Fixed MTP to work with TWRP

This commit is contained in:
awab228 2018-06-19 23:16:04 +02:00
commit f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions

8
arch/m68k/atari/Makefile Normal file
View file

@ -0,0 +1,8 @@
#
# Makefile for Linux arch/m68k/atari source directory
#
obj-y := config.o time.o debug.o ataints.o stdma.o \
atasound.o stram.o
obj-$(CONFIG_ATARI_KBD_CORE) += atakeyb.o

391
arch/m68k/atari/ataints.c Normal file
View file

@ -0,0 +1,391 @@
/*
* arch/m68k/atari/ataints.c -- Atari Linux interrupt handling code
*
* 5/2/94 Roman Hodek:
* Added support for TT interrupts; setup for TT SCU (may someone has
* twiddled there and we won't get the right interrupts :-()
*
* Major change: The device-independent code in m68k/ints.c didn't know
* about non-autovec ints yet. It hardcoded the number of possible ints to
* 7 (IRQ1...IRQ7). But the Atari has lots of non-autovec ints! I made the
* number of possible ints a constant defined in interrupt.h, which is
* 47 for the Atari. So we can call request_irq() for all Atari interrupts
* just the normal way. Additionally, all vectors >= 48 are initialized to
* call trap() instead of inthandler(). This must be changed here, too.
*
* 1995-07-16 Lars Brinkhoff <f93labr@dd.chalmers.se>:
* Corrected a bug in atari_add_isr() which rejected all SCC
* interrupt sources if there were no TT MFP!
*
* 12/13/95: New interface functions atari_level_triggered_int() and
* atari_register_vme_int() as support for level triggered VME interrupts.
*
* 02/12/96: (Roman)
* Total rewrite of Atari interrupt handling, for new scheme see comments
* below.
*
* 1996-09-03 lars brinkhoff <f93labr@dd.chalmers.se>:
* Added new function atari_unregister_vme_int(), and
* modified atari_register_vme_int() as well as IS_VALID_INTNO()
* to work with it.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/kernel_stat.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/module.h>
#include <linux/irq.h>
#include <asm/traps.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_stdma.h>
#include <asm/irq.h>
#include <asm/entry.h>
#include <asm/io.h>
/*
* Atari interrupt handling scheme:
* --------------------------------
*
* All interrupt source have an internal number (defined in
* <asm/atariints.h>): Autovector interrupts are 1..7, then follow ST-MFP,
* TT-MFP, SCC, and finally VME interrupts. Vector numbers for the latter can
* be allocated by atari_register_vme_int().
*/
/*
* Bitmap for free interrupt vector numbers
* (new vectors starting from 0x70 can be allocated by
* atari_register_vme_int())
*/
static int free_vme_vec_bitmap;
/* GK:
* HBL IRQ handler for Falcon. Nobody needs it :-)
* ++andreas: raise ipl to disable further HBLANK interrupts.
*/
asmlinkage void falcon_hblhandler(void);
asm(".text\n"
__ALIGN_STR "\n\t"
"falcon_hblhandler:\n\t"
"orw #0x200,%sp@\n\t" /* set saved ipl to 2 */
"rte");
extern void atari_microwire_cmd(int cmd);
static unsigned int atari_irq_startup(struct irq_data *data)
{
unsigned int irq = data->irq;
m68k_irq_startup(data);
atari_turnon_irq(irq);
atari_enable_irq(irq);
return 0;
}
static void atari_irq_shutdown(struct irq_data *data)
{
unsigned int irq = data->irq;
atari_disable_irq(irq);
atari_turnoff_irq(irq);
m68k_irq_shutdown(data);
if (irq == IRQ_AUTO_4)
vectors[VEC_INT4] = falcon_hblhandler;
}
static void atari_irq_enable(struct irq_data *data)
{
atari_enable_irq(data->irq);
}
static void atari_irq_disable(struct irq_data *data)
{
atari_disable_irq(data->irq);
}
static struct irq_chip atari_irq_chip = {
.name = "atari",
.irq_startup = atari_irq_startup,
.irq_shutdown = atari_irq_shutdown,
.irq_enable = atari_irq_enable,
.irq_disable = atari_irq_disable,
};
/*
* ST-MFP timer D chained interrupts - each driver gets its own timer
* interrupt instance.
*/
struct mfptimerbase {
volatile struct MFP *mfp;
unsigned char mfp_mask, mfp_data;
unsigned short int_mask;
int handler_irq, mfptimer_irq, server_irq;
char *name;
} stmfp_base = {
.mfp = &st_mfp,
.int_mask = 0x0,
.handler_irq = IRQ_MFP_TIMD,
.mfptimer_irq = IRQ_MFP_TIMER1,
.name = "MFP Timer D"
};
static irqreturn_t mfptimer_handler(int irq, void *dev_id)
{
struct mfptimerbase *base = dev_id;
int mach_irq;
unsigned char ints;
mach_irq = base->mfptimer_irq;
ints = base->int_mask;
for (; ints; mach_irq++, ints >>= 1) {
if (ints & 1)
generic_handle_irq(mach_irq);
}
return IRQ_HANDLED;
}
static void atari_mfptimer_enable(struct irq_data *data)
{
int mfp_num = data->irq - IRQ_MFP_TIMER1;
stmfp_base.int_mask |= 1 << mfp_num;
atari_enable_irq(IRQ_MFP_TIMD);
}
static void atari_mfptimer_disable(struct irq_data *data)
{
int mfp_num = data->irq - IRQ_MFP_TIMER1;
stmfp_base.int_mask &= ~(1 << mfp_num);
if (!stmfp_base.int_mask)
atari_disable_irq(IRQ_MFP_TIMD);
}
static struct irq_chip atari_mfptimer_chip = {
.name = "timer_d",
.irq_enable = atari_mfptimer_enable,
.irq_disable = atari_mfptimer_disable,
};
/*
* EtherNAT CPLD interrupt handling
* CPLD interrupt register is at phys. 0x80000023
* Need this mapped in at interrupt startup time
* Possibly need this mapped on demand anyway -
* EtherNAT USB driver needs to disable IRQ before
* startup!
*/
static unsigned char *enat_cpld;
static unsigned int atari_ethernat_startup(struct irq_data *data)
{
int enat_num = 140 - data->irq + 1;
m68k_irq_startup(data);
/*
* map CPLD interrupt register
*/
if (!enat_cpld)
enat_cpld = (unsigned char *)ioremap((ATARI_ETHERNAT_PHYS_ADDR+0x23), 0x2);
/*
* do _not_ enable the USB chip interrupt here - causes interrupt storm
* and triggers dead interrupt watchdog
* Need to reset the USB chip to a sane state in early startup before
* removing this hack
*/
if (enat_num == 1)
*enat_cpld |= 1 << enat_num;
return 0;
}
static void atari_ethernat_enable(struct irq_data *data)
{
int enat_num = 140 - data->irq + 1;
/*
* map CPLD interrupt register
*/
if (!enat_cpld)
enat_cpld = (unsigned char *)ioremap((ATARI_ETHERNAT_PHYS_ADDR+0x23), 0x2);
*enat_cpld |= 1 << enat_num;
}
static void atari_ethernat_disable(struct irq_data *data)
{
int enat_num = 140 - data->irq + 1;
/*
* map CPLD interrupt register
*/
if (!enat_cpld)
enat_cpld = (unsigned char *)ioremap((ATARI_ETHERNAT_PHYS_ADDR+0x23), 0x2);
*enat_cpld &= ~(1 << enat_num);
}
static void atari_ethernat_shutdown(struct irq_data *data)
{
int enat_num = 140 - data->irq + 1;
if (enat_cpld) {
*enat_cpld &= ~(1 << enat_num);
iounmap(enat_cpld);
enat_cpld = NULL;
}
}
static struct irq_chip atari_ethernat_chip = {
.name = "ethernat",
.irq_startup = atari_ethernat_startup,
.irq_shutdown = atari_ethernat_shutdown,
.irq_enable = atari_ethernat_enable,
.irq_disable = atari_ethernat_disable,
};
/*
* void atari_init_IRQ (void)
*
* Parameters: None
*
* Returns: Nothing
*
* This function should be called during kernel startup to initialize
* the atari IRQ handling routines.
*/
void __init atari_init_IRQ(void)
{
m68k_setup_user_interrupt(VEC_USER, NUM_ATARI_SOURCES - IRQ_USER);
m68k_setup_irq_controller(&atari_irq_chip, handle_simple_irq, 1,
NUM_ATARI_SOURCES - 1);
/* Initialize the MFP(s) */
#ifdef ATARI_USE_SOFTWARE_EOI
st_mfp.vec_adr = 0x48; /* Software EOI-Mode */
#else
st_mfp.vec_adr = 0x40; /* Automatic EOI-Mode */
#endif
st_mfp.int_en_a = 0x00; /* turn off MFP-Ints */
st_mfp.int_en_b = 0x00;
st_mfp.int_mk_a = 0xff; /* no Masking */
st_mfp.int_mk_b = 0xff;
if (ATARIHW_PRESENT(TT_MFP)) {
#ifdef ATARI_USE_SOFTWARE_EOI
tt_mfp.vec_adr = 0x58; /* Software EOI-Mode */
#else
tt_mfp.vec_adr = 0x50; /* Automatic EOI-Mode */
#endif
tt_mfp.int_en_a = 0x00; /* turn off MFP-Ints */
tt_mfp.int_en_b = 0x00;
tt_mfp.int_mk_a = 0xff; /* no Masking */
tt_mfp.int_mk_b = 0xff;
}
if (ATARIHW_PRESENT(SCC) && !atari_SCC_reset_done) {
atari_scc.cha_a_ctrl = 9;
MFPDELAY();
atari_scc.cha_a_ctrl = (char) 0xc0; /* hardware reset */
}
if (ATARIHW_PRESENT(SCU)) {
/* init the SCU if present */
tt_scu.sys_mask = 0x10; /* enable VBL (for the cursor) and
* disable HSYNC interrupts (who
* needs them?) MFP and SCC are
* enabled in VME mask
*/
tt_scu.vme_mask = 0x60; /* enable MFP and SCC ints */
} else {
/* If no SCU and no Hades, the HSYNC interrupt needs to be
* disabled this way. (Else _inthandler in kernel/sys_call.S
* gets overruns)
*/
vectors[VEC_INT2] = falcon_hblhandler;
vectors[VEC_INT4] = falcon_hblhandler;
}
if (ATARIHW_PRESENT(PCM_8BIT) && ATARIHW_PRESENT(MICROWIRE)) {
/* Initialize the LM1992 Sound Controller to enable
the PSG sound. This is misplaced here, it should
be in an atasound_init(), that doesn't exist yet. */
atari_microwire_cmd(MW_LM1992_PSG_HIGH);
}
stdma_init();
/* Initialize the PSG: all sounds off, both ports output */
sound_ym.rd_data_reg_sel = 7;
sound_ym.wd_data = 0xff;
m68k_setup_irq_controller(&atari_mfptimer_chip, handle_simple_irq,
IRQ_MFP_TIMER1, 8);
irq_set_status_flags(IRQ_MFP_TIMER1, IRQ_IS_POLLED);
irq_set_status_flags(IRQ_MFP_TIMER2, IRQ_IS_POLLED);
/* prepare timer D data for use as poll interrupt */
/* set Timer D data Register - needs to be > 0 */
st_mfp.tim_dt_d = 254; /* < 100 Hz */
/* start timer D, div = 1:100 */
st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 0xf0) | 0x6;
/* request timer D dispatch handler */
if (request_irq(IRQ_MFP_TIMD, mfptimer_handler, IRQF_SHARED,
stmfp_base.name, &stmfp_base))
pr_err("Couldn't register %s interrupt\n", stmfp_base.name);
/*
* EtherNAT ethernet / USB interrupt handlers
*/
m68k_setup_irq_controller(&atari_ethernat_chip, handle_simple_irq,
139, 2);
}
/*
* atari_register_vme_int() returns the number of a free interrupt vector for
* hardware with a programmable int vector (probably a VME board).
*/
unsigned int atari_register_vme_int(void)
{
int i;
for (i = 0; i < 32; i++)
if ((free_vme_vec_bitmap & (1 << i)) == 0)
break;
if (i == 16)
return 0;
free_vme_vec_bitmap |= 1 << i;
return VME_SOURCE_BASE + i;
}
EXPORT_SYMBOL(atari_register_vme_int);
void atari_unregister_vme_int(unsigned int irq)
{
if (irq >= VME_SOURCE_BASE && irq < VME_SOURCE_BASE + VME_MAX_SOURCES) {
irq -= VME_SOURCE_BASE;
free_vme_vec_bitmap &= ~(1 << irq);
}
}
EXPORT_SYMBOL(atari_unregister_vme_int);

