mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-11-02 00:55:37 +01:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
703
drivers/gpu/drm/omapdrm/tcm-sita.c
Normal file
703
drivers/gpu/drm/omapdrm/tcm-sita.c
Normal file
|
|
@ -0,0 +1,703 @@
|
|||
/*
|
||||
* tcm-sita.c
|
||||
*
|
||||
* SImple Tiler Allocator (SiTA): 2D and 1D allocation(reservation) algorithm
|
||||
*
|
||||
* Authors: Ravi Ramachandra <r.ramachandra@ti.com>,
|
||||
* Lajos Molnar <molnar@ti.com>
|
||||
*
|
||||
* Copyright (C) 2009-2010 Texas Instruments, Inc.
|
||||
*
|
||||
* This package is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*
|
||||
* THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
|
||||
* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
|
||||
* WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE.
|
||||
*
|
||||
*/
|
||||
#include <linux/slab.h>
|
||||
#include <linux/spinlock.h>
|
||||
|
||||
#include "tcm-sita.h"
|
||||
|
||||
#define ALIGN_DOWN(value, align) ((value) & ~((align) - 1))
|
||||
|
||||
/* Individual selection criteria for different scan areas */
|
||||
static s32 CR_L2R_T2B = CR_BIAS_HORIZONTAL;
|
||||
static s32 CR_R2L_T2B = CR_DIAGONAL_BALANCE;
|
||||
|
||||
/*********************************************
|
||||
* TCM API - Sita Implementation
|
||||
*********************************************/
|
||||
static s32 sita_reserve_2d(struct tcm *tcm, u16 h, u16 w, u8 align,
|
||||
struct tcm_area *area);
|
||||
static s32 sita_reserve_1d(struct tcm *tcm, u32 slots, struct tcm_area *area);
|
||||
static s32 sita_free(struct tcm *tcm, struct tcm_area *area);
|
||||
static void sita_deinit(struct tcm *tcm);
|
||||
|
||||
/*********************************************
|
||||
* Main Scanner functions
|
||||
*********************************************/
|
||||
static s32 scan_areas_and_find_fit(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *area);
|
||||
|
||||
static s32 scan_l2r_t2b(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *field, struct tcm_area *area);
|
||||
|
||||
static s32 scan_r2l_t2b(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *field, struct tcm_area *area);
|
||||
|
||||
static s32 scan_r2l_b2t_one_dim(struct tcm *tcm, u32 num_slots,
|
||||
struct tcm_area *field, struct tcm_area *area);
|
||||
|
||||
/*********************************************
|
||||
* Support Infrastructure Methods
|
||||
*********************************************/
|
||||
static s32 is_area_free(struct tcm_area ***map, u16 x0, u16 y0, u16 w, u16 h);
|
||||
|
||||
static s32 update_candidate(struct tcm *tcm, u16 x0, u16 y0, u16 w, u16 h,
|
||||
struct tcm_area *field, s32 criteria,
|
||||
struct score *best);
|
||||
|
||||
static void get_nearness_factor(struct tcm_area *field,
|
||||
struct tcm_area *candidate,
|
||||
struct nearness_factor *nf);
|
||||
|
||||
static void get_neighbor_stats(struct tcm *tcm, struct tcm_area *area,
|
||||
struct neighbor_stats *stat);
|
||||
|
||||
static void fill_area(struct tcm *tcm,
|
||||
struct tcm_area *area, struct tcm_area *parent);
|
||||
|
||||
|
||||
/*********************************************/
|
||||
|
||||
/*********************************************
|
||||
* Utility Methods
|
||||
*********************************************/
|
||||
struct tcm *sita_init(u16 width, u16 height, struct tcm_pt *attr)
