mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 17:18:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
587
drivers/oprofile/buffer_sync.c
Normal file
587
drivers/oprofile/buffer_sync.c
Normal file
|
@ -0,0 +1,587 @@
|
|||
/**
|
||||
* @file buffer_sync.c
|
||||
*
|
||||
* @remark Copyright 2002-2009 OProfile authors
|
||||
* @remark Read the file COPYING
|
||||
*
|
||||
* @author John Levon <levon@movementarian.org>
|
||||
* @author Barry Kasindorf
|
||||
* @author Robert Richter <robert.richter@amd.com>
|
||||
*
|
||||
* This is the core of the buffer management. Each
|
||||
* CPU buffer is processed and entered into the
|
||||
* global event buffer. Such processing is necessary
|
||||
* in several circumstances, mentioned below.
|
||||
*
|
||||
* The processing does the job of converting the
|
||||
* transitory EIP value into a persistent dentry/offset
|
||||
* value that the profiler can record at its leisure.
|
||||
*
|
||||
* See fs/dcookies.c for a description of the dentry/offset
|
||||
* objects.
|
||||
*/
|
||||
|
||||
#include <linux/mm.h>
|
||||
#include <linux/workqueue.h>
|
||||
#include <linux/notifier.h>
|
||||
#include <linux/dcookies.h>
|
||||
#include <linux/profile.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/oprofile.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/gfp.h>
|
||||
|
||||
#include "oprofile_stats.h"
|
||||
#include "event_buffer.h"
|
||||
#include "cpu_buffer.h"
|
||||
#include "buffer_sync.h"
|
||||
|
||||
static LIST_HEAD(dying_tasks);
|
||||
static LIST_HEAD(dead_tasks);
|
||||
static cpumask_var_t marked_cpus;
|
||||
static DEFINE_SPINLOCK(task_mortuary);
|
||||
static void process_task_mortuary(void);
|
||||
|
||||
/* Take ownership of the task struct and place it on the
|
||||
* list for processing. Only after two full buffer syncs
|
||||
* does the task eventually get freed, because by then
|
||||
* we are sure we will not reference it again.
|
||||
* Can be invoked from softirq via RCU callback due to
|
||||
* call_rcu() of the task struct, hence the _irqsave.
|
||||
*/
|
||||
static int
|
||||
task_free_notify(struct notifier_block *self, unsigned long val, void *data)
|
||||
{
|
||||
unsigned long flags;
|
||||
struct task_struct *task = data;
|
||||
spin_lock_irqsave(&task_mortuary, flags);
|
||||
list_add(&task->tasks, &dying_tasks);
|
||||
spin_unlock_irqrestore(&task_mortuary, flags);
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
|
||||
/* The task is on its way out. A sync of the buffer means we can catch
|
||||
* any remaining samples for this task.
|
||||
*/
|
||||
static int
|
||||
task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
|
||||
{
|
||||
/* To avoid latency problems, we only process the current CPU,
|
||||
* hoping that most samples for the task are on this CPU
|
||||
*/
|
||||
sync_buffer(raw_smp_processor_id());
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* The task is about to try a do_munmap(). We peek at what it's going to
|
||||
* do, and if it's an executable region, process the samples first, so
|
||||
* we don't lose any. This does not have to be exact, it's a QoI issue
|
||||
* only.
|
||||
*/
|
||||
static int
|
||||
munmap_notify(struct notifier_block *self, unsigned long val, void *data)
|
||||
{
|
||||
unsigned long addr = (unsigned long)data;
|
||||
struct mm_struct *mm = current->mm;
|
||||
struct vm_area_struct *mpnt;
|
||||
|
||||
down_read(&mm->mmap_sem);
|
||||
|
||||
mpnt = find_vma(mm, addr);
|
||||
if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
|
||||
up_read(&mm->mmap_sem);
|
||||
/* To avoid latency problems, we only process the current CPU,
|
||||
* hoping that most samples for the task are on this CPU
|
||||
*/
|
||||
sync_buffer(raw_smp_processor_id());
|
||||
return 0;
|
||||
}
|
||||
|
||||
up_read(&mm->mmap_sem);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
/* We need to be told about new modules so we don't attribute to a previously
|
||||
* loaded module, or drop the samples on the floor.
