mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 17:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
17
drivers/i2c/algos/Kconfig
Normal file
17
drivers/i2c/algos/Kconfig
Normal file
|
@ -0,0 +1,17 @@
|
|||
#
|
||||
# I2C algorithm drivers configuration
|
||||
#
|
||||
|
||||
menu "I2C Algorithms"
|
||||
visible if !I2C_HELPER_AUTO
|
||||
|
||||
config I2C_ALGOBIT
|
||||
tristate "I2C bit-banging interfaces"
|
||||
|
||||
config I2C_ALGOPCF
|
||||
tristate "I2C PCF 8584 interfaces"
|
||||
|
||||
config I2C_ALGOPCA
|
||||
tristate "I2C PCA 9564 interfaces"
|
||||
|
||||
endmenu
|
9
drivers/i2c/algos/Makefile
Normal file
9
drivers/i2c/algos/Makefile
Normal file
|
@ -0,0 +1,9 @@
|
|||
#
|
||||
# Makefile for the i2c algorithms
|
||||
#
|
||||
|
||||
obj-$(CONFIG_I2C_ALGOBIT) += i2c-algo-bit.o
|
||||
obj-$(CONFIG_I2C_ALGOPCF) += i2c-algo-pcf.o
|
||||
obj-$(CONFIG_I2C_ALGOPCA) += i2c-algo-pca.o
|
||||
|
||||
ccflags-$(CONFIG_I2C_DEBUG_ALGO) := -DDEBUG
|
665
drivers/i2c/algos/i2c-algo-bit.c
Normal file
665
drivers/i2c/algos/i2c-algo-bit.c
Normal file
|
@ -0,0 +1,665 @@
|
|||
/* -------------------------------------------------------------------------
|
||||
* i2c-algo-bit.c i2c driver algorithms for bit-shift adapters
|
||||
* -------------------------------------------------------------------------
|
||||
* Copyright (C) 1995-2000 Simon G. Vogl
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
* ------------------------------------------------------------------------- */
|
||||
|
||||
/* With some changes from Frodo Looijaard <frodol@dds.nl>, Kyösti Mälkki
|
||||
<kmalkki@cc.hut.fi> and Jean Delvare <jdelvare@suse.de> */
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/i2c.h>
|
||||
#include <linux/i2c-algo-bit.h>
|
||||
|
||||
|
||||
/* ----- global defines ----------------------------------------------- */
|
||||
|
||||
#ifdef DEBUG
|
||||
#define bit_dbg(level, dev, format, args...) \
|
||||
do { \
|
||||
if (i2c_debug >= level) \
|
||||
dev_dbg(dev, format, ##args); \
|
||||
} while (0)
|
||||
#else
|
||||
#define bit_dbg(level, dev, format, args...) \
|
||||
do {} while (0)
|
||||
#endif /* DEBUG */
|
||||
|
||||
/* ----- global variables --------------------------------------------- */
|
||||
|
||||
static int bit_test; /* see if the line-setting functions work */
|
||||
module_param(bit_test, int, S_IRUGO);
|
||||
MODULE_PARM_DESC(bit_test, "lines testing - 0 off; 1 report; 2 fail if stuck");
|
||||
|
||||
#ifdef DEBUG
|
||||
static int i2c_debug = 1;
|
||||
module_param(i2c_debug, int, S_IRUGO | S_IWUSR);
|
||||
MODULE_PARM_DESC(i2c_debug,
|
||||
"debug level - 0 off; 1 normal; 2 verbose; 3 very verbose");
|
||||
#endif
|
||||
|
||||
/* --- setting states on the bus with the right timing: --------------- */
|
||||
|
||||
#define setsda(adap, val) adap->setsda(adap->data, val)
|
||||
#define setscl(adap, val) adap->setscl(adap->data, val)
|
||||
#define getsda(adap) adap->getsda(adap->data)
|
||||
#define getscl(adap) adap->getscl(adap->data)
|
||||
|
||||
static inline void sdalo(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setsda(adap, 0);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
}
|
||||
|
||||
static inline void sdahi(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setsda(adap, 1);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
}
|
||||
|
||||
static inline void scllo(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
setscl(adap, 0);
|
||||
udelay(adap->udelay / 2);
|
||||
}
|
||||
|
||||
/*
|
||||
* Raise scl line, and do checking for delays. This is necessary for slower
|
||||
* devices.
|
||||
*/
|
||||
static int sclhi(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
unsigned long start;
|
||||
|
||||
setscl(adap, 1);
|
||||
|
||||
/* Not all adapters have scl sense line... */
|
||||
if (!adap->getscl)
|
||||
goto done;
|
||||
|
||||
start = jiffies;
|
||||
while (!getscl(adap)) {
|
||||
/* This hw knows how to read the clock line, so we wait
|
||||
* until it actually gets high. This is safer as some
|
||||
* chips may hold it low ("clock stretching") while they
|
||||
* are processing data internally.
|
||||
*/
|
||||
if (time_after(jiffies, start + adap->timeout)) {
|
||||
/* Test one last time, as we may have been preempted
|
||||
* between last check and timeout test.
|
||||
*/
|
||||
if (getscl(adap))
|
||||
break;
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
cpu_relax();
|
||||
}
|
||||
#ifdef DEBUG
|
||||
if (jiffies != start && i2c_debug >= 3)
|
||||
pr_debug("i2c-algo-bit: needed %ld jiffies for SCL to go "
|
||||
"high\n", jiffies - start);
|
||||
#endif
|
||||
|
||||
done:
|
||||
udelay(adap->udelay);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* --- other auxiliary functions -------------------------------------- */
|
||||
static void i2c_start(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl, sda are high */
|
||||
setsda(adap, 0);
|
||||
udelay(adap->udelay);
|
||||
scllo(adap);
|
||||
}
|
||||
|
||||
static void i2c_repstart(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl is low */
|
||||
sdahi(adap);
|
||||
sclhi(adap);
|
||||
setsda(adap, 0);
|
||||
udelay(adap->udelay);
|
||||
scllo(adap);
|
||||
}
|
||||
|
||||
|
||||
static void i2c_stop(struct i2c_algo_bit_data *adap)
|
||||
{
|
||||
/* assert: scl is low */
|
||||
sdalo(adap);
|
||||
sclhi(adap);
|
||||
setsda(adap, 1);
|
||||
udelay(adap->udelay);
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* send a byte without start cond., look for arbitration,
|
||||
check ackn. from slave */
|
||||
/* returns:
|
||||
* 1 if the device acknowledged
|
||||
* 0 if the device did not ack
|
||||
* -ETIMEDOUT if an error occurred (while raising the scl line)
|
||||
*/
|
||||
static int i2c_outb(struct i2c_adapter *i2c_adap, unsigned char c)
|
||||
{
|
||||
int i;
|
||||
int sb;
|
||||
int ack;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: scl is low */
|
||||
for (i = 7; i >= 0; i--) {
|
||||
sb = (c >> i) & 1;
|
||||
setsda(adap, sb);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
if (sclhi(adap) < 0) { /* timed out */
|
||||
bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
|
||||
"timeout at bit #%d\n", (int)c, i);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
/* FIXME do arbitration here:
|
||||
* if (sb && !getsda(adap)) -> ouch! Get out of here.
|
||||
*
|
||||
* Report a unique code, so higher level code can retry
|
||||
* the whole (combined) message and *NOT* issue STOP.
|
||||
*/
|
||||
scllo(adap);
|
||||
}
|
||||
sdahi(adap);
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
bit_dbg(1, &i2c_adap->dev, "i2c_outb: 0x%02x, "
|
||||
"timeout at ack\n", (int)c);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
|
||||
/* read ack: SDA should be pulled down by slave, or it may
|
||||
* NAK (usually to report problems with the data we wrote).
|
||||
*/
|
||||
ack = !getsda(adap); /* ack: sda is pulled low -> success */
|
||||
bit_dbg(2, &i2c_adap->dev, "i2c_outb: 0x%02x %s\n", (int)c,
|
||||
ack ? "A" : "NA");
|
||||
|
||||
scllo(adap);
|
||||
return ack;
|
||||
/* assert: scl is low (sda undef) */
|
||||
}
|
||||
|
||||
|
||||
static int i2c_inb(struct i2c_adapter *i2c_adap)
|
||||
{
|
||||
/* read byte via i2c port, without start/stop sequence */
|
||||
/* acknowledge is sent in i2c_read. */
|
||||
int i;
|
||||
unsigned char indata = 0;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: scl is low */
|
||||
sdahi(adap);
|
||||
for (i = 0; i < 8; i++) {
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
bit_dbg(1, &i2c_adap->dev, "i2c_inb: timeout at bit "
|
||||
"#%d\n", 7 - i);
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
indata *= 2;
|
||||
if (getsda(adap))
|
||||
indata |= 0x01;
|
||||
setscl(adap, 0);
|
||||
udelay(i == 7 ? adap->udelay / 2 : adap->udelay);
|
||||
}
|
||||
/* assert: scl is low */
|
||||
return indata;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sanity check for the adapter hardware - check the reaction of
|
||||
* the bus lines only if it seems to be idle.