638
arch/m68k/atari/atakeyb.c Normal file
View file

@ -0,0 +1,638 @@
/*
* Atari Keyboard driver for 680x0 Linux
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
/*
* Atari support by Robert de Vries
* enhanced by Bjoern Brauel and Roman Hodek
*
* 2.6 and input cleanup (removed autorepeat stuff) for 2.6.21
* 06/07 Michael Schmitz
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/keyboard.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/kd.h>
#include <linux/random.h>
#include <linux/init.h>
#include <linux/kbd_kern.h>
#include <asm/atariints.h>
#include <asm/atarihw.h>
#include <asm/atarikb.h>
#include <asm/atari_joystick.h>
#include <asm/irq.h>
/* Hook for MIDI serial driver */
void (*atari_MIDI_interrupt_hook) (void);
/* Hook for keyboard inputdev driver */
void (*atari_input_keyboard_interrupt_hook) (unsigned char, char);
/* Hook for mouse inputdev driver */
void (*atari_input_mouse_interrupt_hook) (char *);
EXPORT_SYMBOL(atari_input_keyboard_interrupt_hook);
EXPORT_SYMBOL(atari_input_mouse_interrupt_hook);
/* variables for IKBD self test: */
/* state: 0: off; >0: in progress; >1: 0xf1 received */
static volatile int ikbd_self_test;
/* timestamp when last received a char */
static volatile unsigned long self_test_last_rcv;
/* bitmap of keys reported as broken */
static unsigned long broken_keys[128/(sizeof(unsigned long)*8)] = { 0, };
#define BREAK_MASK (0x80)
/*
* ++roman: The following changes were applied manually:
*
* - The Alt (= Meta) key works in combination with Shift and
* Control, e.g. Alt+Shift+a sends Meta-A (0xc1), Alt+Control+A sends
* Meta-Ctrl-A (0x81) ...
*
* - The parentheses on the keypad send '(' and ')' with all
* modifiers (as would do e.g. keypad '+'), but they cannot be used as
* application keys (i.e. sending Esc O c).
*
* - HELP and UNDO are mapped to be F21 and F24, resp, that send the
* codes "\E[M" and "\E[P". (This is better than the old mapping to
* F11 and F12, because these codes are on Shift+F1/2 anyway.) This
* way, applications that allow their own keyboard mappings
* (e.g. tcsh, X Windows) can be configured to use them in the way
* the label suggests (providing help or undoing).
*
* - Console switching is done with Alt+Fx (consoles 1..10) and
* Shift+Alt+Fx (consoles 11..20).
*
* - The misc. special function implemented in the kernel are mapped
* to the following key combinations:
*
* ClrHome -> Home/Find
* Shift + ClrHome -> End/Select
* Shift + Up -> Page Up
* Shift + Down -> Page Down
* Alt + Help -> show system status
* Shift + Help -> show memory info
* Ctrl + Help -> show registers
* Ctrl + Alt + Del -> Reboot
* Alt + Undo -> switch to last console
* Shift + Undo -> send interrupt
* Alt + Insert -> stop/start output (same as ^S/^Q)
* Alt + Up -> Scroll back console (if implemented)
* Alt + Down -> Scroll forward console (if implemented)
* Alt + CapsLock -> NumLock
*
* ++Andreas:
*
* - Help mapped to K_HELP
* - Undo mapped to K_UNDO (= K_F246)
* - Keypad Left/Right Parenthesis mapped to new K_PPAREN[LR]
*/
typedef enum kb_state_t {
KEYBOARD, AMOUSE, RMOUSE, JOYSTICK, CLOCK, RESYNC
} KB_STATE_T;
#define IS_SYNC_CODE(sc) ((sc) >= 0x04 && (sc) <= 0xfb)
typedef struct keyboard_state {
unsigned char buf[6];
int len;
KB_STATE_T state;
} KEYBOARD_STATE;
KEYBOARD_STATE kb_state;
/* ++roman: If a keyboard overrun happened, we can't tell in general how much
* bytes have been lost and in which state of the packet structure we are now.
* This usually causes keyboards bytes to be interpreted as mouse movements
* and vice versa, which is very annoying. It seems better to throw away some
* bytes (that are usually mouse bytes) than to misinterpret them. Therefore I
* introduced the RESYNC state for IKBD data. In this state, the bytes up to
* one that really looks like a key event (0x04..0xf2) or the start of a mouse
* packet (0xf8..0xfb) are thrown away, but at most 2 bytes. This at least
* speeds up the resynchronization of the event structure, even if maybe a
* mouse movement is lost. However, nothing is perfect. For bytes 0x01..0x03,
* it's really hard to decide whether they're mouse or keyboard bytes. Since
* overruns usually occur when moving the Atari mouse rapidly, they're seen as
* mouse bytes here. If this is wrong, only a make code of the keyboard gets
* lost, which isn't too bad. Losing a break code would be disastrous,
* because then the keyboard repeat strikes...
*/
static irqreturn_t atari_keyboard_interrupt(int irq, void *dummy)
{
u_char acia_stat;
int scancode;
int break_flag;
repeat:
if (acia.mid_ctrl & ACIA_IRQ)
if (atari_MIDI_interrupt_hook)
atari_MIDI_interrupt_hook();
acia_stat = acia.key_ctrl;
/* check out if the interrupt came from this ACIA */
if (!((acia_stat | acia.mid_ctrl) & ACIA_IRQ))
return IRQ_HANDLED;
if (acia_stat & ACIA_OVRN) {
/* a very fast typist or a slow system, give a warning */
/* ...happens often if interrupts were disabled for too long */
printk(KERN_DEBUG "Keyboard overrun\n");
scancode = acia.key_data;
if (ikbd_self_test)
/* During self test, don't do resyncing, just process the code */
goto interpret_scancode;
else if (IS_SYNC_CODE(scancode)) {
/* This code seem already to be the start of a new packet or a
* single scancode */
kb_state.state = KEYBOARD;
goto interpret_scancode;
} else {
/* Go to RESYNC state and skip this byte */
kb_state.state = RESYNC;
kb_state.len = 1; /* skip max. 1 another byte */
goto repeat;
}
}
if (acia_stat & ACIA_RDRF) {
/* received a character */
scancode = acia.key_data; /* get it or reset the ACIA, I'll get it! */
tasklet_schedule(&keyboard_tasklet);
interpret_scancode:
switch (kb_state.state) {
case KEYBOARD:
switch (scancode) {
case 0xF7:
kb_state.state = AMOUSE;
kb_state.len = 0;
break;
case 0xF8:
case 0xF9:
case 0xFA:
case 0xFB:
kb_state.state = RMOUSE;
kb_state.len = 1;
kb_state.buf[0] = scancode;
break;
case 0xFC:
kb_state.state = CLOCK;
kb_state.len = 0;
break;
case 0xFE:
case 0xFF:
kb_state.state = JOYSTICK;
kb_state.len = 1;
kb_state.buf[0] = scancode;
break;
case 0xF1:
/* during self-test, note that 0xf1 received */
if (ikbd_self_test) {
++ikbd_self_test;
self_test_last_rcv = jiffies;
break;
}
/* FALL THROUGH */
default:
break_flag = scancode & BREAK_MASK;
scancode &= ~BREAK_MASK;
if (ikbd_self_test) {
/* Scancodes sent during the self-test stand for broken
* keys (keys being down). The code *should* be a break
* code, but nevertheless some AT keyboard interfaces send
* make codes instead. Therefore, simply ignore
* break_flag...
*/
int keyval, keytyp;
set_bit(scancode, broken_keys);
self_test_last_rcv = jiffies;
/* new Linux scancodes; approx. */
keyval = scancode;
keytyp = KTYP(keyval) - 0xf0;
keyval = KVAL(keyval);
printk(KERN_WARNING "Key with scancode %d ", scancode);
if (keytyp == KT_LATIN || keytyp == KT_LETTER) {
if (keyval < ' ')
printk("('^%c') ", keyval + '@');
else
printk("('%c') ", keyval);
}
printk("is broken -- will be ignored.\n");
break;
} else if (test_bit(scancode, broken_keys))
break;
if (atari_input_keyboard_interrupt_hook)
atari_input_keyboard_interrupt_hook((unsigned char)scancode, !break_flag);
break;
}
break;
case AMOUSE:
kb_state.buf[kb_state.len++] = scancode;
if (kb_state.len == 5) {
kb_state.state = KEYBOARD;
/* not yet used */
/* wake up someone waiting for this */
}
break;
case RMOUSE:
kb_state.buf[kb_state.len++] = scancode;
if (kb_state.len == 3) {
kb_state.state = KEYBOARD;
if (atari_input_mouse_interrupt_hook)
atari_input_mouse_interrupt_hook(kb_state.buf);
}
break;
case JOYSTICK:
kb_state.buf[1] = scancode;
kb_state.state = KEYBOARD;
#ifdef FIXED_ATARI_JOYSTICK
atari_joystick_interrupt(kb_state.buf);
#endif
break;
case CLOCK:
kb_state.buf[kb_state.len++] = scancode;
if (kb_state.len == 6) {
kb_state.state = KEYBOARD;
/* wake up someone waiting for this.
But will this ever be used, as Linux keeps its own time.
Perhaps for synchronization purposes? */
/* wake_up_interruptible(&clock_wait); */
}
break;
case RESYNC:
if (kb_state.len <= 0 || IS_SYNC_CODE(scancode)) {
kb_state.state = KEYBOARD;
goto interpret_scancode;
}
kb_state.len--;
break;
}
}
#if 0
if (acia_stat & ACIA_CTS)
/* cannot happen */;
#endif
if (acia_stat & (ACIA_FE | ACIA_PE)) {
printk("Error in keyboard communication\n");
}
/* handle_scancode() can take a lot of time, so check again if
* some character arrived
*/
goto repeat;
}
/*
* I write to the keyboard without using interrupts, I poll instead.
* This takes for the maximum length string allowed (7) at 7812.5 baud
* 8 data 1 start 1 stop bit: 9.0 ms
* If this takes too long for normal operation, interrupt driven writing
* is the solution. (I made a feeble attempt in that direction but I
* kept it simple for now.)
*/
void ikbd_write(const char *str, int len)
{
u_char acia_stat;
if ((len < 1) || (len > 7))
panic("ikbd: maximum string length exceeded");
while (len) {
acia_stat = acia.key_ctrl;
if (acia_stat & ACIA_TDRE) {
acia.key_data = *str++;
len--;
}
}
}
/* Reset (without touching the clock) */
void ikbd_reset(void)
{
static const char cmd[2] = { 0x80, 0x01 };
ikbd_write(cmd, 2);
/*
* if all's well code 0xF1 is returned, else the break codes of
* all keys making contact
*/
}
/* Set mouse button action */
void ikbd_mouse_button_action(int mode)
{
char cmd[2] = { 0x07, mode };
ikbd_write(cmd, 2);
}
/* Set relative mouse position reporting */
void ikbd_mouse_rel_pos(void)
{
static const char cmd[1] = { 0x08 };
ikbd_write(cmd, 1);
}
EXPORT_SYMBOL(ikbd_mouse_rel_pos);
/* Set absolute mouse position reporting */
void ikbd_mouse_abs_pos(int xmax, int ymax)
{
char cmd[5] = { 0x09, xmax>>8, xmax&0xFF, ymax>>8, ymax&0xFF };
ikbd_write(cmd, 5);
}
/* Set mouse keycode mode */
void ikbd_mouse_kbd_mode(int dx, int dy)
{
char cmd[3] = { 0x0A, dx, dy };
ikbd_write(cmd, 3);
}
/* Set mouse threshold */
void ikbd_mouse_thresh(int x, int y)
{
char cmd[3] = { 0x0B, x, y };
ikbd_write(cmd, 3);
}
EXPORT_SYMBOL(ikbd_mouse_thresh);
/* Set mouse scale */
void ikbd_mouse_scale(int x, int y)
{
char cmd[3] = { 0x0C, x, y };
ikbd_write(cmd, 3);
}
/* Interrogate mouse position */
void ikbd_mouse_pos_get(int *x, int *y)
{
static const char cmd[1] = { 0x0D };
ikbd_write(cmd, 1);
/* wait for returning bytes */
}
/* Load mouse position */
void ikbd_mouse_pos_set(int x, int y)
{
char cmd[6] = { 0x0E, 0x00, x>>8, x&0xFF, y>>8, y&0xFF };
ikbd_write(cmd, 6);
}
/* Set Y=0 at bottom */
void ikbd_mouse_y0_bot(void)
{
static const char cmd[1] = { 0x0F };
ikbd_write(cmd, 1);
}
/* Set Y=0 at top */
void ikbd_mouse_y0_top(void)
{
static const char cmd[1] = { 0x10 };
ikbd_write(cmd, 1);
}
EXPORT_SYMBOL(ikbd_mouse_y0_top);
/* Resume */
void ikbd_resume(void)
{
static const char cmd[1] = { 0x11 };
ikbd_write(cmd, 1);
}
/* Disable mouse */
void ikbd_mouse_disable(void)
{
static const char cmd[1] = { 0x12 };
ikbd_write(cmd, 1);
}
EXPORT_SYMBOL(ikbd_mouse_disable);
/* Pause output */
void ikbd_pause(void)
{
static const char cmd[1] = { 0x13 };
ikbd_write(cmd, 1);
}
/* Set joystick event reporting */
void ikbd_joystick_event_on(void)
{
static const char cmd[1] = { 0x14 };
ikbd_write(cmd, 1);
}
/* Set joystick interrogation mode */
void ikbd_joystick_event_off(void)
{
static const char cmd[1] = { 0x15 };
ikbd_write(cmd, 1);
}
/* Joystick interrogation */
void ikbd_joystick_get_state(void)
{
static const char cmd[1] = { 0x16 };
ikbd_write(cmd, 1);
}
#if 0
/* This disables all other ikbd activities !!!! */
/* Set joystick monitoring */
void ikbd_joystick_monitor(int rate)
{
static const char cmd[2] = { 0x17, rate };
ikbd_write(cmd, 2);
kb_state.state = JOYSTICK_MONITOR;
}
#endif
/* some joystick routines not in yet (0x18-0x19) */
/* Disable joysticks */
void ikbd_joystick_disable(void)
{
static const char cmd[1] = { 0x1A };
ikbd_write(cmd, 1);
}
/* Time-of-day clock set */
void ikbd_clock_set(int year, int month, int day, int hour, int minute, int second)
{
char cmd[7] = { 0x1B, year, month, day, hour, minute, second };
ikbd_write(cmd, 7);
}
/* Interrogate time-of-day clock */
void ikbd_clock_get(int *year, int *month, int *day, int *hour, int *minute, int second)
{
static const char cmd[1] = { 0x1C };
ikbd_write(cmd, 1);
}
/* Memory load */
void ikbd_mem_write(int address, int size, char *data)
{
panic("Attempt to write data into keyboard memory");
}
/* Memory read */
void ikbd_mem_read(int address, char data[6])
{
char cmd[3] = { 0x21, address>>8, address&0xFF };
ikbd_write(cmd, 3);
/* receive data and put it in data */
}
/* Controller execute */
void ikbd_exec(int address)
{
char cmd[3] = { 0x22, address>>8, address&0xFF };
ikbd_write(cmd, 3);
}
/* Status inquiries (0x87-0x9A) not yet implemented */
/* Set the state of the caps lock led. */
void atari_kbd_leds(unsigned int leds)
{
char cmd[6] = {32, 0, 4, 1, 254 + ((leds & 4) != 0), 0};
ikbd_write(cmd, 6);
}
/*
* The original code sometimes left the interrupt line of
* the ACIAs low forever. I hope, it is fixed now.
*
* Martin Rogge, 20 Aug 1995
*/
static int atari_keyb_done = 0;
int atari_keyb_init(void)
{
int error;
if (atari_keyb_done)
return 0;
kb_state.state = KEYBOARD;
kb_state.len = 0;
error = request_irq(IRQ_MFP_ACIA, atari_keyboard_interrupt,
IRQ_TYPE_SLOW, "keyboard,mouse,MIDI",
atari_keyboard_interrupt);
if (error)
return error;
atari_turnoff_irq(IRQ_MFP_ACIA);
do {
/* reset IKBD ACIA */
acia.key_ctrl = ACIA_RESET |
((atari_switches & ATARI_SWITCH_IKBD) ?
ACIA_RHTID : 0);
(void)acia.key_ctrl;
(void)acia.key_data;
/* reset MIDI ACIA */
acia.mid_ctrl = ACIA_RESET |
((atari_switches & ATARI_SWITCH_MIDI) ?
ACIA_RHTID : 0);
(void)acia.mid_ctrl;
(void)acia.mid_data;
/* divide 500kHz by 64 gives 7812.5 baud */
/* 8 data no parity 1 start 1 stop bit */
/* receive interrupt enabled */
/* RTS low (except if switch selected), transmit interrupt disabled */
acia.key_ctrl = (ACIA_DIV64|ACIA_D8N1S|ACIA_RIE) |
((atari_switches & ATARI_SWITCH_IKBD) ?
ACIA_RHTID : ACIA_RLTID);
acia.mid_ctrl = ACIA_DIV16 | ACIA_D8N1S |
((atari_switches & ATARI_SWITCH_MIDI) ?
ACIA_RHTID : 0);
/* make sure the interrupt line is up */
} while ((st_mfp.par_dt_reg & 0x10) == 0);
/* enable ACIA Interrupts */
st_mfp.active_edge &= ~0x10;
atari_turnon_irq(IRQ_MFP_ACIA);
ikbd_self_test = 1;
ikbd_reset();
/* wait for a period of inactivity (here: 0.25s), then assume the IKBD's
* self-test is finished */
self_test_last_rcv = jiffies;
while (time_before(jiffies, self_test_last_rcv + HZ/4))
barrier();
/* if not incremented: no 0xf1 received */
if (ikbd_self_test == 1)
printk(KERN_ERR "WARNING: keyboard self test failed!\n");
ikbd_self_test = 0;
ikbd_mouse_disable();
ikbd_joystick_disable();
#ifdef FIXED_ATARI_JOYSTICK
atari_joystick_init();
#endif
// flag init done
atari_keyb_done = 1;
return 0;
}
EXPORT_SYMBOL_GPL(atari_keyb_init);

110
arch/m68k/atari/atasound.c Normal file
View file

@ -0,0 +1,110 @@
/*
* linux/arch/m68k/atari/atasound.c
*
* ++Geert: Moved almost all stuff to linux/drivers/sound/
*
* The author of atari_nosound, atari_mksound and atari_microwire_cmd is
* unknown. (++roman: That's me... :-)
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*
* 1998-05-31 ++andreas: atari_mksound rewritten to always use the envelope,
* no timer, atari_nosound removed.
*
*/
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/major.h>
#include <linux/fcntl.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <asm/atarihw.h>
#include <asm/irq.h>
#include <asm/pgtable.h>
#include <asm/atariints.h>
/*
* stuff from the old atasound.c
*/
void atari_microwire_cmd (int cmd)
{
tt_microwire.mask = 0x7ff;
tt_microwire.data = MW_LM1992_ADDR | cmd;
/* Busy wait for data being completely sent :-( */
while( tt_microwire.mask != 0x7ff)
;
}
EXPORT_SYMBOL(atari_microwire_cmd);
/* PSG base frequency */
#define PSG_FREQ 125000
/* PSG envelope base frequency times 10 */
#define PSG_ENV_FREQ_10 78125
void atari_mksound (unsigned int hz, unsigned int ticks)
{
/* Generates sound of some frequency for some number of clock
ticks. */
unsigned long flags;
unsigned char tmp;
int period;
local_irq_save(flags);
/* Disable generator A in mixer control. */
sound_ym.rd_data_reg_sel = 7;
tmp = sound_ym.rd_data_reg_sel;
tmp |= 011;
sound_ym.wd_data = tmp;
if (hz) {
/* Convert from frequency value to PSG period value (base
frequency 125 kHz). */
period = PSG_FREQ / hz;
if (period > 0xfff) period = 0xfff;
/* Set generator A frequency to hz. */
sound_ym.rd_data_reg_sel = 0;
sound_ym.wd_data = period & 0xff;
sound_ym.rd_data_reg_sel = 1;
sound_ym.wd_data = (period >> 8) & 0xf;
if (ticks) {
/* Set length of envelope (max 8 sec). */
int length = (ticks * PSG_ENV_FREQ_10) / HZ / 10;
if (length > 0xffff) length = 0xffff;
sound_ym.rd_data_reg_sel = 11;
sound_ym.wd_data = length & 0xff;
sound_ym.rd_data_reg_sel = 12;
sound_ym.wd_data = length >> 8;
/* Envelope form: max -> min single. */
sound_ym.rd_data_reg_sel = 13;
sound_ym.wd_data = 0;
/* Use envelope for generator A. */
sound_ym.rd_data_reg_sel = 8;
sound_ym.wd_data = 0x10;
} else {
/* Set generator A level to maximum, no envelope. */
sound_ym.rd_data_reg_sel = 8;
sound_ym.wd_data = 15;
}
/* Turn on generator A in mixer control. */
sound_ym.rd_data_reg_sel = 7;
tmp &= ~1;
sound_ym.wd_data = tmp;
}
local_irq_restore(flags);
}

898
arch/m68k/atari/config.c Normal file
View file

@ -0,0 +1,898 @@
/*
* linux/arch/m68k/atari/config.c
*
* Copyright (C) 1994 Bjoern Brauel
*
* 5/2/94 Roman Hodek:
* Added setting of time_adj to get a better clock.
*
* 5/14/94 Roman Hodek:
* gettod() for TT
*
* 5/15/94 Roman Hodek:
* hard_reset_now() for Atari (and others?)
*
* 94/12/30 Andreas Schwab:
* atari_sched_init fixed to get precise clock.
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
/*
* Miscellaneous atari stuff
*/
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/seq_file.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/usb/isp116x.h>
#include <linux/vt_kern.h>
#include <linux/module.h>
#include <asm/bootinfo.h>
#include <asm/bootinfo-atari.h>
#include <asm/byteorder.h>
#include <asm/setup.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
#include <asm/atari_stram.h>
#include <asm/machdep.h>
#include <asm/hwtest.h>
#include <asm/io.h>
u_long atari_mch_cookie;
EXPORT_SYMBOL(atari_mch_cookie);
u_long atari_mch_type;
EXPORT_SYMBOL(atari_mch_type);
struct atari_hw_present atari_hw_present;
EXPORT_SYMBOL(atari_hw_present);
u_long atari_switches;
EXPORT_SYMBOL(atari_switches);
int atari_dont_touch_floppy_select;
EXPORT_SYMBOL(atari_dont_touch_floppy_select);
int atari_rtc_year_offset;
/* local function prototypes */
static void atari_reset(void);
static void atari_get_model(char *model);
static void atari_get_hardware_list(struct seq_file *m);
/* atari specific irq functions */
extern void atari_init_IRQ (void);
extern void atari_mksound(unsigned int count, unsigned int ticks);
#ifdef CONFIG_HEARTBEAT
static void atari_heartbeat(int on);
#endif
/* atari specific timer functions (in time.c) */
extern void atari_sched_init(irq_handler_t);
extern u32 atari_gettimeoffset(void);
extern int atari_mste_hwclk (int, struct rtc_time *);
extern int atari_tt_hwclk (int, struct rtc_time *);
extern int atari_mste_set_clock_mmss (unsigned long);
extern int atari_tt_set_clock_mmss (unsigned long);
/* ++roman: This is a more elaborate test for an SCC chip, since the plain
* Medusa board generates DTACK at the SCC's standard addresses, but a SCC
* board in the Medusa is possible. Also, the addresses where the ST_ESCC
* resides generate DTACK without the chip, too.
* The method is to write values into the interrupt vector register, that
* should be readable without trouble (from channel A!).
*/
static int __init scc_test(volatile char *ctla)
{
if (!hwreg_present(ctla))
return 0;
MFPDELAY();
*ctla = 2;
MFPDELAY();
*ctla = 0x40;
MFPDELAY();
*ctla = 2;
MFPDELAY();
if (*ctla != 0x40)
return 0;
MFPDELAY();
*ctla = 2;
MFPDELAY();
*ctla = 0x60;
MFPDELAY();
*ctla = 2;
MFPDELAY();
if (*ctla != 0x60)
return 0;
return 1;
}
/*
* Parse an Atari-specific record in the bootinfo
*/
int __init atari_parse_bootinfo(const struct bi_record *record)
{
int unknown = 0;
const void *data = record->data;
switch (be16_to_cpu(record->tag)) {
case BI_ATARI_MCH_COOKIE:
atari_mch_cookie = be32_to_cpup(data);
break;
case BI_ATARI_MCH_TYPE:
atari_mch_type = be32_to_cpup(data);
break;
default:
unknown = 1;
break;
}
return unknown;
}
/* Parse the Atari-specific switches= option. */
static int __init atari_switches_setup(char *str)
{
char switches[strlen(str) + 1];
char *p;
int ovsc_shift;
char *args = switches;
if (!MACH_IS_ATARI)
return 0;
/* copy string to local array, strsep works destructively... */
strcpy(switches, str);
atari_switches = 0;
/* parse the options */
while ((p = strsep(&args, ",")) != NULL) {
if (!*p)
continue;
ovsc_shift = 0;
if (strncmp(p, "ov_", 3) == 0) {
p += 3;
ovsc_shift = ATARI_SWITCH_OVSC_SHIFT;
}
if (strcmp(p, "ikbd") == 0) {
/* RTS line of IKBD ACIA */
atari_switches |= ATARI_SWITCH_IKBD << ovsc_shift;
} else if (strcmp(p, "midi") == 0) {
/* RTS line of MIDI ACIA */
atari_switches |= ATARI_SWITCH_MIDI << ovsc_shift;
} else if (strcmp(p, "snd6") == 0) {
atari_switches |= ATARI_SWITCH_SND6 << ovsc_shift;
} else if (strcmp(p, "snd7") == 0) {
atari_switches |= ATARI_SWITCH_SND7 << ovsc_shift;
}
}
return 0;
}
early_param("switches", atari_switches_setup);
/*
* Setup the Atari configuration info
*/
void __init config_atari(void)
{
unsigned short tos_version;
memset(&atari_hw_present, 0, sizeof(atari_hw_present));
/* Change size of I/O space from 64KB to 4GB. */
ioport_resource.end = 0xFFFFFFFF;
mach_sched_init = atari_sched_init;
mach_init_IRQ = atari_init_IRQ;
mach_get_model = atari_get_model;
mach_get_hardware_list = atari_get_hardware_list;
arch_gettimeoffset = atari_gettimeoffset;
mach_reset = atari_reset;
mach_max_dma_address = 0xffffff;
#if defined(CONFIG_INPUT_M68K_BEEP) || defined(CONFIG_INPUT_M68K_BEEP_MODULE)
mach_beep = atari_mksound;
#endif
#ifdef CONFIG_HEARTBEAT
mach_heartbeat = atari_heartbeat;
#endif
/* Set switches as requested by the user */
if (atari_switches & ATARI_SWITCH_IKBD)
acia.key_ctrl = ACIA_DIV64 | ACIA_D8N1S | ACIA_RHTID;
if (atari_switches & ATARI_SWITCH_MIDI)
acia.mid_ctrl = ACIA_DIV16 | ACIA_D8N1S | ACIA_RHTID;
if (atari_switches & (ATARI_SWITCH_SND6|ATARI_SWITCH_SND7)) {
sound_ym.rd_data_reg_sel = 14;
sound_ym.wd_data = sound_ym.rd_data_reg_sel |
((atari_switches&ATARI_SWITCH_SND6) ? 0x40 : 0) |
((atari_switches&ATARI_SWITCH_SND7) ? 0x80 : 0);
}
/* ++bjoern:
* Determine hardware present
*/
printk("Atari hardware found: ");
if (MACH_IS_MEDUSA) {
/* There's no Atari video hardware on the Medusa, but all the
* addresses below generate a DTACK so no bus error occurs! */
} else if (hwreg_present(f030_xreg)) {
ATARIHW_SET(VIDEL_SHIFTER);
printk("VIDEL ");
/* This is a temporary hack: If there is Falcon video
* hardware, we assume that the ST-DMA serves SCSI instead of
* ACSI. In the future, there should be a better method for
* this...
*/
ATARIHW_SET(ST_SCSI);
printk("STDMA-SCSI ");
} else if (hwreg_present(tt_palette)) {
ATARIHW_SET(TT_SHIFTER);
printk("TT_SHIFTER ");
} else if (hwreg_present(&shifter.bas_hi)) {
if (hwreg_present(&shifter.bas_lo) &&
(shifter.bas_lo = 0x0aau, shifter.bas_lo == 0x0aau)) {
ATARIHW_SET(EXTD_SHIFTER);
printk("EXTD_SHIFTER ");
} else {
ATARIHW_SET(STND_SHIFTER);
printk("STND_SHIFTER ");
}
}
if (hwreg_present(&st_mfp.par_dt_reg)) {
ATARIHW_SET(ST_MFP);
printk("ST_MFP ");
}
if (hwreg_present(&tt_mfp.par_dt_reg)) {
ATARIHW_SET(TT_MFP);
printk("TT_MFP ");
}
if (hwreg_present(&tt_scsi_dma.dma_addr_hi)) {
ATARIHW_SET(SCSI_DMA);
printk("TT_SCSI_DMA ");
}
/*
* The ST-DMA address registers aren't readable
* on all Medusas, so the test below may fail
*/
if (MACH_IS_MEDUSA ||
(hwreg_present(&st_dma.dma_vhi) &&
(st_dma.dma_vhi = 0x55) && (st_dma.dma_hi = 0xaa) &&
st_dma.dma_vhi == 0x55 && st_dma.dma_hi == 0xaa &&
(st_dma.dma_vhi = 0xaa) && (st_dma.dma_hi = 0x55) &&
st_dma.dma_vhi == 0xaa && st_dma.dma_hi == 0x55)) {
ATARIHW_SET(EXTD_DMA);
printk("EXTD_DMA ");
}
if (hwreg_present(&tt_scsi.scsi_data)) {
ATARIHW_SET(TT_SCSI);
printk("TT_SCSI ");
}
if (hwreg_present(&sound_ym.rd_data_reg_sel)) {
ATARIHW_SET(YM_2149);
printk("YM2149 ");
}
if (!MACH_IS_MEDUSA && hwreg_present(&tt_dmasnd.ctrl)) {
ATARIHW_SET(PCM_8BIT);
printk("PCM ");
}
if (hwreg_present(&falcon_codec.unused5)) {
ATARIHW_SET(CODEC);
printk("CODEC ");
}
if (hwreg_present(&dsp56k_host_interface.icr)) {
ATARIHW_SET(DSP56K);
printk("DSP56K ");
}
if (hwreg_present(&tt_scc_dma.dma_ctrl) &&
#if 0
/* This test sucks! Who knows some better? */
(tt_scc_dma.dma_ctrl = 0x01, (tt_scc_dma.dma_ctrl & 1) == 1) &&
(tt_scc_dma.dma_ctrl = 0x00, (tt_scc_dma.dma_ctrl & 1) == 0)
#else
!MACH_IS_MEDUSA
#endif
) {
ATARIHW_SET(SCC_DMA);
printk("SCC_DMA ");
}
if (scc_test(&atari_scc.cha_a_ctrl)) {
ATARIHW_SET(SCC);
printk("SCC ");
}
if (scc_test(&st_escc.cha_b_ctrl)) {
ATARIHW_SET(ST_ESCC);
printk("ST_ESCC ");
}
if (hwreg_present(&tt_scu.sys_mask)) {
ATARIHW_SET(SCU);
/* Assume a VME bus if there's a SCU */
ATARIHW_SET(VME);
printk("VME SCU ");
}
if (hwreg_present((void *)(0xffff9210))) {
ATARIHW_SET(ANALOG_JOY);
printk("ANALOG_JOY ");
}
if (hwreg_present(blitter.halftone)) {
ATARIHW_SET(BLITTER);
printk("BLITTER ");
}
if (hwreg_present((void *)0xfff00039)) {
ATARIHW_SET(IDE);
printk("IDE ");
}
#if 1 /* This maybe wrong */
if (!MACH_IS_MEDUSA && hwreg_present(&tt_microwire.data) &&
hwreg_present(&tt_microwire.mask) &&
(tt_microwire.mask = 0x7ff,
udelay(1),
tt_microwire.data = MW_LM1992_PSG_HIGH | MW_LM1992_ADDR,
udelay(1),
tt_microwire.data != 0)) {
ATARIHW_SET(MICROWIRE);
while (tt_microwire.mask != 0x7ff)
;
printk("MICROWIRE ");
}
#endif
if (hwreg_present(&tt_rtc.regsel)) {
ATARIHW_SET(TT_CLK);
printk("TT_CLK ");
mach_hwclk = atari_tt_hwclk;
mach_set_clock_mmss = atari_tt_set_clock_mmss;
}
if (hwreg_present(&mste_rtc.sec_ones)) {
ATARIHW_SET(MSTE_CLK);
printk("MSTE_CLK ");
mach_hwclk = atari_mste_hwclk;
mach_set_clock_mmss = atari_mste_set_clock_mmss;
}
if (!MACH_IS_MEDUSA && hwreg_present(&dma_wd.fdc_speed) &&
hwreg_write(&dma_wd.fdc_speed, 0)) {
ATARIHW_SET(FDCSPEED);
printk("FDC_SPEED ");
}
if (!ATARIHW_PRESENT(ST_SCSI)) {
ATARIHW_SET(ACSI);
printk("ACSI ");
}
printk("\n");
if (CPU_IS_040_OR_060)
/* Now it seems to be safe to turn of the tt0 transparent
* translation (the one that must not be turned off in
* head.S...)
*/
asm volatile ("\n"
" moveq #0,%%d0\n"
" .chip 68040\n"
" movec %%d0,%%itt0\n"
" movec %%d0,%%dtt0\n"
" .chip 68k"
: /* no outputs */
: /* no inputs */
: "d0");
/* allocator for memory that must reside in st-ram */
atari_stram_init();
/* Set up a mapping for the VMEbus address region:
*
* VME is either at phys. 0xfexxxxxx (TT) or 0xa00000..0xdfffff
* (MegaSTE) In both cases, the whole 16 MB chunk is mapped at
* 0xfe000000 virt., because this can be done with a single
* transparent translation. On the 68040, lots of often unused
* page tables would be needed otherwise. On a MegaSTE or similar,
* the highest byte is stripped off by hardware due to the 24 bit
* design of the bus.
*/
if (CPU_IS_020_OR_030) {
unsigned long tt1_val;
tt1_val = 0xfe008543; /* Translate 0xfexxxxxx, enable, cache
* inhibit, read and write, FDC mask = 3,
* FDC val = 4 -> Supervisor only */
asm volatile ("\n"
" .chip 68030\n"
" pmove %0,%/tt1\n"
" .chip 68k"
: : "m" (tt1_val));
} else {
asm volatile ("\n"
" .chip 68040\n"
" movec %0,%%itt1\n"
" movec %0,%%dtt1\n"
" .chip 68k"
:
: "d" (0xfe00a040)); /* Translate 0xfexxxxxx, enable,
* supervisor only, non-cacheable/
* serialized, writable */
}
/* Fetch tos version at Physical 2 */
/*
* We my not be able to access this address if the kernel is
* loaded to st ram, since the first page is unmapped. On the
* Medusa this is always the case and there is nothing we can do
* about this, so we just assume the smaller offset. For the TT
* we use the fact that in head.S we have set up a mapping
* 0xFFxxxxxx -> 0x00xxxxxx, so that the first 16MB is accessible
* in the last 16MB of the address space.
*/
tos_version = (MACH_IS_MEDUSA) ?
0xfff : *(unsigned short *)0xff000002;
atari_rtc_year_offset = (tos_version < 0x306) ? 70 : 68;
}
#ifdef CONFIG_HEARTBEAT
static void atari_heartbeat(int on)
{
unsigned char tmp;
unsigned long flags;
if (atari_dont_touch_floppy_select)
return;
local_irq_save(flags);
sound_ym.rd_data_reg_sel = 14; /* Select PSG Port A */
tmp = sound_ym.rd_data_reg_sel;
sound_ym.wd_data = on ? (tmp & ~0x02) : (tmp | 0x02);
local_irq_restore(flags);
}
#endif
/* ++roman:
*