|
||||
{
|
||||
struct tcm *tcm;
|
||||
struct sita_pvt *pvt;
|
||||
struct tcm_area area = {0};
|
||||
s32 i;
|
||||
|
||||
if (width == 0 || height == 0)
|
||||
return NULL;
|
||||
|
||||
tcm = kmalloc(sizeof(*tcm), GFP_KERNEL);
|
||||
pvt = kmalloc(sizeof(*pvt), GFP_KERNEL);
|
||||
if (!tcm || !pvt)
|
||||
goto error;
|
||||
|
||||
memset(tcm, 0, sizeof(*tcm));
|
||||
memset(pvt, 0, sizeof(*pvt));
|
||||
|
||||
/* Updating the pointers to SiTA implementation APIs */
|
||||
tcm->height = height;
|
||||
tcm->width = width;
|
||||
tcm->reserve_2d = sita_reserve_2d;
|
||||
tcm->reserve_1d = sita_reserve_1d;
|
||||
tcm->free = sita_free;
|
||||
tcm->deinit = sita_deinit;
|
||||
tcm->pvt = (void *)pvt;
|
||||
|
||||
spin_lock_init(&(pvt->lock));
|
||||
|
||||
/* Creating tam map */
|
||||
pvt->map = kmalloc(sizeof(*pvt->map) * tcm->width, GFP_KERNEL);
|
||||
if (!pvt->map)
|
||||
goto error;
|
||||
|
||||
for (i = 0; i < tcm->width; i++) {
|
||||
pvt->map[i] =
|
||||
kmalloc(sizeof(**pvt->map) * tcm->height,
|
||||
GFP_KERNEL);
|
||||
if (pvt->map[i] == NULL) {
|
||||
while (i--)
|
||||
kfree(pvt->map[i]);
|
||||
kfree(pvt->map);
|
||||
goto error;
|
||||
}
|
||||
}
|
||||
|
||||
if (attr && attr->x <= tcm->width && attr->y <= tcm->height) {
|
||||
pvt->div_pt.x = attr->x;
|
||||
pvt->div_pt.y = attr->y;
|
||||
|
||||
} else {
|
||||
/* Defaulting to 3:1 ratio on width for 2D area split */
|
||||
/* Defaulting to 3:1 ratio on height for 2D and 1D split */
|
||||
pvt->div_pt.x = (tcm->width * 3) / 4;
|
||||
pvt->div_pt.y = (tcm->height * 3) / 4;
|
||||
}
|
||||
|
||||
spin_lock(&(pvt->lock));
|
||||
assign(&area, 0, 0, width - 1, height - 1);
|
||||
fill_area(tcm, &area, NULL);
|
||||
spin_unlock(&(pvt->lock));
|
||||
return tcm;
|
||||
|
||||
error:
|
||||
kfree(tcm);
|
||||
kfree(pvt);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void sita_deinit(struct tcm *tcm)
|
||||
{
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
struct tcm_area area = {0};
|
||||
s32 i;
|
||||
|
||||
area.p1.x = tcm->width - 1;
|
||||
area.p1.y = tcm->height - 1;
|
||||
|
||||
spin_lock(&(pvt->lock));
|
||||
fill_area(tcm, &area, NULL);
|
||||
spin_unlock(&(pvt->lock));
|
||||
|
||||
for (i = 0; i < tcm->height; i++)
|
||||
kfree(pvt->map[i]);
|
||||
kfree(pvt->map);
|
||||
kfree(pvt);
|
||||
}
|
||||
|
||||
/**
|
||||
* Reserve a 1D area in the container
|
||||
*
|
||||
* @param num_slots size of 1D area
|
||||
* @param area pointer to the area that will be populated with the
|
||||
* reserved area
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 sita_reserve_1d(struct tcm *tcm, u32 num_slots,
|
||||
struct tcm_area *area)
|
||||
{
|
||||
s32 ret;
|
||||
struct tcm_area field = {0};
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
|
||||
spin_lock(&(pvt->lock));
|
||||
|
||||
/* Scanning entire container */
|
||||
assign(&field, tcm->width - 1, tcm->height - 1, 0, 0);
|
||||
|
||||
ret = scan_r2l_b2t_one_dim(tcm, num_slots, &field, area);
|
||||
if (!ret)
|
||||
/* update map */
|
||||
fill_area(tcm, area, area);
|
||||
|
||||
spin_unlock(&(pvt->lock));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Reserve a 2D area in the container
|
||||
*
|
||||
* @param w width
|
||||
* @param h height
|
||||
* @param area pointer to the area that will be populated with the reserved
|
||||
* area
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 sita_reserve_2d(struct tcm *tcm, u16 h, u16 w, u8 align,
|
||||
struct tcm_area *area)
|
||||
{
|
||||
s32 ret;
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
|
||||
/* not supporting more than 64 as alignment */
|
||||
if (align > 64)
|
||||
return -EINVAL;
|
||||
|
||||
/* we prefer 1, 32 and 64 as alignment */
|
||||
align = align <= 1 ? 1 : align <= 32 ? 32 : 64;
|
||||
|
||||
spin_lock(&(pvt->lock));
|
||||
ret = scan_areas_and_find_fit(tcm, w, h, align, area);
|
||||
if (!ret)
|
||||
/* update map */
|
||||
fill_area(tcm, area, area);
|
||||
|
||||
spin_unlock(&(pvt->lock));
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* Unreserve a previously allocated 2D or 1D area
|
||||
* @param area area to be freed
|
||||
* @return 0 - success
|
||||
*/
|
||||
static s32 sita_free(struct tcm *tcm, struct tcm_area *area)
|
||||
{
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
|
||||
spin_lock(&(pvt->lock));
|
||||
|
||||
/* check that this is in fact an existing area */
|
||||
WARN_ON(pvt->map[area->p0.x][area->p0.y] != area ||
|
||||
pvt->map[area->p1.x][area->p1.y] != area);
|
||||
|
||||
/* Clear the contents of the associated tiles in the map */
|
||||
fill_area(tcm, area, NULL);
|
||||
|
||||
spin_unlock(&(pvt->lock));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Note: In general the cordinates in the scan field area relevant to the can
|
||||
* sweep directions. The scan origin (e.g. top-left corner) will always be
|
||||
* the p0 member of the field. Therfore, for a scan from top-left p0.x <= p1.x
|
||||
* and p0.y <= p1.y; whereas, for a scan from bottom-right p1.x <= p0.x and p1.y
|
||||
* <= p0.y
|
||||
*/
|
||||
|
||||
/**
|
||||
* Raster scan horizontally right to left from top to bottom to find a place for
|
||||
* a 2D area of given size inside a scan field.
|
||||
*
|
||||
* @param w width of desired area
|
||||
* @param h height of desired area
|
||||
* @param align desired area alignment
|
||||
* @param area pointer to the area that will be set to the best position
|
||||
* @param field area to scan (inclusive)
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 scan_r2l_t2b(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *field, struct tcm_area *area)
|
||||
{
|
||||
s32 x, y;
|
||||
s16 start_x, end_x, start_y, end_y, found_x = -1;
|
||||
struct tcm_area ***map = ((struct sita_pvt *)tcm->pvt)->map;
|
||||
struct score best = {{0}, {0}, {0}, 0};
|
||||
|
||||
start_x = field->p0.x;
|
||||
end_x = field->p1.x;
|
||||
start_y = field->p0.y;
|
||||
end_y = field->p1.y;
|
||||
|
||||
/* check scan area co-ordinates */
|
||||
if (field->p0.x < field->p1.x ||
|
||||
field->p1.y < field->p0.y)
|
||||
return -EINVAL;
|
||||
|
||||
/* check if allocation would fit in scan area */
|
||||
if (w > LEN(start_x, end_x) || h > LEN(end_y, start_y))
|
||||
return -ENOSPC;
|
||||
|
||||
/* adjust start_x and end_y, as allocation would not fit beyond */
|
||||
start_x = ALIGN_DOWN(start_x - w + 1, align); /* - 1 to be inclusive */
|
||||
end_y = end_y - h + 1;
|
||||
|
||||
/* check if allocation would still fit in scan area */
|
||||
if (start_x < end_x)
|
||||
return -ENOSPC;
|
||||
|
||||
/* scan field top-to-bottom, right-to-left */
|
||||
for (y = start_y; y <= end_y; y++) {
|
||||
for (x = start_x; x >= end_x; x -= align) {
|
||||
if (is_area_free(map, x, y, w, h)) {
|
||||
found_x = x;
|
||||
|
||||
/* update best candidate */
|
||||
if (update_candidate(tcm, x, y, w, h, field,
|
||||
CR_R2L_T2B, &best))
|
||||
goto done;
|
||||
|
||||
/* change upper x bound */
|
||||
end_x = x + 1;
|
||||
break;
|
||||
} else if (map[x][y] && map[x][y]->is2d) {
|
||||
/* step over 2D areas */
|
||||
x = ALIGN(map[x][y]->p0.x - w + 1, align);
|
||||
}
|
||||
}
|
||||
|
||||
/* break if you find a free area shouldering the scan field */
|
||||
if (found_x == start_x)
|
||||
break;
|
||||
}
|
||||
|
||||
if (!best.a.tcm)
|
||||
return -ENOSPC;
|
||||
done:
|
||||
assign(area, best.a.p0.x, best.a.p0.y, best.a.p1.x, best.a.p1.y);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Raster scan horizontally left to right from top to bottom to find a place for
|
||||
* a 2D area of given size inside a scan field.
|
||||
*
|
||||
* @param w width of desired area
|
||||
* @param h height of desired area
|
||||
* @param align desired area alignment
|
||||
* @param area pointer to the area that will be set to the best position
|
||||
* @param field area to scan (inclusive)
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 scan_l2r_t2b(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *field, struct tcm_area *area)
|
||||
{
|
||||
s32 x, y;
|
||||
s16 start_x, end_x, start_y, end_y, found_x = -1;
|
||||
struct tcm_area ***map = ((struct sita_pvt *)tcm->pvt)->map;
|
||||
struct score best = {{0}, {0}, {0}, 0};
|
||||
|
||||
start_x = field->p0.x;
|
||||
end_x = field->p1.x;
|
||||
start_y = field->p0.y;
|
||||
end_y = field->p1.y;
|
||||
|
||||
/* check scan area co-ordinates */
|
||||
if (field->p1.x < field->p0.x ||
|
||||
field->p1.y < field->p0.y)
|
||||
return -EINVAL;
|
||||
|
||||
/* check if allocation would fit in scan area */
|
||||
if (w > LEN(end_x, start_x) || h > LEN(end_y, start_y))
|
||||
return -ENOSPC;
|
||||
|
||||
start_x = ALIGN(start_x, align);
|
||||
|
||||
/* check if allocation would still fit in scan area */
|
||||
if (w > LEN(end_x, start_x))
|
||||
return -ENOSPC;
|
||||
|
||||
/* adjust end_x and end_y, as allocation would not fit beyond */
|
||||
end_x = end_x - w + 1; /* + 1 to be inclusive */
|
||||
end_y = end_y - h + 1;
|
||||
|
||||
/* scan field top-to-bottom, left-to-right */
|
||||
for (y = start_y; y <= end_y; y++) {
|
||||
for (x = start_x; x <= end_x; x += align) {
|
||||
if (is_area_free(map, x, y, w, h)) {
|
||||
found_x = x;
|
||||
|
||||
/* update best candidate */
|
||||
if (update_candidate(tcm, x, y, w, h, field,
|
||||
CR_L2R_T2B, &best))
|
||||
goto done;
|
||||
/* change upper x bound */
|
||||
end_x = x - 1;
|
||||
|
||||
break;
|
||||
} else if (map[x][y] && map[x][y]->is2d) {
|
||||
/* step over 2D areas */
|
||||
x = ALIGN_DOWN(map[x][y]->p1.x, align);
|
||||
}
|
||||
}
|
||||
|
||||
/* break if you find a free area shouldering the scan field */
|
||||
if (found_x == start_x)
|
||||
break;
|
||||
}
|
||||
|
||||
if (!best.a.tcm)
|
||||
return -ENOSPC;
|
||||
done:
|
||||
assign(area, best.a.p0.x, best.a.p0.y, best.a.p1.x, best.a.p1.y);
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Raster scan horizontally right to left from bottom to top to find a place
|
||||
* for a 1D area of given size inside a scan field.
|
||||
*
|
||||
* @param num_slots size of desired area
|
||||
* @param align desired area alignment
|
||||
* @param area pointer to the area that will be set to the best
|
||||
* position
|
||||
* @param field area to scan (inclusive)
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 scan_r2l_b2t_one_dim(struct tcm *tcm, u32 num_slots,
|
||||
struct tcm_area *field, struct tcm_area *area)
|
||||
{
|
||||
s32 found = 0;
|
||||
s16 x, y;
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
struct tcm_area *p;
|
||||
|
||||
/* check scan area co-ordinates */
|
||||
if (field->p0.y < field->p1.y)
|
||||
return -EINVAL;
|
||||
|
||||
/**
|
||||
* Currently we only support full width 1D scan field, which makes sense
|
||||
* since 1D slot-ordering spans the full container width.
|
||||
*/
|
||||
if (tcm->width != field->p0.x - field->p1.x + 1)
|
||||
return -EINVAL;
|
||||
|
||||
/* check if allocation would fit in scan area */
|
||||
if (num_slots > tcm->width * LEN(field->p0.y, field->p1.y))
|
||||
return -ENOSPC;
|
||||
|
||||
x = field->p0.x;
|
||||
y = field->p0.y;
|
||||
|
||||
/* find num_slots consecutive free slots to the left */
|
||||
while (found < num_slots) {
|
||||
if (y < 0)
|
||||
return -ENOSPC;
|
||||
|
||||
/* remember bottom-right corner */
|
||||
if (found == 0) {
|
||||
area->p1.x = x;
|
||||
area->p1.y = y;
|
||||
}
|
||||
|
||||
/* skip busy regions */
|
||||
p = pvt->map[x][y];
|
||||
if (p) {
|
||||
/* move to left of 2D areas, top left of 1D */
|
||||
x = p->p0.x;
|
||||
if (!p->is2d)
|
||||
y = p->p0.y;
|
||||
|
||||
/* start over */
|
||||
found = 0;
|
||||
} else {
|
||||
/* count consecutive free slots */
|
||||
found++;
|
||||
if (found == num_slots)
|
||||
break;
|
||||
}
|
||||
|
||||
/* move to the left */
|
||||
if (x == 0)
|
||||
y--;
|
||||
x = (x ? : tcm->width) - 1;
|
||||
|
||||
}
|
||||
|
||||
/* set top-left corner */
|
||||
area->p0.x = x;
|
||||
area->p0.y = y;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Find a place for a 2D area of given size inside a scan field based on its
|
||||
* alignment needs.
|
||||
*
|
||||
* @param w width of desired area
|
||||
* @param h height of desired area
|
||||
* @param align desired area alignment
|
||||
* @param area pointer to the area that will be set to the best position
|
||||
*
|
||||
* @return 0 on success, non-0 error value on failure.
|
||||
*/
|
||||
static s32 scan_areas_and_find_fit(struct tcm *tcm, u16 w, u16 h, u16 align,
|
||||
struct tcm_area *area)
|
||||
{
|
||||
s32 ret = 0;
|
||||
struct tcm_area field = {0};
|
||||
u16 boundary_x, boundary_y;
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
|
||||
if (align > 1) {
|
||||
/* prefer top-left corner */
|
||||
boundary_x = pvt->div_pt.x - 1;
|
||||
boundary_y = pvt->div_pt.y - 1;
|
||||
|
||||
/* expand width and height if needed */
|
||||
if (w > pvt->div_pt.x)
|
||||
boundary_x = tcm->width - 1;
|
||||
if (h > pvt->div_pt.y)
|
||||
boundary_y = tcm->height - 1;
|
||||
|
||||
assign(&field, 0, 0, boundary_x, boundary_y);
|
||||
ret = scan_l2r_t2b(tcm, w, h, align, &field, area);
|
||||
|
||||
/* scan whole container if failed, but do not scan 2x */
|
||||
if (ret != 0 && (boundary_x != tcm->width - 1 ||
|
||||
boundary_y != tcm->height - 1)) {
|
||||
/* scan the entire container if nothing found */
|
||||
assign(&field, 0, 0, tcm->width - 1, tcm->height - 1);
|
||||
ret = scan_l2r_t2b(tcm, w, h, align, &field, area);
|
||||
}
|
||||
} else if (align == 1) {
|
||||
/* prefer top-right corner */
|
||||
boundary_x = pvt->div_pt.x;
|
||||
boundary_y = pvt->div_pt.y - 1;
|
||||
|
||||
/* expand width and height if needed */
|
||||
if (w > (tcm->width - pvt->div_pt.x))
|
||||
boundary_x = 0;
|
||||
if (h > pvt->div_pt.y)
|
||||
boundary_y = tcm->height - 1;
|
||||
|
||||
assign(&field, tcm->width - 1, 0, boundary_x, boundary_y);
|
||||
ret = scan_r2l_t2b(tcm, w, h, align, &field, area);
|
||||
|
||||
/* scan whole container if failed, but do not scan 2x */
|
||||
if (ret != 0 && (boundary_x != 0 ||
|
||||
boundary_y != tcm->height - 1)) {
|
||||
/* scan the entire container if nothing found */
|
||||
assign(&field, tcm->width - 1, 0, 0, tcm->height - 1);
|
||||
ret = scan_r2l_t2b(tcm, w, h, align, &field,
|
||||
area);
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* check if an entire area is free */
|
||||
static s32 is_area_free(struct tcm_area ***map, u16 x0, u16 y0, u16 w, u16 h)
|
||||
{
|
||||
u16 x = 0, y = 0;
|
||||
for (y = y0; y < y0 + h; y++) {
|
||||
for (x = x0; x < x0 + w; x++) {
|
||||
if (map[x][y])
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* fills an area with a parent tcm_area */
|
||||
static void fill_area(struct tcm *tcm, struct tcm_area *area,
|
||||
struct tcm_area *parent)
|
||||
{
|
||||
s32 x, y;
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
struct tcm_area a, a_;
|
||||
|
||||
/* set area's tcm; otherwise, enumerator considers it invalid */
|
||||
area->tcm = tcm;
|
||||
|
||||
tcm_for_each_slice(a, *area, a_) {
|
||||
for (x = a.p0.x; x <= a.p1.x; ++x)
|
||||
for (y = a.p0.y; y <= a.p1.y; ++y)
|
||||
pvt->map[x][y] = parent;
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Compares a candidate area to the current best area, and if it is a better
|
||||
* fit, it updates the best to this one.
|
||||
*
|
||||
* @param x0, y0, w, h top, left, width, height of candidate area
|
||||
* @param field scan field
|
||||
* @param criteria scan criteria
|
||||
* @param best best candidate and its scores
|
||||
*
|
||||
* @return 1 (true) if the candidate area is known to be the final best, so no
|
||||
* more searching should be performed
|
||||
*/
|
||||
static s32 update_candidate(struct tcm *tcm, u16 x0, u16 y0, u16 w, u16 h,
|
||||
struct tcm_area *field, s32 criteria,
|
||||
struct score *best)
|
||||
{
|
||||
struct score me; /* score for area */
|
||||
|
||||
/*
|
||||
* NOTE: For horizontal bias we always give the first found, because our
|
||||
* scan is horizontal-raster-based and the first candidate will always
|
||||
* have the horizontal bias.
|
||||
*/
|
||||
bool first = criteria & CR_BIAS_HORIZONTAL;
|
||||
|
||||
assign(&me.a, x0, y0, x0 + w - 1, y0 + h - 1);
|
||||
|
||||
/* calculate score for current candidate */
|
||||
if (!first) {
|
||||
get_neighbor_stats(tcm, &me.a, &me.n);
|
||||
me.neighs = me.n.edge + me.n.busy;
|
||||
get_nearness_factor(field, &me.a, &me.f);
|
||||
}
|
||||
|
||||
/* the 1st candidate is always the best */
|
||||
if (!best->a.tcm)
|
||||
goto better;
|
||||
|
||||
BUG_ON(first);
|
||||
|
||||
/* diagonal balance check */
|
||||
if ((criteria & CR_DIAGONAL_BALANCE) &&
|
||||
best->neighs <= me.neighs &&
|
||||
(best->neighs < me.neighs ||
|
||||
/* this implies that neighs and occupied match */
|
||||
best->n.busy < me.n.busy ||
|
||||
(best->n.busy == me.n.busy &&
|
||||
/* check the nearness factor */
|
||||
best->f.x + best->f.y > me.f.x + me.f.y)))
|
||||
goto better;
|
||||
|
||||
/* not better, keep going */
|
||||
return 0;
|
||||
|
||||
better:
|
||||
/* save current area as best */
|
||||
memcpy(best, &me, sizeof(me));
|
||||
best->a.tcm = tcm;
|
||||
return first;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculate the nearness factor of an area in a search field. The nearness
|
||||
* factor is smaller if the area is closer to the search origin.
|
||||
*/
|
||||
static void get_nearness_factor(struct tcm_area *field, struct tcm_area *area,
|
||||
struct nearness_factor *nf)
|
||||
{
|
||||
/**
|
||||
* Using signed math as field coordinates may be reversed if
|
||||
* search direction is right-to-left or bottom-to-top.
|
||||
*/
|
||||
nf->x = (s32)(area->p0.x - field->p0.x) * 1000 /
|
||||
(field->p1.x - field->p0.x);
|
||||
nf->y = (s32)(area->p0.y - field->p0.y) * 1000 /
|
||||
(field->p1.y - field->p0.y);
|
||||
}
|
||||
|
||||
/* get neighbor statistics */
|
||||
static void get_neighbor_stats(struct tcm *tcm, struct tcm_area *area,
|
||||
struct neighbor_stats *stat)
|
||||
{
|
||||
s16 x = 0, y = 0;
|
||||
struct sita_pvt *pvt = (struct sita_pvt *)tcm->pvt;
|
||||
|
||||
/* Clearing any exisiting values */
|
||||
memset(stat, 0, sizeof(*stat));
|
||||
|
||||
/* process top & bottom edges */
|
||||
for (x = area->p0.x; x <= area->p1.x; x++) {
|
||||
if (area->p0.y == 0)
|
||||
stat->edge++;
|
||||
else if (pvt->map[x][area->p0.y - 1])
|
||||
stat->busy++;
|
||||
|
||||
if (area->p1.y == tcm->height - 1)
|
||||
stat->edge++;
|
||||
else if (pvt->map[x][area->p1.y + 1])
|
||||
stat->busy++;
|
||||
}
|
||||
|
||||
/* process left & right edges */
|
||||
for (y = area->p0.y; y <= area->p1.y; ++y) {
|
||||
if (area->p0.x == 0)
|
||||
stat->edge++;
|
||||
else if (pvt->map[area->p0.x - 1][y])
|
||||
stat->busy++;
|
||||
|
||||
if (area->p1.x == tcm->width - 1)
|
||||
stat->edge++;
|
||||
else if (pvt->map[area->p1.x + 1][y])
|
||||
stat->busy++;
|
||||
}
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue