mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-10 09:22:44 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
216
arch/cris/arch-v32/mach-fs/Kconfig
Normal file
216
arch/cris/arch-v32/mach-fs/Kconfig
Normal file
|
@ -0,0 +1,216 @@
|
|||
if ETRAXFS
|
||||
|
||||
menu "ETRAX FS options"
|
||||
depends on ETRAXFS
|
||||
|
||||
config ETRAX_DRAM_VIRTUAL_BASE
|
||||
hex
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "c0000000"
|
||||
|
||||
config ETRAX_SERIAL_PORTS
|
||||
int
|
||||
default 4
|
||||
|
||||
config ETRAX_MEM_GRP1_CONFIG
|
||||
hex "MEM_GRP1_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "4044a"
|
||||
help
|
||||
Waitstates for flash. The default value is suitable for the
|
||||
standard flashes used in axis products (120 ns).
|
||||
|
||||
config ETRAX_MEM_GRP2_CONFIG
|
||||
hex "MEM_GRP2_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "0"
|
||||
help
|
||||
Waitstates for SRAM. 0 is a good choice for most Axis products.
|
||||
|
||||
config ETRAX_MEM_GRP3_CONFIG
|
||||
hex "MEM_GRP3_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "0"
|
||||
help
|
||||
Waitstates for CSP0-3. 0 is a good choice for most Axis products.
|
||||
It may need to be changed if external devices such as extra
|
||||
register-mapped LEDs are used.
|
||||
|
||||
config ETRAX_MEM_GRP4_CONFIG
|
||||
hex "MEM_GRP4_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "0"
|
||||
help
|
||||
Waitstates for CSP4-6. 0 is a good choice for most Axis products.
|
||||
|
||||
config ETRAX_SDRAM_GRP0_CONFIG
|
||||
hex "SDRAM_GRP0_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "336"
|
||||
help
|
||||
SDRAM configuration for group 0. The value depends on the
|
||||
hardware configuration. The default value is suitable
|
||||
for 32 MB organized as two 16 bits chips (e.g. Axis
|
||||
part number 18550) connected as one 32 bit device (i.e. in
|
||||
the same group).
|
||||
|
||||
config ETRAX_SDRAM_GRP1_CONFIG
|
||||
hex "SDRAM_GRP1_CONFIG"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "0"
|
||||
help
|
||||
SDRAM configuration for group 1. The default value is 0
|
||||
because group 1 is not used in the default configuration,
|
||||
described in the help for SDRAM_GRP0_CONFIG.
|
||||
|
||||
config ETRAX_SDRAM_TIMING
|
||||
hex "SDRAM_TIMING"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "104a"
|
||||
help
|
||||
SDRAM timing parameters. The default value is ok for
|
||||
most hardwares but large SDRAMs may require a faster
|
||||
refresh (a.k.a 8K refresh). The default value implies
|
||||
100MHz clock and SDR mode.
|
||||
|
||||
config ETRAX_SDRAM_COMMAND
|
||||
hex "SDRAM_COMMAND"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "0"
|
||||
help
|
||||
SDRAM command. Should be 0 unless you really know what
|
||||
you are doing (may be != 0 for unusual address line
|
||||
mappings such as in a MCM)..
|
||||
|
||||
config ETRAX_DEF_GIO_PA_OE
|
||||
hex "GIO_PA_OE"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "1c"
|
||||
help
|
||||
Configures the direction of general port A bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PA_OUT
|
||||
hex "GIO_PA_OUT"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00"
|
||||
help
|
||||
Configures the initial data for the general port A bits. Most
|
||||
products should use 00 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PB_OE
|
||||
hex "GIO_PB_OE"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the direction of general port B bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PB_OUT
|
||||
hex "GIO_PB_OUT"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the initial data for the general port B bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PC_OE
|
||||
hex "GIO_PC_OE"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the direction of general port C bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PC_OUT
|
||||
hex "GIO_PC_OUT"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the initial data for the general port C bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PD_OE
|
||||
hex "GIO_PD_OE"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the direction of general port D bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PD_OUT
|
||||
hex "GIO_PD_OUT"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the initial data for the general port D bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PE_OE
|
||||
hex "GIO_PE_OE"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the direction of general port E bits. 1 is out, 0 is in.
|
||||
This is often totally different depending on the product used.
|
||||
There are some guidelines though - if you know that only LED's are
|
||||
connected to port PA, then they are usually connected to bits 2-4
|
||||
and you can therefore use 1c. On other boards which don't have the
|
||||
LED's at the general ports, these bits are used for all kinds of
|
||||
stuff. If you don't know what to use, it is always safe to put all
|
||||
as inputs, although floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PE_OUT
|
||||
hex "GIO_PE_OUT"
|
||||
depends on ETRAX_ARCH_V32
|
||||
default "00000"
|
||||
help
|
||||
Configures the initial data for the general port E bits. Most
|
||||
products should use 00000 here.
|
||||
|
||||
config ETRAX_DEF_GIO_PV_OE
|
||||
hex "GIO_PV_OE"
|
||||
depends on ETRAX_VIRTUAL_GPIO
|
||||
default "0000"
|
||||
help
|
||||
Configures the direction of virtual general port V bits. 1 is out,
|
||||
0 is in. This is often totally different depending on the product
|
||||
used. These bits are used for all kinds of stuff. If you don't know
|
||||
what to use, it is always safe to put all as inputs, although
|
||||
floating inputs isn't good.
|
||||
|
||||
config ETRAX_DEF_GIO_PV_OUT
|
||||
hex "GIO_PV_OUT"
|
||||
depends on ETRAX_VIRTUAL_GPIO
|
||||
default "0000"
|
||||
help
|
||||
Configures the initial data for the virtual general port V bits.
|
||||
Most products should use 0000 here.
|
||||
|
||||
endmenu
|
||||
|
||||
endif
|
8
arch/cris/arch-v32/mach-fs/Makefile
Normal file
8
arch/cris/arch-v32/mach-fs/Makefile
Normal file
|
@ -0,0 +1,8 @@
|
|||
#
|
||||
# Makefile for the linux kernel.
|
||||
#
|
||||
|
||||
obj-y := dma.o pinmux.o io.o arbiter.o
|
||||
|
||||
clean:
|
||||
|
404
arch/cris/arch-v32/mach-fs/arbiter.c
Normal file
404
arch/cris/arch-v32/mach-fs/arbiter.c
Normal file
|
@ -0,0 +1,404 @@
|
|||
/*
|
||||
* Memory arbiter functions. Allocates bandwidth through the
|
||||
* arbiter and sets up arbiter breakpoints.
|
||||
*
|
||||
* The algorithm first assigns slots to the clients that has specified
|
||||
* bandwidth (e.g. ethernet) and then the remaining slots are divided
|
||||
* on all the active clients.
|
||||
*
|
||||
* Copyright (c) 2004-2007 Axis Communications AB.