|
||||
*/
|
||||
static int test_bus(struct i2c_adapter *i2c_adap)
|
||||
{
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
const char *name = i2c_adap->name;
|
||||
int scl, sda, ret;
|
||||
|
||||
if (adap->pre_xfer) {
|
||||
ret = adap->pre_xfer(i2c_adap);
|
||||
if (ret < 0)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
if (adap->getscl == NULL)
|
||||
pr_info("%s: Testing SDA only, SCL is not readable\n", name);
|
||||
|
||||
sda = getsda(adap);
|
||||
scl = (adap->getscl == NULL) ? 1 : getscl(adap);
|
||||
if (!scl || !sda) {
|
||||
printk(KERN_WARNING
|
||||
"%s: bus seems to be busy (scl=%d, sda=%d)\n",
|
||||
name, scl, sda);
|
||||
goto bailout;
|
||||
}
|
||||
|
||||
sdalo(adap);
|
||||
sda = getsda(adap);
|
||||
scl = (adap->getscl == NULL) ? 1 : getscl(adap);
|
||||
if (sda) {
|
||||
printk(KERN_WARNING "%s: SDA stuck high!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
if (!scl) {
|
||||
printk(KERN_WARNING "%s: SCL unexpected low "
|
||||
"while pulling SDA low!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
|
||||
sdahi(adap);
|
||||
sda = getsda(adap);
|
||||
scl = (adap->getscl == NULL) ? 1 : getscl(adap);
|
||||
if (!sda) {
|
||||
printk(KERN_WARNING "%s: SDA stuck low!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
if (!scl) {
|
||||
printk(KERN_WARNING "%s: SCL unexpected low "
|
||||
"while pulling SDA high!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
|
||||
scllo(adap);
|
||||
sda = getsda(adap);
|
||||
scl = (adap->getscl == NULL) ? 0 : getscl(adap);
|
||||
if (scl) {
|
||||
printk(KERN_WARNING "%s: SCL stuck high!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
if (!sda) {
|
||||
printk(KERN_WARNING "%s: SDA unexpected low "
|
||||
"while pulling SCL low!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
|
||||
sclhi(adap);
|
||||
sda = getsda(adap);
|
||||
scl = (adap->getscl == NULL) ? 1 : getscl(adap);
|
||||
if (!scl) {
|
||||
printk(KERN_WARNING "%s: SCL stuck low!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
if (!sda) {
|
||||
printk(KERN_WARNING "%s: SDA unexpected low "
|
||||
"while pulling SCL high!\n", name);
|
||||
goto bailout;
|
||||
}
|
||||
|
||||
if (adap->post_xfer)
|
||||
adap->post_xfer(i2c_adap);
|
||||
|
||||
pr_info("%s: Test OK\n", name);
|
||||
return 0;
|
||||
bailout:
|
||||
sdahi(adap);
|
||||
sclhi(adap);
|
||||
|
||||
if (adap->post_xfer)
|
||||
adap->post_xfer(i2c_adap);
|
||||
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* ----- Utility functions
|
||||
*/
|
||||
|
||||
/* try_address tries to contact a chip for a number of
|
||||
* times before it gives up.
|
||||
* return values:
|
||||
* 1 chip answered
|
||||
* 0 chip did not answer
|
||||
* -x transmission error
|
||||
*/
|
||||
static int try_address(struct i2c_adapter *i2c_adap,
|
||||
unsigned char addr, int retries)
|
||||
{
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
int i, ret = 0;
|
||||
|
||||
for (i = 0; i <= retries; i++) {
|
||||
ret = i2c_outb(i2c_adap, addr);
|
||||
if (ret == 1 || i == retries)
|
||||
break;
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
|
||||
i2c_stop(adap);
|
||||
udelay(adap->udelay);
|
||||
yield();
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
|
||||
i2c_start(adap);
|
||||
}
|
||||
if (i && ret)
|
||||
bit_dbg(1, &i2c_adap->dev, "Used %d tries to %s client at "
|
||||
"0x%02x: %s\n", i + 1,
|
||||
addr & 1 ? "read from" : "write to", addr >> 1,
|
||||
ret == 1 ? "success" : "failed, timeout?");
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int sendbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
const unsigned char *temp = msg->buf;
|
||||
int count = msg->len;
|
||||
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||||
int retval;
|
||||
int wrcount = 0;
|
||||
|
||||
while (count > 0) {
|
||||
retval = i2c_outb(i2c_adap, *temp);
|
||||
|
||||
/* OK/ACK; or ignored NAK */
|
||||
if ((retval > 0) || (nak_ok && (retval == 0))) {
|
||||
count--;
|
||||
temp++;
|
||||
wrcount++;
|
||||
|
||||
/* A slave NAKing the master means the slave didn't like
|
||||
* something about the data it saw. For example, maybe
|
||||
* the SMBus PEC was wrong.
|
||||
*/
|
||||
} else if (retval == 0) {
|
||||
dev_err(&i2c_adap->dev, "sendbytes: NAK bailout.\n");
|
||||
return -EIO;
|
||||
|
||||
/* Timeout; or (someday) lost arbitration
|
||||
*
|
||||
* FIXME Lost ARB implies retrying the transaction from
|
||||
* the first message, after the "winning" master issues
|
||||
* its STOP. As a rule, upper layer code has no reason
|
||||
* to know or care about this ... it is *NOT* an error.
|
||||
*/
|
||||
} else {
|
||||
dev_err(&i2c_adap->dev, "sendbytes: error %d\n",
|
||||
retval);
|
||||
return retval;
|
||||
}
|
||||
}
|
||||
return wrcount;
|
||||
}
|
||||
|
||||
static int acknak(struct i2c_adapter *i2c_adap, int is_ack)
|
||||
{
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
/* assert: sda is high */
|
||||
if (is_ack) /* send ack */
|
||||
setsda(adap, 0);
|
||||
udelay((adap->udelay + 1) / 2);
|
||||
if (sclhi(adap) < 0) { /* timeout */
|
||||
dev_err(&i2c_adap->dev, "readbytes: ack/nak timeout\n");
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
scllo(adap);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int readbytes(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
int inval;
|
||||
int rdcount = 0; /* counts bytes read */
|
||||
unsigned char *temp = msg->buf;
|
||||
int count = msg->len;
|
||||
const unsigned flags = msg->flags;
|
||||
|
||||
while (count > 0) {
|
||||
inval = i2c_inb(i2c_adap);
|
||||
if (inval >= 0) {
|
||||
*temp = inval;
|
||||
rdcount++;
|
||||
} else { /* read timed out */
|
||||
break;
|
||||
}
|
||||
|
||||
temp++;
|
||||
count--;
|
||||
|
||||
/* Some SMBus transactions require that we receive the
|
||||
transaction length as the first read byte. */
|
||||
if (rdcount == 1 && (flags & I2C_M_RECV_LEN)) {
|
||||
if (inval <= 0 || inval > I2C_SMBUS_BLOCK_MAX) {
|
||||
if (!(flags & I2C_M_NO_RD_ACK))
|
||||
acknak(i2c_adap, 0);
|
||||
dev_err(&i2c_adap->dev, "readbytes: invalid "
|
||||
"block length (%d)\n", inval);
|
||||
return -EPROTO;
|
||||
}
|
||||
/* The original count value accounts for the extra
|
||||
bytes, that is, either 1 for a regular transaction,
|
||||
or 2 for a PEC transaction. */
|
||||
count += inval;
|
||||
msg->len += inval;
|
||||
}
|
||||
|
||||
bit_dbg(2, &i2c_adap->dev, "readbytes: 0x%02x %s\n",
|
||||
inval,
|
||||
(flags & I2C_M_NO_RD_ACK)
|
||||
? "(no ack/nak)"
|
||||
: (count ? "A" : "NA"));
|
||||
|
||||
if (!(flags & I2C_M_NO_RD_ACK)) {
|
||||
inval = acknak(i2c_adap, count);
|
||||
if (inval < 0)
|
||||
return inval;
|
||||
}
|
||||
}
|
||||
return rdcount;
|
||||
}
|
||||
|
||||
/* doAddress initiates the transfer by generating the start condition (in
|
||||
* try_address) and transmits the address in the necessary format to handle
|
||||
* reads, writes as well as 10bit-addresses.
