mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 17:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
26
drivers/firmware/efi/libstub/Makefile
Normal file
26
drivers/firmware/efi/libstub/Makefile
Normal file
|
@ -0,0 +1,26 @@
|
|||
#
|
||||
# The stub may be linked into the kernel proper or into a separate boot binary,
|
||||
# but in either case, it executes before the kernel does (with MMU disabled) so
|
||||
# things like ftrace and stack-protector are likely to cause trouble if left
|
||||
# enabled, even if doing so doesn't break the build.
|
||||
#
|
||||
cflags-$(CONFIG_X86_32) := -march=i386
|
||||
cflags-$(CONFIG_X86_64) := -mcmodel=small
|
||||
cflags-$(CONFIG_X86) += -m$(BITS) -D__KERNEL__ $(LINUX_INCLUDE) -O2 \
|
||||
-fPIC -fno-strict-aliasing -mno-red-zone \
|
||||
-mno-mmx -mno-sse -DDISABLE_BRANCH_PROFILING
|
||||
|
||||
cflags-$(CONFIG_ARM64) := $(subst -pg,,$(KBUILD_CFLAGS))
|
||||
cflags-$(CONFIG_ARM) := $(subst -pg,,$(KBUILD_CFLAGS)) \
|
||||
-fno-builtin -fpic -mno-single-pic-base
|
||||
|
||||
KBUILD_CFLAGS := $(cflags-y) \
|
||||
$(call cc-option,-ffreestanding) \
|
||||
$(call cc-option,-fno-stack-protector)
|
||||
|
||||
GCOV_PROFILE := n
|
||||
|
||||
lib-y := efi-stub-helper.o
|
||||
lib-$(CONFIG_EFI_ARMSTUB) += arm-stub.o fdt.o
|
||||
|
||||
CFLAGS_fdt.o += -I$(srctree)/scripts/dtc/libfdt/
|
288
drivers/firmware/efi/libstub/arm-stub.c
Normal file
288
drivers/firmware/efi/libstub/arm-stub.c
Normal file
|
@ -0,0 +1,288 @@
|
|||
/*
|
||||
* EFI stub implementation that is shared by arm and arm64 architectures.
|
||||
* This should be #included by the EFI stub implementation files.
|
||||
*
|
||||
* Copyright (C) 2013,2014 Linaro Limited
|
||||
* Roy Franz <roy.franz@linaro.org
|
||||
* Copyright (C) 2013 Red Hat, Inc.
|
||||
* Mark Salter <msalter@redhat.com>
|
||||
*
|
||||
* This file is part of the Linux kernel, and is made available under the
|
||||
* terms of the GNU General Public License version 2.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/efi.h>
|
||||
#include <asm/efi.h>
|
||||
|
||||
#include "efistub.h"
|
||||
|
||||
static int __init efi_secureboot_enabled(efi_system_table_t *sys_table_arg)
|
||||
{
|
||||
static efi_guid_t const var_guid __initconst = EFI_GLOBAL_VARIABLE_GUID;
|
||||
static efi_char16_t const var_name[] __initconst = {
|
||||
'S', 'e', 'c', 'u', 'r', 'e', 'B', 'o', 'o', 't', 0 };
|
||||
|
||||
efi_get_variable_t *f_getvar = sys_table_arg->runtime->get_variable;
|
||||
unsigned long size = sizeof(u8);
|
||||
efi_status_t status;
|
||||
u8 val;
|
||||
|
||||
status = f_getvar((efi_char16_t *)var_name, (efi_guid_t *)&var_guid,
|
||||
NULL, &size, &val);
|
||||
|
||||
switch (status) {
|
||||
case EFI_SUCCESS:
|
||||
return val;
|
||||
case EFI_NOT_FOUND:
|
||||
return 0;
|
||||
default:
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg,
|
||||
void *__image, void **__fh)
|
||||
{
|
||||
efi_file_io_interface_t *io;
|
||||
efi_loaded_image_t *image = __image;
|
||||
efi_file_handle_t *fh;
|
||||
efi_guid_t fs_proto = EFI_FILE_SYSTEM_GUID;
|
||||
efi_status_t status;
|
||||
void *handle = (void *)(unsigned long)image->device_handle;
|
||||
|
||||
status = sys_table_arg->boottime->handle_protocol(handle,
|
||||
&fs_proto, (void **)&io);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to handle fs_proto\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
status = io->open_volume(io, &fh);
|
||||
if (status != EFI_SUCCESS)
|
||||
efi_printk(sys_table_arg, "Failed to open volume\n");
|
||||
|
||||
*__fh = fh;
|
||||
return status;
|
||||
}
|
||||
|
||||
efi_status_t efi_file_close(void *handle)
|
||||
{
|
||||
efi_file_handle_t *fh = handle;
|
||||
|
||||
return fh->close(handle);
|
||||
}
|
||||
|
||||
efi_status_t
|
||||
efi_file_read(void *handle, unsigned long *size, void *addr)
|
||||
{
|
||||
efi_file_handle_t *fh = handle;
|
||||
|
||||
return fh->read(handle, size, addr);
|
||||
}
|
||||
|
||||
|
||||
efi_status_t
|
||||
efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
|
||||
efi_char16_t *filename_16, void **handle, u64 *file_sz)
|
||||
{
|
||||
efi_file_handle_t *h, *fh = __fh;
|
||||
efi_file_info_t *info;
|
||||
efi_status_t status;
|
||||
efi_guid_t info_guid = EFI_FILE_INFO_ID;
|
||||
unsigned long info_sz;
|
||||
|
||||
status = fh->open(fh, &h, filename_16, EFI_FILE_MODE_READ, (u64)0);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to open file: ");
|
||||
efi_char16_printk(sys_table_arg, filename_16);
|
||||
efi_printk(sys_table_arg, "\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
*handle = h;
|
||||
|
||||
info_sz = 0;
|
||||
status = h->get_info(h, &info_guid, &info_sz, NULL);
|
||||
if (status != EFI_BUFFER_TOO_SMALL) {
|
||||
efi_printk(sys_table_arg, "Failed to get file info size\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
grow:
|
||||
status = sys_table_arg->boottime->allocate_pool(EFI_LOADER_DATA,
|
||||
info_sz, (void **)&info);
|
||||
if (status != EFI_SUCCESS) {
|
||||
efi_printk(sys_table_arg, "Failed to alloc mem for file info\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
status = h->get_info(h, &info_guid, &info_sz,
|
||||
info);
|
||||
if (status == EFI_BUFFER_TOO_SMALL) {
|
||||
sys_table_arg->boottime->free_pool(info);
|
||||
goto grow;
|
||||
}
|
||||
|
||||
*file_sz = info->file_size;
|
||||
sys_table_arg->boottime->free_pool(info);
|
||||
|
||||
if (status != EFI_SUCCESS)
|
||||
efi_printk(sys_table_arg, "Failed to get initrd info\n");
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
|
||||
|
||||
void efi_char16_printk(efi_system_table_t *sys_table_arg,
|
||||
efi_char16_t *str)
|
||||
{
|
||||
struct efi_simple_text_output_protocol *out;
|
||||
|
||||
out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
|
||||
out->output_string(out, str);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* This function handles the architcture specific differences between arm and
|
||||
* arm64 regarding where the kernel image must be loaded and any memory that
|
||||
* must be reserved. On failure it is required to free all
|
||||
* all allocations it has made.
|
||||
*/
|
||||
efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
|
||||
unsigned long *image_addr,
|
||||
unsigned long *image_size,
|
||||
unsigned long *reserve_addr,
|
||||
unsigned long *reserve_size,
|
||||
unsigned long dram_base,
|
||||
efi_loaded_image_t *image);
|
||||
/*
|
||||
* EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
|
||||
* that is described in the PE/COFF header. Most of the code is the same
|
||||
* for both archictectures, with the arch-specific code provided in the
|
||||
* handle_kernel_image() function.
|
||||
*/
|
||||
unsigned long __init efi_entry(void *handle, efi_system_table_t *sys_table,
|
||||
unsigned long *image_addr)
|
||||
{
|
||||
efi_loaded_image_t *image;
|
||||
efi_status_t status;
|
||||
unsigned long image_size = 0;
|
||||
unsigned long dram_base;
|
||||
/* addr/point and size pairs for memory management*/
|
||||
unsigned long initrd_addr;
|
||||
u64 initrd_size = 0;
|
||||
unsigned long fdt_addr = 0; /* Original DTB */
|
||||
u64 fdt_size = 0; /* We don't get size from configuration table */
|
||||
char *cmdline_ptr = NULL;
|
||||
int cmdline_size = 0;
|
||||
unsigned long new_fdt_addr;
|
||||
efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
|
||||
unsigned long reserve_addr = 0;
|
||||
unsigned long reserve_size = 0;
|
||||
|
||||
/* Check if we were booted by the EFI firmware */
|
||||
if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
|
||||
goto fail;
|
||||
|
||||
pr_efi(sys_table, "Booting Linux Kernel...\n");
|
||||
|
||||
/*
|
||||
* Get a handle to the loaded image protocol. This is used to get
|
||||
* information about the running image, such as size and the command
|
||||
* line.
|
||||
*/
|
||||
status = sys_table->boottime->handle_protocol(handle,
|
||||
&loaded_image_proto, (void *)&image);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
dram_base = get_dram_base(sys_table);
|
||||
if (dram_base == EFI_ERROR) {
|
||||
pr_efi_err(sys_table, "Failed to find DRAM base\n");
|
||||
goto fail;
|
||||
}
|
||||
status = handle_kernel_image(sys_table, image_addr, &image_size,
|
||||
&reserve_addr,
|
||||
&reserve_size,
|
||||
dram_base, image);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table, "Failed to relocate kernel\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the command line from EFI, using the LOADED_IMAGE
|
||||
* protocol. We are going to copy the command line into the
|
||||
* device tree, so this can be allocated anywhere.
|
||||
*/
|
||||
cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
|
||||
if (!cmdline_ptr) {
|
||||
pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
|
||||
goto fail_free_image;
|
||||
}
|
||||
|
||||
status = efi_parse_options(cmdline_ptr);
|
||||
if (status != EFI_SUCCESS)
|
||||
pr_efi_err(sys_table, "Failed to parse EFI cmdline options\n");
|
||||
|
||||
/*
|
||||
* Unauthenticated device tree data is a security hazard, so
|
||||
* ignore 'dtb=' unless UEFI Secure Boot is disabled.
|
||||
*/
|
||||
if (efi_secureboot_enabled(sys_table)) {
|
||||
pr_efi(sys_table, "UEFI Secure Boot is enabled.\n");
|
||||
} else {
|
||||
status = handle_cmdline_files(sys_table, image, cmdline_ptr,
|
||||
"dtb=",
|
||||
~0UL, (unsigned long *)&fdt_addr,
|
||||
(unsigned long *)&fdt_size);
|
||||
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table, "Failed to load device tree!\n");
|
||||
goto fail_free_cmdline;
|
||||
}
|
||||
}
|
||||
if (!fdt_addr)
|
||||
/* Look for a device tree configuration table entry. */
|
||||
fdt_addr = (uintptr_t)get_fdt(sys_table);
|
||||
|
||||
status = handle_cmdline_files(sys_table, image, cmdline_ptr,
|
||||
"initrd=", dram_base + SZ_512M,
|
||||
(unsigned long *)&initrd_addr,
|
||||
(unsigned long *)&initrd_size);
|
||||
if (status != EFI_SUCCESS)
|
||||
pr_efi_err(sys_table, "Failed initrd from command line!\n");
|
||||
|
||||
new_fdt_addr = fdt_addr;
|
||||
status = allocate_new_fdt_and_exit_boot(sys_table, handle,
|
||||
&new_fdt_addr, dram_base + MAX_FDT_OFFSET,
|
||||
initrd_addr, initrd_size, cmdline_ptr,
|
||||
fdt_addr, fdt_size);
|
||||
|
||||
/*
|
||||
* If all went well, we need to return the FDT address to the
|
||||
* calling function so it can be passed to kernel as part of
|
||||
* the kernel boot protocol.
|
||||
*/
|
||||
if (status == EFI_SUCCESS)
|
||||
return new_fdt_addr;
|
||||
|
||||
pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
|
||||
|
||||
efi_free(sys_table, initrd_size, initrd_addr);
|
||||
efi_free(sys_table, fdt_size, fdt_addr);
|
||||
|
||||
fail_free_cmdline:
|
||||
efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
|
||||
|
||||
fail_free_image:
|
||||
efi_free(sys_table, image_size, *image_addr);
|
||||
efi_free(sys_table, reserve_size, reserve_addr);
|
||||
fail:
|
||||
return EFI_ERROR;
|
||||
}
|
690
drivers/firmware/efi/libstub/efi-stub-helper.c
Normal file
690
drivers/firmware/efi/libstub/efi-stub-helper.c
Normal file
|
@ -0,0 +1,690 @@
|
|||
/*
|
||||
* Helper functions used by the EFI stub on multiple
|
||||
* architectures. This should be #included by the EFI stub
|
||||
* implementation files.
|
||||
*
|
||||
* Copyright 2011 Intel Corporation; author Matt Fleming
|
||||
*
|
||||
* This file is part of the Linux kernel, and is made available
|
||||
* under the terms of the GNU General Public License version 2.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/efi.h>
|
||||
#include <asm/efi.h>
|
||||
|
||||
#include "efistub.h"
|
||||
|
||||
/*
|
||||
* Some firmware implementations have problems reading files in one go.
|
||||
* A read chunk size of 1MB seems to work for most platforms.
|
||||
*
|
||||
* Unfortunately, reading files in chunks triggers *other* bugs on some
|
||||
* platforms, so we provide a way to disable this workaround, which can
|
||||
* be done by passing "efi=nochunk" on the EFI boot stub command line.
|
||||
*
|
||||
* If you experience issues with initrd images being corrupt it's worth
|
||||
* trying efi=nochunk, but chunking is enabled by default because there
|
||||
* are far more machines that require the workaround than those that
|
||||
* break with it enabled.
|
||||
*/
|
||||
#define EFI_READ_CHUNK_SIZE (1024 * 1024)
|
||||
|
||||
static unsigned long __chunk_size = EFI_READ_CHUNK_SIZE;
|
||||
|
||||
struct file_info {
|
||||
efi_file_handle_t *handle;
|
||||
u64 size;
|
||||
};
|
||||
|
||||
void efi_printk(efi_system_table_t *sys_table_arg, char *str)
|
||||
{
|
||||
char *s8;
|
||||
|
||||
for (s8 = str; *s8; s8++) {
|
||||
efi_char16_t ch[2] = { 0 };
|
||||
|
||||
ch[0] = *s8;
|
||||
if (*s8 == '\n') {
|
||||
efi_char16_t nl[2] = { '\r', 0 };
|
||||
efi_char16_printk(sys_table_arg, nl);
|
||||
}
|
||||
|
||||
efi_char16_printk(sys_table_arg, ch);
|
||||
}
|
||||
}
|
||||
|
||||
efi_status_t efi_get_memory_map(efi_system_table_t *sys_table_arg,
|
||||
efi_memory_desc_t **map,
|
||||
unsigned long *map_size,
|
||||
unsigned long *desc_size,
|
||||
u32 *desc_ver,
|
||||
unsigned long *key_ptr)
|
||||
{
|
||||
efi_memory_desc_t *m = NULL;
|
||||
efi_status_t status;
|
||||
unsigned long key;
|
||||
u32 desc_version;
|
||||
|
||||
*map_size = sizeof(*m) * 32;
|
||||
again:
|
||||
/*
|
||||
* Add an additional efi_memory_desc_t because we're doing an
|
||||
* allocation which may be in a new descriptor region.
|
||||
*/
|
||||
*map_size += sizeof(*m);
|
||||
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
||||
*map_size, (void **)&m);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
*desc_size = 0;
|
||||
key = 0;
|
||||
status = efi_call_early(get_memory_map, map_size, m,
|
||||
&key, desc_size, &desc_version);
|
||||
if (status == EFI_BUFFER_TOO_SMALL) {
|
||||
efi_call_early(free_pool, m);
|
||||
goto again;
|
||||
}
|
||||
|
||||
if (status != EFI_SUCCESS)
|
||||
efi_call_early(free_pool, m);
|
||||
|
||||
if (key_ptr && status == EFI_SUCCESS)
|
||||
*key_ptr = key;
|
||||
if (desc_ver && status == EFI_SUCCESS)
|
||||
*desc_ver = desc_version;
|
||||
|
||||
fail:
|
||||
*map = m;
|
||||
return status;
|
||||
}
|
||||
|
||||
|
||||
unsigned long __init get_dram_base(efi_system_table_t *sys_table_arg)
|
||||
{
|
||||
efi_status_t status;
|
||||
unsigned long map_size;
|
||||
unsigned long membase = EFI_ERROR;
|
||||
struct efi_memory_map map;
|
||||
efi_memory_desc_t *md;
|
||||
|
||||
status = efi_get_memory_map(sys_table_arg, (efi_memory_desc_t **)&map.map,
|
||||
&map_size, &map.desc_size, NULL, NULL);
|
||||
if (status != EFI_SUCCESS)
|
||||
return membase;
|
||||
|
||||
map.map_end = map.map + map_size;
|
||||
|
||||
for_each_efi_memory_desc(&map, md)
|
||||
if (md->attribute & EFI_MEMORY_WB)
|
||||
if (membase > md->phys_addr)
|
||||
membase = md->phys_addr;
|
||||
|
||||
efi_call_early(free_pool, map.map);
|
||||
|
||||
return membase;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate at the highest possible address that is not above 'max'.
|
||||
*/
|
||||
efi_status_t efi_high_alloc(efi_system_table_t *sys_table_arg,
|
||||
unsigned long size, unsigned long align,
|
||||
unsigned long *addr, unsigned long max)
|
||||
{
|
||||
unsigned long map_size, desc_size;
|
||||
efi_memory_desc_t *map;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
u64 max_addr = 0;
|
||||
int i;
|
||||
|
||||
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
|
||||
NULL, NULL);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
* Enforce minimum alignment that EFI requires when requesting
|
||||
* a specific address. We are doing page-based allocations,
|
||||
* so we must be aligned to a page.
|
||||
*/
|
||||
if (align < EFI_PAGE_SIZE)
|
||||
align = EFI_PAGE_SIZE;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
again:
|
||||
for (i = 0; i < map_size / desc_size; i++) {
|
||||
efi_memory_desc_t *desc;
|
||||
unsigned long m = (unsigned long)map;
|
||||
u64 start, end;
|
||||
|
||||
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
||||
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
||||
continue;
|
||||
|
||||
if (desc->num_pages < nr_pages)
|
||||
continue;
|
||||
|
||||
start = desc->phys_addr;
|
||||
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
||||
|
||||
if (end > max)
|
||||
end = max;
|
||||
|
||||
if ((start + size) > end)
|
||||
continue;
|
||||
|
||||
if (round_down(end - size, align) < start)
|
||||
continue;
|
||||
|
||||
start = round_down(end - size, align);
|
||||
|
||||
/*
|
||||
* Don't allocate at 0x0. It will confuse code that
|
||||
* checks pointers against NULL.
|
||||
*/
|
||||
if (start == 0x0)
|
||||
continue;
|
||||
|
||||
if (start > max_addr)
|
||||
max_addr = start;
|
||||
}
|
||||
|
||||
if (!max_addr)
|
||||
status = EFI_NOT_FOUND;
|
||||
else {
|
||||
status = efi_call_early(allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &max_addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
max = max_addr;
|
||||
max_addr = 0;
|
||||
goto again;
|
||||
}
|
||||
|
||||
*addr = max_addr;
|
||||
}
|
||||
|
||||
efi_call_early(free_pool, map);
|
||||
fail:
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Allocate at the lowest possible address.
|
||||
*/
|
||||
efi_status_t efi_low_alloc(efi_system_table_t *sys_table_arg,
|
||||
unsigned long size, unsigned long align,
|
||||
unsigned long *addr)
|
||||
{
|
||||
unsigned long map_size, desc_size;
|
||||
efi_memory_desc_t *map;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
int i;
|
||||
|
||||
status = efi_get_memory_map(sys_table_arg, &map, &map_size, &desc_size,
|
||||
NULL, NULL);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail;
|
||||
|
||||
/*
|
||||
* Enforce minimum alignment that EFI requires when requesting
|
||||
* a specific address. We are doing page-based allocations,
|
||||
* so we must be aligned to a page.
|
||||
*/
|
||||
if (align < EFI_PAGE_SIZE)
|
||||
align = EFI_PAGE_SIZE;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
for (i = 0; i < map_size / desc_size; i++) {
|
||||
efi_memory_desc_t *desc;
|
||||
unsigned long m = (unsigned long)map;
|
||||
u64 start, end;
|
||||
|
||||
desc = (efi_memory_desc_t *)(m + (i * desc_size));
|
||||
|
||||
if (desc->type != EFI_CONVENTIONAL_MEMORY)
|
||||
continue;
|
||||
|
||||
if (desc->num_pages < nr_pages)
|
||||
continue;
|
||||
|
||||
start = desc->phys_addr;
|
||||
end = start + desc->num_pages * (1UL << EFI_PAGE_SHIFT);
|
||||
|
||||
/*
|
||||
* Don't allocate at 0x0. It will confuse code that
|
||||
* checks pointers against NULL. Skip the first 8
|
||||
* bytes so we start at a nice even number.
|
||||
*/
|
||||
if (start == 0x0)
|
||||
start += 8;
|
||||
|
||||
start = round_up(start, align);
|
||||
if ((start + size) > end)
|
||||
continue;
|
||||
|
||||
status = efi_call_early(allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &start);
|
||||
if (status == EFI_SUCCESS) {
|
||||
*addr = start;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (i == map_size / desc_size)
|
||||
status = EFI_NOT_FOUND;
|
||||
|
||||
efi_call_early(free_pool, map);
|
||||
fail:
|
||||
return status;
|
||||
}
|
||||
|
||||
void efi_free(efi_system_table_t *sys_table_arg, unsigned long size,
|
||||
unsigned long addr)
|
||||
{
|
||||
unsigned long nr_pages;
|
||||
|
||||
if (!size)
|
||||
return;
|
||||
|
||||
nr_pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
efi_call_early(free_pages, addr, nr_pages);
|
||||
}
|
||||
|
||||
/*
|
||||
* Parse the ASCII string 'cmdline' for EFI options, denoted by the efi=
|
||||
* option, e.g. efi=nochunk.
|
||||
*
|
||||
* It should be noted that efi= is parsed in two very different
|
||||
* environments, first in the early boot environment of the EFI boot
|
||||
* stub, and subsequently during the kernel boot.
|
||||
*/
|
||||
efi_status_t efi_parse_options(char *cmdline)
|
||||
{
|
||||
char *str;
|
||||
|
||||
/*
|
||||
* If no EFI parameters were specified on the cmdline we've got
|
||||
* nothing to do.
|
||||
*/
|
||||
str = strstr(cmdline, "efi=");
|
||||
if (!str)
|
||||
return EFI_SUCCESS;
|
||||
|
||||
/* Skip ahead to first argument */
|
||||
str += strlen("efi=");
|
||||
|
||||
/*
|
||||
* Remember, because efi= is also used by the kernel we need to
|
||||
* skip over arguments we don't understand.
|
||||
*/
|
||||
while (*str) {
|
||||
if (!strncmp(str, "nochunk", 7)) {
|
||||
str += strlen("nochunk");
|
||||
__chunk_size = -1UL;
|
||||
}
|
||||
|
||||
/* Group words together, delimited by "," */
|
||||
while (*str && *str != ',')
|
||||
str++;
|
||||
|
||||
if (*str == ',')
|
||||
str++;
|
||||
}
|
||||
|
||||
return EFI_SUCCESS;
|
||||
}
|
||||
|
||||
/*
|
||||
* Check the cmdline for a LILO-style file= arguments.
|
||||
*
|
||||
* We only support loading a file from the same filesystem as
|
||||
* the kernel image.
|
||||
*/
|
||||
efi_status_t handle_cmdline_files(efi_system_table_t *sys_table_arg,
|
||||
efi_loaded_image_t *image,
|
||||
char *cmd_line, char *option_string,
|
||||
unsigned long max_addr,
|
||||
unsigned long *load_addr,
|
||||
unsigned long *load_size)
|
||||
{
|
||||
struct file_info *files;
|
||||
unsigned long file_addr;
|
||||
u64 file_size_total;
|
||||
efi_file_handle_t *fh = NULL;
|
||||
efi_status_t status;
|
||||
int nr_files;
|
||||
char *str;
|
||||
int i, j, k;
|
||||
|
||||
file_addr = 0;
|
||||
file_size_total = 0;
|
||||
|
||||
str = cmd_line;
|
||||
|
||||
j = 0; /* See close_handles */
|
||||
|
||||
if (!load_addr || !load_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
|
||||
*load_addr = 0;
|
||||
*load_size = 0;
|
||||
|
||||
if (!str || !*str)
|
||||
return EFI_SUCCESS;
|
||||
|
||||
for (nr_files = 0; *str; nr_files++) {
|
||||
str = strstr(str, option_string);
|
||||
if (!str)
|
||||
break;
|
||||
|
||||
str += strlen(option_string);
|
||||
|
||||
/* Skip any leading slashes */
|
||||
while (*str == '/' || *str == '\\')
|
||||
str++;
|
||||
|
||||
while (*str && *str != ' ' && *str != '\n')
|
||||
str++;
|
||||
}
|
||||
|
||||
if (!nr_files)
|
||||
return EFI_SUCCESS;
|
||||
|
||||
status = efi_call_early(allocate_pool, EFI_LOADER_DATA,
|
||||
nr_files * sizeof(*files), (void **)&files);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table_arg, "Failed to alloc mem for file handle list\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
str = cmd_line;
|
||||
for (i = 0; i < nr_files; i++) {
|
||||
struct file_info *file;
|
||||
efi_char16_t filename_16[256];
|
||||
efi_char16_t *p;
|
||||
|
||||
str = strstr(str, option_string);
|
||||
if (!str)
|
||||
break;
|
||||
|
||||
str += strlen(option_string);
|
||||
|
||||
file = &files[i];
|
||||
p = filename_16;
|
||||
|
||||
/* Skip any leading slashes */
|
||||
while (*str == '/' || *str == '\\')
|
||||
str++;
|
||||
|
||||
while (*str && *str != ' ' && *str != '\n') {
|
||||
if ((u8 *)p >= (u8 *)filename_16 + sizeof(filename_16))
|
||||
break;
|
||||
|
||||
if (*str == '/') {
|
||||
*p++ = '\\';
|
||||
str++;
|
||||
} else {
|
||||
*p++ = *str++;
|
||||
}
|
||||
}
|
||||
|
||||
*p = '\0';
|
||||
|
||||
/* Only open the volume once. */
|
||||
if (!i) {
|
||||
status = efi_open_volume(sys_table_arg, image,
|
||||
(void **)&fh);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto free_files;
|
||||
}
|
||||
|
||||
status = efi_file_size(sys_table_arg, fh, filename_16,
|
||||
(void **)&file->handle, &file->size);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto close_handles;
|
||||
|
||||
file_size_total += file->size;
|
||||
}
|
||||
|
||||
if (file_size_total) {
|
||||
unsigned long addr;
|
||||
|
||||
/*
|
||||
* Multiple files need to be at consecutive addresses in memory,
|
||||
* so allocate enough memory for all the files. This is used
|
||||
* for loading multiple files.
|
||||
*/
|
||||
status = efi_high_alloc(sys_table_arg, file_size_total, 0x1000,
|
||||
&file_addr, max_addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table_arg, "Failed to alloc highmem for files\n");
|
||||
goto close_handles;
|
||||
}
|
||||
|
||||
/* We've run out of free low memory. */
|
||||
if (file_addr > max_addr) {
|
||||
pr_efi_err(sys_table_arg, "We've run out of free low memory\n");
|
||||
status = EFI_INVALID_PARAMETER;
|
||||
goto free_file_total;
|
||||
}
|
||||
|
||||
addr = file_addr;
|
||||
for (j = 0; j < nr_files; j++) {
|
||||
unsigned long size;
|
||||
|
||||
size = files[j].size;
|
||||
while (size) {
|
||||
unsigned long chunksize;
|
||||
if (size > __chunk_size)
|
||||
chunksize = __chunk_size;
|
||||
else
|
||||
chunksize = size;
|
||||
|
||||
status = efi_file_read(files[j].handle,
|
||||
&chunksize,
|
||||
(void *)addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table_arg, "Failed to read file\n");
|
||||
goto free_file_total;
|
||||
}
|
||||
addr += chunksize;
|
||||
size -= chunksize;
|
||||
}
|
||||
|
||||
efi_file_close(files[j].handle);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
efi_call_early(free_pool, files);
|
||||
|
||||
*load_addr = file_addr;
|
||||
*load_size = file_size_total;
|
||||
|
||||
return status;
|
||||
|
||||
free_file_total:
|
||||
efi_free(sys_table_arg, file_size_total, file_addr);
|
||||
|
||||
close_handles:
|
||||
for (k = j; k < i; k++)
|
||||
efi_file_close(files[k].handle);
|
||||
free_files:
|
||||
efi_call_early(free_pool, files);
|
||||
fail:
|
||||
*load_addr = 0;
|
||||
*load_size = 0;
|
||||
|
||||
return status;
|
||||
}
|
||||
/*
|
||||
* Relocate a kernel image, either compressed or uncompressed.
|
||||
* In the ARM64 case, all kernel images are currently
|
||||
* uncompressed, and as such when we relocate it we need to
|
||||
* allocate additional space for the BSS segment. Any low
|
||||
* memory that this function should avoid needs to be
|
||||
* unavailable in the EFI memory map, as if the preferred
|
||||
* address is not available the lowest available address will
|
||||
* be used.
|
||||
*/
|
||||
efi_status_t efi_relocate_kernel(efi_system_table_t *sys_table_arg,
|
||||
unsigned long *image_addr,
|
||||
unsigned long image_size,
|
||||
unsigned long alloc_size,
|
||||
unsigned long preferred_addr,
|
||||
unsigned long alignment)
|
||||
{
|
||||
unsigned long cur_image_addr;
|
||||
unsigned long new_addr = 0;
|
||||
efi_status_t status;
|
||||
unsigned long nr_pages;
|
||||
efi_physical_addr_t efi_addr = preferred_addr;
|
||||
|
||||
if (!image_addr || !image_size || !alloc_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
if (alloc_size < image_size)
|
||||
return EFI_INVALID_PARAMETER;
|
||||
|
||||
cur_image_addr = *image_addr;
|
||||
|
||||
/*
|
||||
* The EFI firmware loader could have placed the kernel image
|
||||
* anywhere in memory, but the kernel has restrictions on the
|
||||
* max physical address it can run at. Some architectures
|
||||
* also have a prefered address, so first try to relocate
|
||||
* to the preferred address. If that fails, allocate as low
|
||||
* as possible while respecting the required alignment.
|
||||
*/
|
||||
nr_pages = round_up(alloc_size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
|
||||
status = efi_call_early(allocate_pages,
|
||||
EFI_ALLOCATE_ADDRESS, EFI_LOADER_DATA,
|
||||
nr_pages, &efi_addr);
|
||||
new_addr = efi_addr;
|
||||
/*
|
||||
* If preferred address allocation failed allocate as low as
|
||||
* possible.
|
||||
*/
|
||||
if (status != EFI_SUCCESS) {
|
||||
status = efi_low_alloc(sys_table_arg, alloc_size, alignment,
|
||||
&new_addr);
|
||||
}
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table_arg, "Failed to allocate usable memory for kernel.\n");
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* We know source/dest won't overlap since both memory ranges
|
||||
* have been allocated by UEFI, so we can safely use memcpy.
|
||||
*/
|
||||
memcpy((void *)new_addr, (void *)cur_image_addr, image_size);
|
||||
|
||||
/* Return the new address of the relocated image. */
|
||||
*image_addr = new_addr;
|
||||
|
||||
return status;
|
||||
}
|
||||
|
||||
/*
|
||||
* Get the number of UTF-8 bytes corresponding to an UTF-16 character.
|
||||
* This overestimates for surrogates, but that is okay.
|
||||
*/
|
||||
static int efi_utf8_bytes(u16 c)
|
||||
{
|
||||
return 1 + (c >= 0x80) + (c >= 0x800);
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert an UTF-16 string, not necessarily null terminated, to UTF-8.
|
||||
*/
|
||||
static u8 *efi_utf16_to_utf8(u8 *dst, const u16 *src, int n)
|
||||
{
|
||||
unsigned int c;
|
||||
|
||||
while (n--) {
|
||||
c = *src++;
|
||||
if (n && c >= 0xd800 && c <= 0xdbff &&
|
||||
*src >= 0xdc00 && *src <= 0xdfff) {
|
||||
c = 0x10000 + ((c & 0x3ff) << 10) + (*src & 0x3ff);
|
||||
src++;
|
||||
n--;
|
||||
}
|
||||
if (c >= 0xd800 && c <= 0xdfff)
|
||||
c = 0xfffd; /* Unmatched surrogate */
|
||||
if (c < 0x80) {
|
||||
*dst++ = c;
|
||||
continue;
|
||||
}
|
||||
if (c < 0x800) {
|
||||
*dst++ = 0xc0 + (c >> 6);
|
||||
goto t1;
|
||||
}
|
||||
if (c < 0x10000) {
|
||||
*dst++ = 0xe0 + (c >> 12);
|
||||
goto t2;
|
||||
}
|
||||
*dst++ = 0xf0 + (c >> 18);
|
||||
*dst++ = 0x80 + ((c >> 12) & 0x3f);
|
||||
t2:
|
||||
*dst++ = 0x80 + ((c >> 6) & 0x3f);
|
||||
t1:
|
||||
*dst++ = 0x80 + (c & 0x3f);
|
||||
}
|
||||
|
||||
return dst;
|
||||
}
|
||||
|
||||
/*
|
||||
* Convert the unicode UEFI command line to ASCII to pass to kernel.
|
||||
* Size of memory allocated return in *cmd_line_len.
|
||||
* Returns NULL on error.
|
||||
*/
|
||||
char *efi_convert_cmdline(efi_system_table_t *sys_table_arg,
|
||||
efi_loaded_image_t *image,
|
||||
int *cmd_line_len)
|
||||
{
|
||||
const u16 *s2;
|
||||
u8 *s1 = NULL;
|
||||
unsigned long cmdline_addr = 0;
|
||||
int load_options_chars = image->load_options_size / 2; /* UTF-16 */
|
||||
const u16 *options = image->load_options;
|
||||
int options_bytes = 0; /* UTF-8 bytes */
|
||||
int options_chars = 0; /* UTF-16 chars */
|
||||
efi_status_t status;
|
||||
u16 zero = 0;
|
||||
|
||||
if (options) {
|
||||
s2 = options;
|
||||
while (*s2 && *s2 != '\n'
|
||||
&& options_chars < load_options_chars) {
|
||||
options_bytes += efi_utf8_bytes(*s2++);
|
||||
options_chars++;
|
||||
}
|
||||
}
|
||||
|
||||
if (!options_chars) {
|
||||
/* No command line options, so return empty string*/
|
||||
options = &zero;
|
||||
}
|
||||
|
||||
options_bytes++; /* NUL termination */
|
||||
|
||||
status = efi_low_alloc(sys_table_arg, options_bytes, 0, &cmdline_addr);
|
||||
if (status != EFI_SUCCESS)
|
||||
return NULL;
|
||||
|
||||
s1 = (u8 *)cmdline_addr;
|
||||
s2 = (const u16 *)options;
|
||||
|
||||
s1 = efi_utf16_to_utf8(s1, s2, options_chars);
|
||||
*s1 = '\0';
|
||||
|
||||
*cmd_line_len = options_bytes;
|
||||
return (char *)cmdline_addr;
|
||||
}
|
42
drivers/firmware/efi/libstub/efistub.h
Normal file
42
drivers/firmware/efi/libstub/efistub.h
Normal file
|
@ -0,0 +1,42 @@
|
|||
|
||||
#ifndef _DRIVERS_FIRMWARE_EFI_EFISTUB_H
|
||||
#define _DRIVERS_FIRMWARE_EFI_EFISTUB_H
|
||||
|
||||
/* error code which can't be mistaken for valid address */
|
||||
#define EFI_ERROR (~0UL)
|
||||
|
||||
void efi_char16_printk(efi_system_table_t *, efi_char16_t *);
|
||||
|
||||
efi_status_t efi_open_volume(efi_system_table_t *sys_table_arg, void *__image,
|
||||
void **__fh);
|
||||
|
||||
efi_status_t efi_file_size(efi_system_table_t *sys_table_arg, void *__fh,
|
||||
efi_char16_t *filename_16, void **handle,
|
||||
u64 *file_sz);
|
||||
|
||||
efi_status_t efi_file_read(void *handle, unsigned long *size, void *addr);
|
||||
|
||||
efi_status_t efi_file_close(void *handle);
|
||||
|
||||
unsigned long get_dram_base(efi_system_table_t *sys_table_arg);
|
||||
|
||||
efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
|
||||
unsigned long orig_fdt_size,
|
||||
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
||||
u64 initrd_addr, u64 initrd_size,
|
||||
efi_memory_desc_t *memory_map,
|
||||
unsigned long map_size, unsigned long desc_size,
|
||||
u32 desc_ver);
|
||||
|
||||
efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
|
||||
void *handle,
|
||||
unsigned long *new_fdt_addr,
|
||||
unsigned long max_addr,
|
||||
u64 initrd_addr, u64 initrd_size,
|
||||
char *cmdline_ptr,
|
||||
unsigned long fdt_addr,
|
||||
unsigned long fdt_size);
|
||||
|
||||
void *get_fdt(efi_system_table_t *sys_table);
|
||||
|
||||
#endif
|
287
drivers/firmware/efi/libstub/fdt.c
Normal file
287
drivers/firmware/efi/libstub/fdt.c
Normal file
|
@ -0,0 +1,287 @@
|
|||
/*
|
||||
* FDT related Helper functions used by the EFI stub on multiple
|
||||
* architectures. This should be #included by the EFI stub
|
||||
* implementation files.
|
||||
*
|
||||
* Copyright 2013 Linaro Limited; author Roy Franz
|
||||
*
|
||||
* This file is part of the Linux kernel, and is made available
|
||||
* under the terms of the GNU General Public License version 2.
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/efi.h>
|
||||
#include <linux/libfdt.h>
|
||||
#include <asm/efi.h>
|
||||
|
||||
efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
|
||||
unsigned long orig_fdt_size,
|
||||
void *fdt, int new_fdt_size, char *cmdline_ptr,
|
||||
u64 initrd_addr, u64 initrd_size,
|
||||
efi_memory_desc_t *memory_map,
|
||||
unsigned long map_size, unsigned long desc_size,
|
||||
u32 desc_ver)
|
||||
{
|
||||
int node, prev, num_rsv;
|
||||
int status;
|
||||
u32 fdt_val32;
|
||||
u64 fdt_val64;
|
||||
|
||||
/* Do some checks on provided FDT, if it exists*/
|
||||
if (orig_fdt) {
|
||||
if (fdt_check_header(orig_fdt)) {
|
||||
pr_efi_err(sys_table, "Device Tree header not valid!\n");
|
||||
return EFI_LOAD_ERROR;
|
||||
}
|
||||
/*
|
||||
* We don't get the size of the FDT if we get if from a
|
||||
* configuration table.
|
||||
*/
|
||||
if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
|
||||
pr_efi_err(sys_table, "Truncated device tree! foo!\n");
|
||||
return EFI_LOAD_ERROR;
|
||||
}
|
||||
}
|
||||
|
||||
if (orig_fdt)
|
||||
status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
|
||||
else
|
||||
status = fdt_create_empty_tree(fdt, new_fdt_size);
|
||||
|
||||
if (status != 0)
|
||||
goto fdt_set_fail;
|
||||
|
||||
/*
|
||||
* Delete any memory nodes present. We must delete nodes which
|
||||
* early_init_dt_scan_memory may try to use.
|
||||
*/
|
||||
prev = 0;
|
||||
for (;;) {
|
||||
const char *type;
|
||||
int len;
|
||||
|
||||
node = fdt_next_node(fdt, prev, NULL);
|
||||
if (node < 0)
|
||||
break;
|
||||
|
||||
type = fdt_getprop(fdt, node, "device_type", &len);
|
||||
if (type && strncmp(type, "memory", len) == 0) {
|
||||
fdt_del_node(fdt, node);
|
||||
continue;
|
||||
}
|
||||
|
||||
prev = node;
|
||||
}
|
||||
|
||||
/*
|
||||
* Delete all memory reserve map entries. When booting via UEFI,
|
||||
* kernel will use the UEFI memory map to find reserved regions.
|
||||
*/
|
||||
num_rsv = fdt_num_mem_rsv(fdt);
|
||||
while (num_rsv-- > 0)
|
||||
fdt_del_mem_rsv(fdt, num_rsv);
|
||||
|
||||
node = fdt_subnode_offset(fdt, 0, "chosen");
|
||||
if (node < 0) {
|
||||
node = fdt_add_subnode(fdt, 0, "chosen");
|
||||
if (node < 0) {
|
||||
status = node; /* node is error code when negative */
|
||||
goto fdt_set_fail;
|
||||
}
|
||||
}
|
||||
|
||||
if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
|
||||
status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
|
||||
strlen(cmdline_ptr) + 1);
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
}
|
||||
|
||||
/* Set initrd address/end in device tree, if present */
|
||||
if (initrd_size != 0) {
|
||||
u64 initrd_image_end;
|
||||
u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
|
||||
|
||||
status = fdt_setprop(fdt, node, "linux,initrd-start",
|
||||
&initrd_image_start, sizeof(u64));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
|
||||
status = fdt_setprop(fdt, node, "linux,initrd-end",
|
||||
&initrd_image_end, sizeof(u64));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
}
|
||||
|
||||
/* Add FDT entries for EFI runtime services in chosen node. */
|
||||
node = fdt_subnode_offset(fdt, 0, "chosen");
|
||||
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
|
||||
status = fdt_setprop(fdt, node, "linux,uefi-system-table",
|
||||
&fdt_val64, sizeof(fdt_val64));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
|
||||
status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
|
||||
&fdt_val64, sizeof(fdt_val64));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
fdt_val32 = cpu_to_fdt32(map_size);
|
||||
status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
|
||||
&fdt_val32, sizeof(fdt_val32));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
fdt_val32 = cpu_to_fdt32(desc_size);
|
||||
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
|
||||
&fdt_val32, sizeof(fdt_val32));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
fdt_val32 = cpu_to_fdt32(desc_ver);
|
||||
status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
|
||||
&fdt_val32, sizeof(fdt_val32));
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
/*
|
||||
* Add kernel version banner so stub/kernel match can be
|
||||
* verified.
|
||||
*/
|
||||
status = fdt_setprop_string(fdt, node, "linux,uefi-stub-kern-ver",
|
||||
linux_banner);
|
||||
if (status)
|
||||
goto fdt_set_fail;
|
||||
|
||||
return EFI_SUCCESS;
|
||||
|
||||
fdt_set_fail:
|
||||
if (status == -FDT_ERR_NOSPACE)
|
||||
return EFI_BUFFER_TOO_SMALL;
|
||||
|
||||
return EFI_LOAD_ERROR;
|
||||
}
|
||||
|
||||
#ifndef EFI_FDT_ALIGN
|
||||
#define EFI_FDT_ALIGN EFI_PAGE_SIZE
|
||||
#endif
|
||||
|
||||
/*
|
||||
* Allocate memory for a new FDT, then add EFI, commandline, and
|
||||
* initrd related fields to the FDT. This routine increases the
|
||||
* FDT allocation size until the allocated memory is large
|
||||
* enough. EFI allocations are in EFI_PAGE_SIZE granules,
|
||||
* which are fixed at 4K bytes, so in most cases the first
|
||||
* allocation should succeed.
|
||||
* EFI boot services are exited at the end of this function.
|
||||
* There must be no allocations between the get_memory_map()
|
||||
* call and the exit_boot_services() call, so the exiting of
|
||||
* boot services is very tightly tied to the creation of the FDT
|
||||
* with the final memory map in it.
|
||||
*/
|
||||
|
||||
efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
|
||||
void *handle,
|
||||
unsigned long *new_fdt_addr,
|
||||
unsigned long max_addr,
|
||||
u64 initrd_addr, u64 initrd_size,
|
||||
char *cmdline_ptr,
|
||||
unsigned long fdt_addr,
|
||||
unsigned long fdt_size)
|
||||
{
|
||||
unsigned long map_size, desc_size;
|
||||
u32 desc_ver;
|
||||
unsigned long mmap_key;
|
||||
efi_memory_desc_t *memory_map;
|
||||
unsigned long new_fdt_size;
|
||||
efi_status_t status;
|
||||
|
||||
/*
|
||||
* Estimate size of new FDT, and allocate memory for it. We
|
||||
* will allocate a bigger buffer if this ends up being too
|
||||
* small, so a rough guess is OK here.
|
||||
*/
|
||||
new_fdt_size = fdt_size + EFI_PAGE_SIZE;
|
||||
while (1) {
|
||||
status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
|
||||
new_fdt_addr, max_addr);
|
||||
if (status != EFI_SUCCESS) {
|
||||
pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
|
||||
goto fail;
|
||||
}
|
||||
|
||||
/*
|
||||
* Now that we have done our final memory allocation (and free)
|
||||
* we can get the memory map key needed for
|
||||
* exit_boot_services().
|
||||
*/
|
||||
status = efi_get_memory_map(sys_table, &memory_map, &map_size,
|
||||
&desc_size, &desc_ver, &mmap_key);
|
||||
if (status != EFI_SUCCESS)
|
||||
goto fail_free_new_fdt;
|
||||
|
||||
status = update_fdt(sys_table,
|
||||
(void *)fdt_addr, fdt_size,
|
||||
(void *)*new_fdt_addr, new_fdt_size,
|
||||
cmdline_ptr, initrd_addr, initrd_size,
|
||||
memory_map, map_size, desc_size, desc_ver);
|
||||
|
||||
/* Succeeding the first time is the expected case. */
|
||||
if (status == EFI_SUCCESS)
|
||||
break;
|
||||
|
||||
if (status == EFI_BUFFER_TOO_SMALL) {
|
||||
/*
|
||||
* We need to allocate more space for the new
|
||||
* device tree, so free existing buffer that is
|
||||
* too small. Also free memory map, as we will need
|
||||
* to get new one that reflects the free/alloc we do
|
||||
* on the device tree buffer.
|
||||
*/
|
||||
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
||||
sys_table->boottime->free_pool(memory_map);
|
||||
new_fdt_size += EFI_PAGE_SIZE;
|
||||
} else {
|
||||
pr_efi_err(sys_table, "Unable to constuct new device tree.\n");
|
||||
goto fail_free_mmap;
|
||||
}
|
||||
}
|
||||
|
||||
/* Now we are ready to exit_boot_services.*/
|
||||
status = sys_table->boottime->exit_boot_services(handle, mmap_key);
|
||||
|
||||
|
||||
if (status == EFI_SUCCESS)
|
||||
return status;
|
||||
|
||||
pr_efi_err(sys_table, "Exit boot services failed.\n");
|
||||
|
||||
fail_free_mmap:
|
||||
sys_table->boottime->free_pool(memory_map);
|
||||
|
||||
fail_free_new_fdt:
|
||||
efi_free(sys_table, new_fdt_size, *new_fdt_addr);
|
||||
|
||||
fail:
|
||||
return EFI_LOAD_ERROR;
|
||||
}
|
||||
|
||||
void *get_fdt(efi_system_table_t *sys_table)
|
||||
{
|
||||
efi_guid_t fdt_guid = DEVICE_TREE_GUID;
|
||||
efi_config_table_t *tables;
|
||||
void *fdt;
|
||||
int i;
|
||||
|
||||
tables = (efi_config_table_t *) sys_table->tables;
|
||||
fdt = NULL;
|
||||
|
||||
for (i = 0; i < sys_table->nr_tables; i++)
|
||||
if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
|
||||
fdt = (void *) tables[i].table;
|
||||
break;
|
||||
}
|
||||
|
||||
return fdt;
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue