mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 09:08:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
621
arch/sh/mm/cache-sh5.c
Normal file
621
arch/sh/mm/cache-sh5.c
Normal file
|
@ -0,0 +1,621 @@
|
|||
/*
|
||||
* arch/sh/mm/cache-sh5.c
|
||||
*
|
||||
* Copyright (C) 2000, 2001 Paolo Alberelli
|
||||
* Copyright (C) 2002 Benedict Gaster
|
||||
* Copyright (C) 2003 Richard Curnow
|
||||
* Copyright (C) 2003 - 2008 Paul Mundt
|
||||
*
|
||||
* This file is subject to the terms and conditions of the GNU General Public
|
||||
* License. See the file "COPYING" in the main directory of this archive
|
||||
* for more details.
|
||||
*/
|
||||
#include <linux/init.h>
|
||||
#include <linux/mman.h>
|
||||
#include <linux/mm.h>
|
||||
#include <asm/tlb.h>
|
||||
#include <asm/processor.h>
|
||||
#include <asm/cache.h>
|
||||
#include <asm/pgalloc.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/mmu_context.h>
|
||||
|
||||
extern void __weak sh4__flush_region_init(void);
|
||||
|
||||
/* Wired TLB entry for the D-cache */
|
||||
static unsigned long long dtlb_cache_slot;
|
||||
|
||||
/*
|
||||
* The following group of functions deal with mapping and unmapping a
|
||||
* temporary page into a DTLB slot that has been set aside for exclusive
|
||||
* use.
|
||||
*/
|
||||
static inline void
|
||||
sh64_setup_dtlb_cache_slot(unsigned long eaddr, unsigned long asid,
|
||||
unsigned long paddr)
|
||||
{
|
||||
local_irq_disable();
|
||||
sh64_setup_tlb_slot(dtlb_cache_slot, eaddr, asid, paddr);
|
||||
}
|
||||
|
||||
static inline void sh64_teardown_dtlb_cache_slot(void)
|
||||
{
|
||||
sh64_teardown_tlb_slot(dtlb_cache_slot);
|
||||
local_irq_enable();
|
||||
}
|
||||
|
||||
static inline void sh64_icache_inv_all(void)
|
||||
{
|
||||
unsigned long long addr, flag, data;
|
||||
unsigned long flags;
|
||||
|
||||
addr = ICCR0;
|
||||
flag = ICCR0_ICI;
|
||||
data = 0;
|
||||
|
||||
/* Make this a critical section for safety (probably not strictly necessary.) */
|
||||
local_irq_save(flags);
|
||||
|
||||
/* Without %1 it gets unexplicably wrong */
|
||||
__asm__ __volatile__ (
|
||||
"getcfg %3, 0, %0\n\t"
|
||||
"or %0, %2, %0\n\t"
|
||||
"putcfg %3, 0, %0\n\t"
|
||||
"synci"
|
||||
: "=&r" (data)
|
||||
: "0" (data), "r" (flag), "r" (addr));
|
||||
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_kernel_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
/* Invalidate range of addresses [start,end] from the I-cache, where
|
||||
* the addresses lie in the kernel superpage. */
|
||||
|
||||
unsigned long long ullend, addr, aligned_start;
|
||||
aligned_start = (unsigned long long)(signed long long)(signed long) start;
|
||||
addr = L1_CACHE_ALIGN(aligned_start);
|
||||
ullend = (unsigned long long) (signed long long) (signed long) end;
|
||||
|
||||
while (addr <= ullend) {
|
||||
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
|
||||
addr += L1_CACHE_BYTES;
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_user_page(struct vm_area_struct *vma, unsigned long eaddr)
|
||||
{
|
||||
/* If we get called, we know that vma->vm_flags contains VM_EXEC.
|
||||
Also, eaddr is page-aligned. */
|
||||
unsigned int cpu = smp_processor_id();
|
||||
unsigned long long addr, end_addr;
|
||||
unsigned long flags = 0;
|
||||
unsigned long running_asid, vma_asid;
|
||||
addr = eaddr;
|
||||
end_addr = addr + PAGE_SIZE;
|
||||
|
||||
/* Check whether we can use the current ASID for the I-cache
|
||||
invalidation. For example, if we're called via
|
||||
access_process_vm->flush_cache_page->here, (e.g. when reading from
|
||||
/proc), 'running_asid' will be that of the reader, not of the
|
||||
victim.
|
||||
|
||||
Also, note the risk that we might get pre-empted between the ASID
|
||||
compare and blocking IRQs, and before we regain control, the
|
||||
pid->ASID mapping changes. However, the whole cache will get
|
||||
invalidated when the mapping is renewed, so the worst that can
|
||||
happen is that the loop below ends up invalidating somebody else's
|
||||
cache entries.
|
||||
*/
|
||||
|
||||
running_asid = get_asid();
|
||||
vma_asid = cpu_asid(cpu, vma->vm_mm);
|
||||
if (running_asid != vma_asid) {
|
||||
local_irq_save(flags);
|
||||
switch_and_save_asid(vma_asid);
|
||||
}
|
||||
while (addr < end_addr) {
|
||||
/* Worth unrolling a little */
|
||||
__asm__ __volatile__("icbi %0, 0" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 32" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 64" : : "r" (addr));
|
||||
__asm__ __volatile__("icbi %0, 96" : : "r" (addr));
|
||||
addr += 128;
|
||||
}
|
||||
if (running_asid != vma_asid) {
|
||||
switch_and_save_asid(running_asid);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_user_page_range(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
/* Used for invalidating big chunks of I-cache, i.e. assume the range
|
||||
is whole pages. If 'start' or 'end' is not page aligned, the code
|
||||
is conservative and invalidates to the ends of the enclosing pages.
|
||||
This is functionally OK, just a performance loss. */
|
||||
|
||||
/* See the comments below in sh64_dcache_purge_user_range() regarding
|
||||
the choice of algorithm. However, for the I-cache option (2) isn't
|
||||
available because there are no physical tags so aliases can't be
|
||||
resolved. The icbi instruction has to be used through the user
|
||||
mapping. Because icbi is cheaper than ocbp on a cache hit, it
|
||||
would be cheaper to use the selective code for a large range than is
|
||||
possible with the D-cache. Just assume 64 for now as a working
|
||||
figure.
|
||||
*/
|
||||
int n_pages;
|
||||
|
||||
if (!mm)
|
||||
return;
|
||||
|
||||
n_pages = ((end - start) >> PAGE_SHIFT);
|
||||
if (n_pages >= 64) {
|
||||
sh64_icache_inv_all();
|
||||
} else {
|
||||
unsigned long aligned_start;
|
||||
unsigned long eaddr;
|
||||
unsigned long after_last_page_start;
|
||||
unsigned long mm_asid, current_asid;
|
||||
unsigned long flags = 0;
|
||||
|
||||
mm_asid = cpu_asid(smp_processor_id(), mm);
|
||||
current_asid = get_asid();
|
||||
|
||||
if (mm_asid != current_asid) {
|
||||
/* Switch ASID and run the invalidate loop under cli */
|
||||
local_irq_save(flags);
|
||||
switch_and_save_asid(mm_asid);
|
||||
}
|
||||
|
||||
aligned_start = start & PAGE_MASK;
|
||||
after_last_page_start = PAGE_SIZE + ((end - 1) & PAGE_MASK);
|
||||
|
||||
while (aligned_start < after_last_page_start) {