|
||||
* returns:
|
||||
* 0 everything went okay, the chip ack'ed, or IGNORE_NAK flag was set
|
||||
* -x an error occurred (like: -ENXIO if the device did not answer, or
|
||||
* -ETIMEDOUT, for example if the lines are stuck...)
|
||||
*/
|
||||
static int bit_doAddress(struct i2c_adapter *i2c_adap, struct i2c_msg *msg)
|
||||
{
|
||||
unsigned short flags = msg->flags;
|
||||
unsigned short nak_ok = msg->flags & I2C_M_IGNORE_NAK;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
|
||||
unsigned char addr;
|
||||
int ret, retries;
|
||||
|
||||
retries = nak_ok ? 0 : i2c_adap->retries;
|
||||
|
||||
if (flags & I2C_M_TEN) {
|
||||
/* a ten bit address */
|
||||
addr = 0xf0 | ((msg->addr >> 7) & 0x06);
|
||||
bit_dbg(2, &i2c_adap->dev, "addr0: %d\n", addr);
|
||||
/* try extended address code...*/
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
dev_err(&i2c_adap->dev,
|
||||
"died at extended address code\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
/* the remaining 8 bit address */
|
||||
ret = i2c_outb(i2c_adap, msg->addr & 0xff);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
/* the chip did not ack / xmission error occurred */
|
||||
dev_err(&i2c_adap->dev, "died at 2nd address code\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
if (flags & I2C_M_RD) {
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting repeated "
|
||||
"start condition\n");
|
||||
i2c_repstart(adap);
|
||||
/* okay, now switch into reading mode */
|
||||
addr |= 0x01;
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok) {
|
||||
dev_err(&i2c_adap->dev,
|
||||
"died at repeated address code\n");
|
||||
return -EIO;
|
||||
}
|
||||
}
|
||||
} else { /* normal 7bit address */
|
||||
addr = msg->addr << 1;
|
||||
if (flags & I2C_M_RD)
|
||||
addr |= 1;
|
||||
if (flags & I2C_M_REV_DIR_ADDR)
|
||||
addr ^= 1;
|
||||
ret = try_address(i2c_adap, addr, retries);
|
||||
if ((ret != 1) && !nak_ok)
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int bit_xfer(struct i2c_adapter *i2c_adap,
|
||||
struct i2c_msg msgs[], int num)
|
||||
{
|
||||
struct i2c_msg *pmsg;
|
||||
struct i2c_algo_bit_data *adap = i2c_adap->algo_data;
|
||||
int i, ret;
|
||||
unsigned short nak_ok;
|
||||
|
||||
if (adap->pre_xfer) {
|
||||
ret = adap->pre_xfer(i2c_adap);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
}
|
||||
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting start condition\n");
|
||||
i2c_start(adap);
|
||||
for (i = 0; i < num; i++) {
|
||||
pmsg = &msgs[i];
|
||||
nak_ok = pmsg->flags & I2C_M_IGNORE_NAK;
|
||||
if (!(pmsg->flags & I2C_M_NOSTART)) {
|
||||
if (i) {
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting "
|
||||
"repeated start condition\n");
|
||||
i2c_repstart(adap);
|
||||
}
|
||||
ret = bit_doAddress(i2c_adap, pmsg);
|
||||
if ((ret != 0) && !nak_ok) {
|
||||
bit_dbg(1, &i2c_adap->dev, "NAK from "
|
||||
"device addr 0x%02x msg #%d\n",
|
||||
msgs[i].addr, i);
|
||||
goto bailout;
|
||||
}
|
||||
}
|
||||
if (pmsg->flags & I2C_M_RD) {
|
||||
/* read bytes into buffer*/
|
||||
ret = readbytes(i2c_adap, pmsg);
|
||||
if (ret >= 1)
|
||||
bit_dbg(2, &i2c_adap->dev, "read %d byte%s\n",
|
||||
ret, ret == 1 ? "" : "s");
|
||||
if (ret < pmsg->len) {
|
||||
if (ret >= 0)
|
||||
ret = -EIO;
|
||||
goto bailout;
|
||||
}
|
||||
} else {
|
||||
/* write bytes from buffer */
|
||||
ret = sendbytes(i2c_adap, pmsg);
|
||||
if (ret >= 1)
|
||||
bit_dbg(2, &i2c_adap->dev, "wrote %d byte%s\n",
|
||||
ret, ret == 1 ? "" : "s");
|
||||
if (ret < pmsg->len) {
|
||||
if (ret >= 0)
|
||||
ret = -EIO;
|
||||
goto bailout;
|
||||
}
|
||||
}
|
||||
}
|
||||
ret = i;
|
||||
|
||||
bailout:
|
||||
bit_dbg(3, &i2c_adap->dev, "emitting stop condition\n");
|
||||
i2c_stop(adap);
|
||||
|
||||
if (adap->post_xfer)
|
||||
adap->post_xfer(i2c_adap);
|
||||
return ret;
|
||||
}
|
||||
|
||||
static u32 bit_func(struct i2c_adapter *adap)
|
||||
{
|
||||
return I2C_FUNC_I2C | I2C_FUNC_NOSTART | I2C_FUNC_SMBUS_EMUL |
|
||||
I2C_FUNC_SMBUS_READ_BLOCK_DATA |
|
||||
I2C_FUNC_SMBUS_BLOCK_PROC_CALL |
|
||||
I2C_FUNC_10BIT_ADDR | I2C_FUNC_PROTOCOL_MANGLING;
|
||||
}
|
||||
|
||||
|
||||
/* -----exported algorithm data: ------------------------------------- */
|
||||
|
||||
const struct i2c_algorithm i2c_bit_algo = {
|
||||
.master_xfer = bit_xfer,
|
||||
.functionality = bit_func,
|
||||
};
|
||||
EXPORT_SYMBOL(i2c_bit_algo);
|
||||
|
||||
/*
|
||||
* registering functions to load algorithms at runtime
|
||||
*/
|
||||
static int __i2c_bit_add_bus(struct i2c_adapter *adap,
|
||||
int (*add_adapter)(struct i2c_adapter *))
|
||||
{
|
||||
struct i2c_algo_bit_data *bit_adap = adap->algo_data;
|
||||
int ret;
|
||||
|
||||
if (bit_test) {
|
||||
ret = test_bus(adap);
|
||||
if (bit_test >= 2 && ret < 0)
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
/* register new adapter to i2c module... */
|
||||
adap->algo = &i2c_bit_algo;
|
||||
adap->retries = 3;
|
||||
|
||||
ret = add_adapter(adap);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
/* Complain if SCL can't be read */
|
||||
if (bit_adap->getscl == NULL) {
|
||||
dev_warn(&adap->dev, "Not I2C compliant: can't read SCL\n");
|
||||
dev_warn(&adap->dev, "Bus may be unreliable\n");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
int i2c_bit_add_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
return __i2c_bit_add_bus(adap, i2c_add_adapter);
|
||||
}
|
||||
EXPORT_SYMBOL(i2c_bit_add_bus);
|
||||
|
||||
int i2c_bit_add_numbered_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
return __i2c_bit_add_bus(adap, i2c_add_numbered_adapter);
|
||||
}
|
||||
EXPORT_SYMBOL(i2c_bit_add_numbered_bus);
|
||||
|
||||
MODULE_AUTHOR("Simon G. Vogl <simon@tk.uni-linz.ac.at>");
|
||||
MODULE_DESCRIPTION("I2C-Bus bit-banging algorithm");
|
||||
MODULE_LICENSE("GPL");
|
561
drivers/i2c/algos/i2c-algo-pca.c
Normal file
561
drivers/i2c/algos/i2c-algo-pca.c
Normal file
|
@ -0,0 +1,561 @@
|
|||
/*
|
||||
* i2c-algo-pca.c i2c driver algorithms for PCA9564 adapters
|
||||
* Copyright (C) 2004 Arcom Control Systems
|
||||
* Copyright (C) 2008 Pengutronix
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/moduleparam.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/jiffies.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/i2c.h>
|
||||
#include <linux/i2c-algo-pca.h>
|
||||
|
||||
#define DEB1(fmt, args...) do { if (i2c_debug >= 1) \
|
||||
printk(KERN_DEBUG fmt, ## args); } while (0)
|
||||
#define DEB2(fmt, args...) do { if (i2c_debug >= 2) \
|
||||
printk(KERN_DEBUG fmt, ## args); } while (0)
|
||||
#define DEB3(fmt, args...) do { if (i2c_debug >= 3) \
|
||||
printk(KERN_DEBUG fmt, ## args); } while (0)
|
||||
|
||||
static int i2c_debug;
|
||||
|
||||
#define pca_outw(adap, reg, val) adap->write_byte(adap->data, reg, val)
|
||||
#define pca_inw(adap, reg) adap->read_byte(adap->data, reg)
|
||||
|
||||
#define pca_status(adap) pca_inw(adap, I2C_PCA_STA)
|
||||
#define pca_clock(adap) adap->i2c_clock
|
||||
#define pca_set_con(adap, val) pca_outw(adap, I2C_PCA_CON, val)
|
||||
#define pca_get_con(adap) pca_inw(adap, I2C_PCA_CON)
|
||||
#define pca_wait(adap) adap->wait_for_completion(adap->data)
|
||||
|
||||
static void pca_reset(struct i2c_algo_pca_data *adap)
|
||||
{
|
||||
if (adap->chip == I2C_PCA_CHIP_9665) {
|
||||
/* Ignore the reset function from the module,
|
||||
* we can use the parallel bus reset.
|
||||
*/
|
||||
pca_outw(adap, I2C_PCA_INDPTR, I2C_PCA_IPRESET);
|
||||
pca_outw(adap, I2C_PCA_IND, 0xA5);
|
||||
pca_outw(adap, I2C_PCA_IND, 0x5A);
|
||||
} else {
|
||||
adap->reset_chip(adap->data);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a start condition on the i2c bus.
|
||||
*
|
||||
* returns after the start condition has occurred
|
||||
*/
|
||||
static int pca_start(struct i2c_algo_pca_data *adap)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
DEB2("=== START\n");
|
||||
sta |= I2C_PCA_CON_STA;
|
||||
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
|
||||
pca_set_con(adap, sta);
|
||||
return pca_wait(adap);
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a repeated start condition on the i2c bus
|
||||
*
|
||||
* return after the repeated start condition has occurred
|
||||
*/
|
||||
static int pca_repeated_start(struct i2c_algo_pca_data *adap)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
DEB2("=== REPEATED START\n");
|
||||
sta |= I2C_PCA_CON_STA;
|
||||
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_SI);
|
||||
pca_set_con(adap, sta);
|
||||
return pca_wait(adap);
|
||||
}
|
||||
|
||||
/*
|
||||
* Generate a stop condition on the i2c bus
|
||||
*
|
||||
* returns after the stop condition has been generated
|
||||
*
|
||||
* STOPs do not generate an interrupt or set the SI flag, since the
|
||||
* part returns the idle state (0xf8). Hence we don't need to
|
||||
* pca_wait here.
|
||||
*/
|
||||
static void pca_stop(struct i2c_algo_pca_data *adap)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
DEB2("=== STOP\n");
|
||||
sta |= I2C_PCA_CON_STO;
|
||||
sta &= ~(I2C_PCA_CON_STA|I2C_PCA_CON_SI);
|
||||
pca_set_con(adap, sta);
|
||||
}
|
||||
|
||||
/*
|
||||
* Send the slave address and R/W bit
|
||||
*
|
||||
* returns after the address has been sent
|
||||
*/
|
||||
static int pca_address(struct i2c_algo_pca_data *adap,
|
||||
struct i2c_msg *msg)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
int addr;
|
||||
|
||||
addr = ((0x7f & msg->addr) << 1);
|
||||
if (msg->flags & I2C_M_RD)
|
||||
addr |= 1;
|
||||
DEB2("=== SLAVE ADDRESS %#04x+%c=%#04x\n",
|
||||
msg->addr, msg->flags & I2C_M_RD ? 'R' : 'W', addr);
|
||||
|
||||
pca_outw(adap, I2C_PCA_DAT, addr);
|
||||
|
||||
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
|
||||
pca_set_con(adap, sta);
|
||||
|
||||
return pca_wait(adap);
|
||||
}
|
||||
|
||||
/*
|
||||
* Transmit a byte.
|
||||
*
|
||||
* Returns after the byte has been transmitted
|
||||
*/
|
||||
static int pca_tx_byte(struct i2c_algo_pca_data *adap,
|
||||
__u8 b)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
DEB2("=== WRITE %#04x\n", b);
|
||||
pca_outw(adap, I2C_PCA_DAT, b);
|
||||
|
||||
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI);
|
||||
pca_set_con(adap, sta);
|
||||
|
||||
return pca_wait(adap);
|
||||
}
|
||||
|
||||
/*
|
||||
* Receive a byte
|
||||
*
|
||||
* returns immediately.
|
||||
*/
|
||||
static void pca_rx_byte(struct i2c_algo_pca_data *adap,
|
||||
__u8 *b, int ack)
|
||||
{
|
||||
*b = pca_inw(adap, I2C_PCA_DAT);
|
||||
DEB2("=== READ %#04x %s\n", *b, ack ? "ACK" : "NACK");
|
||||
}
|
||||
|
||||
/*
|
||||
* Setup ACK or NACK for next received byte and wait for it to arrive.
|
||||
*
|
||||
* Returns after next byte has arrived.
|
||||
*/
|
||||
static int pca_rx_ack(struct i2c_algo_pca_data *adap,
|
||||
int ack)
|
||||
{
|
||||
int sta = pca_get_con(adap);
|
||||
|
||||
sta &= ~(I2C_PCA_CON_STO|I2C_PCA_CON_STA|I2C_PCA_CON_SI|I2C_PCA_CON_AA);
|
||||
|
||||
if (ack)
|
||||
sta |= I2C_PCA_CON_AA;
|
||||
|
||||
pca_set_con(adap, sta);
|
||||
return pca_wait(adap);
|
||||
}
|
||||
|
||||
static int pca_xfer(struct i2c_adapter *i2c_adap,
|
||||
struct i2c_msg *msgs,
|
||||
int num)
|
||||
{
|
||||
struct i2c_algo_pca_data *adap = i2c_adap->algo_data;
|
||||
struct i2c_msg *msg = NULL;
|
||||
int curmsg;
|
||||
int numbytes = 0;
|
||||
int state;
|
||||
int ret;
|
||||
int completed = 1;
|
||||
unsigned long timeout = jiffies + i2c_adap->timeout;
|
||||
|
||||
while ((state = pca_status(adap)) != 0xf8) {
|
||||
if (time_before(jiffies, timeout)) {
|
||||
msleep(10);
|
||||
} else {
|
||||
dev_dbg(&i2c_adap->dev, "bus is not idle. status is "
|
||||
"%#04x\n", state);
|
||||
return -EBUSY;
|
||||
}
|
||||
}
|
||||
|
||||
DEB1("{{{ XFER %d messages\n", num);
|
||||
|
||||
if (i2c_debug >= 2) {
|
||||
for (curmsg = 0; curmsg < num; curmsg++) {
|
||||
int addr, i;
|
||||
msg = &msgs[curmsg];
|
||||
|
||||
addr = (0x7f & msg->addr) ;
|
||||
|
||||
if (msg->flags & I2C_M_RD)
|
||||
printk(KERN_INFO " [%02d] RD %d bytes from %#02x [%#02x, ...]\n",
|
||||
curmsg, msg->len, addr, (addr << 1) | 1);
|
||||
else {
|
||||
printk(KERN_INFO " [%02d] WR %d bytes to %#02x [%#02x%s",
|
||||
curmsg, msg->len, addr, addr << 1,
|
||||
msg->len == 0 ? "" : ", ");
|
||||
for (i = 0; i < msg->len; i++)
|
||||
printk("%#04x%s", msg->buf[i], i == msg->len - 1 ? "" : ", ");
|
||||
printk("]\n");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
curmsg = 0;
|
||||
ret = -EIO;
|
||||
while (curmsg < num) {
|
||||
state = pca_status(adap);
|
||||
|
||||
DEB3("STATE is 0x%02x\n", state);
|
||||
msg = &msgs[curmsg];
|
||||
|
||||
switch (state) {
|
||||
case 0xf8: /* On reset or stop the bus is idle */
|
||||
completed = pca_start(adap);
|
||||
break;
|
||||
|
||||
case 0x08: /* A START condition has been transmitted */
|
||||
case 0x10: /* A repeated start condition has been transmitted */
|
||||
completed = pca_address(adap, msg);
|
||||
break;
|
||||
|
||||
case 0x18: /* SLA+W has been transmitted; ACK has been received */
|
||||
case 0x28: /* Data byte in I2CDAT has been transmitted; ACK has been received */
|
||||
if (numbytes < msg->len) {
|
||||
completed = pca_tx_byte(adap,
|
||||
msg->buf[numbytes]);
|
||||
numbytes++;
|
||||
break;
|
||||
}
|
||||
curmsg++; numbytes = 0;
|
||||
if (curmsg == num)
|
||||
pca_stop(adap);
|
||||
else
|
||||
completed = pca_repeated_start(adap);
|
||||
break;
|
||||
|
||||
case 0x20: /* SLA+W has been transmitted; NOT ACK has been received */
|
||||
DEB2("NOT ACK received after SLA+W\n");
|
||||
pca_stop(adap);
|
||||
ret = -ENXIO;
|
||||
goto out;
|
||||
|
||||
case 0x40: /* SLA+R has been transmitted; ACK has been received */
|
||||
completed = pca_rx_ack(adap, msg->len > 1);
|
||||
break;
|
||||
|
||||
case 0x50: /* Data bytes has been received; ACK has been returned */
|
||||
if (numbytes < msg->len) {
|
||||
pca_rx_byte(adap, &msg->buf[numbytes], 1);
|
||||
numbytes++;
|
||||
completed = pca_rx_ack(adap,
|
||||
numbytes < msg->len - 1);
|
||||
break;
|
||||
}
|
||||
curmsg++; numbytes = 0;
|
||||
if (curmsg == num)
|
||||
pca_stop(adap);
|
||||
else
|
||||
completed = pca_repeated_start(adap);
|
||||
break;
|
||||
|
||||
case 0x48: /* SLA+R has been transmitted; NOT ACK has been received */
|
||||
DEB2("NOT ACK received after SLA+R\n");
|
||||
pca_stop(adap);
|
||||
ret = -ENXIO;
|
||||
goto out;
|
||||
|
||||
case 0x30: /* Data byte in I2CDAT has been transmitted; NOT ACK has been received */
|
||||
DEB2("NOT ACK received after data byte\n");
|
||||
pca_stop(adap);
|
||||
goto out;
|
||||
|
||||
case 0x38: /* Arbitration lost during SLA+W, SLA+R or data bytes */
|
||||
DEB2("Arbitration lost\n");
|
||||
/*
|
||||
* The PCA9564 data sheet (2006-09-01) says "A
|
||||
* START condition will be transmitted when the
|
||||
* bus becomes free (STOP or SCL and SDA high)"
|
||||
* when the STA bit is set (p. 11).
|
||||
*
|
||||
* In case this won't work, try pca_reset()
|
||||
* instead.
|
||||
*/
|
||||
pca_start(adap);
|
||||
goto out;
|
||||
|
||||
case 0x58: /* Data byte has been received; NOT ACK has been returned */
|
||||
if (numbytes == msg->len - 1) {
|
||||
pca_rx_byte(adap, &msg->buf[numbytes], 0);
|
||||
curmsg++; numbytes = 0;
|
||||
if (curmsg == num)
|
||||
pca_stop(adap);
|
||||
else
|
||||
completed = pca_repeated_start(adap);
|
||||
} else {
|
||||
DEB2("NOT ACK sent after data byte received. "
|
||||
"Not final byte. numbytes %d. len %d\n",
|
||||
numbytes, msg->len);
|
||||
pca_stop(adap);
|
||||
goto out;
|
||||
}
|
||||
break;
|
||||
case 0x70: /* Bus error - SDA stuck low */
|
||||
DEB2("BUS ERROR - SDA Stuck low\n");
|
||||
pca_reset(adap);
|
||||
goto out;
|
||||
case 0x90: /* Bus error - SCL stuck low */
|
||||
DEB2("BUS ERROR - SCL Stuck low\n");
|
||||
pca_reset(adap);
|
||||
goto out;
|
||||
case 0x00: /* Bus error during master or slave mode due to illegal START or STOP condition */
|
||||
DEB2("BUS ERROR - Illegal START or STOP\n");
|
||||
pca_reset(adap);
|
||||
goto out;
|
||||
default:
|
||||
dev_err(&i2c_adap->dev, "unhandled SIO state 0x%02x\n", state);
|
||||
break;
|
||||
}
|
||||
|
||||
if (!completed)
|
||||
goto out;
|
||||
}
|
||||
|
||||
ret = curmsg;
|
||||
out:
|
||||
DEB1("}}} transferred %d/%d messages. "
|
||||
"status is %#04x. control is %#04x\n",
|
||||
curmsg, num, pca_status(adap),
|
||||
pca_get_con(adap));
|
||||
return ret;
|
||||
}
|
||||
|
||||
static u32 pca_func(struct i2c_adapter *adap)
|
||||
{
|
||||
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
|
||||
}
|
||||
|
||||
static const struct i2c_algorithm pca_algo = {
|
||||
.master_xfer = pca_xfer,
|
||||
.functionality = pca_func,
|
||||
};
|
||||
|
||||
static unsigned int pca_probe_chip(struct i2c_adapter *adap)
|
||||
{
|
||||
struct i2c_algo_pca_data *pca_data = adap->algo_data;
|
||||
/* The trick here is to check if there is an indirect register
|
||||
* available. If there is one, we will read the value we first
|
||||
* wrote on I2C_PCA_IADR. Otherwise, we will read the last value
|
||||
* we wrote on I2C_PCA_ADR
|
||||
*/
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
|
||||
pca_outw(pca_data, I2C_PCA_IND, 0xAA);
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ITO);
|
||||
pca_outw(pca_data, I2C_PCA_IND, 0x00);
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IADR);
|
||||
if (pca_inw(pca_data, I2C_PCA_IND) == 0xAA) {
|
||||
printk(KERN_INFO "%s: PCA9665 detected.\n", adap->name);
|
||||
pca_data->chip = I2C_PCA_CHIP_9665;
|
||||
} else {
|
||||
printk(KERN_INFO "%s: PCA9564 detected.\n", adap->name);
|
||||
pca_data->chip = I2C_PCA_CHIP_9564;
|
||||
}
|
||||
return pca_data->chip;
|
||||
}
|
||||
|
||||
static int pca_init(struct i2c_adapter *adap)
|
||||
{
|
||||
struct i2c_algo_pca_data *pca_data = adap->algo_data;
|
||||
|
||||
adap->algo = &pca_algo;
|
||||
|
||||
if (pca_probe_chip(adap) == I2C_PCA_CHIP_9564) {
|
||||
static int freqs[] = {330, 288, 217, 146, 88, 59, 44, 36};
|
||||
int clock;
|
||||
|
||||
if (pca_data->i2c_clock > 7) {
|
||||
switch (pca_data->i2c_clock) {
|
||||
case 330000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_330kHz;
|
||||
break;
|
||||
case 288000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_288kHz;
|
||||
break;
|
||||
case 217000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_217kHz;
|
||||
break;
|
||||
case 146000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_146kHz;
|
||||
break;
|
||||
case 88000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_88kHz;
|
||||
break;
|
||||
case 59000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
|
||||
break;
|
||||
case 44000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_44kHz;
|
||||
break;
|
||||
case 36000:
|
||||
pca_data->i2c_clock = I2C_PCA_CON_36kHz;
|
||||
break;
|
||||
default:
|
||||
printk(KERN_WARNING
|
||||
"%s: Invalid I2C clock speed selected."
|
||||
" Using default 59kHz.\n", adap->name);
|
||||
pca_data->i2c_clock = I2C_PCA_CON_59kHz;
|
||||
}
|
||||
} else {
|
||||
printk(KERN_WARNING "%s: "
|
||||
"Choosing the clock frequency based on "
|
||||
"index is deprecated."
|
||||
" Use the nominal frequency.\n", adap->name);
|
||||
}
|
||||
|
||||
pca_reset(pca_data);
|
||||
|
||||
clock = pca_clock(pca_data);
|
||||
printk(KERN_INFO "%s: Clock frequency is %dkHz\n",
|
||||
adap->name, freqs[clock]);
|
||||
|
||||
pca_set_con(pca_data, I2C_PCA_CON_ENSIO | clock);
|
||||
} else {
|
||||
int clock;
|
||||
int mode;
|
||||
int tlow, thi;
|
||||
/* Values can be found on PCA9665 datasheet section 7.3.2.6 */
|
||||
int min_tlow, min_thi;
|
||||
/* These values are the maximum raise and fall values allowed
|
||||
* by the I2C operation mode (Standard, Fast or Fast+)
|
||||
* They are used (added) below to calculate the clock dividers
|
||||
* of PCA9665. Note that they are slightly different of the
|
||||
* real maximum, to allow the change on mode exactly on the
|
||||
* maximum clock rate for each mode
|
||||
*/
|
||||
int raise_fall_time;
|
||||
|
||||
if (pca_data->i2c_clock > 1265800) {
|
||||
printk(KERN_WARNING "%s: I2C clock speed too high."
|
||||
" Using 1265.8kHz.\n", adap->name);
|
||||
pca_data->i2c_clock = 1265800;
|
||||
}
|
||||
|
||||
if (pca_data->i2c_clock < 60300) {
|
||||
printk(KERN_WARNING "%s: I2C clock speed too low."
|
||||
" Using 60.3kHz.\n", adap->name);
|
||||
pca_data->i2c_clock = 60300;
|
||||
}
|
||||
|
||||
/* To avoid integer overflow, use clock/100 for calculations */
|
||||
clock = pca_clock(pca_data) / 100;
|
||||
|
||||
if (pca_data->i2c_clock > 1000000) {
|
||||
mode = I2C_PCA_MODE_TURBO;
|
||||
min_tlow = 14;
|
||||
min_thi = 5;
|
||||
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
|
||||
} else if (pca_data->i2c_clock > 400000) {
|
||||
mode = I2C_PCA_MODE_FASTP;
|
||||
min_tlow = 17;
|
||||
min_thi = 9;
|
||||
raise_fall_time = 22; /* Raise 11e-8s, Fall 11e-8s */
|
||||
} else if (pca_data->i2c_clock > 100000) {
|
||||
mode = I2C_PCA_MODE_FAST;
|
||||
min_tlow = 44;
|
||||
min_thi = 20;
|
||||
raise_fall_time = 58; /* Raise 29e-8s, Fall 29e-8s */
|
||||
} else {
|
||||
mode = I2C_PCA_MODE_STD;
|
||||
min_tlow = 157;
|
||||
min_thi = 134;
|
||||
raise_fall_time = 127; /* Raise 29e-8s, Fall 98e-8s */
|
||||
}
|
||||
|
||||
/* The minimum clock that respects the thi/tlow = 134/157 is
|
||||
* 64800 Hz. Below that, we have to fix the tlow to 255 and
|
||||
* calculate the thi factor.
|
||||
*/
|
||||
if (clock < 648) {
|
||||
tlow = 255;
|
||||
thi = 1000000 - clock * raise_fall_time;
|
||||
thi /= (I2C_PCA_OSC_PER * clock) - tlow;
|
||||
} else {
|
||||
tlow = (1000000 - clock * raise_fall_time) * min_tlow;
|
||||
tlow /= I2C_PCA_OSC_PER * clock * (min_thi + min_tlow);
|
||||
thi = tlow * min_thi / min_tlow;
|
||||
}
|
||||
|
||||
pca_reset(pca_data);
|
||||
|
||||
printk(KERN_INFO
|
||||
"%s: Clock frequency is %dHz\n", adap->name, clock * 100);
|
||||
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_IMODE);
|
||||
pca_outw(pca_data, I2C_PCA_IND, mode);
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLL);
|
||||
pca_outw(pca_data, I2C_PCA_IND, tlow);
|
||||
pca_outw(pca_data, I2C_PCA_INDPTR, I2C_PCA_ISCLH);
|
||||
pca_outw(pca_data, I2C_PCA_IND, thi);
|
||||
|
||||
pca_set_con(pca_data, I2C_PCA_CON_ENSIO);
|
||||
}
|
||||
udelay(500); /* 500 us for oscilator to stabilise */
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* registering functions to load algorithms at runtime
|
||||
*/
|
||||
int i2c_pca_add_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
int rval;
|
||||
|
||||
rval = pca_init(adap);
|
||||
if (rval)
|
||||
return rval;
|
||||
|
||||
return i2c_add_adapter(adap);
|
||||
}
|
||||
EXPORT_SYMBOL(i2c_pca_add_bus);
|
||||
|
||||
int i2c_pca_add_numbered_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
int rval;
|
||||
|
||||
rval = pca_init(adap);
|
||||
if (rval)
|
||||
return rval;
|
||||
|
||||
return i2c_add_numbered_adapter(adap);
|
||||
}
|
||||
EXPORT_SYMBOL(i2c_pca_add_numbered_bus);
|
||||
|
||||
MODULE_AUTHOR("Ian Campbell <icampbell@arcom.com>, "
|
||||
"Wolfram Sang <w.sang@pengutronix.de>");
|
||||
MODULE_DESCRIPTION("I2C-Bus PCA9564/PCA9665 algorithm");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
module_param(i2c_debug, int, 0);
|
436
drivers/i2c/algos/i2c-algo-pcf.c
Normal file
436
drivers/i2c/algos/i2c-algo-pcf.c
Normal file
|
@ -0,0 +1,436 @@
|
|||
/*
|
||||
* i2c-algo-pcf.c i2c driver algorithms for PCF8584 adapters
|
||||
*
|
||||
* Copyright (C) 1995-1997 Simon G. Vogl
|
||||
* 1998-2000 Hans Berglund
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* With some changes from Kyösti Mälkki <kmalkki@cc.hut.fi> and
|
||||
* Frodo Looijaard <frodol@dds.nl>, and also from Martin Bailey
|
||||
* <mbailey@littlefeet-inc.com>
|
||||
*
|
||||
* Partially rewriten by Oleg I. Vdovikin <vdovikin@jscc.ru> to handle multiple
|
||||
* messages, proper stop/repstart signaling during receive, added detect code
|
||||
*/
|
||||
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/i2c.h>
|
||||
#include <linux/i2c-algo-pcf.h>
|
||||
#include "i2c-algo-pcf.h"
|
||||
|
||||
|
||||
#define DEB2(x) if (i2c_debug >= 2) x
|
||||
#define DEB3(x) if (i2c_debug >= 3) x /* print several statistical values */
|
||||
#define DEBPROTO(x) if (i2c_debug >= 9) x;
|
||||
/* debug the protocol by showing transferred bits */
|
||||
#define DEF_TIMEOUT 16
|
||||
|
||||
/*
|
||||
* module parameters:
|
||||
*/
|
||||
static int i2c_debug;
|
||||
|
||||
/* setting states on the bus with the right timing: */
|
||||
|
||||
#define set_pcf(adap, ctl, val) adap->setpcf(adap->data, ctl, val)
|
||||
#define get_pcf(adap, ctl) adap->getpcf(adap->data, ctl)
|
||||
#define get_own(adap) adap->getown(adap->data)
|
||||
#define get_clock(adap) adap->getclock(adap->data)
|
||||
#define i2c_outb(adap, val) adap->setpcf(adap->data, 0, val)
|
||||
#define i2c_inb(adap) adap->getpcf(adap->data, 0)
|
||||
|
||||
/* other auxiliary functions */
|
||||
|
||||
static void i2c_start(struct i2c_algo_pcf_data *adap)
|
||||
{
|
||||
DEBPROTO(printk(KERN_DEBUG "S "));
|
||||
set_pcf(adap, 1, I2C_PCF_START);
|
||||
}
|
||||
|
||||
static void i2c_repstart(struct i2c_algo_pcf_data *adap)
|
||||
{
|
||||
DEBPROTO(printk(" Sr "));
|
||||
set_pcf(adap, 1, I2C_PCF_REPSTART);
|
||||
}
|
||||
|
||||
static void i2c_stop(struct i2c_algo_pcf_data *adap)
|
||||
{
|
||||
DEBPROTO(printk("P\n"));
|
||||
set_pcf(adap, 1, I2C_PCF_STOP);
|
||||
}
|
||||
|
||||
static void handle_lab(struct i2c_algo_pcf_data *adap, const int *status)
|
||||
{
|
||||
DEB2(printk(KERN_INFO
|
||||
"i2c-algo-pcf.o: lost arbitration (CSR 0x%02x)\n",
|
||||
*status));
|
||||
/*
|
||||
* Cleanup from LAB -- reset and enable ESO.
|
||||
* This resets the PCF8584; since we've lost the bus, no
|
||||
* further attempts should be made by callers to clean up
|
||||
* (no i2c_stop() etc.)
|
||||
*/
|
||||
set_pcf(adap, 1, I2C_PCF_PIN);
|
||||
set_pcf(adap, 1, I2C_PCF_ESO);
|
||||
/*
|
||||
* We pause for a time period sufficient for any running
|
||||
* I2C transaction to complete -- the arbitration logic won't
|
||||
* work properly until the next START is seen.
|
||||
* It is assumed the bus driver or client has set a proper value.
|
||||
*
|
||||
* REVISIT: should probably use msleep instead of mdelay if we
|
||||
* know we can sleep.
|
||||
*/
|
||||
if (adap->lab_mdelay)
|
||||
mdelay(adap->lab_mdelay);
|
||||
|
||||
DEB2(printk(KERN_INFO
|
||||
"i2c-algo-pcf.o: reset LAB condition (CSR 0x%02x)\n",
|
||||
get_pcf(adap, 1)));
|
||||
}
|
||||
|
||||
static int wait_for_bb(struct i2c_algo_pcf_data *adap)
|
||||
{
|
||||
|
||||
int timeout = DEF_TIMEOUT;
|
||||
int status;
|
||||
|
||||
status = get_pcf(adap, 1);
|
||||
|
||||
while (!(status & I2C_PCF_BB) && --timeout) {
|
||||
udelay(100); /* wait for 100 us */
|
||||
status = get_pcf(adap, 1);
|
||||
}
|
||||
|
||||
if (timeout == 0) {
|
||||
printk(KERN_ERR "Timeout waiting for Bus Busy\n");
|
||||
return -ETIMEDOUT;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int wait_for_pin(struct i2c_algo_pcf_data *adap, int *status)
|
||||
{
|
||||
|
||||
int timeout = DEF_TIMEOUT;
|
||||
|
||||
*status = get_pcf(adap, 1);
|
||||
|
||||
while ((*status & I2C_PCF_PIN) && --timeout) {
|
||||
adap->waitforpin(adap->data);
|
||||
*status = get_pcf(adap, 1);
|
||||
}
|
||||
if (*status & I2C_PCF_LAB) {
|
||||
handle_lab(adap, status);
|
||||
return -EINTR;
|
||||
}
|
||||
|
||||
if (timeout == 0)
|
||||
return -ETIMEDOUT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* This should perform the 'PCF8584 initialization sequence' as described
|
||||
* in the Philips IC12 data book (1995, Aug 29).
|
||||
* There should be a 30 clock cycle wait after reset, I assume this
|
||||
* has been fulfilled.
|
||||
* There should be a delay at the end equal to the longest I2C message
|
||||
* to synchronize the BB-bit (in multimaster systems). How long is
|
||||
* this? I assume 1 second is always long enough.
|
||||
*
|
||||
* vdovikin: added detect code for PCF8584
|
||||
*/
|
||||
static int pcf_init_8584 (struct i2c_algo_pcf_data *adap)
|
||||
{
|
||||
unsigned char temp;
|
||||
|
||||
DEB3(printk(KERN_DEBUG "i2c-algo-pcf.o: PCF state 0x%02x\n",
|
||||
get_pcf(adap, 1)));
|
||||
|
||||
/* S1=0x80: S0 selected, serial interface off */
|
||||
set_pcf(adap, 1, I2C_PCF_PIN);
|
||||
/*
|
||||
* check to see S1 now used as R/W ctrl -
|
||||
* PCF8584 does that when ESO is zero
|
||||
*/
|
||||
if (((temp = get_pcf(adap, 1)) & 0x7f) != (0)) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S0 (0x%02x).\n", temp));
|
||||
return -ENXIO; /* definitely not PCF8584 */
|
||||
}
|
||||
|
||||
/* load own address in S0, effective address is (own << 1) */
|
||||
i2c_outb(adap, get_own(adap));
|
||||
/* check it's really written */
|
||||
if ((temp = i2c_inb(adap)) != get_own(adap)) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't set S0 (0x%02x).\n", temp));
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
/* S1=0xA0, next byte in S2 */
|
||||
set_pcf(adap, 1, I2C_PCF_PIN | I2C_PCF_ES1);
|
||||
/* check to see S2 now selected */
|
||||
if (((temp = get_pcf(adap, 1)) & 0x7f) != I2C_PCF_ES1) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S2 (0x%02x).\n", temp));
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
/* load clock register S2 */
|
||||
i2c_outb(adap, get_clock(adap));
|
||||
/* check it's really written, the only 5 lowest bits does matter */
|
||||
if (((temp = i2c_inb(adap)) & 0x1f) != get_clock(adap)) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't set S2 (0x%02x).\n", temp));
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
/* Enable serial interface, idle, S0 selected */
|
||||
set_pcf(adap, 1, I2C_PCF_IDLE);
|
||||
|
||||
/* check to see PCF is really idled and we can access status register */
|
||||
if ((temp = get_pcf(adap, 1)) != (I2C_PCF_PIN | I2C_PCF_BB)) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: PCF detection failed -- can't select S1` (0x%02x).\n", temp));
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
printk(KERN_DEBUG "i2c-algo-pcf.o: detected and initialized PCF8584.\n");
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pcf_sendbytes(struct i2c_adapter *i2c_adap, const char *buf,
|
||||
int count, int last)
|
||||
{
|
||||
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
||||
int wrcount, status, timeout;
|
||||
|
||||
for (wrcount=0; wrcount<count; ++wrcount) {
|
||||
DEB2(dev_dbg(&i2c_adap->dev, "i2c_write: writing %2.2X\n",
|
||||
buf[wrcount] & 0xff));
|
||||
i2c_outb(adap, buf[wrcount]);
|
||||
timeout = wait_for_pin(adap, &status);
|
||||
if (timeout) {
|
||||
if (timeout == -EINTR)
|
||||
return -EINTR; /* arbitration lost */
|
||||
|
||||
i2c_stop(adap);
|
||||
dev_err(&i2c_adap->dev, "i2c_write: error - timeout.\n");
|
||||
return -EREMOTEIO; /* got a better one ?? */
|
||||
}
|
||||
if (status & I2C_PCF_LRB) {
|
||||
i2c_stop(adap);
|
||||
dev_err(&i2c_adap->dev, "i2c_write: error - no ack.\n");
|
||||
return -EREMOTEIO; /* got a better one ?? */
|
||||
}
|
||||
}
|
||||
if (last)
|
||||
i2c_stop(adap);
|
||||
else
|
||||
i2c_repstart(adap);
|
||||
|
||||
return wrcount;
|
||||
}
|
||||
|
||||
static int pcf_readbytes(struct i2c_adapter *i2c_adap, char *buf,
|
||||
int count, int last)
|
||||
{
|
||||
int i, status;
|
||||
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
||||
int wfp;
|
||||
|
||||
/* increment number of bytes to read by one -- read dummy byte */
|
||||
for (i = 0; i <= count; i++) {
|
||||
|
||||
if ((wfp = wait_for_pin(adap, &status))) {
|
||||
if (wfp == -EINTR)
|
||||
return -EINTR; /* arbitration lost */
|
||||
|
||||
i2c_stop(adap);
|
||||
dev_err(&i2c_adap->dev, "pcf_readbytes timed out.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if ((status & I2C_PCF_LRB) && (i != count)) {
|
||||
i2c_stop(adap);
|
||||
dev_err(&i2c_adap->dev, "i2c_read: i2c_inb, No ack.\n");
|
||||
return -1;
|
||||
}
|
||||
|
||||
if (i == count - 1) {
|
||||
set_pcf(adap, 1, I2C_PCF_ESO);
|
||||
} else if (i == count) {
|
||||
if (last)
|
||||
i2c_stop(adap);
|
||||
else
|
||||
i2c_repstart(adap);
|
||||
}
|
||||
|
||||
if (i)
|
||||
buf[i - 1] = i2c_inb(adap);
|
||||
else
|
||||
i2c_inb(adap); /* dummy read */
|
||||
}
|
||||
|
||||
return i - 1;
|
||||
}
|
||||
|
||||
|
||||
static int pcf_doAddress(struct i2c_algo_pcf_data *adap,
|
||||
struct i2c_msg *msg)
|
||||
{
|
||||
unsigned short flags = msg->flags;
|
||||
unsigned char addr;
|
||||
|
||||
addr = msg->addr << 1;
|
||||
if (flags & I2C_M_RD)
|
||||
addr |= 1;
|
||||
if (flags & I2C_M_REV_DIR_ADDR)
|
||||
addr ^= 1;
|
||||
i2c_outb(adap, addr);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int pcf_xfer(struct i2c_adapter *i2c_adap,
|
||||
struct i2c_msg *msgs,
|
||||
int num)
|
||||
{
|
||||
struct i2c_algo_pcf_data *adap = i2c_adap->algo_data;
|
||||
struct i2c_msg *pmsg;
|
||||
int i;
|
||||
int ret=0, timeout, status;
|
||||
|
||||
if (adap->xfer_begin)
|
||||
adap->xfer_begin(adap->data);
|
||||
|
||||
/* Check for bus busy */
|
||||
timeout = wait_for_bb(adap);
|
||||
if (timeout) {
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: "
|
||||
"Timeout waiting for BB in pcf_xfer\n");)
|
||||
i = -EIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
for (i = 0;ret >= 0 && i < num; i++) {
|
||||
pmsg = &msgs[i];
|
||||
|
||||
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: Doing %s %d bytes to 0x%02x - %d of %d messages\n",
|
||||
pmsg->flags & I2C_M_RD ? "read" : "write",
|
||||
pmsg->len, pmsg->addr, i + 1, num);)
|
||||
|
||||
ret = pcf_doAddress(adap, pmsg);
|
||||
|
||||
/* Send START */
|
||||
if (i == 0)
|
||||
i2c_start(adap);
|
||||
|
||||
/* Wait for PIN (pending interrupt NOT) */
|
||||
timeout = wait_for_pin(adap, &status);
|
||||
if (timeout) {
|
||||
if (timeout == -EINTR) {
|
||||
/* arbitration lost */
|
||||
i = -EINTR;
|
||||
goto out;
|
||||
}
|
||||
i2c_stop(adap);
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: Timeout waiting "
|
||||
"for PIN(1) in pcf_xfer\n");)
|
||||
i = -EREMOTEIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
/* Check LRB (last rcvd bit - slave ack) */
|
||||
if (status & I2C_PCF_LRB) {
|
||||
i2c_stop(adap);
|
||||
DEB2(printk(KERN_ERR "i2c-algo-pcf.o: No LRB(1) in pcf_xfer\n");)
|
||||
i = -EREMOTEIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
DEB3(printk(KERN_DEBUG "i2c-algo-pcf.o: Msg %d, addr=0x%x, flags=0x%x, len=%d\n",
|
||||
i, msgs[i].addr, msgs[i].flags, msgs[i].len);)
|
||||
|
||||
if (pmsg->flags & I2C_M_RD) {
|
||||
ret = pcf_readbytes(i2c_adap, pmsg->buf, pmsg->len,
|
||||
(i + 1 == num));
|
||||
|
||||
if (ret != pmsg->len) {
|
||||
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: fail: "
|
||||
"only read %d bytes.\n",ret));
|
||||
} else {
|
||||
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: read %d bytes.\n",ret));
|
||||
}
|
||||
} else {
|
||||
ret = pcf_sendbytes(i2c_adap, pmsg->buf, pmsg->len,
|
||||
(i + 1 == num));
|
||||
|
||||
if (ret != pmsg->len) {
|
||||
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: fail: "
|
||||
"only wrote %d bytes.\n",ret));
|
||||
} else {
|
||||
DEB2(printk(KERN_DEBUG "i2c-algo-pcf.o: wrote %d bytes.\n",ret));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
out:
|
||||
if (adap->xfer_end)
|
||||
adap->xfer_end(adap->data);
|
||||
return i;
|
||||
}
|
||||
|
||||
static u32 pcf_func(struct i2c_adapter *adap)
|
||||
{
|
||||
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL |
|
||||
I2C_FUNC_PROTOCOL_MANGLING;
|
||||
}
|
||||
|
||||
/* exported algorithm data: */
|
||||
static const struct i2c_algorithm pcf_algo = {
|
||||
.master_xfer = pcf_xfer,
|
||||
.functionality = pcf_func,
|
||||
};
|
||||
|
||||
/*
|
||||
* registering functions to load algorithms at runtime
|
||||
*/
|
||||
int i2c_pcf_add_bus(struct i2c_adapter *adap)
|
||||
{
|
||||
struct i2c_algo_pcf_data *pcf_adap = adap->algo_data;
|
||||
int rval;
|
||||
|
||||
DEB2(dev_dbg(&adap->dev, "hw routines registered.\n"));
|
||||
|
||||
/* register new adapter to i2c module... */
|
||||
adap->algo = &pcf_algo;
|
||||
|
||||
if ((rval = pcf_init_8584(pcf_adap)))
|
||||
return rval;
|
||||
|
||||
rval = i2c_add_adapter(adap);
|
||||
|
||||
return rval;
|
||||
}
|
||||
EXPORT_SYMBOL(i2c_pcf_add_bus);
|
||||
|
||||
MODULE_AUTHOR("Hans Berglund <hb@spacetec.no>");
|
||||
MODULE_DESCRIPTION("I2C-Bus PCF8584 algorithm");
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
module_param(i2c_debug, int, S_IRUGO | S_IWUSR);
|
||||
MODULE_PARM_DESC(i2c_debug,
|
||||
"debug level - 0 off; 1 normal; 2,3 more verbose; 9 pcf-protocol");
|
72
drivers/i2c/algos/i2c-algo-pcf.h
Normal file
72
drivers/i2c/algos/i2c-algo-pcf.h
Normal file
|
@ -0,0 +1,72 @@
|
|||
/* -------------------------------------------------------------------- */
|
||||
/* i2c-pcf8584.h: PCF 8584 global defines */
|
||||
/* -------------------------------------------------------------------- */
|
||||
/* Copyright (C) 1996 Simon G. Vogl
|
||||
1999 Hans Berglund
|
||||
|
||||
This program is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
This program is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details. */
|
||||
/* -------------------------------------------------------------------- */
|
||||
|
||||
/* With some changes from Frodo Looijaard <frodol@dds.nl> */
|
||||
|
||||
#ifndef I2C_PCF8584_H
|
||||
#define I2C_PCF8584_H 1
|
||||
|
||||
/* ----- Control register bits ---------------------------------------- */
|
||||
#define I2C_PCF_PIN 0x80
|
||||
#define I2C_PCF_ESO 0x40
|
||||
#define I2C_PCF_ES1 0x20
|
||||
#define I2C_PCF_ES2 0x10
|
||||
#define I2C_PCF_ENI 0x08
|
||||
#define I2C_PCF_STA 0x04
|
||||
#define I2C_PCF_STO 0x02
|
||||
#define I2C_PCF_ACK 0x01
|
||||
|
||||
#define I2C_PCF_START (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_STA | I2C_PCF_ACK)
|
||||
#define I2C_PCF_STOP (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_STO | I2C_PCF_ACK)
|
||||
#define I2C_PCF_REPSTART ( I2C_PCF_ESO | I2C_PCF_STA | I2C_PCF_ACK)
|
||||
#define I2C_PCF_IDLE (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_ACK)
|
||||
|
||||
/* ----- Status register bits ----------------------------------------- */
|
||||
/*#define I2C_PCF_PIN 0x80 as above*/
|
||||
|
||||
#define I2C_PCF_INI 0x40 /* 1 if not initialized */
|
||||
#define I2C_PCF_STS 0x20
|
||||
#define I2C_PCF_BER 0x10
|
||||
#define I2C_PCF_AD0 0x08
|
||||
#define I2C_PCF_LRB 0x08
|
||||
#define I2C_PCF_AAS 0x04
|
||||
#define I2C_PCF_LAB 0x02
|
||||
#define I2C_PCF_BB 0x01
|
||||
|
||||
/* ----- Chip clock frequencies --------------------------------------- */
|
||||
#define I2C_PCF_CLK3 0x00
|
||||
#define I2C_PCF_CLK443 0x10
|
||||
#define I2C_PCF_CLK6 0x14
|
||||
#define I2C_PCF_CLK 0x18
|
||||
#define I2C_PCF_CLK12 0x1c
|
||||
|
||||
/* ----- transmission frequencies ------------------------------------- */
|
||||
#define I2C_PCF_TRNS90 0x00 /* 90 kHz */
|
||||
#define I2C_PCF_TRNS45 0x01 /* 45 kHz */
|
||||
#define I2C_PCF_TRNS11 0x02 /* 11 kHz */
|
||||
#define I2C_PCF_TRNS15 0x03 /* 1.5 kHz */
|
||||
|
||||
|
||||
/* ----- Access to internal registers according to ES1,ES2 ------------ */
|
||||
/* they are mapped to the data port ( a0 = 0 ) */
|
||||
/* available when ESO == 0 : */
|
||||
|
||||
#define I2C_PCF_OWNADR 0
|
||||
#define I2C_PCF_INTREG I2C_PCF_ES2
|
||||
#define I2C_PCF_CLKREG I2C_PCF_ES1
|
||||
|
||||
#endif /* I2C_PCF8584_H */
|
Loading…
Add table
Add a link
Reference in a new issue