* This function does a reset on machines that lack the ability to
* assert the processor's _RESET signal somehow via hardware. It is
* based on the fact that you can find the initial SP and PC values
* after a reset at physical addresses 0 and 4. This works pretty well
* for Atari machines, since the lowest 8 bytes of physical memory are
* really ROM (mapped by hardware). For other 680x0 machines: don't
* know if it works...
*
* To get the values at addresses 0 and 4, the MMU better is turned
* off first. After that, we have to jump into physical address space
* (the PC before the pmove statement points to the virtual address of
* the code). Getting that physical address is not hard, but the code
* becomes a bit complex since I've tried to ensure that the jump
* statement after the pmove is in the cache already (otherwise the
* processor can't fetch it!). For that, the code first jumps to the
* jump statement with the (virtual) address of the pmove section in
* an address register . The jump statement is surely in the cache
* now. After that, that physical address of the reset code is loaded
* into the same address register, pmove is done and the same jump
* statements goes to the reset code. Since there are not many
* statements between the two jumps, I hope it stays in the cache.
*
* The C code makes heavy use of the GCC features that you can get the
* address of a C label. No hope to compile this with another compiler
* than GCC!
*/
/* ++andreas: no need for complicated code, just depend on prefetch */
static void atari_reset(void)
{
long tc_val = 0;
long reset_addr;
/*
* On the Medusa, phys. 0x4 may contain garbage because it's no
* ROM. See above for explanation why we cannot use PTOV(4).
*/
reset_addr = MACH_IS_MEDUSA || MACH_IS_AB40 ? 0xe00030 :
*(unsigned long *) 0xff000004;
/* reset ACIA for switch off OverScan, if it's active */
if (atari_switches & ATARI_SWITCH_OVSC_IKBD)
acia.key_ctrl = ACIA_RESET;
if (atari_switches & ATARI_SWITCH_OVSC_MIDI)
acia.mid_ctrl = ACIA_RESET;
/* processor independent: turn off interrupts and reset the VBR;
* the caches must be left enabled, else prefetching the final jump
* instruction doesn't work.
*/
local_irq_disable();
asm volatile ("movec %0,%%vbr"
: : "d" (0));
if (CPU_IS_040_OR_060) {
unsigned long jmp_addr040 = virt_to_phys(&&jmp_addr_label040);
if (CPU_IS_060) {
/* 68060: clear PCR to turn off superscalar operation */
asm volatile ("\n"
" .chip 68060\n"
" movec %0,%%pcr\n"
" .chip 68k"
: : "d" (0));
}
asm volatile ("\n"
" move.l %0,%%d0\n"
" and.l #0xff000000,%%d0\n"
" or.w #0xe020,%%d0\n" /* map 16 MB, enable, cacheable */
" .chip 68040\n"
" movec %%d0,%%itt0\n"
" movec %%d0,%%dtt0\n"
" .chip 68k\n"
" jmp %0@"
: : "a" (jmp_addr040)
: "d0");
jmp_addr_label040:
asm volatile ("\n"
" moveq #0,%%d0\n"
" nop\n"
" .chip 68040\n"
" cinva %%bc\n"
" nop\n"
" pflusha\n"
" nop\n"
" movec %%d0,%%tc\n"
" nop\n"
/* the following setup of transparent translations is needed on the
* Afterburner040 to successfully reboot. Other machines shouldn't
* care about a different tt regs setup, they also didn't care in
* the past that the regs weren't turned off. */
" move.l #0xffc000,%%d0\n" /* whole insn space cacheable */
" movec %%d0,%%itt0\n"
" movec %%d0,%%itt1\n"
" or.w #0x40,%/d0\n" /* whole data space non-cacheable/ser. */
" movec %%d0,%%dtt0\n"
" movec %%d0,%%dtt1\n"
" .chip 68k\n"
" jmp %0@"
: /* no outputs */
: "a" (reset_addr)
: "d0");
} else
asm volatile ("\n"
" pmove %0,%%tc\n"
" jmp %1@"
: /* no outputs */
: "m" (tc_val), "a" (reset_addr));
}
static void atari_get_model(char *model)
{
strcpy(model, "Atari ");
switch (atari_mch_cookie >> 16) {
case ATARI_MCH_ST:
if (ATARIHW_PRESENT(MSTE_CLK))
strcat(model, "Mega ST");
else
strcat(model, "ST");
break;
case ATARI_MCH_STE:
if (MACH_IS_MSTE)
strcat(model, "Mega STE");
else
strcat(model, "STE");
break;
case ATARI_MCH_TT:
if (MACH_IS_MEDUSA)
/* Medusa has TT _MCH cookie */
strcat(model, "Medusa");
else
strcat(model, "TT");
break;
case ATARI_MCH_FALCON:
strcat(model, "Falcon");
if (MACH_IS_AB40)
strcat(model, " (with Afterburner040)");
break;
default:
sprintf(model + strlen(model), "(unknown mach cookie 0x%lx)",
atari_mch_cookie);
break;
}
}
static void atari_get_hardware_list(struct seq_file *m)
{
int i;
for (i = 0; i < m68k_num_memory; i++)
seq_printf(m, "\t%3ld MB at 0x%08lx (%s)\n",
m68k_memory[i].size >> 20, m68k_memory[i].addr,
(m68k_memory[i].addr & 0xff000000 ?
"alternate RAM" : "ST-RAM"));
#define ATARIHW_ANNOUNCE(name, str) \
if (ATARIHW_PRESENT(name)) \
seq_printf(m, "\t%s\n", str)
seq_printf(m, "Detected hardware:\n");
ATARIHW_ANNOUNCE(STND_SHIFTER, "ST Shifter");
ATARIHW_ANNOUNCE(EXTD_SHIFTER, "STe Shifter");
ATARIHW_ANNOUNCE(TT_SHIFTER, "TT Shifter");
ATARIHW_ANNOUNCE(VIDEL_SHIFTER, "Falcon Shifter");
ATARIHW_ANNOUNCE(YM_2149, "Programmable Sound Generator");
ATARIHW_ANNOUNCE(PCM_8BIT, "PCM 8 Bit Sound");
ATARIHW_ANNOUNCE(CODEC, "CODEC Sound");
ATARIHW_ANNOUNCE(TT_SCSI, "SCSI Controller NCR5380 (TT style)");
ATARIHW_ANNOUNCE(ST_SCSI, "SCSI Controller NCR5380 (Falcon style)");
ATARIHW_ANNOUNCE(ACSI, "ACSI Interface");
ATARIHW_ANNOUNCE(IDE, "IDE Interface");
ATARIHW_ANNOUNCE(FDCSPEED, "8/16 Mhz Switch for FDC");
ATARIHW_ANNOUNCE(ST_MFP, "Multi Function Peripheral MFP 68901");
ATARIHW_ANNOUNCE(TT_MFP, "Second Multi Function Peripheral MFP 68901");
ATARIHW_ANNOUNCE(SCC, "Serial Communications Controller SCC 8530");
ATARIHW_ANNOUNCE(ST_ESCC, "Extended Serial Communications Controller SCC 85230");
ATARIHW_ANNOUNCE(ANALOG_JOY, "Paddle Interface");
ATARIHW_ANNOUNCE(MICROWIRE, "MICROWIRE(tm) Interface");
ATARIHW_ANNOUNCE(STND_DMA, "DMA Controller (24 bit)");
ATARIHW_ANNOUNCE(EXTD_DMA, "DMA Controller (32 bit)");
ATARIHW_ANNOUNCE(SCSI_DMA, "DMA Controller for NCR5380");
ATARIHW_ANNOUNCE(SCC_DMA, "DMA Controller for SCC");
ATARIHW_ANNOUNCE(TT_CLK, "Clock Chip MC146818A");
ATARIHW_ANNOUNCE(MSTE_CLK, "Clock Chip RP5C15");
ATARIHW_ANNOUNCE(SCU, "System Control Unit");
ATARIHW_ANNOUNCE(BLITTER, "Blitter");
ATARIHW_ANNOUNCE(VME, "VME Bus");
ATARIHW_ANNOUNCE(DSP56K, "DSP56001 processor");
}
/*
* MSch: initial platform device support for Atari,
* required for EtherNAT/EtherNEC/NetUSBee drivers
*/
#if defined(CONFIG_ATARI_ETHERNAT) || defined(CONFIG_ATARI_ETHERNEC)
static void isp1160_delay(struct device *dev, int delay)
{
ndelay(delay);
}
#endif
#ifdef CONFIG_ATARI_ETHERNAT
/*
* EtherNAT: SMC91C111 Ethernet chipset, handled by smc91x driver
*/
#define ATARI_ETHERNAT_IRQ 140
static struct resource smc91x_resources[] = {
[0] = {
.name = "smc91x-regs",
.start = ATARI_ETHERNAT_PHYS_ADDR,
.end = ATARI_ETHERNAT_PHYS_ADDR + 0xfffff,
.flags = IORESOURCE_MEM,
},
[1] = {
.name = "smc91x-irq",
.start = ATARI_ETHERNAT_IRQ,
.end = ATARI_ETHERNAT_IRQ,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device smc91x_device = {
.name = "smc91x",
.id = -1,
.num_resources = ARRAY_SIZE(smc91x_resources),
.resource = smc91x_resources,
};
/*
* ISP 1160 - using the isp116x-hcd module
*/
#define ATARI_USB_PHYS_ADDR 0x80000012
#define ATARI_USB_IRQ 139
static struct resource isp1160_resources[] = {
[0] = {
.name = "isp1160-data",
.start = ATARI_USB_PHYS_ADDR,
.end = ATARI_USB_PHYS_ADDR + 0x1,
.flags = IORESOURCE_MEM,
},
[1] = {
.name = "isp1160-regs",
.start = ATARI_USB_PHYS_ADDR + 0x4,
.end = ATARI_USB_PHYS_ADDR + 0x5,
.flags = IORESOURCE_MEM,
},
[2] = {
.name = "isp1160-irq",
.start = ATARI_USB_IRQ,
.end = ATARI_USB_IRQ,
.flags = IORESOURCE_IRQ,
},
};
/* (DataBusWidth16|AnalogOCEnable|DREQOutputPolarity|DownstreamPort15KRSel ) */
static struct isp116x_platform_data isp1160_platform_data = {
/* Enable internal resistors on downstream ports */
.sel15Kres = 1,
/* On-chip overcurrent protection */
.oc_enable = 1,
/* INT output polarity */
.int_act_high = 1,
/* INT edge or level triggered */
.int_edge_triggered = 0,
/* WAKEUP pin connected - NOT SUPPORTED */
/* .remote_wakeup_connected = 0, */
/* Wakeup by devices on usb bus enabled */
.remote_wakeup_enable = 0,
.delay = isp1160_delay,
};
static struct platform_device isp1160_device = {
.name = "isp116x-hcd",
.id = 0,
.num_resources = ARRAY_SIZE(isp1160_resources),
.resource = isp1160_resources,
.dev = {
.platform_data = &isp1160_platform_data,
},
};
static struct platform_device *atari_ethernat_devices[] __initdata = {
&smc91x_device,
&isp1160_device
};
#endif /* CONFIG_ATARI_ETHERNAT */
#ifdef CONFIG_ATARI_ETHERNEC
/*
* EtherNEC: RTL8019 (NE2000 compatible) Ethernet chipset,
* handled by ne.c driver
*/
#define ATARI_ETHERNEC_PHYS_ADDR 0xfffa0000
#define ATARI_ETHERNEC_BASE 0x300
#define ATARI_ETHERNEC_IRQ IRQ_MFP_TIMER1
static struct resource rtl8019_resources[] = {
[0] = {
.name = "rtl8019-regs",
.start = ATARI_ETHERNEC_BASE,
.end = ATARI_ETHERNEC_BASE + 0x20 - 1,
.flags = IORESOURCE_IO,
},
[1] = {
.name = "rtl8019-irq",
.start = ATARI_ETHERNEC_IRQ,
.end = ATARI_ETHERNEC_IRQ,
.flags = IORESOURCE_IRQ,
},
};
static struct platform_device rtl8019_device = {
.name = "ne",
.id = -1,
.num_resources = ARRAY_SIZE(rtl8019_resources),
.resource = rtl8019_resources,
};
/*
* NetUSBee: ISP1160 USB host adapter via ROM-port adapter
*/
#define ATARI_NETUSBEE_PHYS_ADDR 0xfffa8000
#define ATARI_NETUSBEE_BASE 0x340
#define ATARI_NETUSBEE_IRQ IRQ_MFP_TIMER2
static struct resource netusbee_resources[] = {
[0] = {
.name = "isp1160-data",
.start = ATARI_NETUSBEE_BASE,
.end = ATARI_NETUSBEE_BASE + 0x1,
.flags = IORESOURCE_MEM,
},
[1] = {
.name = "isp1160-regs",
.start = ATARI_NETUSBEE_BASE + 0x20,
.end = ATARI_NETUSBEE_BASE + 0x21,
.flags = IORESOURCE_MEM,
},
[2] = {
.name = "isp1160-irq",
.start = ATARI_NETUSBEE_IRQ,
.end = ATARI_NETUSBEE_IRQ,
.flags = IORESOURCE_IRQ,
},
};
/* (DataBusWidth16|AnalogOCEnable|DREQOutputPolarity|DownstreamPort15KRSel ) */
static struct isp116x_platform_data netusbee_platform_data = {
/* Enable internal resistors on downstream ports */
.sel15Kres = 1,
/* On-chip overcurrent protection */
.oc_enable = 1,
/* INT output polarity */
.int_act_high = 1,
/* INT edge or level triggered */
.int_edge_triggered = 0,
/* WAKEUP pin connected - NOT SUPPORTED */
/* .remote_wakeup_connected = 0, */
/* Wakeup by devices on usb bus enabled */
.remote_wakeup_enable = 0,
.delay = isp1160_delay,
};
static struct platform_device netusbee_device = {
.name = "isp116x-hcd",
.id = 1,
.num_resources = ARRAY_SIZE(netusbee_resources),
.resource = netusbee_resources,
.dev = {
.platform_data = &netusbee_platform_data,
},
};
static struct platform_device *atari_netusbee_devices[] __initdata = {
&rtl8019_device,
&netusbee_device
};
#endif /* CONFIG_ATARI_ETHERNEC */
int __init atari_platform_init(void)
{
int rv = 0;
if (!MACH_IS_ATARI)
return -ENODEV;
#ifdef CONFIG_ATARI_ETHERNAT
{
unsigned char *enatc_virt;
enatc_virt = (unsigned char *)ioremap((ATARI_ETHERNAT_PHYS_ADDR+0x23), 0xf);
if (hwreg_present(enatc_virt)) {
rv = platform_add_devices(atari_ethernat_devices,
ARRAY_SIZE(atari_ethernat_devices));
}
iounmap(enatc_virt);
}
#endif
#ifdef CONFIG_ATARI_ETHERNEC
{
int error;
unsigned char *enec_virt;
enec_virt = (unsigned char *)ioremap((ATARI_ETHERNEC_PHYS_ADDR), 0xf);
if (hwreg_present(enec_virt)) {
error = platform_add_devices(atari_netusbee_devices,
ARRAY_SIZE(atari_netusbee_devices));
if (error && !rv)
rv = error;
}
iounmap(enec_virt);
}
#endif
return rv;
}
arch_initcall(atari_platform_init);

329
arch/m68k/atari/debug.c Normal file
View file

@ -0,0 +1,329 @@
/*
* linux/arch/m68k/atari/debug.c
*
* Atari debugging and serial console stuff
*
* Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/tty.h>
#include <linux/console.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <asm/atarihw.h>
#include <asm/atariints.h>
/* Can be set somewhere, if a SCC master reset has already be done and should
* not be repeated; used by kgdb */
int atari_SCC_reset_done;
EXPORT_SYMBOL(atari_SCC_reset_done);
static struct console atari_console_driver = {
.name = "debug",
.flags = CON_PRINTBUFFER,
.index = -1,
};
static inline void ata_mfp_out(char c)
{
while (!(st_mfp.trn_stat & 0x80)) /* wait for tx buf empty */
barrier();
st_mfp.usart_dta = c;
}
static void atari_mfp_console_write(struct console *co, const char *str,
unsigned int count)
{
while (count--) {
if (*str == '\n')
ata_mfp_out('\r');
ata_mfp_out(*str++);
}
}
static inline void ata_scc_out(char c)
{
do {
MFPDELAY();
} while (!(atari_scc.cha_b_ctrl & 0x04)); /* wait for tx buf empty */
MFPDELAY();
atari_scc.cha_b_data = c;
}
static void atari_scc_console_write(struct console *co, const char *str,
unsigned int count)
{
while (count--) {
if (*str == '\n')
ata_scc_out('\r');
ata_scc_out(*str++);
}
}
static inline void ata_midi_out(char c)
{
while (!(acia.mid_ctrl & ACIA_TDRE)) /* wait for tx buf empty */
barrier();
acia.mid_data = c;
}
static void atari_midi_console_write(struct console *co, const char *str,
unsigned int count)
{
while (count--) {
if (*str == '\n')
ata_midi_out('\r');
ata_midi_out(*str++);
}
}
static int ata_par_out(char c)
{
unsigned char tmp;
/* This a some-seconds timeout in case no printer is connected */
unsigned long i = loops_per_jiffy > 1 ? loops_per_jiffy : 10000000/HZ;
while ((st_mfp.par_dt_reg & 1) && --i) /* wait for BUSY == L */
;
if (!i)
return 0;
sound_ym.rd_data_reg_sel = 15; /* select port B */
sound_ym.wd_data = c; /* put char onto port */
sound_ym.rd_data_reg_sel = 14; /* select port A */
tmp = sound_ym.rd_data_reg_sel;
sound_ym.wd_data = tmp & ~0x20; /* set strobe L */
MFPDELAY(); /* wait a bit */
sound_ym.wd_data = tmp | 0x20; /* set strobe H */
return 1;
}
static void atari_par_console_write(struct console *co, const char *str,
unsigned int count)
{
static int printer_present = 1;
if (!printer_present)
return;
while (count--) {
if (*str == '\n') {
if (!ata_par_out('\r')) {
printer_present = 0;
return;
}
}
if (!ata_par_out(*str++)) {
printer_present = 0;
return;
}
}
}
#if 0
int atari_mfp_console_wait_key(struct console *co)
{
while (!(st_mfp.rcv_stat & 0x80)) /* wait for rx buf filled */
barrier();
return st_mfp.usart_dta;
}
int atari_scc_console_wait_key(struct console *co)
{
do {
MFPDELAY();
} while (!(atari_scc.cha_b_ctrl & 0x01)); /* wait for rx buf filled */
MFPDELAY();
return atari_scc.cha_b_data;
}
int atari_midi_console_wait_key(struct console *co)
{
while (!(acia.mid_ctrl & ACIA_RDRF)) /* wait for rx buf filled */
barrier();
return acia.mid_data;
}
#endif
/*
* The following two functions do a quick'n'dirty initialization of the MFP or
* SCC serial ports. They're used by the debugging interface, kgdb, and the
* serial console code.
*/
static void __init atari_init_mfp_port(int cflag)
{
/*
* timer values for 1200...115200 bps; > 38400 select 110, 134, or 150
* bps, resp., and work only correct if there's a RSVE or RSSPEED
*/
static int baud_table[9] = { 16, 11, 8, 4, 2, 1, 175, 143, 128 };
int baud = cflag & CBAUD;
int parity = (cflag & PARENB) ? ((cflag & PARODD) ? 0x04 : 0x06) : 0;
int csize = ((cflag & CSIZE) == CS7) ? 0x20 : 0x00;
if (cflag & CBAUDEX)
baud += B38400;
if (baud < B1200 || baud > B38400+2)
baud = B9600; /* use default 9600bps for non-implemented rates */
baud -= B1200; /* baud_table[] starts at 1200bps */
st_mfp.trn_stat &= ~0x01; /* disable TX */
st_mfp.usart_ctr = parity | csize | 0x88; /* 1:16 clk mode, 1 stop bit */
st_mfp.tim_ct_cd &= 0x70; /* stop timer D */
st_mfp.tim_dt_d = baud_table[baud];
st_mfp.tim_ct_cd |= 0x01; /* start timer D, 1:4 */
st_mfp.trn_stat |= 0x01; /* enable TX */
}
#define SCC_WRITE(reg, val) \
do { \
atari_scc.cha_b_ctrl = (reg); \
MFPDELAY(); \
atari_scc.cha_b_ctrl = (val); \
MFPDELAY(); \
} while (0)
/* loops_per_jiffy isn't initialized yet, so we can't use udelay(). This does a
* delay of ~ 60us. */
#define LONG_DELAY() \
do { \
int i; \
for (i = 100; i > 0; --i) \
MFPDELAY(); \
} while (0)
static void __init atari_init_scc_port(int cflag)
{
static int clksrc_table[9] =
/* reg 11: 0x50 = BRG, 0x00 = RTxC, 0x28 = TRxC */
{ 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x50, 0x00, 0x00 };
static int brgsrc_table[9] =
/* reg 14: 0 = RTxC, 2 = PCLK */
{ 2, 2, 2, 2, 2, 2, 0, 2, 2 };
static int clkmode_table[9] =
/* reg 4: 0x40 = x16, 0x80 = x32, 0xc0 = x64 */
{ 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0x40, 0xc0, 0x80 };
static int div_table[9] =
/* reg12 (BRG low) */
{ 208, 138, 103, 50, 24, 11, 1, 0, 0 };
int baud = cflag & CBAUD;
int clksrc, clkmode, div, reg3, reg5;
if (cflag & CBAUDEX)
baud += B38400;
if (baud < B1200 || baud > B38400+2)
baud = B9600; /* use default 9600bps for non-implemented rates */
baud -= B1200; /* tables starts at 1200bps */
clksrc = clksrc_table[baud];
clkmode = clkmode_table[baud];
div = div_table[baud];
if (ATARIHW_PRESENT(TT_MFP) && baud >= 6) {
/* special treatment for TT, where rates >= 38400 are done via TRxC */
clksrc = 0x28; /* TRxC */
clkmode = baud == 6 ? 0xc0 :
baud == 7 ? 0x80 : /* really 76800bps */
0x40; /* really 153600bps */
div = 0;
}
reg3 = (cflag & CSIZE) == CS8 ? 0xc0 : 0x40;
reg5 = (cflag & CSIZE) == CS8 ? 0x60 : 0x20 | 0x82 /* assert DTR/RTS */;
(void)atari_scc.cha_b_ctrl; /* reset reg pointer */
SCC_WRITE(9, 0xc0); /* reset */
LONG_DELAY(); /* extra delay after WR9 access */
SCC_WRITE(4, (cflag & PARENB) ? ((cflag & PARODD) ? 0x01 : 0x03)
: 0 | 0x04 /* 1 stopbit */ | clkmode);
SCC_WRITE(3, reg3);
SCC_WRITE(5, reg5);
SCC_WRITE(9, 0); /* no interrupts */
LONG_DELAY(); /* extra delay after WR9 access */
SCC_WRITE(10, 0); /* NRZ mode */
SCC_WRITE(11, clksrc); /* main clock source */
SCC_WRITE(12, div); /* BRG value */
SCC_WRITE(13, 0); /* BRG high byte */
SCC_WRITE(14, brgsrc_table[baud]);
SCC_WRITE(14, brgsrc_table[baud] | (div ? 1 : 0));
SCC_WRITE(3, reg3 | 1);
SCC_WRITE(5, reg5 | 8);
atari_SCC_reset_done = 1;
}
static void __init atari_init_midi_port(int cflag)
{
int baud = cflag & CBAUD;
int csize = ((cflag & CSIZE) == CS8) ? 0x10 : 0x00;
/* warning 7N1 isn't possible! (instead 7O2 is used...) */
int parity = (cflag & PARENB) ? ((cflag & PARODD) ? 0x0c : 0x08) : 0x04;
int div;
/* 4800 selects 7812.5, 115200 selects 500000, all other (incl. 9600 as
* default) the standard MIDI speed 31250. */
if (cflag & CBAUDEX)
baud += B38400;
if (baud == B4800)
div = ACIA_DIV64; /* really 7812.5 bps */
else if (baud == B38400+2 /* 115200 */)
div = ACIA_DIV1; /* really 500 kbps (does that work??) */
else
div = ACIA_DIV16; /* 31250 bps, standard for MIDI */
/* RTS low, ints disabled */
acia.mid_ctrl = div | csize | parity |
((atari_switches & ATARI_SWITCH_MIDI) ?
ACIA_RHTID : ACIA_RLTID);
}
static int __init atari_debug_setup(char *arg)
{
bool registered;
if (!MACH_IS_ATARI)
return 0;
if (!strcmp(arg, "ser"))
/* defaults to ser2 for a Falcon and ser1 otherwise */
arg = MACH_IS_FALCON ? "ser2" : "ser1";
registered = !!atari_console_driver.write;
if (!strcmp(arg, "ser1")) {
/* ST-MFP Modem1 serial port */
atari_init_mfp_port(B9600|CS8);
atari_console_driver.write = atari_mfp_console_write;
} else if (!strcmp(arg, "ser2")) {
/* SCC Modem2 serial port */
atari_init_scc_port(B9600|CS8);
atari_console_driver.write = atari_scc_console_write;
} else if (!strcmp(arg, "midi")) {
/* MIDI port */
atari_init_midi_port(B9600|CS8);
atari_console_driver.write = atari_midi_console_write;
} else if (!strcmp(arg, "par")) {
/* parallel printer */
atari_turnoff_irq(IRQ_MFP_BUSY); /* avoid ints */
sound_ym.rd_data_reg_sel = 7; /* select mixer control */
sound_ym.wd_data = 0xff; /* sound off, ports are output */
sound_ym.rd_data_reg_sel = 15; /* select port B */
sound_ym.wd_data = 0; /* no char */
sound_ym.rd_data_reg_sel = 14; /* select port A */
sound_ym.wd_data = sound_ym.rd_data_reg_sel | 0x20; /* strobe H */
atari_console_driver.write = atari_par_console_write;
}
if (atari_console_driver.write && !registered)
register_console(&atari_console_driver);
return 0;
}
early_param("debug", atari_debug_setup);

201
arch/m68k/atari/stdma.c Normal file
View file

@ -0,0 +1,201 @@
/*
* linux/arch/m68k/atari/stmda.c
*
* Copyright (C) 1994 Roman Hodek
*
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
/* This file contains some function for controlling the access to the */
/* ST-DMA chip that may be shared between devices. Currently we have: */
/* TT: Floppy and ACSI bus */
/* Falcon: Floppy and SCSI */
/* */
/* The controlling functions set up a wait queue for access to the */
/* ST-DMA chip. Callers to stdma_lock() that cannot granted access are */
/* put onto a queue and waked up later if the owner calls */
/* stdma_release(). Additionally, the caller gives his interrupt */
/* service routine to stdma_lock(). */
/* */
/* On the Falcon, the IDE bus uses just the ACSI/Floppy interrupt, but */
/* not the ST-DMA chip itself. So falhd.c needs not to lock the */
/* chip. The interrupt is routed to falhd.c if IDE is configured, the */
/* model is a Falcon and the interrupt was caused by the HD controller */
/* (can be determined by looking at its status register). */
#include <linux/types.h>
#include <linux/kdev_t.h>
#include <linux/genhd.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/wait.h>
#include <linux/module.h>
#include <asm/atari_stdma.h>
#include <asm/atariints.h>
#include <asm/atarihw.h>
#include <asm/io.h>
#include <asm/irq.h>
static int stdma_locked; /* the semaphore */
/* int func to be called */
static irq_handler_t stdma_isr;
static void *stdma_isr_data; /* data passed to isr */
static DECLARE_WAIT_QUEUE_HEAD(stdma_wait); /* wait queue for ST-DMA */
/***************************** Prototypes *****************************/
static irqreturn_t stdma_int (int irq, void *dummy);
/************************* End of Prototypes **************************/
/*
* Function: void stdma_lock( isrfunc isr, void *data )
*
* Purpose: Tries to get a lock on the ST-DMA chip that is used by more
* then one device driver. Waits on stdma_wait until lock is free.
* stdma_lock() may not be called from an interrupt! You have to
* get the lock in your main routine and release it when your
* request is finished.
*
* Inputs: A interrupt function that is called until the lock is
* released.
*
* Returns: nothing
*
*/
void stdma_lock(irq_handler_t handler, void *data)
{
unsigned long flags;
local_irq_save(flags); /* protect lock */
/* Since the DMA is used for file system purposes, we
have to sleep uninterruptible (there may be locked
buffers) */
wait_event(stdma_wait, !stdma_locked);
stdma_locked = 1;
stdma_isr = handler;
stdma_isr_data = data;
local_irq_restore(flags);
}
EXPORT_SYMBOL(stdma_lock);
/*
* Function: void stdma_release( void )
*
* Purpose: Releases the lock on the ST-DMA chip.
*
* Inputs: none
*
* Returns: nothing
*
*/
void stdma_release(void)
{
unsigned long flags;
local_irq_save(flags);
stdma_locked = 0;
stdma_isr = NULL;
stdma_isr_data = NULL;
wake_up(&stdma_wait);
local_irq_restore(flags);
}
EXPORT_SYMBOL(stdma_release);
/*
* Function: int stdma_others_waiting( void )
*
* Purpose: Check if someone waits for the ST-DMA lock.
*
* Inputs: none
*
* Returns: 0 if no one is waiting, != 0 otherwise
*
*/
int stdma_others_waiting(void)
{
return waitqueue_active(&stdma_wait);
}
EXPORT_SYMBOL(stdma_others_waiting);
/*
* Function: int stdma_islocked( void )
*
* Purpose: Check if the ST-DMA is currently locked.
* Note: Returned status is only valid if ints are disabled while calling and
* as long as they remain disabled.
* If called with ints enabled, status can change only from locked to
* unlocked, because ints may not lock the ST-DMA.
*
* Inputs: none
*
* Returns: != 0 if locked, 0 otherwise
*
*/
int stdma_islocked(void)
{
return stdma_locked;
}
EXPORT_SYMBOL(stdma_islocked);
/*
* Function: void stdma_init( void )
*
* Purpose: Initialize the ST-DMA chip access controlling.
* It sets up the interrupt and its service routine. The int is registered
* as slow int, client devices have to live with that (no problem
* currently).
*
* Inputs: none
*
* Return: nothing
*
*/
void __init stdma_init(void)
{
stdma_isr = NULL;
if (request_irq(IRQ_MFP_FDC, stdma_int, IRQ_TYPE_SLOW | IRQF_SHARED,
"ST-DMA floppy,ACSI,IDE,Falcon-SCSI", stdma_int))
pr_err("Couldn't register ST-DMA interrupt\n");
}
/*
* Function: void stdma_int()
*
* Purpose: The interrupt routine for the ST-DMA. It calls the isr
* registered by stdma_lock().
*
*/
static irqreturn_t stdma_int(int irq, void *dummy)
{
if (stdma_isr)
(*stdma_isr)(irq, stdma_isr_data);
return IRQ_HANDLED;
}

198
arch/m68k/atari/stram.c Normal file
View file

@ -0,0 +1,198 @@
/*
* Functions for ST-RAM allocations
*
* Copyright 1994-97 Roman Hodek <Roman.Hodek@informatik.uni-erlangen.de>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/pagemap.h>
#include <linux/bootmem.h>
#include <linux/mount.h>
#include <linux/blkdev.h>
#include <linux/module.h>
#include <linux/ioport.h>
#include <asm/setup.h>
#include <asm/machdep.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/atarihw.h>
#include <asm/atari_stram.h>
#include <asm/io.h>
/*
* The ST-RAM allocator allocates memory from a pool of reserved ST-RAM of
* configurable size, set aside on ST-RAM init.
* As long as this pool is not exhausted, allocation of real ST-RAM can be
* guaranteed.
*/
/* set if kernel is in ST-RAM */
static int kernel_in_stram;
static struct resource stram_pool = {
.name = "ST-RAM Pool"
};
static unsigned long pool_size = 1024*1024;
static unsigned long stram_virt_offset;
static int __init atari_stram_setup(char *arg)
{
if (!MACH_IS_ATARI)
return 0;
pool_size = memparse(arg, NULL);
return 0;
}
early_param("stram_pool", atari_stram_setup);
/*
* This init function is called very early by atari/config.c
* It initializes some internal variables needed for stram_alloc()
*/
void __init atari_stram_init(void)
{
int i;
/*
* determine whether kernel code resides in ST-RAM
* (then ST-RAM is the first memory block at virtual 0x0)
*/
kernel_in_stram = (m68k_memory[0].addr == 0);
for (i = 0; i < m68k_num_memory; ++i) {
if (m68k_memory[i].addr == 0) {
return;
}
}
/* Should never come here! (There is always ST-Ram!) */
panic("atari_stram_init: no ST-RAM found!");
}
/*
* This function is called from setup_arch() to reserve the pages needed for
* ST-RAM management, if the kernel resides in ST-RAM.
*/
void __init atari_stram_reserve_pages(void *start_mem)
{
if (kernel_in_stram) {
pr_debug("atari_stram pool: kernel in ST-RAM, using alloc_bootmem!\n");
stram_pool.start = (resource_size_t)alloc_bootmem_low_pages(pool_size);
stram_pool.end = stram_pool.start + pool_size - 1;
request_resource(&iomem_resource, &stram_pool);
stram_virt_offset = 0;
pr_debug("atari_stram pool: size = %lu bytes, resource = %pR\n",
pool_size, &stram_pool);
pr_debug("atari_stram pool: stram_virt_offset = %lx\n",
stram_virt_offset);
}
}
/*
* This function is called as arch initcall to reserve the pages needed for
* ST-RAM management, if the kernel does not reside in ST-RAM.
*/
int __init atari_stram_map_pages(void)
{
if (!kernel_in_stram) {
/*
* Skip page 0, as the fhe first 2 KiB are supervisor-only!
*/
pr_debug("atari_stram pool: kernel not in ST-RAM, using ioremap!\n");
stram_pool.start = PAGE_SIZE;
stram_pool.end = stram_pool.start + pool_size - 1;
request_resource(&iomem_resource, &stram_pool);
stram_virt_offset = (unsigned long) ioremap(stram_pool.start,
resource_size(&stram_pool)) - stram_pool.start;
pr_debug("atari_stram pool: size = %lu bytes, resource = %pR\n",
pool_size, &stram_pool);
pr_debug("atari_stram pool: stram_virt_offset = %lx\n",
stram_virt_offset);
}
return 0;
}
arch_initcall(atari_stram_map_pages);
void *atari_stram_to_virt(unsigned long phys)
{
return (void *)(phys + stram_virt_offset);
}
EXPORT_SYMBOL(atari_stram_to_virt);
unsigned long atari_stram_to_phys(void *virt)
{
return (unsigned long)(virt - stram_virt_offset);
}
EXPORT_SYMBOL(atari_stram_to_phys);
void *atari_stram_alloc(unsigned long size, const char *owner)
{
struct resource *res;
int error;
pr_debug("atari_stram_alloc: allocate %lu bytes\n", size);
/* round up */
size = PAGE_ALIGN(size);
res = kzalloc(sizeof(struct resource), GFP_KERNEL);
if (!res)
return NULL;
res->name = owner;
error = allocate_resource(&stram_pool, res, size, 0, UINT_MAX,
PAGE_SIZE, NULL, NULL);
if (error < 0) {
pr_err("atari_stram_alloc: allocate_resource() failed %d!\n",
error);
kfree(res);
return NULL;
}
pr_debug("atari_stram_alloc: returning %pR\n", res);
return atari_stram_to_virt(res->start);
}
EXPORT_SYMBOL(atari_stram_alloc);
void atari_stram_free(void *addr)
{
unsigned long start = atari_stram_to_phys(addr);
struct resource *res;
unsigned long size;
res = lookup_resource(&stram_pool, start);
if (!res) {
pr_err("atari_stram_free: trying to free nonexistent region "
"at %p\n", addr);
return;
}
size = resource_size(res);
pr_debug("atari_stram_free: free %lu bytes at %p\n", size, addr);
release_resource(res);
kfree(res);
}
EXPORT_SYMBOL(atari_stram_free);

357
arch/m68k/atari/time.c Normal file
View file

@ -0,0 +1,357 @@
/*
* linux/arch/m68k/atari/time.c
*
* Atari time and real time clock stuff
*
* Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/mc146818rtc.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <asm/atariints.h>
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
void __init
atari_sched_init(irq_handler_t timer_routine)
{
/* set Timer C data Register */
st_mfp.tim_dt_c = INT_TICKS;
/* start timer C, div = 1:100 */
st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
/* install interrupt service routine for MFP Timer C */
if (request_irq(IRQ_MFP_TIMC, timer_routine, IRQ_TYPE_SLOW,
"timer", timer_routine))
pr_err("Couldn't register timer interrupt\n");
}
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
#define TICK_SIZE 10000
/* This is always executed with interrupts disabled. */
u32 atari_gettimeoffset(void)
{
u32 ticks, offset = 0;
/* read MFP timer C current value */
ticks = st_mfp.tim_dt_c;
/* The probability of underflow is less than 2% */
if (ticks > INT_TICKS - INT_TICKS / 50)
/* Check for pending timer interrupt */
if (st_mfp.int_pn_b & (1 << 5))
offset = TICK_SIZE;
ticks = INT_TICKS - ticks;
ticks = ticks * 10000L / INT_TICKS;
return (ticks + offset) * 1000;
}
static void mste_read(struct MSTE_RTC *val)
{
#define COPY(v) val->v=(mste_rtc.v & 0xf)
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from reading the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
static void mste_write(struct MSTE_RTC *val)
{
#define COPY(v) mste_rtc.v=val->v
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from writing the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
#define RTC_READ(reg) \
({ unsigned char __val; \
(void) atari_writeb(reg,&tt_rtc.regsel); \
__val = tt_rtc.data; \
__val; \
})
#define RTC_WRITE(reg,val) \
do { \
atari_writeb(reg,&tt_rtc.regsel); \
tt_rtc.data = (val); \
} while(0)
#define HWCLK_POLL_INTERVAL 5
int atari_mste_hwclk( int op, struct rtc_time *t )
{
int hour, year;
int hr24=0;
struct MSTE_RTC val;
mste_rtc.mode=(mste_rtc.mode | 1);
hr24=mste_rtc.mon_tens & 1;
mste_rtc.mode=(mste_rtc.mode & ~1);
if (op) {
/* write: prepare values */
val.sec_ones = t->tm_sec % 10;
val.sec_tens = t->tm_sec / 10;
val.min_ones = t->tm_min % 10;
val.min_tens = t->tm_min / 10;
hour = t->tm_hour;
if (!hr24) {
if (hour > 11)
hour += 20 - 12;
if (hour == 0 || hour == 20)
hour += 12;
}
val.hr_ones = hour % 10;
val.hr_tens = hour / 10;
val.day_ones = t->tm_mday % 10;
val.day_tens = t->tm_mday / 10;
val.mon_ones = (t->tm_mon+1) % 10;
val.mon_tens = (t->tm_mon+1) / 10;
year = t->tm_year - 80;
val.year_ones = year % 10;
val.year_tens = year / 10;
val.weekday = t->tm_wday;
mste_write(&val);
mste_rtc.mode=(mste_rtc.mode | 1);
val.year_ones = (year % 4); /* leap year register */
mste_rtc.mode=(mste_rtc.mode & ~1);
}
else {
mste_read(&val);
t->tm_sec = val.sec_ones + val.sec_tens * 10;
t->tm_min = val.min_ones + val.min_tens * 10;
hour = val.hr_ones + val.hr_tens * 10;
if (!hr24) {
if (hour == 12 || hour == 12 + 20)
hour -= 12;
if (hour >= 20)
hour += 12 - 20;
}
t->tm_hour = hour;
t->tm_mday = val.day_ones + val.day_tens * 10;
t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1;
t->tm_year = val.year_ones + val.year_tens * 10 + 80;
t->tm_wday = val.weekday;
}
return 0;
}
int atari_tt_hwclk( int op, struct rtc_time *t )
{
int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
unsigned long flags;
unsigned char ctrl;
int pm = 0;
ctrl = RTC_READ(RTC_CONTROL); /* control registers are
* independent from the UIP */
if (op) {
/* write: prepare values */
sec = t->tm_sec;
min = t->tm_min;
hour = t->tm_hour;
day = t->tm_mday;
mon = t->tm_mon + 1;
year = t->tm_year - atari_rtc_year_offset;
wday = t->tm_wday + (t->tm_wday >= 0);
if (!(ctrl & RTC_24H)) {
if (hour > 11) {
pm = 0x80;
if (hour != 12)
hour -= 12;
}
else if (hour == 0)
hour = 12;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hour = bin2bcd(hour);
day = bin2bcd(day);
mon = bin2bcd(mon);
year = bin2bcd(year);
if (wday >= 0)
wday = bin2bcd(wday);
}
}
/* Reading/writing the clock registers is a bit critical due to
* the regular update cycle of the RTC. While an update is in
* progress, registers 0..9 shouldn't be touched.
* The problem is solved like that: If an update is currently in
* progress (the UIP bit is set), the process sleeps for a while
* (50ms). This really should be enough, since the update cycle
* normally needs 2 ms.
* If the UIP bit reads as 0, we have at least 244 usecs until the
* update starts. This should be enough... But to be sure,
* additionally the RTC_SET bit is set to prevent an update cycle.
*/
while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
if (in_atomic() || irqs_disabled())
mdelay(1);
else
schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
}
local_irq_save(flags);
RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
if (!op) {
sec = RTC_READ( RTC_SECONDS );
min = RTC_READ( RTC_MINUTES );
hour = RTC_READ( RTC_HOURS );
day = RTC_READ( RTC_DAY_OF_MONTH );
mon = RTC_READ( RTC_MONTH );
year = RTC_READ( RTC_YEAR );
wday = RTC_READ( RTC_DAY_OF_WEEK );
}
else {
RTC_WRITE( RTC_SECONDS, sec );
RTC_WRITE( RTC_MINUTES, min );
RTC_WRITE( RTC_HOURS, hour + pm);
RTC_WRITE( RTC_DAY_OF_MONTH, day );
RTC_WRITE( RTC_MONTH, mon );
RTC_WRITE( RTC_YEAR, year );
if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
}
RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
local_irq_restore(flags);
if (!op) {
/* read: adjust values */
if (hour & 0x80) {
hour &= ~0x80;
pm = 1;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
wday = bcd2bin(wday);
}
if (!(ctrl & RTC_24H)) {
if (!pm && hour == 12)
hour = 0;
else if (pm && hour != 12)
hour += 12;
}
t->tm_sec = sec;
t->tm_min = min;
t->tm_hour = hour;
t->tm_mday = day;
t->tm_mon = mon - 1;
t->tm_year = year + atari_rtc_year_offset;
t->tm_wday = wday - 1;
}
return( 0 );
}
int atari_mste_set_clock_mmss (unsigned long nowtime)
{
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
struct MSTE_RTC val;
unsigned char rtc_minutes;
mste_read(&val);
rtc_minutes= val.min_ones + val.min_tens * 10;
if ((rtc_minutes < real_minutes
? real_minutes - rtc_minutes
: rtc_minutes - real_minutes) < 30)
{
val.sec_ones = real_seconds % 10;
val.sec_tens = real_seconds / 10;
val.min_ones = real_minutes % 10;
val.min_tens = real_minutes / 10;
mste_write(&val);
}
else
return -1;
return 0;
}
int atari_tt_set_clock_mmss (unsigned long nowtime)
{
int retval = 0;
short real_seconds = nowtime % 60, real_minutes = (nowtime / 60) % 60;
unsigned char save_control, save_freq_select, rtc_minutes;
save_control = RTC_READ (RTC_CONTROL); /* tell the clock it's being set */
RTC_WRITE (RTC_CONTROL, save_control | RTC_SET);
save_freq_select = RTC_READ (RTC_FREQ_SELECT); /* stop and reset prescaler */
RTC_WRITE (RTC_FREQ_SELECT, save_freq_select | RTC_DIV_RESET2);
rtc_minutes = RTC_READ (RTC_MINUTES);
if (!(save_control & RTC_DM_BINARY))
rtc_minutes = bcd2bin(rtc_minutes);
/* Since we're only adjusting minutes and seconds, don't interfere
with hour overflow. This avoids messing with unknown time zones
but requires your RTC not to be off by more than 30 minutes. */
if ((rtc_minutes < real_minutes
? real_minutes - rtc_minutes
: rtc_minutes - real_minutes) < 30)
{
if (!(save_control & RTC_DM_BINARY))
{
real_seconds = bin2bcd(real_seconds);
real_minutes = bin2bcd(real_minutes);
}
RTC_WRITE (RTC_SECONDS, real_seconds);
RTC_WRITE (RTC_MINUTES, real_minutes);
}
else
retval = -1;
RTC_WRITE (RTC_FREQ_SELECT, save_freq_select);
RTC_WRITE (RTC_CONTROL, save_control);
return retval;
}
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/