mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 09:08:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
6
drivers/cpuidle/governors/Makefile
Normal file
6
drivers/cpuidle/governors/Makefile
Normal file
|
@ -0,0 +1,6 @@
|
|||
#
|
||||
# Makefile for cpuidle governors.
|
||||
#
|
||||
|
||||
obj-$(CONFIG_CPU_IDLE_GOV_LADDER) += ladder.o
|
||||
obj-$(CONFIG_CPU_IDLE_GOV_MENU) += menu.o
|
195
drivers/cpuidle/governors/ladder.c
Normal file
195
drivers/cpuidle/governors/ladder.c
Normal file
|
@ -0,0 +1,195 @@
|
|||
/*
|
||||
* ladder.c - the residency ladder algorithm
|
||||
*
|
||||
* Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
|
||||
* Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
|
||||
* Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
|
||||
*
|
||||
* (C) 2006-2007 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
|
||||
* Shaohua Li <shaohua.li@intel.com>
|
||||
* Adam Belay <abelay@novell.com>
|
||||
*
|
||||
* This code is licenced under the GPL.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/cpuidle.h>
|
||||
#include <linux/pm_qos.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/jiffies.h>
|
||||
|
||||
#include <asm/io.h>
|
||||
#include <asm/uaccess.h>
|
||||
|
||||
#define PROMOTION_COUNT 4
|
||||
#define DEMOTION_COUNT 1
|
||||
|
||||
struct ladder_device_state {
|
||||
struct {
|
||||
u32 promotion_count;
|
||||
u32 demotion_count;
|
||||
u32 promotion_time;
|
||||
u32 demotion_time;
|
||||
} threshold;
|
||||
struct {
|
||||
int promotion_count;
|
||||
int demotion_count;
|
||||
} stats;
|
||||
};
|
||||
|
||||
struct ladder_device {
|
||||
struct ladder_device_state states[CPUIDLE_STATE_MAX];
|
||||
int last_state_idx;
|
||||
};
|
||||
|
||||
static DEFINE_PER_CPU(struct ladder_device, ladder_devices);
|
||||
|
||||
/**
|
||||
* ladder_do_selection - prepares private data for a state change
|
||||
* @ldev: the ladder device
|
||||
* @old_idx: the current state index
|
||||
* @new_idx: the new target state index
|
||||
*/
|
||||
static inline void ladder_do_selection(struct ladder_device *ldev,
|
||||
int old_idx, int new_idx)
|
||||
{
|
||||
ldev->states[old_idx].stats.promotion_count = 0;
|
||||
ldev->states[old_idx].stats.demotion_count = 0;
|
||||
ldev->last_state_idx = new_idx;
|
||||
}
|
||||
|
||||
/**
|
||||
* ladder_select_state - selects the next state to enter
|
||||
* @drv: cpuidle driver
|
||||
* @dev: the CPU
|
||||
*/
|
||||
static int ladder_select_state(struct cpuidle_driver *drv,
|
||||
struct cpuidle_device *dev)
|
||||
{
|
||||
struct ladder_device *ldev = this_cpu_ptr(&ladder_devices);
|
||||
struct ladder_device_state *last_state;
|
||||
int last_residency, last_idx = ldev->last_state_idx;
|
||||
int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
|
||||
|
||||
/* Special case when user has set very strict latency requirement */
|
||||
if (unlikely(latency_req == 0)) {
|
||||
ladder_do_selection(ldev, last_idx, 0);
|
||||
return 0;
|
||||
}
|
||||
|
||||
last_state = &ldev->states[last_idx];
|
||||
|
||||
if (drv->states[last_idx].flags & CPUIDLE_FLAG_TIME_VALID) {
|
||||
last_residency = cpuidle_get_last_residency(dev) - \
|
||||
drv->states[last_idx].exit_latency;
|
||||
}
|
||||
else
|
||||
last_residency = last_state->threshold.promotion_time + 1;
|
||||
|
||||
/* consider promotion */
|
||||
if (last_idx < drv->state_count - 1 &&
|
||||
!drv->states[last_idx + 1].disabled &&
|
||||
!dev->states_usage[last_idx + 1].disable &&
|
||||
last_residency > last_state->threshold.promotion_time &&
|
||||
drv->states[last_idx + 1].exit_latency <= latency_req) {
|
||||
last_state->stats.promotion_count++;
|
||||
last_state->stats.demotion_count = 0;
|
||||
if (last_state->stats.promotion_count >= last_state->threshold.promotion_count) {
|
||||
ladder_do_selection(ldev, last_idx, last_idx + 1);
|
||||
return last_idx + 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* consider demotion */