|
||||
*/
|
||||
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <hwregs/marb_defs.h>
|
||||
#include <arbiter.h>
|
||||
#include <hwregs/intr_vect.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/signal.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/irq_regs.h>
|
||||
|
||||
struct crisv32_watch_entry {
|
||||
unsigned long instance;
|
||||
watch_callback *cb;
|
||||
unsigned long start;
|
||||
unsigned long end;
|
||||
int used;
|
||||
};
|
||||
|
||||
#define NUMBER_OF_BP 4
|
||||
#define NBR_OF_CLIENTS 14
|
||||
#define NBR_OF_SLOTS 64
|
||||
#define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
|
||||
#define INTMEM_BANDWIDTH 400000000
|
||||
#define NBR_OF_REGIONS 2
|
||||
|
||||
static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
|
||||
{regi_marb_bp0},
|
||||
{regi_marb_bp1},
|
||||
{regi_marb_bp2},
|
||||
{regi_marb_bp3}
|
||||
};
|
||||
|
||||
static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
||||
static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
|
||||
static int max_bandwidth[NBR_OF_REGIONS] =
|
||||
{ SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
|
||||
|
||||
DEFINE_SPINLOCK(arbiter_lock);
|
||||
|
||||
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
|
||||
|
||||
/*
|
||||
* "I'm the arbiter, I know the score.
|
||||
* From square one I'll be watching all 64."
|
||||
* (memory arbiter slots, that is)
|
||||
*
|
||||
* Or in other words:
|
||||
* Program the memory arbiter slots for "region" according to what's
|
||||
* in requested_slots[] and active_clients[], while minimizing
|
||||
* latency. A caller may pass a non-zero positive amount for
|
||||
* "unused_slots", which must then be the unallocated, remaining
|
||||
* number of slots, free to hand out to any client.
|
||||
*/
|
||||
|
||||
static void crisv32_arbiter_config(int region, int unused_slots)
|
||||
{
|
||||
int slot;
|
||||
int client;
|
||||
int interval = 0;
|
||||
|
||||
/*
|
||||
* This vector corresponds to the hardware arbiter slots (see
|
||||
* the hardware documentation for semantics). We initialize
|
||||
* each slot with a suitable sentinel value outside the valid
|
||||
* range {0 .. NBR_OF_CLIENTS - 1} and replace them with
|
||||
* client indexes. Then it's fed to the hardware.
|
||||
*/
|
||||
s8 val[NBR_OF_SLOTS];
|
||||
|
||||
for (slot = 0; slot < NBR_OF_SLOTS; slot++)
|
||||
val[slot] = -1;
|
||||
|
||||
for (client = 0; client < NBR_OF_CLIENTS; client++) {
|
||||
int pos;
|
||||
/* Allocate the requested non-zero number of slots, but
|
||||
* also give clients with zero-requests one slot each
|
||||
* while stocks last. We do the latter here, in client
|
||||
* order. This makes sure zero-request clients are the
|
||||
* first to get to any spare slots, else those slots
|
||||
* could, when bandwidth is allocated close to the limit,
|
||||
* all be allocated to low-index non-zero-request clients
|
||||
* in the default-fill loop below. Another positive but
|
||||
* secondary effect is a somewhat better spread of the
|
||||
* zero-bandwidth clients in the vector, avoiding some of
|
||||
* the latency that could otherwise be caused by the
|
||||
* partitioning of non-zero-bandwidth clients at low
|
||||
* indexes and zero-bandwidth clients at high
|
||||
* indexes. (Note that this spreading can only affect the
|
||||
* unallocated bandwidth.) All the above only matters for
|
||||
* memory-intensive situations, of course.
|
||||
*/
|
||||
if (!requested_slots[region][client]) {
|
||||
/*
|
||||
* Skip inactive clients. Also skip zero-slot
|
||||
* allocations in this pass when there are no known
|
||||
* free slots.
|
||||
*/
|
||||
if (!active_clients[region][client]
|
||||
|| unused_slots <= 0)
|
||||
continue;
|
||||
|
||||
unused_slots--;
|
||||
|
||||
/* Only allocate one slot for this client. */
|
||||
interval = NBR_OF_SLOTS;
|
||||
} else
|
||||
interval =
|
||||
NBR_OF_SLOTS / requested_slots[region][client];
|
||||
|
||||
pos = 0;
|
||||
while (pos < NBR_OF_SLOTS) {
|
||||
if (val[pos] >= 0)
|
||||
pos++;
|
||||
else {
|
||||
val[pos] = client;
|
||||
pos += interval;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
client = 0;
|
||||
for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
|
||||
/*
|
||||
* Allocate remaining slots in round-robin
|
||||
* client-number order for active clients. For this
|
||||
* pass, we ignore requested bandwidth and previous
|
||||
* allocations.
|
||||
*/
|
||||
if (val[slot] < 0) {
|
||||
int first = client;
|
||||
while (!active_clients[region][client]) {
|
||||
client = (client + 1) % NBR_OF_CLIENTS;
|
||||
if (client == first)
|
||||
break;
|
||||
}
|
||||
val[slot] = client;
|
||||
client = (client + 1) % NBR_OF_CLIENTS;
|
||||
}
|
||||
if (region == EXT_REGION)
|
||||
REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
|
||||
val[slot]);
|
||||
else if (region == INT_REGION)
|
||||
REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
|
||||
val[slot]);
|
||||
}
|
||||
}
|
||||
|
||||
extern char _stext, _etext;
|
||||
|
||||
static void crisv32_arbiter_init(void)
|
||||
{
|
||||
static int initialized;
|
||||
|
||||
if (initialized)
|
||||
return;
|
||||
|
||||
initialized = 1;
|
||||
|
||||
/*
|
||||
* CPU caches are always set to active, but with zero
|
||||
* bandwidth allocated. It should be ok to allocate zero
|
||||
* bandwidth for the caches, because DMA for other channels
|
||||
* will supposedly finish, once their programmed amount is
|
||||
* done, and then the caches will get access according to the
|
||||
* "fixed scheme" for unclaimed slots. Though, if for some
|
||||
* use-case somewhere, there's a maximum CPU latency for
|
||||
* e.g. some interrupt, we have to start allocating specific
|
||||
* bandwidth for the CPU caches too.
|
||||
*/
|
||||
active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
|
||||
crisv32_arbiter_config(EXT_REGION, 0);
|
||||
crisv32_arbiter_config(INT_REGION, 0);
|
||||
|
||||
if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, 0,
|
||||
"arbiter", NULL))
|
||||
printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
|
||||
|
||||
#ifndef CONFIG_ETRAX_KGDB
|
||||
/* Global watch for writes to kernel text segment. */
|
||||
crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
|
||||
arbiter_all_clients, arbiter_all_write, NULL);
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Main entry for bandwidth allocation. */
|
||||
|
||||
int crisv32_arbiter_allocate_bandwidth(int client, int region,
|
||||
unsigned long bandwidth)
|
||||
{
|
||||
int i;
|
||||
int total_assigned = 0;
|
||||
int total_clients = 0;
|
||||
int req;
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
for (i = 0; i < NBR_OF_CLIENTS; i++) {
|
||||
total_assigned += requested_slots[region][i];
|
||||
total_clients += active_clients[region][i];
|
||||
}
|
||||
|
||||
/* Avoid division by 0 for 0-bandwidth requests. */
|
||||
req = bandwidth == 0
|
||||
? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
|
||||
|
||||
/*
|
||||
* We make sure that there are enough slots only for non-zero
|
||||
* requests. Requesting 0 bandwidth *may* allocate slots,
|
||||
* though if all bandwidth is allocated, such a client won't
|
||||
* get any and will have to rely on getting memory access
|
||||
* according to the fixed scheme that's the default when one
|
||||
* of the slot-allocated clients doesn't claim their slot.
|
||||
*/
|
||||
if (total_assigned + req > NBR_OF_SLOTS)
|
||||
return -ENOMEM;
|
||||
|
||||
active_clients[region][client] = 1;
|
||||
requested_slots[region][client] = req;
|
||||
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Main entry for bandwidth deallocation.
|
||||
*
|
||||
* Strictly speaking, for a somewhat constant set of clients where
|
||||
* each client gets a constant bandwidth and is just enabled or
|
||||
* disabled (somewhat dynamically), no action is necessary here to
|
||||
* avoid starvation for non-zero-allocation clients, as the allocated
|
||||
* slots will just be unused. However, handing out those unused slots
|
||||
* to active clients avoids needless latency if the "fixed scheme"
|
||||
* would give unclaimed slots to an eager low-index client.
|
||||
*/
|
||||
|
||||
void crisv32_arbiter_deallocate_bandwidth(int client, int region)
|
||||
{
|
||||
int i;
|
||||
int total_assigned = 0;
|
||||
|
||||
requested_slots[region][client] = 0;
|
||||
active_clients[region][client] = 0;
|
||||
|
||||
for (i = 0; i < NBR_OF_CLIENTS; i++)
|
||||
total_assigned += requested_slots[region][i];
|
||||
|
||||
crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
|
||||
}
|
||||
|
||||
int crisv32_arbiter_watch(unsigned long start, unsigned long size,
|
||||
unsigned long clients, unsigned long accesses,
|
||||
watch_callback *cb)
|
||||
{
|
||||
int i;
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
if (start > 0x80000000) {
|
||||
printk(KERN_ERR "Arbiter: %lX doesn't look like a "
|
||||
"physical address", start);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
spin_lock(&arbiter_lock);
|
||||
|
||||
for (i = 0; i < NUMBER_OF_BP; i++) {
|
||||
if (!watches[i].used) {
|
||||
reg_marb_rw_intr_mask intr_mask =
|
||||
REG_RD(marb, regi_marb, rw_intr_mask);
|
||||
|
||||
watches[i].used = 1;
|
||||
watches[i].start = start;
|
||||
watches[i].end = start + size;
|
||||
watches[i].cb = cb;
|
||||
|
||||
REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
|
||||
watches[i].start);
|
||||
REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
|
||||
watches[i].end);
|
||||
REG_WR_INT(marb_bp, watches[i].instance, rw_op,
|
||||
accesses);
|
||||
REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
|
||||
clients);
|
||||
|
||||
if (i == 0)
|
||||
intr_mask.bp0 = regk_marb_yes;
|
||||
else if (i == 1)
|
||||
intr_mask.bp1 = regk_marb_yes;
|
||||
else if (i == 2)
|
||||
intr_mask.bp2 = regk_marb_yes;
|
||||
else if (i == 3)
|
||||
intr_mask.bp3 = regk_marb_yes;
|
||||
|
||||
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
|
||||
spin_unlock(&arbiter_lock);
|
||||
|
||||
return i;
|
||||
}
|
||||
}
|
||||
spin_unlock(&arbiter_lock);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
int crisv32_arbiter_unwatch(int id)
|
||||
{
|
||||
reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
|
||||
|
||||
crisv32_arbiter_init();
|
||||
|
||||
spin_lock(&arbiter_lock);
|
||||
|
||||
if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
|
||||
spin_unlock(&arbiter_lock);
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
|
||||
|
||||
if (id == 0)
|
||||
intr_mask.bp0 = regk_marb_no;
|
||||
else if (id == 1)
|
||||
intr_mask.bp1 = regk_marb_no;
|
||||
else if (id == 2)
|
||||
intr_mask.bp2 = regk_marb_no;
|
||||
else if (id == 3)
|
||||
intr_mask.bp3 = regk_marb_no;
|
||||
|
||||
REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
|
||||
|
||||
spin_unlock(&arbiter_lock);
|
||||
return 0;
|
||||
}
|
||||
|
||||
extern void show_registers(struct pt_regs *regs);
|
||||
|
||||
static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
|
||||
{
|
||||
reg_marb_r_masked_intr masked_intr =
|
||||
REG_RD(marb, regi_marb, r_masked_intr);
|
||||
reg_marb_bp_r_brk_clients r_clients;
|
||||
reg_marb_bp_r_brk_addr r_addr;
|
||||
reg_marb_bp_r_brk_op r_op;
|
||||
reg_marb_bp_r_brk_first_client r_first;
|
||||
reg_marb_bp_r_brk_size r_size;
|
||||
reg_marb_bp_rw_ack ack = { 0 };
|
||||
reg_marb_rw_ack_intr ack_intr = {
|
||||
.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
|
||||
};
|
||||
struct crisv32_watch_entry *watch;
|
||||
|
||||
if (masked_intr.bp0) {
|
||||
watch = &watches[0];
|
||||
ack_intr.bp0 = regk_marb_yes;
|
||||
} else if (masked_intr.bp1) {
|
||||
watch = &watches[1];
|
||||
ack_intr.bp1 = regk_marb_yes;
|
||||
} else if (masked_intr.bp2) {
|
||||
watch = &watches[2];
|
||||
ack_intr.bp2 = regk_marb_yes;
|
||||
} else if (masked_intr.bp3) {
|
||||
watch = &watches[3];
|
||||
ack_intr.bp3 = regk_marb_yes;
|
||||
} else {
|
||||
return IRQ_NONE;
|
||||
}
|
||||
|
||||
/* Retrieve all useful information and print it. */
|
||||
r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
|
||||
r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
|
||||
r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
|
||||
r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
|
||||
r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
|
||||
|
||||
printk(KERN_INFO "Arbiter IRQ\n");
|
||||
printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
|
||||
REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
|
||||
REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
|
||||
REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
|
||||
REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
|
||||
REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
|
||||
|
||||
REG_WR(marb_bp, watch->instance, rw_ack, ack);
|
||||
REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
|
||||
|
||||
printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
|
||||
|
||||
if (watch->cb)
|
||||
watch->cb();
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
229
arch/cris/arch-v32/mach-fs/dma.c
Normal file
229
arch/cris/arch-v32/mach-fs/dma.c
Normal file
|
@ -0,0 +1,229 @@
|
|||
/* Wrapper for DMA channel allocator that starts clocks etc */
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <asm/dma.h>
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <hwregs/marb_defs.h>
|
||||
#include <hwregs/config_defs.h>
|
||||
#include <hwregs/strmux_defs.h>
|
||||
#include <linux/errno.h>
|
||||
#include <mach/arbiter.h>
|
||||
|
||||
static char used_dma_channels[MAX_DMA_CHANNELS];
|
||||
static const char *used_dma_channels_users[MAX_DMA_CHANNELS];
|
||||
|
||||
static DEFINE_SPINLOCK(dma_lock);
|
||||
|
||||
int crisv32_request_dma(unsigned int dmanr, const char *device_id,
|
||||
unsigned options, unsigned int bandwidth,
|
||||
enum dma_owner owner)
|
||||
{
|
||||
unsigned long flags;
|
||||
reg_config_rw_clk_ctrl clk_ctrl;
|
||||
reg_strmux_rw_cfg strmux_cfg;
|
||||
|
||||
if (crisv32_arbiter_allocate_bandwidth(dmanr,
|
||||
options & DMA_INT_MEM ?
