mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-11-01 08:38:52 +01:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
343
arch/sparc/include/asm/tsb.h
Normal file
343
arch/sparc/include/asm/tsb.h
Normal file
|
|
@ -0,0 +1,343 @@
|
|||
#ifndef _SPARC64_TSB_H
|
||||
#define _SPARC64_TSB_H
|
||||
|
||||
/* The sparc64 TSB is similar to the powerpc hashtables. It's a
|
||||
* power-of-2 sized table of TAG/PTE pairs. The cpu precomputes
|
||||
* pointers into this table for 8K and 64K page sizes, and also a
|
||||
* comparison TAG based upon the virtual address and context which
|
||||
* faults.
|
||||
*
|
||||
* TLB miss trap handler software does the actual lookup via something
|
||||
* of the form:
|
||||
*
|
||||
* ldxa [%g0] ASI_{D,I}MMU_TSB_8KB_PTR, %g1
|
||||
* ldxa [%g0] ASI_{D,I}MMU, %g6
|
||||
* sllx %g6, 22, %g6
|
||||
* srlx %g6, 22, %g6
|
||||
* ldda [%g1] ASI_NUCLEUS_QUAD_LDD, %g4
|
||||
* cmp %g4, %g6
|
||||
* bne,pn %xcc, tsb_miss_{d,i}tlb
|
||||
* mov FAULT_CODE_{D,I}TLB, %g3
|
||||
* stxa %g5, [%g0] ASI_{D,I}TLB_DATA_IN
|
||||
* retry
|
||||
*
|
||||
*
|
||||
* Each 16-byte slot of the TSB is the 8-byte tag and then the 8-byte
|
||||
* PTE. The TAG is of the same layout as the TLB TAG TARGET mmu
|
||||
* register which is:
|
||||
*
|
||||
* -------------------------------------------------
|
||||
* | - | CONTEXT | - | VADDR bits 63:22 |
|
||||
* -------------------------------------------------
|
||||
* 63 61 60 48 47 42 41 0
|
||||
*
|
||||
* But actually, since we use per-mm TSB's, we zero out the CONTEXT
|
||||
* field.
|
||||
*
|
||||
* Like the powerpc hashtables we need to use locking in order to
|
||||
* synchronize while we update the entries. PTE updates need locking
|
||||
* as well.
|
||||
*
|
||||
* We need to carefully choose a lock bits for the TSB entry. We
|
||||
* choose to use bit 47 in the tag. Also, since we never map anything
|
||||
* at page zero in context zero, we use zero as an invalid tag entry.
|
||||
* When the lock bit is set, this forces a tag comparison failure.
|
||||
*/
|
||||
|
||||
#define TSB_TAG_LOCK_BIT 47
|
||||
#define TSB_TAG_LOCK_HIGH (1 << (TSB_TAG_LOCK_BIT - 32))
|
||||
|
||||
#define TSB_TAG_INVALID_BIT 46
|
||||
#define TSB_TAG_INVALID_HIGH (1 << (TSB_TAG_INVALID_BIT - 32))
|
||||
|
||||
/* Some cpus support physical address quad loads. We want to use
|
||||
* those if possible so we don't need to hard-lock the TSB mapping
|
||||
* into the TLB. We encode some instruction patching in order to
|
||||
* support this.
|
||||
*
|
||||
* The kernel TSB is locked into the TLB by virtue of being in the
|
||||
* kernel image, so we don't play these games for swapper_tsb access.