|
||||
if (last_idx > CPUIDLE_DRIVER_STATE_START &&
|
||||
(drv->states[last_idx].disabled ||
|
||||
dev->states_usage[last_idx].disable ||
|
||||
drv->states[last_idx].exit_latency > latency_req)) {
|
||||
int i;
|
||||
|
||||
for (i = last_idx - 1; i > CPUIDLE_DRIVER_STATE_START; i--) {
|
||||
if (drv->states[i].exit_latency <= latency_req)
|
||||
break;
|
||||
}
|
||||
ladder_do_selection(ldev, last_idx, i);
|
||||
return i;
|
||||
}
|
||||
|
||||
if (last_idx > CPUIDLE_DRIVER_STATE_START &&
|
||||
last_residency < last_state->threshold.demotion_time) {
|
||||
last_state->stats.demotion_count++;
|
||||
last_state->stats.promotion_count = 0;
|
||||
if (last_state->stats.demotion_count >= last_state->threshold.demotion_count) {
|
||||
ladder_do_selection(ldev, last_idx, last_idx - 1);
|
||||
return last_idx - 1;
|
||||
}
|
||||
}
|
||||
|
||||
/* otherwise remain at the current state */
|
||||
return last_idx;
|
||||
}
|
||||
|
||||
/**
|
||||
* ladder_enable_device - setup for the governor
|
||||
* @drv: cpuidle driver
|
||||
* @dev: the CPU
|
||||
*/
|
||||
static int ladder_enable_device(struct cpuidle_driver *drv,
|
||||
struct cpuidle_device *dev)
|
||||
{
|
||||
int i;
|
||||
struct ladder_device *ldev = &per_cpu(ladder_devices, dev->cpu);
|
||||
struct ladder_device_state *lstate;
|
||||
struct cpuidle_state *state;
|
||||
|
||||
ldev->last_state_idx = CPUIDLE_DRIVER_STATE_START;
|
||||
|
||||
for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
|
||||
state = &drv->states[i];
|
||||
lstate = &ldev->states[i];
|
||||
|
||||
lstate->stats.promotion_count = 0;
|
||||
lstate->stats.demotion_count = 0;
|
||||
|
||||
lstate->threshold.promotion_count = PROMOTION_COUNT;
|
||||
lstate->threshold.demotion_count = DEMOTION_COUNT;
|
||||
|
||||
if (i < drv->state_count - 1)
|
||||
lstate->threshold.promotion_time = state->exit_latency;
|
||||
if (i > CPUIDLE_DRIVER_STATE_START)
|
||||
lstate->threshold.demotion_time = state->exit_latency;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* ladder_reflect - update the correct last_state_idx
|
||||
* @dev: the CPU
|
||||
* @index: the index of actual state entered
|
||||
*/
|
||||
static void ladder_reflect(struct cpuidle_device *dev, int index)
|
||||
{
|
||||
struct ladder_device *ldev = this_cpu_ptr(&ladder_devices);
|
||||
if (index > 0)
|
||||
ldev->last_state_idx = index;
|
||||
}
|
||||
|
||||
static struct cpuidle_governor ladder_governor = {
|
||||
.name = "ladder",
|
||||
.rating = 10,
|
||||
.enable = ladder_enable_device,
|
||||
.select = ladder_select_state,
|
||||
.reflect = ladder_reflect,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
/**
|
||||
* init_ladder - initializes the governor
|
||||
*/
|
||||
static int __init init_ladder(void)
|
||||
{
|
||||
return cpuidle_register_governor(&ladder_governor);
|
||||
}
|
||||
|
||||
postcore_initcall(init_ladder);
|
503
drivers/cpuidle/governors/menu.c
Normal file
503
drivers/cpuidle/governors/menu.c
Normal file
|
@ -0,0 +1,503 @@
|
|||
/*
|
||||
* menu.c - the menu idle governor
|
||||
*
|
||||
* Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
|
||||
* Copyright (C) 2009 Intel Corporation
|
||||
* Author:
|
||||
* Arjan van de Ven <arjan@linux.intel.com>
|
||||
*
|
||||
* This code is licenced under the GPL version 2 as described
|
||||
* in the COPYING file that acompanies the Linux Kernel.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/cpuidle.h>
|
||||
#include <linux/pm_qos.h>
|
||||
#include <linux/time.h>
|
||||
#include <linux/ktime.h>
|
||||
#include <linux/hrtimer.h>
|
||||
#include <linux/tick.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/math64.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
/*
|
||||
* Please note when changing the tuning values:
|
||||
* If (MAX_INTERESTING-1) * RESOLUTION > UINT_MAX, the result of
|
||||
* a scaling operation multiplication may overflow on 32 bit platforms.
|
||||
* In that case, #define RESOLUTION as ULL to get 64 bit result:
|
||||
* #define RESOLUTION 1024ULL
|
||||
*
|
||||
* The default values do not overflow.
|
||||
*/
|
||||
#define BUCKETS 12
|
||||
#define INTERVAL_SHIFT 3
|
||||
#define INTERVALS (1UL << INTERVAL_SHIFT)
|
||||
#define RESOLUTION 1024
|
||||
#define DECAY 8
|
||||
#define MAX_INTERESTING 50000
|
||||
|
||||
|
||||
/*
|
||||
* Concepts and ideas behind the menu governor
|
||||
*
|
||||
* For the menu governor, there are 3 decision factors for picking a C
|
||||
* state:
|
||||
* 1) Energy break even point
|
||||
* 2) Performance impact
|
||||
* 3) Latency tolerance (from pmqos infrastructure)
|
||||
* These these three factors are treated independently.
|
||||
*
|
||||
* Energy break even point
|
||||
* -----------------------
|
||||
* C state entry and exit have an energy cost, and a certain amount of time in
|
||||
* the C state is required to actually break even on this cost. CPUIDLE
|
||||
* provides us this duration in the "target_residency" field. So all that we
|
||||
* need is a good prediction of how long we'll be idle. Like the traditional
|
||||
* menu governor, we start with the actual known "next timer event" time.
|
||||
*
|
||||
* Since there are other source of wakeups (interrupts for example) than
|
||||
* the next timer event, this estimation is rather optimistic. To get a
|
||||
* more realistic estimate, a correction factor is applied to the estimate,
|
||||
* that is based on historic behavior. For example, if in the past the actual
|
||||
* duration always was 50% of the next timer tick, the correction factor will
|
||||
* be 0.5.
|
||||
*
|
||||
* menu uses a running average for this correction factor, however it uses a
|
||||
* set of factors, not just a single factor. This stems from the realization
|
||||
* that the ratio is dependent on the order of magnitude of the expected
|
||||
* duration; if we expect 500 milliseconds of idle time the likelihood of
|
||||
* getting an interrupt very early is much higher than if we expect 50 micro
|
||||
* seconds of idle time. A second independent factor that has big impact on
|
||||
* the actual factor is if there is (disk) IO outstanding or not.
|
||||
* (as a special twist, we consider every sleep longer than 50 milliseconds
|
||||
* as perfect; there are no power gains for sleeping longer than this)
|
||||
*
|
||||
* For these two reasons we keep an array of 12 independent factors, that gets
|
||||
* indexed based on the magnitude of the expected duration as well as the
|
||||
* "is IO outstanding" property.
|
||||
*
|
||||
* Repeatable-interval-detector
|
||||
* ----------------------------
|
||||
* There are some cases where "next timer" is a completely unusable predictor:
|
||||
* Those cases where the interval is fixed, for example due to hardware
|
||||
* interrupt mitigation, but also due to fixed transfer rate devices such as
|
||||
* mice.
|
||||
* For this, we use a different predictor: We track the duration of the last 8
|
||||
* intervals and if the stand deviation of these 8 intervals is below a
|
||||
* threshold value, we use the average of these intervals as prediction.
|
||||
*
|
||||
* Limiting Performance Impact
|
||||
* ---------------------------
|
||||
* C states, especially those with large exit latencies, can have a real
|
||||
* noticeable impact on workloads, which is not acceptable for most sysadmins,
|
||||
* and in addition, less performance has a power price of its own.
|
||||
*
|
||||
* As a general rule of thumb, menu assumes that the following heuristic
|
||||
* holds:
|
||||
* The busier the system, the less impact of C states is acceptable
|
||||
*
|
||||
* This rule-of-thumb is implemented using a performance-multiplier:
|
||||
* If the exit latency times the performance multiplier is longer than
|
||||
* the predicted duration, the C state is not considered a candidate
|
||||
* for selection due to a too high performance impact. So the higher
|
||||
* this multiplier is, the longer we need to be idle to pick a deep C
|
||||
* state, and thus the less likely a busy CPU will hit such a deep
|
||||
* C state.
|
||||
*
|
||||
* Two factors are used in determing this multiplier:
|
||||
* a value of 10 is added for each point of "per cpu load average" we have.
|
||||
* a value of 5 points is added for each process that is waiting for
|
||||
* IO on this CPU.
|
||||
* (these values are experimentally determined)
|
||||
*
|
||||
* The load average factor gives a longer term (few seconds) input to the
|
||||
* decision, while the iowait value gives a cpu local instantanious input.
|
||||
* The iowait factor may look low, but realize that this is also already
|
||||
* represented in the system load average.
|
||||
*
|
||||
*/
|
||||
|
||||
struct menu_device {
|
||||
int last_state_idx;
|
||||
int needs_update;
|
||||
|
||||
unsigned int next_timer_us;
|
||||
unsigned int predicted_us;
|
||||
unsigned int bucket;
|
||||
unsigned int correction_factor[BUCKETS];
|
||||
unsigned int intervals[INTERVALS];
|
||||
int interval_ptr;
|
||||
};
|
||||
|
||||
|
||||
#define LOAD_INT(x) ((x) >> FSHIFT)
|
||||
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
|
||||
|
||||
static inline int get_loadavg(unsigned long load)
|
||||
{
|
||||
return LOAD_INT(load) * 10 + LOAD_FRAC(load) / 10;
|
||||
}
|
||||
|
||||
static inline int which_bucket(unsigned int duration, unsigned long nr_iowaiters)
|
||||
{
|
||||
int bucket = 0;
|
||||
|
||||
/*
|
||||
* We keep two groups of stats; one with no
|
||||
* IO pending, one without.
|
||||
* This allows us to calculate
|
||||
* E(duration)|iowait
|
||||
*/
|
||||
if (nr_iowaiters)
|
||||
bucket = BUCKETS/2;
|
||||
|
||||
if (duration < 10)
|
||||
return bucket;
|
||||
if (duration < 100)
|
||||
return bucket + 1;
|
||||
if (duration < 1000)
|
||||
return bucket + 2;
|
||||
if (duration < 10000)
|
||||
return bucket + 3;
|
||||
if (duration < 100000)
|
||||
return bucket + 4;
|
||||
return bucket + 5;
|
||||
}
|
||||
|
||||
/*
|
||||
* Return a multiplier for the exit latency that is intended
|
||||
* to take performance requirements into account.
|
||||
* The more performance critical we estimate the system
|
||||
* to be, the higher this multiplier, and thus the higher
|
||||
* the barrier to go to an expensive C state.
|
||||
*/
|
||||
static inline int performance_multiplier(unsigned long nr_iowaiters, unsigned long load)
|
||||
{
|
||||
int mult = 1;
|
||||
|
||||
/* for higher loadavg, we are more reluctant */
|
||||
|
||||
/*
|
||||
* this doesn't work as intended - it is almost always 0, but can
|
||||
* sometimes, depending on workload, spike very high into the hundreds
|
||||
* even when the average cpu load is under 10%.
|
||||
*/
|
||||
/* mult += 2 * get_loadavg(); */
|
||||
|
||||
/* for IO wait tasks (per cpu!) we add 5x each */
|
||||
mult += 10 * nr_iowaiters;
|
||||
|
||||
return mult;
|
||||
}
|
||||
|
||||
static DEFINE_PER_CPU(struct menu_device, menu_devices);
|
||||
|
||||
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
|
||||
|
||||
/* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
|
||||
static u64 div_round64(u64 dividend, u32 divisor)
|
||||
{
|
||||
return div_u64(dividend + (divisor / 2), divisor);
|
||||
}
|
||||
|
||||
/*
|
||||
* Try detecting repeating patterns by keeping track of the last 8
|
||||
* intervals, and checking if the standard deviation of that set
|
||||
* of points is below a threshold. If it is... then use the
|
||||
* average of these 8 points as the estimated value.
|
||||
*/
|
||||
static void get_typical_interval(struct menu_device *data)
|
||||
{
|
||||
int i, divisor;
|
||||
unsigned int max, thresh;
|
||||
uint64_t avg, stddev;
|
||||
|
||||
thresh = UINT_MAX; /* Discard outliers above this value */
|
||||
|
||||
again:
|
||||
|
||||
/* First calculate the average of past intervals */
|
||||
max = 0;
|
||||
avg = 0;
|
||||
divisor = 0;
|
||||
for (i = 0; i < INTERVALS; i++) {
|
||||
unsigned int value = data->intervals[i];
|
||||
if (value <= thresh) {
|
||||
avg += value;
|
||||
divisor++;
|
||||
if (value > max)
|
||||
max = value;
|
||||
}
|
||||
}
|
||||
if (divisor == INTERVALS)
|
||||
avg >>= INTERVAL_SHIFT;
|
||||
else
|
||||
do_div(avg, divisor);
|
||||
|
||||
/* Then try to determine standard deviation */
|
||||
stddev = 0;
|
||||
for (i = 0; i < INTERVALS; i++) {
|
||||
unsigned int value = data->intervals[i];
|
||||
if (value <= thresh) {
|
||||
int64_t diff = value - avg;
|
||||
stddev += diff * diff;
|
||||
}
|
||||
}
|
||||
if (divisor == INTERVALS)
|
||||
stddev >>= INTERVAL_SHIFT;
|
||||
else
|
||||
do_div(stddev, divisor);
|
||||
|
||||
/*
|
||||
* The typical interval is obtained when standard deviation is small
|
||||
* or standard deviation is small compared to the average interval.
|
||||
*
|
||||
* int_sqrt() formal parameter type is unsigned long. When the
|
||||
* greatest difference to an outlier exceeds ~65 ms * sqrt(divisor)
|
||||
* the resulting squared standard deviation exceeds the input domain
|
||||
* of int_sqrt on platforms where unsigned long is 32 bits in size.
|
||||
* In such case reject the candidate average.
|
||||
*
|
||||
* Use this result only if there is no timer to wake us up sooner.
|
||||
*/
|
||||
if (likely(stddev <= ULONG_MAX)) {
|
||||
stddev = int_sqrt(stddev);
|
||||
if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
|
||||
|| stddev <= 20) {
|
||||
if (data->next_timer_us > avg)
|
||||
data->predicted_us = avg;
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If we have outliers to the upside in our distribution, discard
|
||||
* those by setting the threshold to exclude these outliers, then
|
||||
* calculate the average and standard deviation again. Once we get
|
||||
* down to the bottom 3/4 of our samples, stop excluding samples.
|
||||
*
|
||||
* This can deal with workloads that have long pauses interspersed
|
||||
* with sporadic activity with a bunch of short pauses.
|
||||
*/
|
||||
if ((divisor * 4) <= INTERVALS * 3)
|
||||
return;
|
||||
|
||||
thresh = max - 1;
|
||||
goto again;
|
||||
}
|
||||
|
||||
/**
|
||||
* menu_select - selects the next idle state to enter
|
||||
* @drv: cpuidle driver containing state data
|
||||
* @dev: the CPU
|
||||
*/
|
||||
static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
|
||||
{
|
||||
struct menu_device *data = this_cpu_ptr(&menu_devices);
|
||||
int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
|
||||
int i;
|
||||
unsigned int interactivity_req;
|
||||
unsigned long nr_iowaiters, cpu_load;
|
||||
|
||||
if (data->needs_update) {
|
||||
menu_update(drv, dev);
|
||||
data->needs_update = 0;
|
||||
}
|
||||
|
||||
data->last_state_idx = CPUIDLE_DRIVER_STATE_START - 1;
|
||||
|
||||
/* Special case when user has set very strict latency requirement */
|
||||
if (unlikely(latency_req == 0))
|
||||
return 0;
|
||||
|
||||
/* determine the expected residency time, round up */
|
||||
data->next_timer_us = ktime_to_us(tick_nohz_get_sleep_length());
|
||||
|
||||
get_iowait_load(&nr_iowaiters, &cpu_load);
|
||||
data->bucket = which_bucket(data->next_timer_us, nr_iowaiters);
|
||||
|
||||
/*
|
||||
* Force the result of multiplication to be 64 bits even if both
|
||||
* operands are 32 bits.
|
||||
* Make sure to round up for half microseconds.
|
||||
*/
|
||||
if (drv->skip_correction)
|
||||
data->predicted_us = data->next_timer_us;
|
||||
else
|
||||
data->predicted_us = div_round64((uint64_t)data->next_timer_us *
|
||||
data->correction_factor[data->bucket],
|
||||
RESOLUTION * DECAY);
|
||||
|
||||
get_typical_interval(data);
|
||||
|
||||
/*
|
||||
* Performance multiplier defines a minimum predicted idle
|
||||
* duration / latency ratio. Adjust the latency limit if
|
||||
* necessary.
|
||||
*/
|
||||
interactivity_req = data->predicted_us / performance_multiplier(nr_iowaiters, cpu_load);
|
||||
if (latency_req > interactivity_req)
|
||||
latency_req = interactivity_req;
|
||||
|
||||
/*
|
||||
* We want to default to C1 (hlt), not to busy polling
|
||||
* unless the timer is happening really really soon.
|
||||
*/
|
||||
if (data->next_timer_us > 5 &&
|
||||
!drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
|
||||
dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
|
||||
data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
|
||||
|
||||
/*
|
||||
* Find the idle state with the lowest power while satisfying
|
||||
* our constraints.
|
||||
*/
|
||||
for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
|
||||
struct cpuidle_state *s = &drv->states[i];
|
||||
struct cpuidle_state_usage *su = &dev->states_usage[i];
|
||||
|
||||
if (s->disabled || su->disable)
|
||||
continue;
|
||||
if (s->target_residency > data->predicted_us)
|
||||
continue;
|
||||
if (s->exit_latency > latency_req)
|
||||
continue;
|
||||
|
||||
data->last_state_idx = i;
|
||||
}
|
||||
|
||||
return data->last_state_idx;
|
||||
}
|
||||
|
||||
/**
|
||||
* menu_reflect - records that data structures need update
|
||||
* @dev: the CPU
|
||||
* @index: the index of actual entered state
|
||||
*
|
||||
* NOTE: it's important to be fast here because this operation will add to
|
||||
* the overall exit latency.
|
||||
*/
|
||||
static void menu_reflect(struct cpuidle_device *dev, int index)
|
||||
{
|
||||
struct menu_device *data = this_cpu_ptr(&menu_devices);
|
||||
data->last_state_idx = index;
|
||||
if (index >= 0)
|
||||
data->needs_update = 1;
|
||||
}
|
||||
|
||||
/**
|
||||
* menu_update - attempts to guess what happened after entry
|
||||
* @drv: cpuidle driver containing state data
|
||||
* @dev: the CPU
|
||||
*/
|
||||
static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
|
||||
{
|
||||
struct menu_device *data = this_cpu_ptr(&menu_devices);
|
||||
int last_idx = data->last_state_idx;
|
||||
struct cpuidle_state *target = &drv->states[last_idx];
|
||||
unsigned int measured_us;
|
||||
unsigned int new_factor;
|
||||
|
||||
/*
|
||||
* Try to figure out how much time passed between entry to low
|
||||
* power state and occurrence of the wakeup event.
|
||||
*
|
||||
* If the entered idle state didn't support residency measurements,
|
||||
* we are basically lost in the dark how much time passed.
|
||||
* As a compromise, assume we slept for the whole expected time.
|
||||
*
|
||||
* Any measured amount of time will include the exit latency.
|
||||
* Since we are interested in when the wakeup begun, not when it
|
||||
* was completed, we must subtract the exit latency. However, if
|
||||
* the measured amount of time is less than the exit latency,
|
||||
* assume the state was never reached and the exit latency is 0.
|
||||
*/
|
||||
if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID))) {
|
||||
/* Use timer value as is */
|
||||
measured_us = data->next_timer_us;
|
||||
|
||||
} else {
|
||||
/* Use measured value */
|
||||
measured_us = cpuidle_get_last_residency(dev);
|
||||
|
||||
/* Deduct exit latency */
|
||||
if (measured_us > target->exit_latency)
|
||||
measured_us -= target->exit_latency;
|
||||
|
||||
/* Make sure our coefficients do not exceed unity */
|
||||
if (measured_us > data->next_timer_us)
|
||||
measured_us = data->next_timer_us;
|
||||
}
|
||||
|
||||
/* Update our correction ratio */
|
||||
new_factor = data->correction_factor[data->bucket];
|
||||
new_factor -= new_factor / DECAY;
|
||||
|
||||
if (data->next_timer_us > 0 && measured_us < MAX_INTERESTING)
|
||||
new_factor += RESOLUTION * measured_us / data->next_timer_us;
|
||||
else
|
||||
/*
|
||||
* we were idle so long that we count it as a perfect
|
||||
* prediction
|
||||
*/
|
||||
new_factor += RESOLUTION;
|
||||
|
||||
/*
|
||||
* We don't want 0 as factor; we always want at least
|
||||
* a tiny bit of estimated time. Fortunately, due to rounding,
|
||||
* new_factor will stay nonzero regardless of measured_us values
|
||||
* and the compiler can eliminate this test as long as DECAY > 1.
|
||||
*/
|
||||
if (DECAY == 1 && unlikely(new_factor == 0))
|
||||
new_factor = 1;
|
||||
|
||||
data->correction_factor[data->bucket] = new_factor;
|
||||
|
||||
/* update the repeating-pattern data */
|
||||
data->intervals[data->interval_ptr++] = measured_us;
|
||||
if (data->interval_ptr >= INTERVALS)
|
||||
data->interval_ptr = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* menu_enable_device - scans a CPU's states and does setup
|
||||
* @drv: cpuidle driver
|
||||
* @dev: the CPU
|
||||
*/
|
||||
static int menu_enable_device(struct cpuidle_driver *drv,
|
||||
struct cpuidle_device *dev)
|
||||
{
|
||||
struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
|
||||
int i;
|
||||
|
||||
memset(data, 0, sizeof(struct menu_device));
|
||||
|
||||
/*
|
||||
* if the correction factor is 0 (eg first time init or cpu hotplug
|
||||
* etc), we actually want to start out with a unity factor.
|
||||
*/
|
||||
for(i = 0; i < BUCKETS; i++)
|
||||
data->correction_factor[i] = RESOLUTION * DECAY;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct cpuidle_governor menu_governor = {
|
||||
.name = "menu",
|
||||
.rating = 20,
|
||||
.enable = menu_enable_device,
|
||||
.select = menu_select,
|
||||
.reflect = menu_reflect,
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
/**
|
||||
* init_menu - initializes the governor
|
||||
*/
|
||||
static int __init init_menu(void)
|
||||
{
|
||||
return cpuidle_register_governor(&menu_governor);
|
||||
}
|
||||
|
||||
postcore_initcall(init_menu);
|
Loading…
Add table
Add a link
Reference in a new issue