mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-10 01:12:45 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
110
arch/cris/arch-v32/mach-a3/Kconfig
Normal file
110
arch/cris/arch-v32/mach-a3/Kconfig
Normal file
|
@ -0,0 +1,110 @@
|
|||
if CRIS_MACH_ARTPEC3
|
||||
|
||||
menu "Artpec-3 options"
|
||||
depends on CRIS_MACH_ARTPEC3
|
||||
|
||||
config ETRAX_DRAM_VIRTUAL_BASE
|
||||
hex
|
||||
default "c0000000"
|
||||
|
||||
config ETRAX_L2CACHE
|
||||
bool
|
||||
default y
|
||||
|
||||
config ETRAX_SERIAL_PORTS
|
||||
int
|
||||
default 5
|
||||
|
||||
config ETRAX_DDR2_MRS
|
||||
hex "DDR2 MRS"
|
||||
default "0"
|
||||
|
||||
config ETRAX_DDR2_TIMING
|
||||
hex "DDR2 SDRAM timing"
|
||||
default "0"
|
||||
help
|
||||
SDRAM timing parameters.
|
||||
|
||||
config ETRAX_DDR2_CONFIG
|
||||
hex "DDR2 config"
|
||||
default "0"
|
||||
|
||||
config ETRAX_DDR2_LATENCY
|
||||
hex "DDR2 latency"
|
||||
default "0"
|
||||
|
||||
config ETRAX_PIO_CE0_CFG
|
||||
hex "PIO CE0 configuration"
|
||||
default "0"
|
||||
|
||||
config ETRAX_PIO_CE1_CFG
|
||||
hex "PIO CE1 configuration"
|
||||
default "0"
|
||||
|
||||
config ETRAX_PIO_CE2_CFG
|
||||
hex "PIO CE2 configuration"
|
||||
default "0"
|
||||
|
||||
config ETRAX_DEF_GIO_PA_OE
|
||||
hex "GIO_PA_OE"
|
||||
default "00000000"
|
||||
help
|
||||
Configures the direction of general port A bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PA_OUT
|
||||
hex "GIO_PA_OUT"
|
||||
default "00000000"
|
||||
help
|
||||
Configures the initial data for the general port A bits. Most
|
||||
products should use 00 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PB_OE
|
||||
hex "GIO_PB_OE"
|
||||
default "000000000"
|
||||
help
|
||||
Configures the direction of general port B bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PB_OUT
|
||||
hex "GIO_PB_OUT"
|
||||
default "000000000"
|
||||
help
|
||||
Configures the initial data for the general port B bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PC_OE
|
||||
hex "GIO_PC_OE"
|
||||
default "00000"
|
||||
help
|
||||
Configures the direction of general port C bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PC_OUT
|
||||
hex "GIO_PC_OUT"
|
||||
default "00000"
|
||||
help
|
||||
Configures the initial data for the general port C bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
endmenu
|
||||
|
||||
endif
|
8
arch/cris/arch-v32/mach-a3/Makefile
Normal file
8
arch/cris/arch-v32/mach-a3/Makefile
Normal file
|
@ -0,0 +1,8 @@
|
|||
#
|
||||
# Makefile for the linux kernel.
|
||||
#
|
||||
|
||||
obj-y := dma.o pinmux.o io.o arbiter.o
|
||||
|
||||
clean:
|
||||
|
634
arch/cris/arch-v32/mach-a3/arbiter.c
Normal file
634
arch/cris/arch-v32/mach-a3/arbiter.c
Normal file
|
@ -0,0 +1,634 @@
|
|||
/*
|
||||
* Memory arbiter functions. Allocates bandwidth through the
|
||||
* arbiter and sets up arbiter breakpoints.
|
||||
*
|
||||
* The algorithm first assigns slots to the clients that has specified
|
||||
* bandwidth (e.g. ethernet) and then the remaining slots are divided
|
||||
* on all the active clients.
|
||||
*
|
||||
* Copyright (c) 2004-2007 Axis Communications AB.
|
||||
*
|
||||
* The artpec-3 has two arbiters. The memory hierarchy looks like this:
|
||||
*
|
||||
*
|
||||
* CPU DMAs
|
||||
* | |
|
||||
* | |
|
||||
* -------------- ------------------
|
||||
* | foo arbiter|----| Internal memory|
|
||||
* -------------- ------------------
|
||||
* |
|
||||
* --------------
|
||||
* | L2 cache |
|
||||
* --------------
|
||||
* |
|
||||
* h264 etc |
|
||||
* | |
|
||||
* | |
|
||||
* --------------
|
||||
* | bar arbiter|
|
||||
* --------------
|
||||
* |
|
||||
* ---------
|
||||
* | SDRAM |
|
||||
* ---------
|
||||
*
|
||||
*/
|
||||
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <hwregs/marb_foo_defs.h>
|
||||
#include <hwregs/marb_bar_defs.h>
|
||||
#include <arbiter.h>
|
||||
#include <hwregs/intr_vect.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/irq.h>
|
||||
#include <linux/signal.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/irq_regs.h>
|
||||
|
||||
#define D(x)
|
||||
|
||||
struct crisv32_watch_entry {
|
||||
unsigned long instance;
|
||||
watch_callback *cb;
|
||||
unsigned long start;
|
||||
unsigned long end;
|
||||
int used;
|
||||
};
|
||||
|
||||
#define NUMBER_OF_BP 4
|
||||
#define SDRAM_BANDWIDTH 400000000
|
||||
#define INTMEM_BANDWIDTH 400000000
|
||||
#define NBR_OF_SLOTS 64
|
||||
#define NBR_OF_REGIONS 2
|
||||
#define NBR_OF_CLIENTS 15
|
||||
#define ARBITERS 2
|
||||
#define UNASSIGNED 100
|
||||
|
||||
struct arbiter {
|
||||
unsigned long instance;
|
||||
int nbr_regions;
|
||||
int nbr_clients;
|
||||
int requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
||||
int active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
||||
};
|
||||
|
||||
static struct crisv32_watch_entry watches[ARBITERS][NUMBER_OF_BP] =
|
||||
{
|
||||
{
|
||||
{regi_marb_foo_bp0},
|
||||
{regi_marb_foo_bp1},
|
||||
{regi_marb_foo_bp2},
|
||||
{regi_marb_foo_bp3}
|
||||
},
|
||||
{
|
||||
{regi_marb_bar_bp0},
|
||||
{regi_marb_bar_bp1},
|
||||
{regi_marb_bar_bp2},
|
||||
{regi_marb_bar_bp3}
|
||||
}
|
||||
};
|
||||
|
||||
struct arbiter arbiters[ARBITERS] =
|
||||
{
|
||||
{ /* L2 cache arbiter */
|
||||
.instance = regi_marb_foo,
|
||||
.nbr_regions = 2,
|
||||
.nbr_clients = 15
|
||||
},
|
||||
{ /* DDR2 arbiter */
|
||||
.instance = regi_marb_bar,
|
||||
.nbr_regions = 1,
|
||||
.nbr_clients = 9
|
||||
}
|
||||
};
|
||||
|
||||
static int max_bandwidth[NBR_OF_REGIONS] = {SDRAM_BANDWIDTH, INTMEM_BANDWIDTH};
|
||||
|
||||
DEFINE_SPINLOCK(arbiter_lock);
|
||||
|
||||
static irqreturn_t
|
||||
crisv32_foo_arbiter_irq(int irq, void *dev_id);
|
||||
static irqreturn_t
|
||||
crisv32_bar_arbiter_irq(int irq, void *dev_id);
|
||||
|
||||
/*
|
||||
* "I'm the arbiter, I know the score.
|
||||
* From square one I'll be watching all 64."
|
||||
* (memory arbiter slots, that is)
|
||||
*
|
||||
* Or in other words:
|
||||
* Program the memory arbiter slots for "region" according to what's
|
||||
* in requested_slots[] and active_clients[], while minimizing
|
||||
* latency. A caller may pass a non-zero positive amount for
|
||||
* "unused_slots", which must then be the unallocated, remaining
|
||||
* number of slots, free to hand out to any client.
|
||||
*/
|
||||
|
||||
static void crisv32_arbiter_config(int arbiter, int region, int unused_slots)
|
||||
{
|
||||
int slot;
|
||||
int client;
|
||||
int interval = 0;
|
||||
|
||||
/*
|
||||
* This vector corresponds to the hardware arbiter slots (see
|
||||
* the hardware documentation for semantics). We initialize
|
||||
* each slot with a suitable sentinel value outside the valid
|
||||
* range {0 .. NBR_OF_CLIENTS - 1} and replace them with
|
||||
* client indexes. Then it's fed to the hardware.
|
||||
*/
|
||||
s8 val[NBR_OF_SLOTS];
|
||||
|
||||
for (slot = 0; slot < NBR_OF_SLOTS; slot++)
|
||||
val[slot] = -1;
|
||||
|
||||
for (client = 0; client < arbiters[arbiter].nbr_clients; client++) {
|
||||
int pos;
|
||||
/* Allocate the requested non-zero number of slots, but
|
||||
* also give clients with zero-requests one slot each
|
||||
* while stocks last. We do the latter here, in client
|
||||
* order. This makes sure zero-request clients are the
|
||||
* first to get to any spare slots, else those slots
|
||||
* could, when bandwidth is allocated close to the limit,
|
||||
* all be allocated to low-index non-zero-request clients
|
||||
* in the default-fill loop below. Another positive but
|
||||
* secondary effect is a somewhat better spread of the
|
||||
* zero-bandwidth clients in the vector, avoiding some of
|
||||
* the latency that could otherwise be caused by the
|
||||
* partitioning of non-zero-bandwidth clients at low
|
||||
* indexes and zero-bandwidth clients at high
|
||||
* indexes. (Note that this spreading can only affect the
|
||||
* unallocated bandwidth.) All the above only matters for
|
||||
* memory-intensive situations, of course.
|
||||
*/
|
||||
if (!arbiters[arbiter].requested_slots[region][client]) {
|
||||
/*
|
||||
* Skip inactive clients. Also skip zero-slot
|
||||
* allocations in this pass when there are no known
|
||||
* free slots.
|
||||
*/
|
||||
if (!arbiters[arbiter].active_clients[region][client] ||
|
||||
unused_slots <= 0)
|
||||
continue;
|
||||
|
||||
unused_slots--;
|
||||
|
||||
/* Only allocate one slot for this client. */
|
||||
interval = NBR_OF_SLOTS;
|
||||
} else
|
||||
interval = NBR_OF_SLOTS /
|
||||
arbiters[arbiter].requested_slots[region][client];
|
||||
|
||||
pos = 0;
|
||||
while (pos < NBR_OF_SLOTS) {
|
||||
if (val[pos] >= 0)
|
||||
pos++;
|
||||
else {
|
||||
val[pos] = client;
|
||||
pos += interval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
client = 0;
|
||||
for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
|
||||
/*
|
||||
* Allocate remaining slots in round-robin
|
||||
* client-number order for active clients. For this
|
||||
* pass, we ignore requested bandwidth and previous
|
||||
* allocations.
|
||||
*/
|
||||
if (val[slot] < 0) {
|
||||
int first = client;
|
||||
while (!arbiters[arbiter].active_clients[region][client]) {
|
||||
client = (client + 1) %
|
||||
arbiters[arbiter].nbr_clients;
|
||||
if (client == first)
|
||||
break;
|
||||
}
|
||||
val[slot] = client;
|
||||
client = (client + 1) % arbiters[arbiter].nbr_clients;
|
||||
}
|
||||
if (arbiter == 0) {
|
||||
if (region == EXT_REGION)
|
||||
REG_WR_INT_VECT(marb_foo, regi_marb_foo,
|
||||
rw_l2_slots, slot, val[slot]);
|
||||
else if (region == INT_REGION)
|
||||
REG_WR_INT_VECT(marb_foo, regi_marb_foo,
|
||||
rw_intm_slots, slot, val[slot]);
|
||||
} else {
|
||||
REG_WR_INT_VECT(marb_bar, regi_marb_bar,
|
||||
rw_ddr2_slots, slot, val[slot]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
extern char _stext, _etext;
|
||||
|
||||
static void crisv32_arbiter_init(void)
|
||||
{
|
||||
static int initialized;
|
||||
|
||||
if (initialized)
|
||||
return;
|
||||
|
||||
initialized = 1;
|
||||
|
||||
/*
|
||||
* CPU caches are always set to active, but with zero
|
||||
* bandwidth allocated. It should be ok to allocate zero
|
||||
* bandwidth for the caches, because DMA for other channels
|
||||
* will supposedly finish, once their programmed amount is
|
||||
* done, and then the caches will get access according to the
|
||||
* "fixed scheme" for unclaimed slots. Though, if for some
|
||||
* use-case somewhere, there's a maximum CPU latency for
|
||||
* e.g. some interrupt, we have to start allocating specific
|
||||
* bandwidth for the CPU caches too.
|
||||
*/
|
||||
arbiters[0].active_clients[EXT_REGION][11] = 1;
|
||||
arbiters[0].active_clients[EXT_REGION][12] = 1;
|
||||
crisv32_arbiter_config(0, EXT_REGION, 0);
|
||||
crisv32_arbiter_config(0, INT_REGION, 0);
|
||||
crisv32_arbiter_config(1, EXT_REGION, 0);
|
||||
|
||||
if (request_irq(MEMARB_FOO_INTR_VECT, crisv32_foo_arbiter_irq,
|
||||
0, "arbiter", NULL))
|
||||
printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
|
||||
|
||||
if (request_irq(MEMARB_BAR_INTR_VECT, crisv32_bar_arbiter_irq,
|
||||
0, "arbiter", NULL))
|
||||
printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
|
||||
|
||||
#ifndef CONFIG_ETRAX_KGDB
|
||||
/* Global watch for writes to kernel text segment. */
|
||||
crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
|
||||
MARB_CLIENTS(arbiter_all_clients, arbiter_bar_all_clients),
|
||||
arbiter_all_write, NULL);
|
||||
#endif
|
||||
|
||||
/* Set up max burst sizes by default */
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_rd_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_h264_wr_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_ccd_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_wr_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_vin_rd_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_rd_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_vout_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_sclr_fifo_burst, 3);
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_l2cache_burst, 3);
|
||||
}
|
||||
|
||||
int crisv32_arbiter_allocate_bandwidth(int client, int region,
|
||||
unsigned long bandwidth)
|
||||
{
|
||||
int i;
|
||||
int total_assigned = 0;
|
||||
int total_clients = 0;
|
||||
int req;
|
||||
int arbiter = 0;
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
if (client & 0xffff0000) {
|
||||
arbiter = 1;
|
||||
client >>= 16;
|
||||
}
|
||||
|
||||
for (i = 0; i < arbiters[arbiter].nbr_clients; i++) {
|
||||
total_assigned += arbiters[arbiter].requested_slots[region][i];
|
||||
total_clients += arbiters[arbiter].active_clients[region][i];
|
||||
}
|
||||
|
||||
/* Avoid division by 0 for 0-bandwidth requests. */
|
||||
req = bandwidth == 0
|
||||
? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
|
||||
|
||||
/*
|
||||
* We make sure that there are enough slots only for non-zero
|
||||
* requests. Requesting 0 bandwidth *may* allocate slots,
|
||||
* though if all bandwidth is allocated, such a client won't
|
||||
* get any and will have to rely on getting memory access
|
||||
* according to the fixed scheme that's the default when one
|
||||
* of the slot-allocated clients doesn't claim their slot.
|
||||
*/
|
||||
if (total_assigned + req > NBR_OF_SLOTS)
|
||||
return -ENOMEM;
|
||||
|
||||
arbiters[arbiter].active_clients[region][client] = 1;
|
||||
arbiters[arbiter].requested_slots[region][client] = req;
|
||||
crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
|
||||
|
||||
/* Propagate allocation from foo to bar */
|
||||
if (arbiter == 0)
|
||||
crisv32_arbiter_allocate_bandwidth(8 << 16,
|
||||
EXT_REGION, bandwidth);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main entry for bandwidth deallocation.
|
||||
*
|
||||
* Strictly speaking, for a somewhat constant set of clients where
|
||||
* each client gets a constant bandwidth and is just enabled or
|
||||
* disabled (somewhat dynamically), no action is necessary here to
|
||||
* avoid starvation for non-zero-allocation clients, as the allocated
|
||||
* slots will just be unused. However, handing out those unused slots
|
||||
* to active clients avoids needless latency if the "fixed scheme"
|
||||
* would give unclaimed slots to an eager low-index client.
|
||||
*/
|
||||
|
||||
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
|
||||
{
|
||||
int i;
|
||||
int total_assigned = 0;
|
||||
int arbiter = 0;
|
||||
|
||||
if (client & 0xffff0000)
|
||||
arbiter = 1;
|
||||
|
||||
arbiters[arbiter].requested_slots[region][client] = 0;
|
||||
arbiters[arbiter].active_clients[region][client] = 0;
|
||||
|
||||
for (i = 0; i < arbiters[arbiter].nbr_clients; i++)
|
||||
total_assigned += arbiters[arbiter].requested_slots[region][i];
|
||||
|
||||
crisv32_arbiter_config(arbiter, region, NBR_OF_SLOTS - total_assigned);
|
||||
}
|
||||
|
||||
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
|
||||
unsigned long clients, unsigned long accesses,
|
||||
watch_callback *cb)
|
||||
{
|
||||
int i;
|
||||
int arbiter;
|
||||
int used[2];
|
||||
int ret = 0;
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
if (start > 0x80000000) {
|
||||
printk(KERN_ERR "Arbiter: %lX doesn't look like a "
|
||||
"physical address", start);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
spin_lock(&arbiter_lock);
|
||||
|
||||
if (clients & 0xffff)
|
||||
used[0] = 1;
|
||||
if (clients & 0xffff0000)
|
||||
used[1] = 1;
|
||||
|
||||
for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
|
||||
if (!used[arbiter])
|
||||
continue;
|
||||
|
||||
for (i = 0; i < NUMBER_OF_BP; i++) {
|
||||
if (!watches[arbiter][i].used) {
|
||||
unsigned intr_mask;
|
||||
if (arbiter)
|
||||
intr_mask = REG_RD_INT(marb_bar,
|
||||
regi_marb_bar, rw_intr_mask);
|
||||
else
|
||||
intr_mask = REG_RD_INT(marb_foo,
|
||||
regi_marb_foo, rw_intr_mask);
|
||||
|
||||
watches[arbiter][i].used = 1;
|
||||
watches[arbiter][i].start = start;
|
||||
watches[arbiter][i].end = start + size;
|
||||
watches[arbiter][i].cb = cb;
|
||||
|
||||
ret |= (i + 1) << (arbiter + 8);
|
||||
if (arbiter) {
|
||||
REG_WR_INT(marb_bar_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_first_addr,
|
||||
watches[arbiter][i].start);
|
||||
REG_WR_INT(marb_bar_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_last_addr,
|
||||
watches[arbiter][i].end);
|
||||
REG_WR_INT(marb_bar_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_op, accesses);
|
||||
REG_WR_INT(marb_bar_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_clients,
|
||||
clients & 0xffff);
|
||||
} else {
|
||||
REG_WR_INT(marb_foo_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_first_addr,
|
||||
watches[arbiter][i].start);
|
||||
REG_WR_INT(marb_foo_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_last_addr,
|
||||
watches[arbiter][i].end);
|
||||
REG_WR_INT(marb_foo_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_op, accesses);
|
||||
REG_WR_INT(marb_foo_bp,
|
||||
watches[arbiter][i].instance,
|
||||
rw_clients, clients >> 16);
|
||||
}
|
||||
|
||||
if (i == 0)
|
||||
intr_mask |= 1;
|
||||
else if (i == 1)
|
||||
intr_mask |= 2;
|
||||
else if (i == 2)
|
||||
intr_mask |= 4;
|
||||
else if (i == 3)
|
||||
intr_mask |= 8;
|
||||
|
||||
if (arbiter)
|
||||
REG_WR_INT(marb_bar, regi_marb_bar,
|
||||
rw_intr_mask, intr_mask);
|
||||
else
|
||||
REG_WR_INT(marb_foo, regi_marb_foo,
|
||||
rw_intr_mask, intr_mask);
|
||||
|
||||
spin_unlock(&arbiter_lock);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
spin_unlock(&arbiter_lock);
|
||||
if (ret)
|
||||
return ret;
|
||||
else
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
int crisv32_arbiter_unwatch(int id)
|
||||
{
|
||||
int arbiter;
|
||||
int intr_mask;
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
spin_lock(&arbiter_lock);
|
||||
|
||||
for (arbiter = 0; arbiter < ARBITERS; arbiter++) {
|
||||
int id2;
|
||||
|
||||
if (arbiter)
|
||||
intr_mask = REG_RD_INT(marb_bar, regi_marb_bar,
|
||||
rw_intr_mask);
|
||||
else
|
||||
intr_mask = REG_RD_INT(marb_foo, regi_marb_foo,
|
||||
rw_intr_mask);
|
||||
|
||||
id2 = (id & (0xff << (arbiter + 8))) >> (arbiter + 8);
|
||||
if (id2 == 0)
|
||||
continue;
|
||||
id2--;
|
||||
if ((id2 >= NUMBER_OF_BP) || (!watches[arbiter][id2].used)) {
|
||||
spin_unlock(&arbiter_lock);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
memset(&watches[arbiter][id2], 0,
|
||||
sizeof(struct crisv32_watch_entry));
|
||||
|
||||
if (id2 == 0)
|
||||
intr_mask &= ~1;
|
||||
else if (id2 == 1)
|
||||
intr_mask &= ~2;
|
||||
else if (id2 == 2)
|
||||
intr_mask &= ~4;
|
||||
else if (id2 == 3)
|
||||
intr_mask &= ~8;
|
||||
|
||||
if (arbiter)
|
||||
REG_WR_INT(marb_bar, regi_marb_bar, rw_intr_mask,
|
||||
intr_mask);
|
||||
else
|
||||
REG_WR_INT(marb_foo, regi_marb_foo, rw_intr_mask,
|
||||
intr_mask);
|
||||
}
|
||||
|
||||
spin_unlock(&arbiter_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern void show_registers(struct pt_regs *regs);
|
||||
|
||||
|
||||
static irqreturn_t
|
||||
crisv32_foo_arbiter_irq(int irq, void *dev_id)
|
||||
{
|
||||
reg_marb_foo_r_masked_intr masked_intr =
|
||||
REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
|
||||
reg_marb_foo_bp_r_brk_clients r_clients;
|
||||
reg_marb_foo_bp_r_brk_addr r_addr;
|
||||
reg_marb_foo_bp_r_brk_op r_op;
|
||||
reg_marb_foo_bp_r_brk_first_client r_first;
|
||||
reg_marb_foo_bp_r_brk_size r_size;
|
||||
reg_marb_foo_bp_rw_ack ack = {0};
|
||||
reg_marb_foo_rw_ack_intr ack_intr = {
|
||||
.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
|
||||
};
|
||||
struct crisv32_watch_entry *watch;
|
||||
unsigned arbiter = (unsigned)dev_id;
|
||||
|
||||
masked_intr = REG_RD(marb_foo, regi_marb_foo, r_masked_intr);
|
||||
|
||||
if (masked_intr.bp0)
|
||||
watch = &watches[arbiter][0];
|
||||
else if (masked_intr.bp1)
|
||||
watch = &watches[arbiter][1];
|
||||
else if (masked_intr.bp2)
|
||||
watch = &watches[arbiter][2];
|
||||
else if (masked_intr.bp3)
|
||||
watch = &watches[arbiter][3];
|
||||
else
|
||||
return IRQ_NONE;
|
||||
|
||||
/* Retrieve all useful information and print it. */
|
||||
r_clients = REG_RD(marb_foo_bp, watch->instance, r_brk_clients);
|
||||
r_addr = REG_RD(marb_foo_bp, watch->instance, r_brk_addr);
|
||||
r_op = REG_RD(marb_foo_bp, watch->instance, r_brk_op);
|
||||
r_first = REG_RD(marb_foo_bp, watch->instance, r_brk_first_client);
|
||||
r_size = REG_RD(marb_foo_bp, watch->instance, r_brk_size);
|
||||
|
||||
printk(KERN_DEBUG "Arbiter IRQ\n");
|
||||
printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
|
||||
REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_clients, r_clients),
|
||||
REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_addr, r_addr),
|
||||
REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_op, r_op),
|
||||
REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_first_client, r_first),
|
||||
REG_TYPE_CONV(int, reg_marb_foo_bp_r_brk_size, r_size));
|
||||
|
||||
REG_WR(marb_foo_bp, watch->instance, rw_ack, ack);
|
||||
REG_WR(marb_foo, regi_marb_foo, rw_ack_intr, ack_intr);
|
||||
|
||||
printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs());
|
||||
|
||||
if (watch->cb)
|
||||
watch->cb();
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static irqreturn_t
|
||||
crisv32_bar_arbiter_irq(int irq, void *dev_id)
|
||||
{
|
||||
reg_marb_bar_r_masked_intr masked_intr =
|
||||
REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
|
||||
reg_marb_bar_bp_r_brk_clients r_clients;
|
||||
reg_marb_bar_bp_r_brk_addr r_addr;
|
||||
reg_marb_bar_bp_r_brk_op r_op;
|
||||
reg_marb_bar_bp_r_brk_first_client r_first;
|
||||
reg_marb_bar_bp_r_brk_size r_size;
|
||||
reg_marb_bar_bp_rw_ack ack = {0};
|
||||
reg_marb_bar_rw_ack_intr ack_intr = {
|
||||
.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
|
||||
};
|
||||
struct crisv32_watch_entry *watch;
|
||||
unsigned arbiter = (unsigned)dev_id;
|
||||
|
||||
masked_intr = REG_RD(marb_bar, regi_marb_bar, r_masked_intr);
|
||||
|
||||
if (masked_intr.bp0)
|
||||
watch = &watches[arbiter][0];
|
||||
else if (masked_intr.bp1)
|
||||
watch = &watches[arbiter][1];
|
||||
else if (masked_intr.bp2)
|
||||
watch = &watches[arbiter][2];
|
||||
else if (masked_intr.bp3)
|
||||
watch = &watches[arbiter][3];
|
||||
else
|
||||
return IRQ_NONE;
|
||||
|
||||
/* Retrieve all useful information and print it. */
|
||||
r_clients = REG_RD(marb_bar_bp, watch->instance, r_brk_clients);
|
||||
r_addr = REG_RD(marb_bar_bp, watch->instance, r_brk_addr);
|
||||
r_op = REG_RD(marb_bar_bp, watch->instance, r_brk_op);
|
||||
r_first = REG_RD(marb_bar_bp, watch->instance, r_brk_first_client);
|
||||
r_size = REG_RD(marb_bar_bp, watch->instance, r_brk_size);
|
||||
|
||||
printk(KERN_DEBUG "Arbiter IRQ\n");
|
||||
printk(KERN_DEBUG "Clients %X addr %X op %X first %X size %X\n",
|
||||
REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_clients, r_clients),
|
||||
REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_addr, r_addr),
|
||||
REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_op, r_op),
|
||||
REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_first_client, r_first),
|
||||
REG_TYPE_CONV(int, reg_marb_bar_bp_r_brk_size, r_size));
|
||||
|
||||
REG_WR(marb_bar_bp, watch->instance, rw_ack, ack);
|
||||
REG_WR(marb_bar, regi_marb_bar, rw_ack_intr, ack_intr);
|
||||
|
||||
printk(KERN_DEBUG "IRQ occurred at %X\n", (unsigned)get_irq_regs()->erp);
|
||||
|
||||
if (watch->cb)
|
||||
watch->cb();
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
184
arch/cris/arch-v32/mach-a3/dma.c
Normal file
184
arch/cris/arch-v32/mach-a3/dma.c
Normal file
|
@ -0,0 +1,184 @@
|
|||
/* Wrapper for DMA channel allocator that starts clocks etc */
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <mach/dma.h>
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <hwregs/marb_defs.h>
|
||||
#include <hwregs/clkgen_defs.h>
|
||||
#include <hwregs/strmux_defs.h>
|
||||
#include <linux/errno.h>
|
||||
#include <arbiter.h>
|
||||
|
||||
static char used_dma_channels[MAX_DMA_CHANNELS];
|
||||
static const char *used_dma_channels_users[MAX_DMA_CHANNELS];
|
||||
|
||||
static DEFINE_SPINLOCK(dma_lock);
|
||||
|
||||
int crisv32_request_dma(unsigned int dmanr, const char *device_id,
|
||||
unsigned options, unsigned int bandwidth, enum dma_owner owner)
|
||||
{
|
||||
unsigned long flags;
|
||||
reg_clkgen_rw_clk_ctrl clk_ctrl;
|
||||
reg_strmux_rw_cfg strmux_cfg;
|
||||
|
||||
if (crisv32_arbiter_allocate_bandwidth(dmanr,
|
||||
options & DMA_INT_MEM ? INT_REGION : EXT_REGION,
|
||||
bandwidth))
|
||||
return -ENOMEM;
|
||||
|
||||
spin_lock_irqsave(&dma_lock, flags);
|
||||
|
||||
if (used_dma_channels[dmanr]) {
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
if (options & DMA_VERBOSE_ON_ERROR)
|
||||
printk(KERN_ERR "Failed to request DMA %i for %s, "
|
||||
"already allocated by %s\n",
|
||||
dmanr,
|
||||
device_id,
|
||||
used_dma_channels_users[dmanr]);
|
||||
|
||||
if (options & DMA_PANIC_ON_ERROR)
|
||||
panic("request_dma error!");
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
return -EBUSY;
|
||||
}
|
||||
clk_ctrl = REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
|
||||
strmux_cfg = REG_RD(strmux, regi_strmux, rw_cfg);
|
||||
|
||||
switch (dmanr) {
|
||||
case 0:
|
||||
case 1:
|
||||
clk_ctrl.dma0_1_eth = 1;
|
||||
break;
|
||||
case 2:
|
||||
case 3:
|
||||
clk_ctrl.dma2_3_strcop = 1;
|
||||
break;
|
||||
case 4:
|
||||
case 5:
|
||||
clk_ctrl.dma4_5_iop = 1;
|
||||
break;
|
||||
case 6:
|
||||
case 7:
|
||||
clk_ctrl.sser_ser_dma6_7 = 1;
|
||||
break;
|
||||
case 9:
|
||||
case 11:
|
||||
clk_ctrl.dma9_11 = 1;
|
||||
break;
|
||||
#if MAX_DMA_CHANNELS-1 != 11
|
||||
#error Check dma.c
|
||||
#endif
|
||||
default:
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
if (options & DMA_VERBOSE_ON_ERROR)
|
||||
printk(KERN_ERR "Failed to request DMA %i for %s, "
|
||||
"only 0-%i valid)\n",
|
||||
dmanr, device_id, MAX_DMA_CHANNELS-1);
|
||||
|
||||
if (options & DMA_PANIC_ON_ERROR)
|
||||
panic("request_dma error!");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
switch (owner) {
|
||||
case dma_eth:
|
||||
if (dmanr == 0)
|
||||
strmux_cfg.dma0 = regk_strmux_eth;
|
||||
else if (dmanr == 1)
|
||||
strmux_cfg.dma1 = regk_strmux_eth;
|
||||
else
|
||||
panic("Invalid DMA channel for eth\n");
|
||||
break;
|
||||
case dma_ser0:
|
||||
if (dmanr == 0)
|
||||
strmux_cfg.dma0 = regk_strmux_ser0;
|
||||
else if (dmanr == 1)
|
||||
strmux_cfg.dma1 = regk_strmux_ser0;
|
||||
else
|
||||
panic("Invalid DMA channel for ser0\n");
|
||||
break;
|
||||
case dma_ser3:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_ser3;
|
||||
else if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_ser3;
|
||||
else
|
||||
panic("Invalid DMA channel for ser3\n");
|
||||
break;
|
||||
case dma_strp:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_strcop;
|
||||
else if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_strcop;
|
||||
else
|
||||
panic("Invalid DMA channel for strp\n");
|
||||
break;
|
||||
case dma_ser1:
|
||||
if (dmanr == 4)
|
||||
strmux_cfg.dma4 = regk_strmux_ser1;
|
||||
else if (dmanr == 5)
|
||||
strmux_cfg.dma5 = regk_strmux_ser1;
|
||||
else
|
||||
panic("Invalid DMA channel for ser1\n");
|
||||
break;
|
||||
case dma_iop:
|
||||
if (dmanr == 4)
|
||||
strmux_cfg.dma4 = regk_strmux_iop;
|
||||
else if (dmanr == 5)
|
||||
strmux_cfg.dma5 = regk_strmux_iop;
|
||||
else
|
||||
panic("Invalid DMA channel for iop\n");
|
||||
break;
|
||||
case dma_ser2:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_ser2;
|
||||
else if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_ser2;
|
||||
else
|
||||
panic("Invalid DMA channel for ser2\n");
|
||||
break;
|
||||
case dma_sser:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_sser;
|
||||
else if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_sser;
|
||||
else
|
||||
panic("Invalid DMA channel for sser\n");
|
||||
break;
|
||||
case dma_ser4:
|
||||
if (dmanr == 9)
|
||||
strmux_cfg.dma9 = regk_strmux_ser4;
|
||||
else
|
||||
panic("Invalid DMA channel for ser4\n");
|
||||
break;
|
||||
case dma_jpeg:
|
||||
if (dmanr == 9)
|
||||
strmux_cfg.dma9 = regk_strmux_jpeg;
|
||||
else
|
||||
panic("Invalid DMA channel for JPEG\n");
|
||||
break;
|
||||
case dma_h264:
|
||||
if (dmanr == 11)
|
||||
strmux_cfg.dma11 = regk_strmux_h264;
|
||||
else
|
||||
panic("Invalid DMA channel for H264\n");
|
||||
break;
|
||||
}
|
||||
|
||||
used_dma_channels[dmanr] = 1;
|
||||
used_dma_channels_users[dmanr] = device_id;
|
||||
REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, clk_ctrl);
|
||||
REG_WR(strmux, regi_strmux, rw_cfg, strmux_cfg);
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void crisv32_free_dma(unsigned int dmanr)
|
||||
{
|
||||
spin_lock(&dma_lock);
|
||||
used_dma_channels[dmanr] = 0;
|
||||
spin_unlock(&dma_lock);
|
||||
}
|
118
arch/cris/arch-v32/mach-a3/dram_init.S
Normal file
118
arch/cris/arch-v32/mach-a3/dram_init.S
Normal file
|
@ -0,0 +1,118 @@
|
|||
/*
|
||||
* DDR SDRAM initialization - alter with care
|
||||
* This file is intended to be included from other assembler files
|
||||
*
|
||||
* Note: This file may not modify r8 or r9 because they are used to
|
||||
* carry information from the decompresser to the kernel
|
||||
*
|
||||
* Copyright (C) 2005-2007 Axis Communications AB
|
||||
*
|
||||
* Authors: Mikael Starvik <starvik@axis.com>
|
||||
*/
|
||||
|
||||
/* Just to be certain the config file is included, we include it here
|
||||
* explicitely instead of depending on it being included in the file that
|
||||
* uses this code.
|
||||
*/
|
||||
|
||||
#include <hwregs/asm/reg_map_asm.h>
|
||||
#include <hwregs/asm/ddr2_defs_asm.h>
|
||||
|
||||
;; WARNING! The registers r8 and r9 are used as parameters carrying
|
||||
;; information from the decompressor (if the kernel was compressed).
|
||||
;; They should not be used in the code below.
|
||||
|
||||
;; Refer to ddr2 MDS for initialization sequence
|
||||
|
||||
; 2. Wait 200us
|
||||
move.d 10000, $r2
|
||||
1: bne 1b
|
||||
subq 1, $r2
|
||||
|
||||
; Start clock
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_phy_cfg), $r0
|
||||
move.d REG_STATE(ddr2, rw_phy_cfg, en, yes), $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; 2. Wait 200us
|
||||
move.d 10000, $r2
|
||||
1: bne 1b
|
||||
subq 1, $r2
|
||||
|
||||
; Reset phy and start calibration
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_phy_ctrl), $r0
|
||||
move.d REG_STATE(ddr2, rw_phy_ctrl, rst, yes) | \
|
||||
REG_STATE(ddr2, rw_phy_ctrl, cal_rst, yes), $r1
|
||||
move.d $r1, [$r0]
|
||||
move.d REG_STATE(ddr2, rw_phy_ctrl, cal_start, yes), $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; 2. Wait 200us
|
||||
move.d 10000, $r2
|
||||
1: bne 1b
|
||||
subq 1, $r2
|
||||
|
||||
; Issue commands
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_ctrl), $r0
|
||||
move.d sdram_commands_start, $r2
|
||||
command_loop:
|
||||
movu.b [$r2+], $r1
|
||||
movu.w [$r2+], $r3
|
||||
do_cmd:
|
||||
lslq 16, $r1
|
||||
or.d $r3, $r1
|
||||
move.d $r1, [$r0]
|
||||
; 2. Wait 200us
|
||||
move.d 10000, $r4
|
||||
1: bne 1b
|
||||
subq 1, $r4
|
||||
cmp.d sdram_commands_end, $r2
|
||||
blo command_loop
|
||||
nop
|
||||
|
||||
; Set timing
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_timing), $r0
|
||||
move.d CONFIG_ETRAX_DDR2_TIMING, $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; Set latency
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_latency), $r0
|
||||
move.d CONFIG_ETRAX_DDR2_LATENCY, $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; Set configuration
|
||||
move.d REG_ADDR(ddr2, regi_ddr2_ctrl, rw_cfg), $r0
|
||||
move.d CONFIG_ETRAX_DDR2_CONFIG, $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
ba after_sdram_commands
|
||||
nop
|
||||
|
||||
sdram_commands_start:
|
||||
.byte regk_ddr2_deselect
|
||||
.word 0
|
||||
.byte regk_ddr2_pre
|
||||
.word regk_ddr2_pre_all
|
||||
.byte regk_ddr2_emrs2
|
||||
.word 0
|
||||
.byte regk_ddr2_emrs3
|
||||
.word 0
|
||||
.byte regk_ddr2_emrs
|
||||
.word regk_ddr2_dll_en
|
||||
.byte regk_ddr2_mrs
|
||||
.word regk_ddr2_dll_rst
|
||||
.byte regk_ddr2_pre
|
||||
.word regk_ddr2_pre_all
|
||||
.byte regk_ddr2_ref
|
||||
.word 0
|
||||
.byte regk_ddr2_ref
|
||||
.word 0
|
||||
.byte regk_ddr2_mrs
|
||||
.word CONFIG_ETRAX_DDR2_MRS & 0xffff
|
||||
.byte regk_ddr2_emrs
|
||||
.word regk_ddr2_ocd_default | regk_ddr2_dll_en
|
||||
.byte regk_ddr2_emrs
|
||||
.word regk_ddr2_ocd_exit | regk_ddr2_dll_en | (CONFIG_ETRAX_DDR2_MRS >> 16)
|
||||
sdram_commands_end:
|
||||
.align 1
|
||||
after_sdram_commands:
|
53
arch/cris/arch-v32/mach-a3/hw_settings.S
Normal file
53
arch/cris/arch-v32/mach-a3/hw_settings.S
Normal file
|
@ -0,0 +1,53 @@
|
|||
/*
|
||||
* This table is used by some tools to extract hardware parameters.
|
||||
* The table should be included in the kernel and the decompressor.
|
||||
* Don't forget to update the tools if you change this table.
|
||||
*
|
||||
* Copyright (C) 2001-2007 Axis Communications AB
|
||||
*
|
||||
* Authors: Mikael Starvik <starvik@axis.com>
|
||||
*/
|
||||
|
||||
#include <hwregs/asm/reg_map_asm.h>
|
||||
#include <hwregs/asm/ddr2_defs_asm.h>
|
||||
#include <hwregs/asm/gio_defs_asm.h>
|
||||
|
||||
.ascii "HW_PARAM_MAGIC" ; Magic number
|
||||
.dword 0xc0004000 ; Kernel start address
|
||||
|
||||
; Debug port
|
||||
#ifdef CONFIG_ETRAX_DEBUG_PORT0
|
||||
.dword 0
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT1)
|
||||
.dword 1
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT2)
|
||||
.dword 2
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT3)
|
||||
.dword 3
|
||||
#else
|
||||
.dword 4 ; No debug
|
||||
#endif
|
||||
|
||||
; Register values
|
||||
.dword REG_ADDR(ddr2, regi_ddr2_ctrl, rw_cfg)
|
||||
.dword CONFIG_ETRAX_DDR2_CONFIG
|
||||
.dword REG_ADDR(ddr2, regi_ddr2_ctrl, rw_latency)
|
||||
.dword CONFIG_ETRAX_DDR2_LATENCY
|
||||
.dword REG_ADDR(ddr2, regi_ddr2_ctrl, rw_timing)
|
||||
.dword CONFIG_ETRAX_DDR2_TIMING
|
||||
.dword CONFIG_ETRAX_DDR2_MRS
|
||||
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pa_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PA_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pa_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PA_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pb_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PB_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pb_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PB_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pc_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PC_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pc_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PC_OE
|
||||
|
||||
.dword 0 ; No more register values
|
149
arch/cris/arch-v32/mach-a3/io.c
Normal file
149
arch/cris/arch-v32/mach-a3/io.c
Normal file
|
@ -0,0 +1,149 @@
|
|||
/*
|
||||
* Helper functions for I/O pins.
|
||||
*
|
||||
* Copyright (c) 2005-2007 Axis Communications AB.
|
||||
*/
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/ctype.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/io.h>
|
||||
#include <mach/pinmux.h>
|
||||
#include <hwregs/gio_defs.h>
|
||||
|
||||
struct crisv32_ioport crisv32_ioports[] = {
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pa_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pa_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pa_din),
|
||||
32
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pb_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pb_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pb_din),
|
||||
32
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pc_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pc_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pc_din),
|
||||
16
|
||||
},
|
||||
};
|
||||
|
||||
#define NBR_OF_PORTS ARRAY_SIZE(crisv32_ioports)
|
||||
|
||||
struct crisv32_iopin crisv32_led_net0_green;
|
||||
struct crisv32_iopin crisv32_led_net0_red;
|
||||
struct crisv32_iopin crisv32_led2_green;
|
||||
struct crisv32_iopin crisv32_led2_red;
|
||||
struct crisv32_iopin crisv32_led3_green;
|
||||
struct crisv32_iopin crisv32_led3_red;
|
||||
|
||||
/* Dummy port used when green LED and red LED is on the same bit */
|
||||
static unsigned long io_dummy;
|
||||
static struct crisv32_ioport dummy_port = {
|
||||
&io_dummy,
|
||||
&io_dummy,
|
||||
&io_dummy,
|
||||
32
|
||||
};
|
||||
static struct crisv32_iopin dummy_led = {
|
||||
&dummy_port,
|
||||
0
|
||||
};
|
||||
|
||||
static int __init crisv32_io_init(void)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
u32 i;
|
||||
|
||||
/* Locks *should* be dynamically initialized. */
|
||||
for (i = 0; i < ARRAY_SIZE(crisv32_ioports); i++)
|
||||
spin_lock_init(&crisv32_ioports[i].lock);
|
||||
spin_lock_init(&dummy_port.lock);
|
||||
|
||||
/* Initialize LEDs */
|
||||
#if (defined(CONFIG_ETRAX_NBR_LED_GRP_ONE) || defined(CONFIG_ETRAX_NBR_LED_GRP_TWO))
|
||||
ret += crisv32_io_get_name(&crisv32_led_net0_green,
|
||||
CONFIG_ETRAX_LED_G_NET0);
|
||||
crisv32_io_set_dir(&crisv32_led_net0_green, crisv32_io_dir_out);
|
||||
if (strcmp(CONFIG_ETRAX_LED_G_NET0, CONFIG_ETRAX_LED_R_NET0)) {
|
||||
ret += crisv32_io_get_name(&crisv32_led_net0_red,
|
||||
CONFIG_ETRAX_LED_R_NET0);
|
||||
crisv32_io_set_dir(&crisv32_led_net0_red, crisv32_io_dir_out);
|
||||
} else
|
||||
crisv32_led_net0_red = dummy_led;
|
||||
#endif
|
||||
|
||||
ret += crisv32_io_get_name(&crisv32_led2_green, CONFIG_ETRAX_V32_LED2G);
|
||||
ret += crisv32_io_get_name(&crisv32_led2_red, CONFIG_ETRAX_V32_LED2R);
|
||||
ret += crisv32_io_get_name(&crisv32_led3_green, CONFIG_ETRAX_V32_LED3G);
|
||||
ret += crisv32_io_get_name(&crisv32_led3_red, CONFIG_ETRAX_V32_LED3R);
|
||||
|
||||
crisv32_io_set_dir(&crisv32_led2_green, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led2_red, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led3_green, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led3_red, crisv32_io_dir_out);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
__initcall(crisv32_io_init);
|
||||
|
||||
int crisv32_io_get(struct crisv32_iopin *iopin,
|
||||
unsigned int port, unsigned int pin)
|
||||
{
|
||||
if (port > NBR_OF_PORTS)
|
||||
return -EINVAL;
|
||||
if (port > crisv32_ioports[port].pin_count)
|
||||
return -EINVAL;
|
||||
|
||||
iopin->bit = 1 << pin;
|
||||
iopin->port = &crisv32_ioports[port];
|
||||
|
||||
if (crisv32_pinmux_alloc(port, pin, pin, pinmux_gpio))
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crisv32_io_get_name(struct crisv32_iopin *iopin, const char *name)
|
||||
{
|
||||
int port;
|
||||
int pin;
|
||||
|
||||
if (toupper(*name) == 'P')
|
||||
name++;
|
||||
|
||||
if (toupper(*name) < 'A' || toupper(*name) > 'E')
|
||||
return -EINVAL;
|
||||
|
||||
port = toupper(*name) - 'A';
|
||||
name++;
|
||||
pin = simple_strtoul(name, NULL, 10);
|
||||
|
||||
if (pin < 0 || pin > crisv32_ioports[port].pin_count)
|
||||
return -EINVAL;
|
||||
|
||||
iopin->bit = 1 << pin;
|
||||
iopin->port = &crisv32_ioports[port];
|
||||
|
||||
if (crisv32_pinmux_alloc(port, pin, pin, pinmux_gpio))
|
||||
return -EIO;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PCI
|
||||
/* PCI I/O access stuff */
|
||||
struct cris_io_operations *cris_iops = NULL;
|
||||
EXPORT_SYMBOL(cris_iops);
|
||||
#endif
|
||||
|
388
arch/cris/arch-v32/mach-a3/pinmux.c
Normal file
388
arch/cris/arch-v32/mach-a3/pinmux.c
Normal file
|
@ -0,0 +1,388 @@
|
|||
/*
|
||||
* Allocator for I/O pins. All pins are allocated to GPIO at bootup.
|
||||
* Unassigned pins and GPIO pins can be allocated to a fixed interface
|
||||
* or the I/O processor instead.
|
||||
*
|
||||
* Copyright (c) 2005-2007 Axis Communications AB.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <pinmux.h>
|
||||
#include <hwregs/pinmux_defs.h>
|
||||
#include <hwregs/clkgen_defs.h>
|
||||
|
||||
#undef DEBUG
|
||||
|
||||
#define PINS 80
|
||||
#define PORT_PINS 32
|
||||
#define PORTS 3
|
||||
|
||||
static char pins[PINS];
|
||||
static DEFINE_SPINLOCK(pinmux_lock);
|
||||
|
||||
static void crisv32_pinmux_set(int port);
|
||||
|
||||
int
|
||||
crisv32_pinmux_init(void)
|
||||
{
|
||||
static int initialized;
|
||||
|
||||
if (!initialized) {
|
||||
initialized = 1;
|
||||
REG_WR_INT(pinmux, regi_pinmux, rw_hwprot, 0);
|
||||
crisv32_pinmux_alloc(PORT_A, 0, 31, pinmux_gpio);
|
||||
crisv32_pinmux_alloc(PORT_B, 0, 31, pinmux_gpio);
|
||||
crisv32_pinmux_alloc(PORT_C, 0, 15, pinmux_gpio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
crisv32_pinmux_alloc(int port, int first_pin, int last_pin, enum pin_mode mode)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
if (port >= PORTS)
|
||||
return -EINVAL;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++) {
|
||||
if ((pins[port * PORT_PINS + i] != pinmux_none) &&
|
||||
(pins[port * PORT_PINS + i] != pinmux_gpio) &&
|
||||
(pins[port * PORT_PINS + i] != mode)) {
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
#ifdef DEBUG
|
||||
panic("Pinmux alloc failed!\n");
|
||||
#endif
|
||||
return -EPERM;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++)
|
||||
pins[port * PORT_PINS + i] = mode;
|
||||
|
||||
crisv32_pinmux_set(port);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
crisv32_pinmux_alloc_fixed(enum fixed_function function)
|
||||
{
|
||||
int ret = -EINVAL;
|
||||
char saved[sizeof pins];
|
||||
unsigned long flags;
|
||||
reg_pinmux_rw_hwprot hwprot;
|
||||
reg_clkgen_rw_clk_ctrl clk_ctrl;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
/* Save internal data for recovery */
|
||||
memcpy(saved, pins, sizeof pins);
|
||||
|
||||
crisv32_pinmux_init(); /* must be done before we read rw_hwprot */
|
||||
|
||||
hwprot = REG_RD(pinmux, regi_pinmux, rw_hwprot);
|
||||
clk_ctrl = REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
|
||||
|
||||
switch (function) {
|
||||
case pinmux_eth:
|
||||
clk_ctrl.eth = regk_clkgen_yes;
|
||||
clk_ctrl.dma0_1_eth = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 8, 23, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_B, 24, 25, pinmux_fixed);
|
||||
hwprot.eth = hwprot.eth_mdio = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_geth:
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 0, 7, pinmux_fixed);
|
||||
hwprot.geth = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_tg_cmos:
|
||||
clk_ctrl.ccd_tg_100 = clk_ctrl.ccd_tg_200 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 27, 29, pinmux_fixed);
|
||||
hwprot.tg_clk = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_tg_ccd:
|
||||
clk_ctrl.ccd_tg_100 = clk_ctrl.ccd_tg_200 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 27, 31, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_C, 0, 15, pinmux_fixed);
|
||||
hwprot.tg = hwprot.tg_clk = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_vout:
|
||||
clk_ctrl.strdma0_2_video = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 8, 18, pinmux_fixed);
|
||||
hwprot.vout = hwprot.vout_sync = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser1:
|
||||
clk_ctrl.sser_ser_dma6_7 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 24, 25, pinmux_fixed);
|
||||
hwprot.ser1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser2:
|
||||
clk_ctrl.sser_ser_dma6_7 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 26, 27, pinmux_fixed);
|
||||
hwprot.ser2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser3:
|
||||
clk_ctrl.sser_ser_dma6_7 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 28, 29, pinmux_fixed);
|
||||
hwprot.ser3 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser4:
|
||||
clk_ctrl.sser_ser_dma6_7 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 30, 31, pinmux_fixed);
|
||||
hwprot.ser4 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_sser:
|
||||
clk_ctrl.sser_ser_dma6_7 = regk_clkgen_yes;
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 19, 23, pinmux_fixed);
|
||||
hwprot.sser = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_pio:
|
||||
hwprot.pio = regk_pinmux_yes;
|
||||
ret = 0;
|
||||
break;
|
||||
case pinmux_pwm0:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 30, 30, pinmux_fixed);
|
||||
hwprot.pwm0 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_pwm1:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 31, 31, pinmux_fixed);
|
||||
hwprot.pwm1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_pwm2:
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 26, 26, pinmux_fixed);
|
||||
hwprot.pwm2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c0:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 0, 1, pinmux_fixed);
|
||||
hwprot.i2c0 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c1:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 2, 3, pinmux_fixed);
|
||||
hwprot.i2c1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c1_3wire:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 2, 3, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_A, 7, 7, pinmux_fixed);
|
||||
hwprot.i2c1 = hwprot.i2c1_sen = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c1_sda1:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 2, 4, pinmux_fixed);
|
||||
hwprot.i2c1 = hwprot.i2c1_sda1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c1_sda2:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 2, 3, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_A, 5, 5, pinmux_fixed);
|
||||
hwprot.i2c1 = hwprot.i2c1_sda2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_i2c1_sda3:
|
||||
ret = crisv32_pinmux_alloc(PORT_A, 2, 3, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_A, 6, 6, pinmux_fixed);
|
||||
hwprot.i2c1 = hwprot.i2c1_sda3 = regk_pinmux_yes;
|
||||
break;
|
||||
default:
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!ret) {
|
||||
REG_WR(pinmux, regi_pinmux, rw_hwprot, hwprot);
|
||||
REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, clk_ctrl);
|
||||
} else
|
||||
memcpy(pins, saved, sizeof pins);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void
|
||||
crisv32_pinmux_set(int port)
|
||||
{
|
||||
int i;
|
||||
int gpio_val = 0;
|
||||
int iop_val = 0;
|
||||
int pin = port * PORT_PINS;
|
||||
|
||||
for (i = 0; (i < PORT_PINS) && (pin < PINS); i++, pin++) {
|
||||
if (pins[pin] == pinmux_gpio)
|
||||
gpio_val |= (1 << i);
|
||||
else if (pins[pin] == pinmux_iop)
|
||||
iop_val |= (1 << i);
|
||||
}
|
||||
|
||||
REG_WRITE(int, regi_pinmux + REG_RD_ADDR_pinmux_rw_gio_pa + 4 * port,
|
||||
gpio_val);
|
||||
REG_WRITE(int, regi_pinmux + REG_RD_ADDR_pinmux_rw_iop_pa + 4 * port,
|
||||
iop_val);
|
||||
|
||||
#ifdef DEBUG
|
||||
crisv32_pinmux_dump();
|
||||
#endif
|
||||
}
|
||||
|
||||
int
|
||||
crisv32_pinmux_dealloc(int port, int first_pin, int last_pin)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
if (port > PORTS || port < 0)
|
||||
return -EINVAL;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++)
|
||||
pins[port * PORT_PINS + i] = pinmux_none;
|
||||
|
||||
crisv32_pinmux_set(port);
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
crisv32_pinmux_dealloc_fixed(enum fixed_function function)
|
||||
{
|
||||
int ret = -EINVAL;
|
||||
char saved[sizeof pins];
|
||||
unsigned long flags;
|
||||
reg_pinmux_rw_hwprot hwprot;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
/* Save internal data for recovery */
|
||||
memcpy(saved, pins, sizeof pins);
|
||||
|
||||
crisv32_pinmux_init(); /* must be done before we read rw_hwprot */
|
||||
|
||||
hwprot = REG_RD(pinmux, regi_pinmux, rw_hwprot);
|
||||
|
||||
switch (function) {
|
||||
case pinmux_eth:
|
||||
ret = crisv32_pinmux_dealloc(PORT_B, 8, 23);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_B, 24, 25);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_B, 0, 7);
|
||||
hwprot.eth = hwprot.eth_mdio = hwprot.geth = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_tg_cmos:
|
||||
ret = crisv32_pinmux_dealloc(PORT_B, 27, 29);
|
||||
hwprot.tg_clk = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_tg_ccd:
|
||||
ret = crisv32_pinmux_dealloc(PORT_B, 27, 31);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_C, 0, 15);
|
||||
hwprot.tg = hwprot.tg_clk = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_vout:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 8, 18);
|
||||
hwprot.vout = hwprot.vout_sync = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 24, 25);
|
||||
hwprot.ser1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser2:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 26, 27);
|
||||
hwprot.ser2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser3:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 28, 29);
|
||||
hwprot.ser3 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser4:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 30, 31);
|
||||
hwprot.ser4 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_sser:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 19, 23);
|
||||
hwprot.sser = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_pwm0:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 30, 30);
|
||||
hwprot.pwm0 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_pwm1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 31, 31);
|
||||
hwprot.pwm1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_pwm2:
|
||||
ret = crisv32_pinmux_dealloc(PORT_B, 26, 26);
|
||||
hwprot.pwm2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c0:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 0, 1);
|
||||
hwprot.i2c0 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 2, 3);
|
||||
hwprot.i2c1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c1_3wire:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 2, 3);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_A, 7, 7);
|
||||
hwprot.i2c1 = hwprot.i2c1_sen = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c1_sda1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 2, 4);
|
||||
hwprot.i2c1_sda1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c1_sda2:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 2, 3);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_A, 5, 5);
|
||||
hwprot.i2c1_sda2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_i2c1_sda3:
|
||||
ret = crisv32_pinmux_dealloc(PORT_A, 2, 3);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_A, 6, 6);
|
||||
hwprot.i2c1_sda3 = regk_pinmux_no;
|
||||
break;
|
||||
default:
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
if (!ret)
|
||||
REG_WR(pinmux, regi_pinmux, rw_hwprot, hwprot);
|
||||
else
|
||||
memcpy(pins, saved, sizeof pins);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void
|
||||
crisv32_pinmux_dump(void)
|
||||
{
|
||||
int i, j;
|
||||
int pin = 0;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
for (i = 0; i < PORTS; i++) {
|
||||
pin++;
|
||||
printk(KERN_DEBUG "Port %c\n", 'A'+i);
|
||||
for (j = 0; (j < PORT_PINS) && (pin < PINS); j++, pin++)
|
||||
printk(KERN_DEBUG
|
||||
" Pin %d = %d\n", j, pins[i * PORT_PINS + j]);
|
||||
}
|
||||
}
|
||||
|
||||
__initcall(crisv32_pinmux_init);
|
Loading…
Add table
Add a link
Reference in a new issue