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long vma_end;
|
||||
vma = find_vma(mm, aligned_start);
|
||||
if (!vma || (aligned_start <= vma->vm_end)) {
|
||||
/* Avoid getting stuck in an error condition */
|
||||
aligned_start += PAGE_SIZE;
|
||||
continue;
|
||||
}
|
||||
vma_end = vma->vm_end;
|
||||
if (vma->vm_flags & VM_EXEC) {
|
||||
/* Executable */
|
||||
eaddr = aligned_start;
|
||||
while (eaddr < vma_end) {
|
||||
sh64_icache_inv_user_page(vma, eaddr);
|
||||
eaddr += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
aligned_start = vma->vm_end; /* Skip to start of next region */
|
||||
}
|
||||
|
||||
if (mm_asid != current_asid) {
|
||||
switch_and_save_asid(current_asid);
|
||||
local_irq_restore(flags);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_icache_inv_current_user_range(unsigned long start, unsigned long end)
|
||||
{
|
||||
/* The icbi instruction never raises ITLBMISS. i.e. if there's not a
|
||||
cache hit on the virtual tag the instruction ends there, without a
|
||||
TLB lookup. */
|
||||
|
||||
unsigned long long aligned_start;
|
||||
unsigned long long ull_end;
|
||||
unsigned long long addr;
|
||||
|
||||
ull_end = end;
|
||||
|
||||
/* Just invalidate over the range using the natural addresses. TLB
|
||||
miss handling will be OK (TBC). Since it's for the current process,
|
||||
either we're already in the right ASID context, or the ASIDs have
|
||||
been recycled since we were last active in which case we might just
|
||||
invalidate another processes I-cache entries : no worries, just a
|
||||
performance drop for him. */
|
||||
aligned_start = L1_CACHE_ALIGN(start);
|
||||
addr = aligned_start;
|
||||
while (addr < ull_end) {
|
||||
__asm__ __volatile__ ("icbi %0, 0" : : "r" (addr));
|
||||
__asm__ __volatile__ ("nop");
|
||||
__asm__ __volatile__ ("nop");
|
||||
addr += L1_CACHE_BYTES;
|
||||
}
|
||||
}
|
||||
|
||||
/* Buffer used as the target of alloco instructions to purge data from cache
|
||||
sets by natural eviction. -- RPC */
|
||||
#define DUMMY_ALLOCO_AREA_SIZE ((L1_CACHE_BYTES << 10) + (1024 * 4))
|
||||
static unsigned char dummy_alloco_area[DUMMY_ALLOCO_AREA_SIZE] __cacheline_aligned = { 0, };
|
||||
|
||||
static void inline sh64_dcache_purge_sets(int sets_to_purge_base, int n_sets)
|
||||
{
|
||||
/* Purge all ways in a particular block of sets, specified by the base
|
||||
set number and number of sets. Can handle wrap-around, if that's
|
||||
needed. */
|
||||
|
||||
int dummy_buffer_base_set;
|
||||
unsigned long long eaddr, eaddr0, eaddr1;
|
||||
int j;
|
||||
int set_offset;
|
||||
|
||||
dummy_buffer_base_set = ((int)&dummy_alloco_area &
|
||||
cpu_data->dcache.entry_mask) >>
|
||||
cpu_data->dcache.entry_shift;
|
||||
set_offset = sets_to_purge_base - dummy_buffer_base_set;
|
||||
|
||||
for (j = 0; j < n_sets; j++, set_offset++) {
|
||||
set_offset &= (cpu_data->dcache.sets - 1);
|
||||
eaddr0 = (unsigned long long)dummy_alloco_area +
|
||||
(set_offset << cpu_data->dcache.entry_shift);
|
||||
|
||||
/*
|
||||
* Do one alloco which hits the required set per cache
|
||||
* way. For write-back mode, this will purge the #ways
|
||||
* resident lines. There's little point unrolling this
|
||||
* loop because the allocos stall more if they're too
|
||||
* close together.
|
||||
*/
|
||||
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
|
||||
cpu_data->dcache.ways;
|
||||
|
||||
for (eaddr = eaddr0; eaddr < eaddr1;
|
||||
eaddr += cpu_data->dcache.way_size) {
|
||||
__asm__ __volatile__ ("alloco %0, 0" : : "r" (eaddr));
|
||||
__asm__ __volatile__ ("synco"); /* TAKum03020 */
|
||||
}
|
||||
|
||||
eaddr1 = eaddr0 + cpu_data->dcache.way_size *
|
||||
cpu_data->dcache.ways;
|
||||
|
||||
for (eaddr = eaddr0; eaddr < eaddr1;
|
||||
eaddr += cpu_data->dcache.way_size) {
|
||||
/*
|
||||
* Load from each address. Required because
|
||||
* alloco is a NOP if the cache is write-through.
|
||||
*/
|
||||
if (test_bit(SH_CACHE_MODE_WT, &(cpu_data->dcache.flags)))
|
||||
__raw_readb((unsigned long)eaddr);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Don't use OCBI to invalidate the lines. That costs cycles
|
||||
* directly. If the dummy block is just left resident, it will
|
||||
* naturally get evicted as required.
|
||||
*/
|
||||
}
|
||||
|
||||
/*
|
||||
* Purge the entire contents of the dcache. The most efficient way to
|
||||
* achieve this is to use alloco instructions on a region of unused
|
||||
* memory equal in size to the cache, thereby causing the current
|
||||
* contents to be discarded by natural eviction. The alternative, namely
|
||||
* reading every tag, setting up a mapping for the corresponding page and
|
||||
* doing an OCBP for the line, would be much more expensive.
|
||||
*/
|
||||
static void sh64_dcache_purge_all(void)
|
||||
{
|
||||
|
||||
sh64_dcache_purge_sets(0, cpu_data->dcache.sets);
|
||||
}
|
||||
|
||||
|
||||
/* Assumes this address (+ (2**n_synbits) pages up from it) aren't used for
|
||||
anything else in the kernel */
|
||||
#define MAGIC_PAGE0_START 0xffffffffec000000ULL
|
||||
|
||||
/* Purge the physical page 'paddr' from the cache. It's known that any
|
||||
* cache lines requiring attention have the same page colour as the the
|
||||
* address 'eaddr'.
|
||||
*
|
||||
* This relies on the fact that the D-cache matches on physical tags when
|
||||
* no virtual tag matches. So we create an alias for the original page
|
||||
* and purge through that. (Alternatively, we could have done this by
|
||||
* switching ASID to match the original mapping and purged through that,
|
||||
* but that involves ASID switching cost + probably a TLBMISS + refill
|
||||
* anyway.)
|
||||
*/
|
||||
static void sh64_dcache_purge_coloured_phy_page(unsigned long paddr,
|
||||
unsigned long eaddr)
|
||||
{
|
||||
unsigned long long magic_page_start;
|
||||
unsigned long long magic_eaddr, magic_eaddr_end;
|
||||
|
||||
magic_page_start = MAGIC_PAGE0_START + (eaddr & CACHE_OC_SYN_MASK);
|
||||
|
||||
/* As long as the kernel is not pre-emptible, this doesn't need to be
|
||||
under cli/sti. */
|
||||
sh64_setup_dtlb_cache_slot(magic_page_start, get_asid(), paddr);
|
||||
|
||||
magic_eaddr = magic_page_start;
|
||||
magic_eaddr_end = magic_eaddr + PAGE_SIZE;
|
||||
|
||||
while (magic_eaddr < magic_eaddr_end) {
|
||||
/* Little point in unrolling this loop - the OCBPs are blocking
|
||||
and won't go any quicker (i.e. the loop overhead is parallel
|
||||
to part of the OCBP execution.) */
|
||||
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (magic_eaddr));
|
||||
magic_eaddr += L1_CACHE_BYTES;
|
||||
}
|
||||
|
||||
sh64_teardown_dtlb_cache_slot();
|
||||
}
|
||||
|
||||
/*
|
||||
* Purge a page given its physical start address, by creating a temporary
|
||||
* 1 page mapping and purging across that. Even if we know the virtual
|
||||
* address (& vma or mm) of the page, the method here is more elegant
|
||||
* because it avoids issues of coping with page faults on the purge
|
||||
* instructions (i.e. no special-case code required in the critical path
|
||||
* in the TLB miss handling).
|
||||
*/
|
||||
static void sh64_dcache_purge_phy_page(unsigned long paddr)
|
||||
{
|
||||
unsigned long long eaddr_start, eaddr, eaddr_end;
|
||||
int i;
|
||||
|
||||
/* As long as the kernel is not pre-emptible, this doesn't need to be
|
||||
under cli/sti. */
|
||||
eaddr_start = MAGIC_PAGE0_START;
|
||||
for (i = 0; i < (1 << CACHE_OC_N_SYNBITS); i++) {
|
||||
sh64_setup_dtlb_cache_slot(eaddr_start, get_asid(), paddr);
|
||||
|
||||
eaddr = eaddr_start;
|
||||
eaddr_end = eaddr + PAGE_SIZE;
|
||||
while (eaddr < eaddr_end) {
|
||||
__asm__ __volatile__ ("ocbp %0, 0" : : "r" (eaddr));
|
||||
eaddr += L1_CACHE_BYTES;
|
||||
}
|
||||
|
||||
sh64_teardown_dtlb_cache_slot();
|
||||
eaddr_start += PAGE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
static void sh64_dcache_purge_user_pages(struct mm_struct *mm,
|
||||
unsigned long addr, unsigned long end)
|
||||
{
|
||||
pgd_t *pgd;
|
||||
pud_t *pud;
|
||||
pmd_t *pmd;
|
||||
pte_t *pte;
|
||||
pte_t entry;
|
||||
spinlock_t *ptl;
|
||||
unsigned long paddr;
|
||||
|
||||
if (!mm)
|
||||
return; /* No way to find physical address of page */
|
||||
|
||||
pgd = pgd_offset(mm, addr);
|
||||
if (pgd_bad(*pgd))
|
||||
return;
|
||||
|
||||
pud = pud_offset(pgd, addr);
|
||||
if (pud_none(*pud) || pud_bad(*pud))
|
||||
return;
|
||||
|
||||
pmd = pmd_offset(pud, addr);
|
||||
if (pmd_none(*pmd) || pmd_bad(*pmd))
|
||||
return;
|
||||
|
||||
pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
|
||||
do {
|
||||
entry = *pte;
|
||||
if (pte_none(entry) || !pte_present(entry))
|
||||
continue;
|
||||
paddr = pte_val(entry) & PAGE_MASK;
|
||||
sh64_dcache_purge_coloured_phy_page(paddr, addr);
|
||||
} while (pte++, addr += PAGE_SIZE, addr != end);
|
||||
pte_unmap_unlock(pte - 1, ptl);
|
||||
}
|
||||
|
||||
/*
|
||||
* There are at least 5 choices for the implementation of this, with
|
||||
* pros (+), cons(-), comments(*):
|
||||
*
|
||||
* 1. ocbp each line in the range through the original user's ASID
|
||||
* + no lines spuriously evicted
|
||||
* - tlbmiss handling (must either handle faults on demand => extra
|
||||
* special-case code in tlbmiss critical path), or map the page in
|
||||
* advance (=> flush_tlb_range in advance to avoid multiple hits)
|
||||
* - ASID switching
|
||||
* - expensive for large ranges
|
||||
*
|
||||
* 2. temporarily map each page in the range to a special effective
|
||||
* address and ocbp through the temporary mapping; relies on the
|
||||
* fact that SH-5 OCB* always do TLB lookup and match on ptags (they
|
||||
* never look at the etags)
|
||||
* + no spurious evictions
|
||||
* - expensive for large ranges
|
||||
* * surely cheaper than (1)
|
||||
*
|
||||
* 3. walk all the lines in the cache, check the tags, if a match
|
||||
* occurs create a page mapping to ocbp the line through
|
||||
* + no spurious evictions
|
||||
* - tag inspection overhead
|
||||
* - (especially for small ranges)
|
||||
* - potential cost of setting up/tearing down page mapping for
|
||||
* every line that matches the range
|
||||
* * cost partly independent of range size
|
||||
*
|
||||
* 4. walk all the lines in the cache, check the tags, if a match
|
||||
* occurs use 4 * alloco to purge the line (+3 other probably
|
||||
* innocent victims) by natural eviction
|
||||
* + no tlb mapping overheads
|
||||
* - spurious evictions
|
||||
* - tag inspection overhead
|
||||
*
|
||||
* 5. implement like flush_cache_all
|
||||
* + no tag inspection overhead
|
||||
* - spurious evictions
|
||||
* - bad for small ranges
|
||||
*
|
||||
* (1) can be ruled out as more expensive than (2). (2) appears best
|
||||
* for small ranges. The choice between (3), (4) and (5) for large
|
||||
* ranges and the range size for the large/small boundary need
|
||||
* benchmarking to determine.
|
||||
*
|
||||
* For now use approach (2) for small ranges and (5) for large ones.
|
||||
*/
|
||||
static void sh64_dcache_purge_user_range(struct mm_struct *mm,
|
||||
unsigned long start, unsigned long end)
|
||||
{
|
||||
int n_pages = ((end - start) >> PAGE_SHIFT);
|
||||
|
||||
if (n_pages >= 64 || ((start ^ (end - 1)) & PMD_MASK)) {
|
||||
sh64_dcache_purge_all();
|
||||
} else {
|
||||
/* Small range, covered by a single page table page */
|
||||
start &= PAGE_MASK; /* should already be so */
|
||||
end = PAGE_ALIGN(end); /* should already be so */
|
||||
sh64_dcache_purge_user_pages(mm, start, end);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate the entire contents of both caches, after writing back to
|
||||
* memory any dirty data from the D-cache.
|
||||
*/
|
||||
static void sh5_flush_cache_all(void *unused)
|
||||
{
|
||||
sh64_dcache_purge_all();
|
||||
sh64_icache_inv_all();
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate an entire user-address space from both caches, after
|
||||
* writing back dirty data (e.g. for shared mmap etc).
|
||||
*
|
||||
* This could be coded selectively by inspecting all the tags then
|
||||
* doing 4*alloco on any set containing a match (as for
|
||||
* flush_cache_range), but fork/exit/execve (where this is called from)
|
||||
* are expensive anyway.
|
||||
*
|
||||
* Have to do a purge here, despite the comments re I-cache below.
|
||||
* There could be odd-coloured dirty data associated with the mm still
|
||||
* in the cache - if this gets written out through natural eviction
|
||||
* after the kernel has reused the page there will be chaos.
|
||||
*
|
||||
* The mm being torn down won't ever be active again, so any Icache
|
||||
* lines tagged with its ASID won't be visible for the rest of the
|
||||
* lifetime of this ASID cycle. Before the ASID gets reused, there
|
||||
* will be a flush_cache_all. Hence we don't need to touch the
|
||||
* I-cache. This is similar to the lack of action needed in
|
||||
* flush_tlb_mm - see fault.c.
|
||||
*/
|
||||
static void sh5_flush_cache_mm(void *unused)
|
||||
{
|
||||
sh64_dcache_purge_all();
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate (from both caches) the range [start,end) of virtual
|
||||
* addresses from the user address space specified by mm, after writing
|
||||
* back any dirty data.
|
||||
*
|
||||
* Note, 'end' is 1 byte beyond the end of the range to flush.
|
||||
*/
|
||||
static void sh5_flush_cache_range(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long start, end;
|
||||
|
||||
vma = data->vma;
|
||||
start = data->addr1;
|
||||
end = data->addr2;
|
||||
|
||||
sh64_dcache_purge_user_range(vma->vm_mm, start, end);
|
||||
sh64_icache_inv_user_page_range(vma->vm_mm, start, end);
|
||||
}
|
||||
|
||||
/*
|
||||
* Invalidate any entries in either cache for the vma within the user
|
||||
* address space vma->vm_mm for the page starting at virtual address
|
||||
* 'eaddr'. This seems to be used primarily in breaking COW. Note,
|
||||
* the I-cache must be searched too in case the page in question is
|
||||
* both writable and being executed from (e.g. stack trampolines.)
|
||||
*
|
||||
* Note, this is called with pte lock held.
|
||||
*/
|
||||
static void sh5_flush_cache_page(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
struct vm_area_struct *vma;
|
||||
unsigned long eaddr, pfn;
|
||||
|
||||
vma = data->vma;
|
||||
eaddr = data->addr1;
|
||||
pfn = data->addr2;
|
||||
|
||||
sh64_dcache_purge_phy_page(pfn << PAGE_SHIFT);
|
||||
|
||||
if (vma->vm_flags & VM_EXEC)
|
||||
sh64_icache_inv_user_page(vma, eaddr);
|
||||
}
|
||||
|
||||
static void sh5_flush_dcache_page(void *page)
|
||||
{
|
||||
sh64_dcache_purge_phy_page(page_to_phys((struct page *)page));
|
||||
wmb();
|
||||
}
|
||||
|
||||
/*
|
||||
* Flush the range [start,end] of kernel virtual address space from
|
||||
* the I-cache. The corresponding range must be purged from the
|
||||
* D-cache also because the SH-5 doesn't have cache snooping between
|
||||
* the caches. The addresses will be visible through the superpage
|
||||
* mapping, therefore it's guaranteed that there no cache entries for
|
||||
* the range in cache sets of the wrong colour.
|
||||
*/
|
||||
static void sh5_flush_icache_range(void *args)
|
||||
{
|
||||
struct flusher_data *data = args;
|
||||
unsigned long start, end;
|
||||
|
||||
start = data->addr1;
|
||||
end = data->addr2;
|
||||
|
||||
__flush_purge_region((void *)start, end);
|
||||
wmb();
|
||||
sh64_icache_inv_kernel_range(start, end);
|
||||
}
|
||||
|
||||
/*
|
||||
* For the address range [start,end), write back the data from the
|
||||
* D-cache and invalidate the corresponding region of the I-cache for the
|
||||
* current process. Used to flush signal trampolines on the stack to
|
||||
* make them executable.
|
||||
*/
|
||||
static void sh5_flush_cache_sigtramp(void *vaddr)
|
||||
{
|
||||
unsigned long end = (unsigned long)vaddr + L1_CACHE_BYTES;
|
||||
|
||||
__flush_wback_region(vaddr, L1_CACHE_BYTES);
|
||||
wmb();
|
||||
sh64_icache_inv_current_user_range((unsigned long)vaddr, end);
|
||||
}
|
||||
|
||||
void __init sh5_cache_init(void)
|
||||
{
|
||||
local_flush_cache_all = sh5_flush_cache_all;
|
||||
local_flush_cache_mm = sh5_flush_cache_mm;
|
||||
local_flush_cache_dup_mm = sh5_flush_cache_mm;
|
||||
local_flush_cache_page = sh5_flush_cache_page;
|
||||
local_flush_cache_range = sh5_flush_cache_range;
|
||||
local_flush_dcache_page = sh5_flush_dcache_page;
|
||||
local_flush_icache_range = sh5_flush_icache_range;
|
||||
local_flush_cache_sigtramp = sh5_flush_cache_sigtramp;
|
||||
|
||||
/* Reserve a slot for dcache colouring in the DTLB */
|
||||
dtlb_cache_slot = sh64_get_wired_dtlb_entry();
|
||||
|
||||
sh4__flush_region_init();
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue