensure that data is safely written out
|
||||
* before platform_cpu_kill() gets called - which may disable
|
||||
* *this* CPU and power down its cache.
|
||||
*/
|
||||
flush_cache_louis();
|
||||
|
||||
/*
|
||||
* Tell __cpu_die() that this CPU is now safe to dispose of. Once
|
||||
* this returns, power and/or clocks can be removed at any point
|
||||
* from this CPU and its cache by platform_cpu_kill().
|
||||
*/
|
||||
complete(&cpu_died);
|
||||
|
||||
/*
|
||||
* Ensure that the cache lines associated with that completion are
|
||||
* written out. This covers the case where _this_ CPU is doing the
|
||||
* powering down, to ensure that the completion is visible to the
|
||||
* CPU waiting for this one.
|
||||
*/
|
||||
flush_cache_louis();
|
||||
|
||||
/*
|
||||
* The actual CPU shutdown procedure is at least platform (if not
|
||||
* CPU) specific. This may remove power, or it may simply spin.
|
||||
*
|
||||
* Platforms are generally expected *NOT* to return from this call,
|
||||
* although there are some which do because they have no way to
|
||||
* power down the CPU. These platforms are the _only_ reason we
|
||||
* have a return path which uses the fragment of assembly below.
|
||||
*
|
||||
* The return path should not be used for platforms which can
|
||||
* power off the CPU.
|
||||
*/
|
||||
if (smp_ops.cpu_die)
|
||||
smp_ops.cpu_die(cpu);
|
||||
|
||||
pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
|
||||
cpu);
|
||||
|
||||
/*
|
||||
* Do not return to the idle loop - jump back to the secondary
|
||||
* cpu initialisation. There's some initialisation which needs
|
||||
* to be repeated to undo the effects of taking the CPU offline.
|
||||
*/
|
||||
__asm__("mov sp, %0\n"
|
||||
" mov fp, #0\n"
|
||||
" b secondary_start_kernel"
|
||||
:
|
||||
: "r" (task_stack_page(current) + THREAD_SIZE - 8));
|
||||
}
|
||||
#endif /* CONFIG_HOTPLUG_CPU */
|
||||
|
||||
/*
|
||||
* Called by both boot and secondaries to move global data into
|
||||
* per-processor storage.
|
||||
*/
|
||||
static void smp_store_cpu_info(unsigned int cpuid)
|
||||
{
|
||||
struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
|
||||
|
||||
cpu_info->loops_per_jiffy = loops_per_jiffy;
|
||||
cpu_info->cpuid = read_cpuid_id();
|
||||
|
||||
store_cpu_topology(cpuid);
|
||||
}
|
||||
|
||||
/*
|
||||
* This is the secondary CPU boot entry. We're using this CPUs
|
||||
* idle thread stack, but a set of temporary page tables.
|
||||
*/
|
||||
asmlinkage void secondary_start_kernel(void)
|
||||
{
|
||||
struct mm_struct *mm = &init_mm;
|
||||
unsigned int cpu;
|
||||
|
||||
/*
|
||||
* The identity mapping is uncached (strongly ordered), so
|
||||
* switch away from it before attempting any exclusive accesses.
|
||||
*/
|
||||
cpu_switch_mm(mm->pgd, mm);
|
||||
local_flush_bp_all();
|
||||
enter_lazy_tlb(mm, current);
|
||||
local_flush_tlb_all();
|
||||
|
||||
/*
|
||||
* All kernel threads share the same mm context; grab a
|
||||
* reference and switch to it.
|
||||
*/
|
||||
cpu = smp_processor_id();
|
||||
atomic_inc(&mm->mm_count);
|
||||
current->active_mm = mm;
|
||||
cpumask_set_cpu(cpu, mm_cpumask(mm));
|
||||
|
||||
cpu_init();
|
||||
|
||||
printk("CPU%u: Booted secondary processor\n", cpu);
|
||||
|
||||
preempt_disable();
|
||||
trace_hardirqs_off();
|
||||
|
||||
/*
|
||||
* Give the platform a chance to do its own initialisation.
|
||||
*/
|
||||
if (smp_ops.smp_secondary_init)
|
||||
smp_ops.smp_secondary_init(cpu);
|
||||
|
||||
notify_cpu_starting(cpu);
|
||||
|
||||
calibrate_delay();
|
||||
|
||||
smp_store_cpu_info(cpu);
|
||||
|
||||
/*
|
||||
* OK, now it's safe to let the boot CPU continue. Wait for
|
||||
* the CPU migration code to notice that the CPU is online
|
||||
* before we continue - which happens after __cpu_up returns.
|
||||
*/
|
||||
set_cpu_online(cpu, true);
|
||||
complete(&cpu_running);
|
||||
|
||||
local_irq_enable();
|
||||
local_fiq_enable();
|
||||
|
||||
/*
|
||||
* OK, it's off to the idle thread for us
|
||||
*/
|
||||
cpu_startup_entry(CPUHP_ONLINE);
|
||||
}
|
||||
|
||||
void __init smp_cpus_done(unsigned int max_cpus)
|
||||
{
|
||||
int cpu;
|
||||
unsigned long bogosum = 0;
|
||||
|
||||
for_each_online_cpu(cpu)
|
||||
bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
|
||||
|
||||
printk(KERN_INFO "SMP: Total of %d processors activated "
|
||||
"(%lu.%02lu BogoMIPS).\n",
|
||||
num_online_cpus(),
|
||||
bogosum / (500000/HZ),
|
||||
(bogosum / (5000/HZ)) % 100);
|
||||
|
||||
hyp_mode_check();
|
||||
}
|
||||
|
||||
void __init smp_prepare_boot_cpu(void)
|
||||
{
|
||||
set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
|
||||
}
|
||||
|
||||
void __init smp_prepare_cpus(unsigned int max_cpus)
|
||||
{
|
||||
unsigned int ncores = num_possible_cpus();
|
||||
|
||||
init_cpu_topology();
|
||||
|
||||
smp_store_cpu_info(smp_processor_id());
|
||||
|
||||
/*
|
||||
* are we trying to boot more cores than exist?
|
||||
*/
|
||||
if (max_cpus > ncores)
|
||||
max_cpus = ncores;
|
||||
if (ncores > 1 && max_cpus) {
|
||||
/*
|
||||
* Initialise the present map, which describes the set of CPUs
|
||||
* actually populated at the present time. A platform should
|
||||
* re-initialize the map in the platforms smp_prepare_cpus()
|
||||
* if present != possible (e.g. physical hotplug).
|
||||
*/
|
||||
init_cpu_present(cpu_possible_mask);
|
||||
|
||||
/*
|
||||
* Initialise the SCU if there are more than one CPU
|
||||
* and let them know where to start.
|
||||
*/
|
||||
if (smp_ops.smp_prepare_cpus)
|
||||
smp_ops.smp_prepare_cpus(max_cpus);
|
||||
}
|
||||
}
|
||||
|
||||
static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
|
||||
|
||||
void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
|
||||
{
|
||||
if (!__smp_cross_call)
|
||||
__smp_cross_call = fn;
|
||||
}
|
||||
|
||||
static const char *ipi_types[NR_IPI] __tracepoint_string = {
|
||||
#define S(x,s) [x] = s
|
||||
S(IPI_WAKEUP, "CPU wakeup interrupts"),
|
||||
S(IPI_TIMER, "Timer broadcast interrupts"),
|
||||
S(IPI_RESCHEDULE, "Rescheduling interrupts"),
|
||||
S(IPI_CALL_FUNC, "Function call interrupts"),
|
||||
S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
|
||||
S(IPI_CPU_STOP, "CPU stop interrupts"),
|
||||
S(IPI_IRQ_WORK, "IRQ work interrupts"),
|
||||
S(IPI_COMPLETION, "completion interrupts"),
|
||||
S(IPI_CPU_BACKTRACE, "CPU backtrace"),
|
||||
};
|
||||
|
||||
static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
|
||||
{
|
||||
trace_ipi_raise(target, ipi_types[ipinr]);
|
||||
__smp_cross_call(target, ipinr);
|
||||
}
|
||||
|
||||
void show_ipi_list(struct seq_file *p, int prec)
|
||||
{
|
||||
unsigned int cpu, i;
|
||||
|
||||
for (i = 0; i < NR_IPI; i++) {
|
||||
seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
|
||||
|
||||
for_each_online_cpu(cpu)
|
||||
seq_printf(p, "%10u ",
|
||||
__get_irq_stat(cpu, ipi_irqs[i]));
|
||||
|
||||
seq_printf(p, " %s\n", ipi_types[i]);
|
||||
}
|
||||
}
|
||||
|
||||
u64 smp_irq_stat_cpu(unsigned int cpu)
|
||||
{
|
||||
u64 sum = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NR_IPI; i++)
|
||||
sum += __get_irq_stat(cpu, ipi_irqs[i]);
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
void arch_send_call_function_ipi_mask(const struct cpumask *mask)
|
||||
{
|
||||
smp_cross_call(mask, IPI_CALL_FUNC);
|
||||
}
|
||||
|
||||
void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
|
||||
{
|
||||
smp_cross_call(mask, IPI_WAKEUP);
|
||||
}
|
||||
|
||||
void arch_send_call_function_single_ipi(int cpu)
|
||||
{
|
||||
smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
|
||||
}
|
||||
|
||||
#ifdef CONFIG_IRQ_WORK
|
||||
void arch_irq_work_raise(void)
|
||||
{
|
||||
if (arch_irq_work_has_interrupt())
|
||||
smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
||||
void tick_broadcast(const struct cpumask *mask)
|
||||
{
|
||||
smp_cross_call(mask, IPI_TIMER);
|
||||
}
|
||||
#endif
|
||||
|
||||
static DEFINE_RAW_SPINLOCK(stop_lock);
|
||||
|
||||
/*
|
||||
* ipi_cpu_stop - handle IPI from smp_send_stop()
|
||||
*/
|
||||
static void ipi_cpu_stop(unsigned int cpu)
|
||||
{
|
||||
if (system_state == SYSTEM_BOOTING ||
|
||||
system_state == SYSTEM_RUNNING) {
|
||||
raw_spin_lock(&stop_lock);
|
||||
printk(KERN_CRIT "CPU%u: stopping\n", cpu);
|
||||
dump_stack();
|
||||
raw_spin_unlock(&stop_lock);
|
||||
}
|
||||
|
||||
set_cpu_online(cpu, false);
|
||||
|
||||
local_fiq_disable();
|
||||
local_irq_disable();
|
||||
|
||||
while (1)
|
||||
cpu_relax();
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct completion *, cpu_completion);
|
||||
|
||||
int register_ipi_completion(struct completion *completion, int cpu)
|
||||
{
|
||||
per_cpu(cpu_completion, cpu) = completion;
|
||||
return IPI_COMPLETION;
|
||||
}
|
||||
|
||||
static void ipi_complete(unsigned int cpu)
|
||||
{
|
||||
complete(per_cpu(cpu_completion, cpu));
|
||||
}
|
||||
|
||||
static cpumask_t backtrace_mask;
|
||||
static DEFINE_RAW_SPINLOCK(backtrace_lock);
|
||||
|
||||
/* "in progress" flag of arch_trigger_all_cpu_backtrace */
|
||||
static unsigned long backtrace_flag;
|
||||
|
||||
void smp_send_all_cpu_backtrace(void)
|
||||
{
|
||||
unsigned int this_cpu = smp_processor_id();
|
||||
int i;
|
||||
|
||||
if (test_and_set_bit(0, &backtrace_flag))
|
||||
/*
|
||||
* If there is already a trigger_all_cpu_backtrace() in progress
|
||||
* (backtrace_flag == 1), don't output double cpu dump infos.
|
||||
*/
|
||||
return;
|
||||
|
||||
cpumask_copy(&backtrace_mask, cpu_online_mask);
|
||||
cpu_clear(this_cpu, backtrace_mask);
|
||||
|
||||
pr_info("Backtrace for cpu %d (current):\n", this_cpu);
|
||||
dump_stack();
|
||||
|
||||
pr_info("\nsending IPI to all other CPUs:\n");
|
||||
smp_cross_call(&backtrace_mask, IPI_CPU_BACKTRACE);
|
||||
|
||||
/* Wait for up to 10 seconds for all other CPUs to do the backtrace */
|
||||
for (i = 0; i < 10 * 1000; i++) {
|
||||
if (cpumask_empty(&backtrace_mask))
|
||||
break;
|
||||
mdelay(1);
|
||||
}
|
||||
|
||||
clear_bit(0, &backtrace_flag);
|
||||
smp_mb__after_atomic();
|
||||
}
|
||||
|
||||
/*
|
||||
* ipi_cpu_backtrace - handle IPI from smp_send_all_cpu_backtrace()
|
||||
*/
|
||||
static void ipi_cpu_backtrace(unsigned int cpu, struct pt_regs *regs)
|
||||
{
|
||||
if (cpu_isset(cpu, backtrace_mask)) {
|
||||
raw_spin_lock(&backtrace_lock);
|
||||
pr_warning("IPI backtrace for cpu %d\n", cpu);
|
||||
show_regs(regs);
|
||||
raw_spin_unlock(&backtrace_lock);
|
||||
cpu_clear(cpu, backtrace_mask);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Main handler for inter-processor interrupts
|
||||
*/
|
||||
asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
|
||||
{
|
||||
handle_IPI(ipinr, regs);
|
||||
}
|
||||
|
||||
void handle_IPI(int ipinr, struct pt_regs *regs)
|
||||
{
|
||||
unsigned int cpu = smp_processor_id();
|
||||
struct pt_regs *old_regs = set_irq_regs(regs);
|
||||
|
||||
if ((unsigned)ipinr < NR_IPI) {
|
||||
trace_ipi_entry(ipi_types[ipinr]);
|
||||
__inc_irq_stat(cpu, ipi_irqs[ipinr]);
|
||||
}
|
||||
|
||||
switch (ipinr) {
|
||||
case IPI_WAKEUP:
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
||||
case IPI_TIMER:
|
||||
irq_enter();
|
||||
tick_receive_broadcast();
|
||||
irq_exit();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case IPI_RESCHEDULE:
|
||||
scheduler_ipi();
|
||||
break;
|
||||
|
||||
case IPI_CALL_FUNC:
|
||||
irq_enter();
|
||||
generic_smp_call_function_interrupt();
|
||||
irq_exit();
|
||||
break;
|
||||
|
||||
case IPI_CALL_FUNC_SINGLE:
|
||||
irq_enter();
|
||||
generic_smp_call_function_single_interrupt();
|
||||
irq_exit();
|
||||
break;
|
||||
|
||||
case IPI_CPU_STOP:
|
||||
irq_enter();
|
||||
ipi_cpu_stop(cpu);
|
||||
irq_exit();
|
||||
break;
|
||||
|
||||
#ifdef CONFIG_IRQ_WORK
|
||||
case IPI_IRQ_WORK:
|
||||
irq_enter();
|
||||
irq_work_run();
|
||||
irq_exit();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case IPI_COMPLETION:
|
||||
irq_enter();
|
||||
ipi_complete(cpu);
|
||||
irq_exit();
|
||||
break;
|
||||
|
||||
case IPI_CPU_BACKTRACE:
|
||||
ipi_cpu_backtrace(cpu, regs);
|
||||
break;
|
||||
|
||||
default:
|
||||
printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
|
||||
cpu, ipinr);
|
||||
break;
|
||||
}
|
||||
|
||||
if ((unsigned)ipinr < NR_IPI)
|
||||
trace_ipi_exit(ipi_types[ipinr]);
|
||||
set_irq_regs(old_regs);
|
||||
}
|
||||
|
||||
void smp_send_reschedule(int cpu)
|
||||
{
|
||||
smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
|
||||
}
|
||||
|
||||
void smp_send_stop(void)
|
||||
{
|
||||
unsigned long timeout;
|
||||
struct cpumask mask;
|
||||
|
||||
cpumask_copy(&mask, cpu_online_mask);
|
||||
cpumask_clear_cpu(smp_processor_id(), &mask);
|
||||
if (!cpumask_empty(&mask))
|
||||
smp_cross_call(&mask, IPI_CPU_STOP);
|
||||
|
||||
/* Wait up to one second for other CPUs to stop */
|
||||
timeout = USEC_PER_SEC;
|
||||
while (num_online_cpus() > 1 && timeout--)
|
||||
udelay(1);
|
||||
|
||||
if (num_online_cpus() > 1)
|
||||
pr_warn("SMP: failed to stop secondary CPUs\n");
|
||||
}
|
||||
|
||||
/*
|
||||
* not supported here
|
||||
*/
|
||||
int setup_profiling_timer(unsigned int multiplier)
|
||||
{
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CPU_FREQ
|
||||
|
||||
static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
|
||||
static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
|
||||
static unsigned long global_l_p_j_ref;
|
||||
static unsigned long global_l_p_j_ref_freq;
|
||||
|
||||
static int cpufreq_callback(struct notifier_block *nb,
|
||||
unsigned long val, void *data)
|
||||
{
|
||||
struct cpufreq_freqs *freq = data;
|
||||
int cpu = freq->cpu;
|
||||
|
||||
if (freq->flags & CPUFREQ_CONST_LOOPS)
|
||||
return NOTIFY_OK;
|
||||
|
||||
if (!per_cpu(l_p_j_ref, cpu)) {
|
||||
per_cpu(l_p_j_ref, cpu) =
|
||||
per_cpu(cpu_data, cpu).loops_per_jiffy;
|
||||
per_cpu(l_p_j_ref_freq, cpu) = freq->old;
|
||||
if (!global_l_p_j_ref) {
|
||||
global_l_p_j_ref = loops_per_jiffy;
|
||||
global_l_p_j_ref_freq = freq->old;
|
||||
}
|
||||
}
|
||||
|
||||
if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
|
||||
(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
|
||||
loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
|
||||
global_l_p_j_ref_freq,
|
||||
freq->new);
|
||||
per_cpu(cpu_data, cpu).loops_per_jiffy =
|
||||
cpufreq_scale(per_cpu(l_p_j_ref, cpu),
|
||||
per_cpu(l_p_j_ref_freq, cpu),
|
||||
freq->new);
|
||||
}
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
static struct notifier_block cpufreq_notifier = {
|
||||
.notifier_call = cpufreq_callback,
|
||||
};
|
||||
|
||||
static int __init register_cpufreq_notifier(void)
|
||||
{
|
||||
return cpufreq_register_notifier(&cpufreq_notifier,
|
||||
CPUFREQ_TRANSITION_NOTIFIER);
|
||||
}
|
||||
core_initcall(register_cpufreq_notifier);
|
||||
|
||||
#endif
|
Loading…
Add table
Add a link
Reference in a new issue