|
||||
*/
|
||||
#ifndef __ASSEMBLY__
|
||||
struct tsb_ldquad_phys_patch_entry {
|
||||
unsigned int addr;
|
||||
unsigned int sun4u_insn;
|
||||
unsigned int sun4v_insn;
|
||||
};
|
||||
extern struct tsb_ldquad_phys_patch_entry __tsb_ldquad_phys_patch,
|
||||
__tsb_ldquad_phys_patch_end;
|
||||
|
||||
struct tsb_phys_patch_entry {
|
||||
unsigned int addr;
|
||||
unsigned int insn;
|
||||
};
|
||||
extern struct tsb_phys_patch_entry __tsb_phys_patch, __tsb_phys_patch_end;
|
||||
#endif
|
||||
#define TSB_LOAD_QUAD(TSB, REG) \
|
||||
661: ldda [TSB] ASI_NUCLEUS_QUAD_LDD, REG; \
|
||||
.section .tsb_ldquad_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
ldda [TSB] ASI_QUAD_LDD_PHYS, REG; \
|
||||
ldda [TSB] ASI_QUAD_LDD_PHYS_4V, REG; \
|
||||
.previous
|
||||
|
||||
#define TSB_LOAD_TAG_HIGH(TSB, REG) \
|
||||
661: lduwa [TSB] ASI_N, REG; \
|
||||
.section .tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
lduwa [TSB] ASI_PHYS_USE_EC, REG; \
|
||||
.previous
|
||||
|
||||
#define TSB_LOAD_TAG(TSB, REG) \
|
||||
661: ldxa [TSB] ASI_N, REG; \
|
||||
.section .tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
ldxa [TSB] ASI_PHYS_USE_EC, REG; \
|
||||
.previous
|
||||
|
||||
#define TSB_CAS_TAG_HIGH(TSB, REG1, REG2) \
|
||||
661: casa [TSB] ASI_N, REG1, REG2; \
|
||||
.section .tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
casa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
|
||||
.previous
|
||||
|
||||
#define TSB_CAS_TAG(TSB, REG1, REG2) \
|
||||
661: casxa [TSB] ASI_N, REG1, REG2; \
|
||||
.section .tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
casxa [TSB] ASI_PHYS_USE_EC, REG1, REG2; \
|
||||
.previous
|
||||
|
||||
#define TSB_STORE(ADDR, VAL) \
|
||||
661: stxa VAL, [ADDR] ASI_N; \
|
||||
.section .tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
stxa VAL, [ADDR] ASI_PHYS_USE_EC; \
|
||||
.previous
|
||||
|
||||
#define TSB_LOCK_TAG(TSB, REG1, REG2) \
|
||||
99: TSB_LOAD_TAG_HIGH(TSB, REG1); \
|
||||
sethi %hi(TSB_TAG_LOCK_HIGH), REG2;\
|
||||
andcc REG1, REG2, %g0; \
|
||||
bne,pn %icc, 99b; \
|
||||
nop; \
|
||||
TSB_CAS_TAG_HIGH(TSB, REG1, REG2); \
|
||||
cmp REG1, REG2; \
|
||||
bne,pn %icc, 99b; \
|
||||
nop; \
|
||||
|
||||
#define TSB_WRITE(TSB, TTE, TAG) \
|
||||
add TSB, 0x8, TSB; \
|
||||
TSB_STORE(TSB, TTE); \
|
||||
sub TSB, 0x8, TSB; \
|
||||
TSB_STORE(TSB, TAG);
|
||||
|
||||
/* Do a kernel page table walk. Leaves valid PTE value in
|
||||
* REG1. Jumps to FAIL_LABEL on early page table walk
|
||||
* termination. VADDR will not be clobbered, but REG2 will.
|
||||
*
|
||||
* There are two masks we must apply to propagate bits from
|
||||
* the virtual address into the PTE physical address field
|
||||
* when dealing with huge pages. This is because the page
|
||||
* table boundaries do not match the huge page size(s) the
|
||||
* hardware supports.
|
||||
*
|
||||
* In these cases we propagate the bits that are below the
|
||||
* page table level where we saw the huge page mapping, but
|
||||
* are still within the relevant physical bits for the huge
|
||||
* page size in question. So for PMD mappings (which fall on
|
||||
* bit 23, for 8MB per PMD) we must propagate bit 22 for a
|
||||
* 4MB huge page. For huge PUDs (which fall on bit 33, for
|
||||
* 8GB per PUD), we have to accomodate 256MB and 2GB huge
|
||||
* pages. So for those we propagate bits 32 to 28.
|
||||
*/
|
||||
#define KERN_PGTABLE_WALK(VADDR, REG1, REG2, FAIL_LABEL) \
|
||||
sethi %hi(swapper_pg_dir), REG1; \
|
||||
or REG1, %lo(swapper_pg_dir), REG1; \
|
||||
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldx [REG1 + REG2], REG1; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sethi %uhi(_PAGE_PUD_HUGE), REG2; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sllx REG2, 32, REG2; \
|
||||
andcc REG1, REG2, %g0; \
|
||||
sethi %hi(0xf8000000), REG2; \
|
||||
bne,pt %xcc, 697f; \
|
||||
sllx REG2, 1, REG2; \
|
||||
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
sethi %uhi(_PAGE_PMD_HUGE), REG2; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sllx REG2, 32, REG2; \
|
||||
andcc REG1, REG2, %g0; \
|
||||
be,pn %xcc, 698f; \
|
||||
sethi %hi(0x400000), REG2; \
|
||||
697: brgez,pn REG1, FAIL_LABEL; \
|
||||
andn REG1, REG2, REG1; \
|
||||
and VADDR, REG2, REG2; \
|
||||
ba,pt %xcc, 699f; \
|
||||
or REG1, REG2, REG1; \
|
||||
698: sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
brgez,pn REG1, FAIL_LABEL; \
|
||||
nop; \
|
||||
699:
|
||||
|
||||
/* PMD has been loaded into REG1, interpret the value, seeing
|
||||
* if it is a HUGE PMD or a normal one. If it is not valid
|
||||
* then jump to FAIL_LABEL. If it is a HUGE PMD, and it
|
||||
* translates to a valid PTE, branch to PTE_LABEL.
|
||||
*
|
||||
* We have to propagate the 4MB bit of the virtual address
|
||||
* because we are fabricating 8MB pages using 4MB hw pages.
|
||||
*/
|
||||
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
||||
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sethi %uhi(_PAGE_PMD_HUGE), REG2; \
|
||||
sllx REG2, 32, REG2; \
|
||||
andcc REG1, REG2, %g0; \
|
||||
be,pt %xcc, 700f; \
|
||||
sethi %hi(4 * 1024 * 1024), REG2; \
|
||||
brgez,pn REG1, FAIL_LABEL; \
|
||||
andn REG1, REG2, REG1; \
|
||||
and VADDR, REG2, REG2; \
|
||||
brlz,pt REG1, PTE_LABEL; \
|
||||
or REG1, REG2, REG1; \
|
||||
700:
|
||||
#else
|
||||
#define USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, PTE_LABEL) \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
nop;
|
||||
#endif
|
||||
|
||||
/* Do a user page table walk in MMU globals. Leaves final,
|
||||
* valid, PTE value in REG1. Jumps to FAIL_LABEL on early
|
||||
* page table walk termination or if the PTE is not valid.
|
||||
*
|
||||
* Physical base of page tables is in PHYS_PGD which will not
|
||||
* be modified.
|
||||
*
|
||||
* VADDR will not be clobbered, but REG1 and REG2 will.
|
||||
*/
|
||||
#define USER_PGTABLE_WALK_TL1(VADDR, PHYS_PGD, REG1, REG2, FAIL_LABEL) \
|
||||
sllx VADDR, 64 - (PGDIR_SHIFT + PGDIR_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [PHYS_PGD + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sllx VADDR, 64 - (PUD_SHIFT + PUD_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
brz,pn REG1, FAIL_LABEL; \
|
||||
sllx VADDR, 64 - (PMD_SHIFT + PMD_BITS), REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
ldxa [REG1 + REG2] ASI_PHYS_USE_EC, REG1; \
|
||||
USER_PGTABLE_CHECK_PMD_HUGE(VADDR, REG1, REG2, FAIL_LABEL, 800f) \
|
||||
sllx VADDR, 64 - PMD_SHIFT, REG2; \
|
||||
srlx REG2, 64 - PAGE_SHIFT, REG2; \
|
||||
andn REG2, 0x7, REG2; \
|
||||
add REG1, REG2, REG1; \
|
||||
ldxa [REG1] ASI_PHYS_USE_EC, REG1; \
|
||||
brgez,pn REG1, FAIL_LABEL; \
|
||||
nop; \
|
||||
800:
|
||||
|
||||
/* Lookup a OBP mapping on VADDR in the prom_trans[] table at TL>0.
|
||||
* If no entry is found, FAIL_LABEL will be branched to. On success
|
||||
* the resulting PTE value will be left in REG1. VADDR is preserved
|
||||
* by this routine.