|
||||
INT_REGION : EXT_REGION,
|
||||
bandwidth))
|
||||
return -ENOMEM;
|
||||
|
||||
spin_lock_irqsave(&dma_lock, flags);
|
||||
|
||||
if (used_dma_channels[dmanr]) {
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
if (options & DMA_VERBOSE_ON_ERROR) {
|
||||
printk(KERN_ERR "Failed to request DMA %i for %s, "
|
||||
"already allocated by %s\n",
|
||||
dmanr,
|
||||
device_id,
|
||||
used_dma_channels_users[dmanr]);
|
||||
}
|
||||
if (options & DMA_PANIC_ON_ERROR)
|
||||
panic("request_dma error!");
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
return -EBUSY;
|
||||
}
|
||||
clk_ctrl = REG_RD(config, regi_config, rw_clk_ctrl);
|
||||
strmux_cfg = REG_RD(strmux, regi_strmux, rw_cfg);
|
||||
|
||||
switch (dmanr) {
|
||||
case 0:
|
||||
case 1:
|
||||
clk_ctrl.dma01_eth0 = 1;
|
||||
break;
|
||||
case 2:
|
||||
case 3:
|
||||
clk_ctrl.dma23 = 1;
|
||||
break;
|
||||
case 4:
|
||||
case 5:
|
||||
clk_ctrl.dma45 = 1;
|
||||
break;
|
||||
case 6:
|
||||
case 7:
|
||||
clk_ctrl.dma67 = 1;
|
||||
break;
|
||||
case 8:
|
||||
case 9:
|
||||
clk_ctrl.dma89_strcop = 1;
|
||||
break;
|
||||
#if MAX_DMA_CHANNELS-1 != 9
|
||||
#error Check dma.c
|
||||
#endif
|
||||
default:
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
if (options & DMA_VERBOSE_ON_ERROR) {
|
||||
printk(KERN_ERR "Failed to request DMA %i for %s, "
|
||||
"only 0-%i valid)\n",
|
||||
dmanr, device_id, MAX_DMA_CHANNELS - 1);
|
||||
}
|
||||
|
||||
if (options & DMA_PANIC_ON_ERROR)
|
||||
panic("request_dma error!");
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
switch (owner) {
|
||||
case dma_eth0:
|
||||
if (dmanr == 0)
|
||||
strmux_cfg.dma0 = regk_strmux_eth0;
|
||||
else if (dmanr == 1)
|
||||
strmux_cfg.dma1 = regk_strmux_eth0;
|
||||
else
|
||||
panic("Invalid DMA channel for eth0\n");
|
||||
break;
|
||||
case dma_eth1:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_eth1;
|
||||
else if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_eth1;
|
||||
else
|
||||
panic("Invalid DMA channel for eth1\n");
|
||||
break;
|
||||
case dma_iop0:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_iop0;
|
||||
else if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_iop0;
|
||||
else
|
||||
panic("Invalid DMA channel for iop0\n");
|
||||
break;
|
||||
case dma_iop1:
|
||||
if (dmanr == 4)
|
||||
strmux_cfg.dma4 = regk_strmux_iop1;
|
||||
else if (dmanr == 5)
|
||||
strmux_cfg.dma5 = regk_strmux_iop1;
|
||||
else
|
||||
panic("Invalid DMA channel for iop1\n");
|
||||
break;
|
||||
case dma_ser0:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_ser0;
|
||||
else if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_ser0;
|
||||
else
|
||||
panic("Invalid DMA channel for ser0\n");
|
||||
break;
|
||||
case dma_ser1:
|
||||
if (dmanr == 4)
|
||||
strmux_cfg.dma4 = regk_strmux_ser1;
|
||||
else if (dmanr == 5)
|
||||
strmux_cfg.dma5 = regk_strmux_ser1;
|
||||
else
|
||||
panic("Invalid DMA channel for ser1\n");
|
||||
break;
|
||||
case dma_ser2:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_ser2;
|
||||
else if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_ser2;
|
||||
else
|
||||
panic("Invalid DMA channel for ser2\n");
|
||||
break;
|
||||
case dma_ser3:
|
||||
if (dmanr == 8)
|
||||
strmux_cfg.dma8 = regk_strmux_ser3;
|
||||
else if (dmanr == 9)
|
||||
strmux_cfg.dma9 = regk_strmux_ser3;
|
||||
else
|
||||
panic("Invalid DMA channel for ser3\n");
|
||||
break;
|
||||
case dma_sser0:
|
||||
if (dmanr == 4)
|
||||
strmux_cfg.dma4 = regk_strmux_sser0;
|
||||
else if (dmanr == 5)
|
||||
strmux_cfg.dma5 = regk_strmux_sser0;
|
||||
else
|
||||
panic("Invalid DMA channel for sser0\n");
|
||||
break;
|
||||
case dma_sser1:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_sser1;
|
||||
else if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_sser1;
|
||||
else
|
||||
panic("Invalid DMA channel for sser1\n");
|
||||
break;
|
||||
case dma_ata:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_ata;
|
||||
else if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_ata;
|
||||
else
|
||||
panic("Invalid DMA channel for ata\n");
|
||||
break;
|
||||
case dma_strp:
|
||||
if (dmanr == 8)
|
||||
strmux_cfg.dma8 = regk_strmux_strcop;
|
||||
else if (dmanr == 9)
|
||||
strmux_cfg.dma9 = regk_strmux_strcop;
|
||||
else
|
||||
panic("Invalid DMA channel for strp\n");
|
||||
break;
|
||||
case dma_ext0:
|
||||
if (dmanr == 6)
|
||||
strmux_cfg.dma6 = regk_strmux_ext0;
|
||||
else
|
||||
panic("Invalid DMA channel for ext0\n");
|
||||
break;
|
||||
case dma_ext1:
|
||||
if (dmanr == 7)
|
||||
strmux_cfg.dma7 = regk_strmux_ext1;
|
||||
else
|
||||
panic("Invalid DMA channel for ext1\n");
|
||||
break;
|
||||
case dma_ext2:
|
||||
if (dmanr == 2)
|
||||
strmux_cfg.dma2 = regk_strmux_ext2;
|
||||
else if (dmanr == 8)
|
||||
strmux_cfg.dma8 = regk_strmux_ext2;
|
||||
else
|
||||
panic("Invalid DMA channel for ext2\n");
|
||||
break;
|
||||
case dma_ext3:
|
||||
if (dmanr == 3)
|
||||
strmux_cfg.dma3 = regk_strmux_ext3;
|
||||
else if (dmanr == 9)
|
||||
strmux_cfg.dma9 = regk_strmux_ext2;
|
||||
else
|
||||
panic("Invalid DMA channel for ext2\n");
|
||||
break;
|
||||
}
|
||||
|
||||
used_dma_channels[dmanr] = 1;
|
||||
used_dma_channels_users[dmanr] = device_id;
|
||||
REG_WR(config, regi_config, rw_clk_ctrl, clk_ctrl);
|
||||
REG_WR(strmux, regi_strmux, rw_cfg, strmux_cfg);
|
||||
spin_unlock_irqrestore(&dma_lock, flags);
|
||||
return 0;
|
||||
}
|
||||
|
||||
void crisv32_free_dma(unsigned int dmanr)
|
||||
{
|
||||
spin_lock(&dma_lock);
|
||||
used_dma_channels[dmanr] = 0;
|
||||
spin_unlock(&dma_lock);
|
||||
}
|
116
arch/cris/arch-v32/mach-fs/dram_init.S
Normal file
116
arch/cris/arch-v32/mach-fs/dram_init.S
Normal file
|
@ -0,0 +1,116 @@
|
|||
/*
|
||||
* DRAM/SDRAM initialization - alter with care
|
||||
* This file is intended to be included from other assembler files
|
||||
*
|
||||
* Note: This file may not modify r8 or r9 because they are used to
|
||||
* carry information from the decompresser to the kernel
|
||||
*
|
||||
* Copyright (C) 2000-2007 Axis Communications AB
|
||||
*
|
||||
* Authors: Mikael Starvik <starvik@axis.com>
|
||||
*/
|
||||
|
||||
/* Just to be certain the config file is included, we include it here
|
||||
* explicitely instead of depending on it being included in the file that
|
||||
* uses this code.
|
||||
*/
|
||||
|
||||
#include <hwregs/asm/reg_map_asm.h>
|
||||
#include <hwregs/asm/bif_core_defs_asm.h>
|
||||
|
||||
;; WARNING! The registers r8 and r9 are used as parameters carrying
|
||||
;; information from the decompressor (if the kernel was compressed).
|
||||
;; They should not be used in the code below.
|
||||
|
||||
; Refer to BIF MDS for a description of SDRAM initialization
|
||||
|
||||
; Bank configuration
|
||||
move.d REG_ADDR(bif_core, regi_bif_core, rw_sdram_cfg_grp0), $r0
|
||||
move.d CONFIG_ETRAX_SDRAM_GRP0_CONFIG, $r1
|
||||
move.d $r1, [$r0]
|
||||
move.d REG_ADDR(bif_core, regi_bif_core, rw_sdram_cfg_grp1), $r0
|
||||
move.d CONFIG_ETRAX_SDRAM_GRP1_CONFIG, $r1
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; Calculate value of mrs_data
|
||||
; CAS latency = 2 && bus_width = 32 => 0x40
|
||||
; CAS latency = 3 && bus_width = 32 => 0x60
|
||||
; CAS latency = 2 && bus_width = 16 => 0x20
|
||||
; CAS latency = 3 && bus_width = 16 => 0x30
|
||||
|
||||
; Check if value is already supplied in kernel config
|
||||
move.d CONFIG_ETRAX_SDRAM_COMMAND, $r2
|
||||
bne _set_timing
|
||||
nop
|
||||
|
||||
move.d 0x40, $r4 ; Assume 32 bits and CAS latency = 2
|
||||
move.d CONFIG_ETRAX_SDRAM_TIMING, $r1
|
||||
and.d 0x07, $r1 ; Get CAS latency
|
||||
cmpq 2, $r1 ; CL = 2 ?
|
||||
beq _bw_check
|
||||
nop
|
||||
move.d 0x60, $r4
|
||||
|
||||
_bw_check:
|
||||
; Assume that group 0 width is equal to group 1. This assumption
|
||||
; is wrong for a group 1 only hardware (such as the grand old
|
||||
; StorPoint+).
|
||||
move.d CONFIG_ETRAX_SDRAM_GRP0_CONFIG, $r1
|
||||
and.d 0x200, $r1 ; DRAM width is bit 9
|
||||
beq _set_timing
|
||||
lslq 2, $r4 ; mrs_data starts at bit 2
|
||||
lsrq 1, $r4 ; 16 bits. Shift down value.
|
||||
|
||||
; Set timing parameters (refresh off to avoid Guinness TR 83)
|
||||
_set_timing:
|
||||
move.d CONFIG_ETRAX_SDRAM_TIMING, $r1
|
||||
and.d ~(3 << reg_bif_core_rw_sdram_timing___ref___lsb), $r1
|
||||
move.d REG_ADDR(bif_core, regi_bif_core, rw_sdram_timing), $r0
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; Issue NOP command
|
||||
move.d REG_ADDR(bif_core, regi_bif_core, rw_sdram_cmd), $r5
|
||||
moveq regk_bif_core_nop, $r1
|
||||
move.d $r1, [$r5]
|
||||
|
||||
; Wait 200us
|
||||
move.d 10000, $r2
|
||||
1: bne 1b
|
||||
subq 1, $r2
|
||||
|
||||
; Issue initialization command sequence
|
||||
lapc _sdram_commands_start, $r2
|
||||
lapc _sdram_commands_end, $r3
|
||||
1: clear.d $r6
|
||||
move.b [$r2+], $r6 ; Load command
|
||||
or.d $r4, $r6 ; Add calculated mrs
|
||||
move.d $r6, [$r5] ; Write rw_sdram_cmd
|
||||
; Wait 80 ns between each command
|
||||
move.d 4000, $r7
|
||||
2: bne 2b
|
||||
subq 1, $r7
|
||||
cmp.d $r2, $r3 ; Last command?
|
||||
bne 1b
|
||||
nop
|
||||
|
||||
; Start refresh
|
||||
move.d CONFIG_ETRAX_SDRAM_TIMING, $r1
|
||||
move.d REG_ADDR(bif_core, regi_bif_core, rw_sdram_timing), $r0
|
||||
move.d $r1, [$r0]
|
||||
|
||||
; Initialization finished
|
||||
ba _sdram_commands_end
|
||||
nop
|
||||
|
||||
_sdram_commands_start:
|
||||
.byte regk_bif_core_pre ; Precharge
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_ref ; refresh
|
||||
.byte regk_bif_core_mrs ; mrs
|
||||
_sdram_commands_end:
|
70
arch/cris/arch-v32/mach-fs/hw_settings.S
Normal file
70
arch/cris/arch-v32/mach-fs/hw_settings.S
Normal file
|
@ -0,0 +1,70 @@
|
|||
/*
|
||||
* This table is used by some tools to extract hardware parameters.
|
||||
* The table should be included in the kernel and the decompressor.
|
||||
* Don't forget to update the tools if you change this table.
|
||||
*
|
||||
* Copyright (C) 2001-2007 Axis Communications AB
|
||||
*
|
||||
* Authors: Mikael Starvik <starvik@axis.com>
|
||||
*/
|
||||
|
||||
#include <hwregs/asm/reg_map_asm.h>
|
||||
#include <hwregs/asm/bif_core_defs_asm.h>
|
||||
#include <hwregs/asm/gio_defs_asm.h>
|
||||
|
||||
.ascii "HW_PARAM_MAGIC" ; Magic number
|
||||
.dword 0xc0004000 ; Kernel start address
|
||||
|
||||
; Debug port
|
||||
#ifdef CONFIG_ETRAX_DEBUG_PORT0
|
||||
.dword 0
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT1)
|
||||
.dword 1
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT2)
|
||||
.dword 2
|
||||
#elif defined(CONFIG_ETRAX_DEBUG_PORT3)
|
||||
.dword 3
|
||||
#else
|
||||
.dword 4 ; No debug
|
||||
#endif
|
||||
|
||||
; Register values
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_grp1_cfg)
|
||||
.dword CONFIG_ETRAX_MEM_GRP1_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_grp2_cfg)
|
||||
.dword CONFIG_ETRAX_MEM_GRP2_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_grp3_cfg)
|
||||
.dword CONFIG_ETRAX_MEM_GRP3_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_grp4_cfg)
|
||||
.dword CONFIG_ETRAX_MEM_GRP4_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_sdram_cfg_grp0)
|
||||
.dword CONFIG_ETRAX_SDRAM_GRP0_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_sdram_cfg_grp1)
|
||||
.dword CONFIG_ETRAX_SDRAM_GRP1_CONFIG
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_sdram_timing)
|
||||
.dword CONFIG_ETRAX_SDRAM_TIMING
|
||||
.dword REG_ADDR(bif_core, regi_bif_core, rw_sdram_cmd)
|
||||
.dword CONFIG_ETRAX_SDRAM_COMMAND
|
||||
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pa_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PA_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pa_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PA_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pb_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PB_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pb_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PB_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pc_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PC_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pc_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PC_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pd_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PD_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pd_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PD_OE
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pe_dout)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PE_OUT
|
||||
.dword REG_ADDR(gio, regi_gio, rw_pe_oe)
|
||||
.dword CONFIG_ETRAX_DEF_GIO_PE_OE
|
||||
|
||||
.dword 0 ; No more register values
|
191
arch/cris/arch-v32/mach-fs/io.c
Normal file
191
arch/cris/arch-v32/mach-fs/io.c
Normal file
|
@ -0,0 +1,191 @@
|
|||
/*
|
||||
* Helper functions for I/O pins.
|
||||
*
|
||||
* Copyright (c) 2004-2007 Axis Communications AB.
|
||||
*/
|
||||
|
||||
#include <linux/types.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/ctype.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <asm/io.h>
|
||||
#include <mach/pinmux.h>
|
||||
#include <hwregs/gio_defs.h>
|
||||
|
||||
#ifndef DEBUG
|
||||
#define DEBUG(x)
|
||||
#endif
|
||||
|
||||
struct crisv32_ioport crisv32_ioports[] = {
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pa_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pa_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pa_din),
|
||||
8
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pb_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pb_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pb_din),
|
||||
18
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pc_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pc_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pc_din),
|
||||
18
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pd_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pd_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pd_din),
|
||||
18
|
||||
},
|
||||
{
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pe_oe),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, rw_pe_dout),
|
||||
(unsigned long *)REG_ADDR(gio, regi_gio, r_pe_din),
|
||||
18
|
||||
}
|
||||
};
|
||||
|
||||
#define NBR_OF_PORTS ARRAY_SIZE(crisv32_ioports)
|
||||
|
||||
struct crisv32_iopin crisv32_led_net0_green;
|
||||
struct crisv32_iopin crisv32_led_net0_red;
|
||||
struct crisv32_iopin crisv32_led_net1_green;
|
||||
struct crisv32_iopin crisv32_led_net1_red;
|
||||
struct crisv32_iopin crisv32_led2_green;
|
||||
struct crisv32_iopin crisv32_led2_red;
|
||||
struct crisv32_iopin crisv32_led3_green;
|
||||
struct crisv32_iopin crisv32_led3_red;
|
||||
|
||||
/* Dummy port used when green LED and red LED is on the same bit */
|
||||
static unsigned long io_dummy;
|
||||
static struct crisv32_ioport dummy_port = {
|
||||
&io_dummy,
|
||||
&io_dummy,
|
||||
&io_dummy,
|
||||
18
|
||||
};
|
||||
static struct crisv32_iopin dummy_led = {
|
||||
&dummy_port,
|
||||
0
|
||||
};
|
||||
|
||||
static int __init crisv32_io_init(void)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
u32 i;
|
||||
|
||||
/* Locks *should* be dynamically initialized. */
|
||||
for (i = 0; i < ARRAY_SIZE(crisv32_ioports); i++)
|
||||
spin_lock_init(&crisv32_ioports[i].lock);
|
||||
spin_lock_init(&dummy_port.lock);
|
||||
|
||||
/* Initialize LEDs */
|
||||
#if (defined(CONFIG_ETRAX_NBR_LED_GRP_ONE) || defined(CONFIG_ETRAX_NBR_LED_GRP_TWO))
|
||||
ret +=
|
||||
crisv32_io_get_name(&crisv32_led_net0_green,
|
||||
CONFIG_ETRAX_LED_G_NET0);
|
||||
crisv32_io_set_dir(&crisv32_led_net0_green, crisv32_io_dir_out);
|
||||
if (strcmp(CONFIG_ETRAX_LED_G_NET0, CONFIG_ETRAX_LED_R_NET0)) {
|
||||
ret +=
|
||||
crisv32_io_get_name(&crisv32_led_net0_red,
|
||||
CONFIG_ETRAX_LED_R_NET0);
|
||||
crisv32_io_set_dir(&crisv32_led_net0_red, crisv32_io_dir_out);
|
||||
} else
|
||||
crisv32_led_net0_red = dummy_led;
|
||||
#endif
|
||||
|
||||
#ifdef CONFIG_ETRAX_NBR_LED_GRP_TWO
|
||||
ret +=
|
||||
crisv32_io_get_name(&crisv32_led_net1_green,
|
||||
CONFIG_ETRAX_LED_G_NET1);
|
||||
crisv32_io_set_dir(&crisv32_led_net1_green, crisv32_io_dir_out);
|
||||
if (strcmp(CONFIG_ETRAX_LED_G_NET1, CONFIG_ETRAX_LED_R_NET1)) {
|
||||
crisv32_io_get_name(&crisv32_led_net1_red,
|
||||
CONFIG_ETRAX_LED_R_NET1);
|
||||
crisv32_io_set_dir(&crisv32_led_net1_red, crisv32_io_dir_out);
|
||||
} else
|
||||
crisv32_led_net1_red = dummy_led;
|
||||
#endif
|
||||
|
||||
ret += crisv32_io_get_name(&crisv32_led2_green, CONFIG_ETRAX_V32_LED2G);
|
||||
ret += crisv32_io_get_name(&crisv32_led2_red, CONFIG_ETRAX_V32_LED2R);
|
||||
ret += crisv32_io_get_name(&crisv32_led3_green, CONFIG_ETRAX_V32_LED3G);
|
||||
ret += crisv32_io_get_name(&crisv32_led3_red, CONFIG_ETRAX_V32_LED3R);
|
||||
|
||||
crisv32_io_set_dir(&crisv32_led2_green, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led2_red, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led3_green, crisv32_io_dir_out);
|
||||
crisv32_io_set_dir(&crisv32_led3_red, crisv32_io_dir_out);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
__initcall(crisv32_io_init);
|
||||
|
||||
int crisv32_io_get(struct crisv32_iopin *iopin,
|
||||
unsigned int port, unsigned int pin)
|
||||
{
|
||||
if (port > NBR_OF_PORTS)
|
||||
return -EINVAL;
|
||||
if (port > crisv32_ioports[port].pin_count)
|
||||
return -EINVAL;
|
||||
|
||||
iopin->bit = 1 << pin;
|
||||
iopin->port = &crisv32_ioports[port];
|
||||
|
||||
/* Only allocate pinmux gpiopins if port != PORT_A (port 0) */
|
||||
/* NOTE! crisv32_pinmux_alloc thinks PORT_B is port 0 */
|
||||
if (port != 0 && crisv32_pinmux_alloc(port - 1, pin, pin, pinmux_gpio))
|
||||
return -EIO;
|
||||
DEBUG(printk(KERN_DEBUG "crisv32_io_get: Allocated pin %d on port %d\n",
|
||||
pin, port));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crisv32_io_get_name(struct crisv32_iopin *iopin, const char *name)
|
||||
{
|
||||
int port;
|
||||
int pin;
|
||||
|
||||
if (toupper(*name) == 'P')
|
||||
name++;
|
||||
|
||||
if (toupper(*name) < 'A' || toupper(*name) > 'E')
|
||||
return -EINVAL;
|
||||
|
||||
port = toupper(*name) - 'A';
|
||||
name++;
|
||||
pin = simple_strtoul(name, NULL, 10);
|
||||
|
||||
if (pin < 0 || pin > crisv32_ioports[port].pin_count)
|
||||
return -EINVAL;
|
||||
|
||||
iopin->bit = 1 << pin;
|
||||
iopin->port = &crisv32_ioports[port];
|
||||
|
||||
/* Only allocate pinmux gpiopins if port != PORT_A (port 0) */
|
||||
/* NOTE! crisv32_pinmux_alloc thinks PORT_B is port 0 */
|
||||
if (port != 0 && crisv32_pinmux_alloc(port - 1, pin, pin, pinmux_gpio))
|
||||
return -EIO;
|
||||
|
||||
DEBUG(printk(KERN_DEBUG
|
||||
"crisv32_io_get_name: Allocated pin %d on port %d\n",
|
||||
pin, port));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_PCI
|
||||
/* PCI I/O access stuff */
|
||||
struct cris_io_operations *cris_iops = NULL;
|
||||
EXPORT_SYMBOL(cris_iops);
|
||||
#endif
|
309
arch/cris/arch-v32/mach-fs/pinmux.c
Normal file
309
arch/cris/arch-v32/mach-fs/pinmux.c
Normal file
|
@ -0,0 +1,309 @@
|
|||
/*
|
||||
* Allocator for I/O pins. All pins are allocated to GPIO at bootup.
|
||||
* Unassigned pins and GPIO pins can be allocated to a fixed interface
|
||||
* or the I/O processor instead.
|
||||
*
|
||||
* Copyright (c) 2004-2007 Axis Communications AB.
|
||||
*/
|
||||
|
||||
#include <linux/init.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <hwregs/reg_map.h>
|
||||
#include <hwregs/reg_rdwr.h>
|
||||
#include <pinmux.h>
|
||||
#include <hwregs/pinmux_defs.h>
|
||||
|
||||
#undef DEBUG
|
||||
|
||||
#define PORT_PINS 18
|
||||
#define PORTS 4
|
||||
|
||||
static char pins[PORTS][PORT_PINS];
|
||||
static DEFINE_SPINLOCK(pinmux_lock);
|
||||
|
||||
static void crisv32_pinmux_set(int port);
|
||||
|
||||
int crisv32_pinmux_init(void)
|
||||
{
|
||||
static int initialized;
|
||||
|
||||
if (!initialized) {
|
||||
reg_pinmux_rw_pa pa = REG_RD(pinmux, regi_pinmux, rw_pa);
|
||||
initialized = 1;
|
||||
REG_WR_INT(pinmux, regi_pinmux, rw_hwprot, 0);
|
||||
pa.pa0 = pa.pa1 = pa.pa2 = pa.pa3 =
|
||||
pa.pa4 = pa.pa5 = pa.pa6 = pa.pa7 = regk_pinmux_yes;
|
||||
REG_WR(pinmux, regi_pinmux, rw_pa, pa);
|
||||
crisv32_pinmux_alloc(PORT_B, 0, PORT_PINS - 1, pinmux_gpio);
|
||||
crisv32_pinmux_alloc(PORT_C, 0, PORT_PINS - 1, pinmux_gpio);
|
||||
crisv32_pinmux_alloc(PORT_D, 0, PORT_PINS - 1, pinmux_gpio);
|
||||
crisv32_pinmux_alloc(PORT_E, 0, PORT_PINS - 1, pinmux_gpio);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int
|
||||
crisv32_pinmux_alloc(int port, int first_pin, int last_pin, enum pin_mode mode)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
if (port > PORTS || port < 0)
|
||||
return -EINVAL;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++) {
|
||||
if ((pins[port][i] != pinmux_none)
|
||||
&& (pins[port][i] != pinmux_gpio)
|
||||
&& (pins[port][i] != mode)) {
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
#ifdef DEBUG
|
||||
panic("Pinmux alloc failed!\n");
|
||||
#endif
|
||||
return -EPERM;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++)
|
||||
pins[port][i] = mode;
|
||||
|
||||
crisv32_pinmux_set(port);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crisv32_pinmux_alloc_fixed(enum fixed_function function)
|
||||
{
|
||||
int ret = -EINVAL;
|
||||
char saved[sizeof pins];
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
/* Save internal data for recovery */
|
||||
memcpy(saved, pins, sizeof pins);
|
||||
|
||||
crisv32_pinmux_init(); /* Must be done before we read rw_hwprot */
|
||||
|
||||
reg_pinmux_rw_hwprot hwprot = REG_RD(pinmux, regi_pinmux, rw_hwprot);
|
||||
|
||||
switch (function) {
|
||||
case pinmux_ser1:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 4, 7, pinmux_fixed);
|
||||
hwprot.ser1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser2:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 8, 11, pinmux_fixed);
|
||||
hwprot.ser2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ser3:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 12, 15, pinmux_fixed);
|
||||
hwprot.ser3 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_sser0:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 0, 3, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_C, 16, 16, pinmux_fixed);
|
||||
hwprot.sser0 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_sser1:
|
||||
ret = crisv32_pinmux_alloc(PORT_D, 0, 4, pinmux_fixed);
|
||||
hwprot.sser1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ata0:
|
||||
ret = crisv32_pinmux_alloc(PORT_D, 5, 7, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_D, 15, 17, pinmux_fixed);
|
||||
hwprot.ata0 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ata1:
|
||||
ret = crisv32_pinmux_alloc(PORT_D, 0, 4, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_E, 17, 17, pinmux_fixed);
|
||||
hwprot.ata1 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ata2:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 11, 15, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_E, 3, 3, pinmux_fixed);
|
||||
hwprot.ata2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ata3:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 8, 10, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_C, 0, 2, pinmux_fixed);
|
||||
hwprot.ata2 = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_ata:
|
||||
ret = crisv32_pinmux_alloc(PORT_B, 0, 15, pinmux_fixed);
|
||||
ret |= crisv32_pinmux_alloc(PORT_D, 8, 15, pinmux_fixed);
|
||||
hwprot.ata = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_eth1:
|
||||
ret = crisv32_pinmux_alloc(PORT_E, 0, 17, pinmux_fixed);
|
||||
hwprot.eth1 = regk_pinmux_yes;
|
||||
hwprot.eth1_mgm = regk_pinmux_yes;
|
||||
break;
|
||||
case pinmux_timer:
|
||||
ret = crisv32_pinmux_alloc(PORT_C, 16, 16, pinmux_fixed);
|
||||
hwprot.timer = regk_pinmux_yes;
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!ret)
|
||||
REG_WR(pinmux, regi_pinmux, rw_hwprot, hwprot);
|
||||
else
|
||||
memcpy(pins, saved, sizeof pins);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void crisv32_pinmux_set(int port)
|
||||
{
|
||||
int i;
|
||||
int gpio_val = 0;
|
||||
int iop_val = 0;
|
||||
|
||||
for (i = 0; i < PORT_PINS; i++) {
|
||||
if (pins[port][i] == pinmux_gpio)
|
||||
gpio_val |= (1 << i);
|
||||
else if (pins[port][i] == pinmux_iop)
|
||||
iop_val |= (1 << i);
|
||||
}
|
||||
|
||||
REG_WRITE(int, regi_pinmux + REG_RD_ADDR_pinmux_rw_pb_gio + 8 * port,
|
||||
gpio_val);
|
||||
REG_WRITE(int, regi_pinmux + REG_RD_ADDR_pinmux_rw_pb_iop + 8 * port,
|
||||
iop_val);
|
||||
|
||||
#ifdef DEBUG
|
||||
crisv32_pinmux_dump();
|
||||
#endif
|
||||
}
|
||||
|
||||
int crisv32_pinmux_dealloc(int port, int first_pin, int last_pin)
|
||||
{
|
||||
int i;
|
||||
unsigned long flags;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
if (port > PORTS || port < 0)
|
||||
return -EINVAL;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
for (i = first_pin; i <= last_pin; i++)
|
||||
pins[port][i] = pinmux_none;
|
||||
|
||||
crisv32_pinmux_set(port);
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
int crisv32_pinmux_dealloc_fixed(enum fixed_function function)
|
||||
{
|
||||
int ret = -EINVAL;
|
||||
char saved[sizeof pins];
|
||||
unsigned long flags;
|
||||
|
||||
spin_lock_irqsave(&pinmux_lock, flags);
|
||||
|
||||
/* Save internal data for recovery */
|
||||
memcpy(saved, pins, sizeof pins);
|
||||
|
||||
crisv32_pinmux_init(); /* Must be done before we read rw_hwprot */
|
||||
|
||||
reg_pinmux_rw_hwprot hwprot = REG_RD(pinmux, regi_pinmux, rw_hwprot);
|
||||
|
||||
switch (function) {
|
||||
case pinmux_ser1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 4, 7);
|
||||
hwprot.ser1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser2:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 8, 11);
|
||||
hwprot.ser2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ser3:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 12, 15);
|
||||
hwprot.ser3 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_sser0:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 0, 3);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_C, 16, 16);
|
||||
hwprot.sser0 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_sser1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_D, 0, 4);
|
||||
hwprot.sser1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ata0:
|
||||
ret = crisv32_pinmux_dealloc(PORT_D, 5, 7);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_D, 15, 17);
|
||||
hwprot.ata0 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ata1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_D, 0, 4);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_E, 17, 17);
|
||||
hwprot.ata1 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ata2:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 11, 15);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_E, 3, 3);
|
||||
hwprot.ata2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ata3:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 8, 10);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_C, 0, 2);
|
||||
hwprot.ata2 = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_ata:
|
||||
ret = crisv32_pinmux_dealloc(PORT_B, 0, 15);
|
||||
ret |= crisv32_pinmux_dealloc(PORT_D, 8, 15);
|
||||
hwprot.ata = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_eth1:
|
||||
ret = crisv32_pinmux_dealloc(PORT_E, 0, 17);
|
||||
hwprot.eth1 = regk_pinmux_no;
|
||||
hwprot.eth1_mgm = regk_pinmux_no;
|
||||
break;
|
||||
case pinmux_timer:
|
||||
ret = crisv32_pinmux_dealloc(PORT_C, 16, 16);
|
||||
hwprot.timer = regk_pinmux_no;
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
return ret;
|
||||
}
|
||||
|
||||
if (!ret)
|
||||
REG_WR(pinmux, regi_pinmux, rw_hwprot, hwprot);
|
||||
else
|
||||
memcpy(pins, saved, sizeof pins);
|
||||
|
||||
spin_unlock_irqrestore(&pinmux_lock, flags);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void crisv32_pinmux_dump(void)
|
||||
{
|
||||
int i, j;
|
||||
|
||||
crisv32_pinmux_init();
|
||||
|
||||
for (i = 0; i < PORTS; i++) {
|
||||
printk(KERN_DEBUG "Port %c\n", 'B' + i);
|
||||
for (j = 0; j < PORT_PINS; j++)
|
||||
printk(KERN_DEBUG " Pin %d = %d\n", j, pins[i][j]);
|
||||
}
|
||||
}
|
||||
|
||||
__initcall(crisv32_pinmux_init);
|
Loading…
Add table
Add a link
Reference in a new issue