|
||||
*/
|
||||
#define OBP_TRANS_LOOKUP(VADDR, REG1, REG2, REG3, FAIL_LABEL) \
|
||||
sethi %hi(prom_trans), REG1; \
|
||||
or REG1, %lo(prom_trans), REG1; \
|
||||
97: ldx [REG1 + 0x00], REG2; \
|
||||
brz,pn REG2, FAIL_LABEL; \
|
||||
nop; \
|
||||
ldx [REG1 + 0x08], REG3; \
|
||||
add REG2, REG3, REG3; \
|
||||
cmp REG2, VADDR; \
|
||||
bgu,pt %xcc, 98f; \
|
||||
cmp VADDR, REG3; \
|
||||
bgeu,pt %xcc, 98f; \
|
||||
ldx [REG1 + 0x10], REG3; \
|
||||
sub VADDR, REG2, REG2; \
|
||||
ba,pt %xcc, 99f; \
|
||||
add REG3, REG2, REG1; \
|
||||
98: ba,pt %xcc, 97b; \
|
||||
add REG1, (3 * 8), REG1; \
|
||||
99:
|
||||
|
||||
/* We use a 32K TSB for the whole kernel, this allows to
|
||||
* handle about 16MB of modules and vmalloc mappings without
|
||||
* incurring many hash conflicts.
|
||||
*/
|
||||
#define KERNEL_TSB_SIZE_BYTES (32 * 1024)
|
||||
#define KERNEL_TSB_NENTRIES \
|
||||
(KERNEL_TSB_SIZE_BYTES / 16)
|
||||
#define KERNEL_TSB4M_NENTRIES 4096
|
||||
|
||||
/* Do a kernel TSB lookup at tl>0 on VADDR+TAG, branch to OK_LABEL
|
||||
* on TSB hit. REG1, REG2, REG3, and REG4 are used as temporaries
|
||||
* and the found TTE will be left in REG1. REG3 and REG4 must
|
||||
* be an even/odd pair of registers.
|
||||
*
|
||||
* VADDR and TAG will be preserved and not clobbered by this macro.
|
||||
*/
|
||||
#define KERN_TSB_LOOKUP_TL1(VADDR, TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
|
||||
661: sethi %uhi(swapper_tsb), REG1; \
|
||||
sethi %hi(swapper_tsb), REG2; \
|
||||
or REG1, %ulo(swapper_tsb), REG1; \
|
||||
or REG2, %lo(swapper_tsb), REG2; \
|
||||
.section .swapper_tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
.previous; \
|
||||
sllx REG1, 32, REG1; \
|
||||
or REG1, REG2, REG1; \
|
||||
srlx VADDR, PAGE_SHIFT, REG2; \
|
||||
and REG2, (KERNEL_TSB_NENTRIES - 1), REG2; \
|
||||
sllx REG2, 4, REG2; \
|
||||
add REG1, REG2, REG2; \
|
||||
TSB_LOAD_QUAD(REG2, REG3); \
|
||||
cmp REG3, TAG; \
|
||||
be,a,pt %xcc, OK_LABEL; \
|
||||
mov REG4, REG1;
|
||||
|
||||
#ifndef CONFIG_DEBUG_PAGEALLOC
|
||||
/* This version uses a trick, the TAG is already (VADDR >> 22) so
|
||||
* we can make use of that for the index computation.
|
||||
*/
|
||||
#define KERN_TSB4M_LOOKUP_TL1(TAG, REG1, REG2, REG3, REG4, OK_LABEL) \
|
||||
661: sethi %uhi(swapper_4m_tsb), REG1; \
|
||||
sethi %hi(swapper_4m_tsb), REG2; \
|
||||
or REG1, %ulo(swapper_4m_tsb), REG1; \
|
||||
or REG2, %lo(swapper_4m_tsb), REG2; \
|
||||
.section .swapper_4m_tsb_phys_patch, "ax"; \
|
||||
.word 661b; \
|
||||
.previous; \
|
||||
sllx REG1, 32, REG1; \
|
||||
or REG1, REG2, REG1; \
|
||||
and TAG, (KERNEL_TSB4M_NENTRIES - 1), REG2; \
|
||||
sllx REG2, 4, REG2; \
|
||||
add REG1, REG2, REG2; \
|
||||
TSB_LOAD_QUAD(REG2, REG3); \
|
||||
cmp REG3, TAG; \
|
||||
be,a,pt %xcc, OK_LABEL; \
|
||||
mov REG4, REG1;
|
||||
#endif
|
||||
|
||||
#endif /* !(_SPARC64_TSB_H) */
|
||||
Loading…
Add table
Add a link
Reference in a new issue