|
||||
*/
|
||||
static int
|
||||
module_load_notify(struct notifier_block *self, unsigned long val, void *data)
|
||||
{
|
||||
#ifdef CONFIG_MODULES
|
||||
if (val != MODULE_STATE_COMING)
|
||||
return 0;
|
||||
|
||||
/* FIXME: should we process all CPU buffers ? */
|
||||
mutex_lock(&buffer_mutex);
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(MODULE_LOADED_CODE);
|
||||
mutex_unlock(&buffer_mutex);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static struct notifier_block task_free_nb = {
|
||||
.notifier_call = task_free_notify,
|
||||
};
|
||||
|
||||
static struct notifier_block task_exit_nb = {
|
||||
.notifier_call = task_exit_notify,
|
||||
};
|
||||
|
||||
static struct notifier_block munmap_nb = {
|
||||
.notifier_call = munmap_notify,
|
||||
};
|
||||
|
||||
static struct notifier_block module_load_nb = {
|
||||
.notifier_call = module_load_notify,
|
||||
};
|
||||
|
||||
static void free_all_tasks(void)
|
||||
{
|
||||
/* make sure we don't leak task structs */
|
||||
process_task_mortuary();
|
||||
process_task_mortuary();
|
||||
}
|
||||
|
||||
int sync_start(void)
|
||||
{
|
||||
int err;
|
||||
|
||||
if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
|
||||
return -ENOMEM;
|
||||
|
||||
err = task_handoff_register(&task_free_nb);
|
||||
if (err)
|
||||
goto out1;
|
||||
err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
|
||||
if (err)
|
||||
goto out2;
|
||||
err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
|
||||
if (err)
|
||||
goto out3;
|
||||
err = register_module_notifier(&module_load_nb);
|
||||
if (err)
|
||||
goto out4;
|
||||
|
||||
start_cpu_work();
|
||||
|
||||
out:
|
||||
return err;
|
||||
out4:
|
||||
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
||||
out3:
|
||||
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
||||
out2:
|
||||
task_handoff_unregister(&task_free_nb);
|
||||
free_all_tasks();
|
||||
out1:
|
||||
free_cpumask_var(marked_cpus);
|
||||
goto out;
|
||||
}
|
||||
|
||||
|
||||
void sync_stop(void)
|
||||
{
|
||||
end_cpu_work();
|
||||
unregister_module_notifier(&module_load_nb);
|
||||
profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
|
||||
profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
|
||||
task_handoff_unregister(&task_free_nb);
|
||||
barrier(); /* do all of the above first */
|
||||
|
||||
flush_cpu_work();
|
||||
|
||||
free_all_tasks();
|
||||
free_cpumask_var(marked_cpus);
|
||||
}
|
||||
|
||||
|
||||
/* Optimisation. We can manage without taking the dcookie sem
|
||||
* because we cannot reach this code without at least one
|
||||
* dcookie user still being registered (namely, the reader
|
||||
* of the event buffer). */
|
||||
static inline unsigned long fast_get_dcookie(struct path *path)
|
||||
{
|
||||
unsigned long cookie;
|
||||
|
||||
if (path->dentry->d_flags & DCACHE_COOKIE)
|
||||
return (unsigned long)path->dentry;
|
||||
get_dcookie(path, &cookie);
|
||||
return cookie;
|
||||
}
|
||||
|
||||
|
||||
/* Look up the dcookie for the task's mm->exe_file,
|
||||
* which corresponds loosely to "application name". This is
|
||||
* not strictly necessary but allows oprofile to associate
|
||||
* shared-library samples with particular applications
|
||||
*/
|
||||
static unsigned long get_exec_dcookie(struct mm_struct *mm)
|
||||
{
|
||||
unsigned long cookie = NO_COOKIE;
|
||||
|
||||
if (mm && mm->exe_file)
|
||||
cookie = fast_get_dcookie(&mm->exe_file->f_path);
|
||||
|
||||
return cookie;
|
||||
}
|
||||
|
||||
|
||||
/* Convert the EIP value of a sample into a persistent dentry/offset
|
||||
* pair that can then be added to the global event buffer. We make
|
||||
* sure to do this lookup before a mm->mmap modification happens so
|
||||
* we don't lose track.
|
||||
*/
|
||||
static unsigned long
|
||||
lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
|
||||
{
|
||||
unsigned long cookie = NO_COOKIE;
|
||||
struct vm_area_struct *vma;
|
||||
|
||||
for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
|
||||
|
||||
if (addr < vma->vm_start || addr >= vma->vm_end)
|
||||
continue;
|
||||
|
||||
if (vma->vm_file) {
|
||||
cookie = fast_get_dcookie(&vma->vm_file->f_path);
|
||||
*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
|
||||
vma->vm_start;
|
||||
} else {
|
||||
/* must be an anonymous map */
|
||||
*offset = addr;
|
||||
}
|
||||
|
||||
break;
|
||||
}
|
||||
|
||||
if (!vma)
|
||||
cookie = INVALID_COOKIE;
|
||||
|
||||
return cookie;
|
||||
}
|
||||
|
||||
static unsigned long last_cookie = INVALID_COOKIE;
|
||||
|
||||
static void add_cpu_switch(int i)
|
||||
{
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(CPU_SWITCH_CODE);
|
||||
add_event_entry(i);
|
||||
last_cookie = INVALID_COOKIE;
|
||||
}
|
||||
|
||||
static void add_kernel_ctx_switch(unsigned int in_kernel)
|
||||
{
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
if (in_kernel)
|
||||
add_event_entry(KERNEL_ENTER_SWITCH_CODE);
|
||||
else
|
||||
add_event_entry(KERNEL_EXIT_SWITCH_CODE);
|
||||
}
|
||||
|
||||
static void
|
||||
add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
|
||||
{
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(CTX_SWITCH_CODE);
|
||||
add_event_entry(task->pid);
|
||||
add_event_entry(cookie);
|
||||
/* Another code for daemon back-compat */
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(CTX_TGID_CODE);
|
||||
add_event_entry(task->tgid);
|
||||
}
|
||||
|
||||
|
||||
static void add_cookie_switch(unsigned long cookie)
|
||||
{
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(COOKIE_SWITCH_CODE);
|
||||
add_event_entry(cookie);
|
||||
}
|
||||
|
||||
|
||||
static void add_trace_begin(void)
|
||||
{
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(TRACE_BEGIN_CODE);
|
||||
}
|
||||
|
||||
static void add_data(struct op_entry *entry, struct mm_struct *mm)
|
||||
{
|
||||
unsigned long code, pc, val;
|
||||
unsigned long cookie;
|
||||
off_t offset;
|
||||
|
||||
if (!op_cpu_buffer_get_data(entry, &code))
|
||||
return;
|
||||
if (!op_cpu_buffer_get_data(entry, &pc))
|
||||
return;
|
||||
if (!op_cpu_buffer_get_size(entry))
|
||||
return;
|
||||
|
||||
if (mm) {
|
||||
cookie = lookup_dcookie(mm, pc, &offset);
|
||||
|
||||
if (cookie == NO_COOKIE)
|
||||
offset = pc;
|
||||
if (cookie == INVALID_COOKIE) {
|
||||
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
||||
offset = pc;
|
||||
}
|
||||
if (cookie != last_cookie) {
|
||||
add_cookie_switch(cookie);
|
||||
last_cookie = cookie;
|
||||
}
|
||||
} else
|
||||
offset = pc;
|
||||
|
||||
add_event_entry(ESCAPE_CODE);
|
||||
add_event_entry(code);
|
||||
add_event_entry(offset); /* Offset from Dcookie */
|
||||
|
||||
while (op_cpu_buffer_get_data(entry, &val))
|
||||
add_event_entry(val);
|
||||
}
|
||||
|
||||
static inline void add_sample_entry(unsigned long offset, unsigned long event)
|
||||
{
|
||||
add_event_entry(offset);
|
||||
add_event_entry(event);
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Add a sample to the global event buffer. If possible the
|
||||
* sample is converted into a persistent dentry/offset pair
|
||||
* for later lookup from userspace. Return 0 on failure.
|
||||
*/
|
||||
static int
|
||||
add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
|
||||
{
|
||||
unsigned long cookie;
|
||||
off_t offset;
|
||||
|
||||
if (in_kernel) {
|
||||
add_sample_entry(s->eip, s->event);
|
||||
return 1;
|
||||
}
|
||||
|
||||
/* add userspace sample */
|
||||
|
||||
if (!mm) {
|
||||
atomic_inc(&oprofile_stats.sample_lost_no_mm);
|
||||
return 0;
|
||||
}
|
||||
|
||||
cookie = lookup_dcookie(mm, s->eip, &offset);
|
||||
|
||||
if (cookie == INVALID_COOKIE) {
|
||||
atomic_inc(&oprofile_stats.sample_lost_no_mapping);
|
||||
return 0;
|
||||
}
|
||||
|
||||
if (cookie != last_cookie) {
|
||||
add_cookie_switch(cookie);
|
||||
last_cookie = cookie;
|
||||
}
|
||||
|
||||
add_sample_entry(offset, s->event);
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
static void release_mm(struct mm_struct *mm)
|
||||
{
|
||||
if (!mm)
|
||||
return;
|
||||
up_read(&mm->mmap_sem);
|
||||
mmput(mm);
|
||||
}
|
||||
|
||||
|
||||
static struct mm_struct *take_tasks_mm(struct task_struct *task)
|
||||
{
|
||||
struct mm_struct *mm = get_task_mm(task);
|
||||
if (mm)
|
||||
down_read(&mm->mmap_sem);
|
||||
return mm;
|
||||
}
|
||||
|
||||
|
||||
static inline int is_code(unsigned long val)
|
||||
{
|
||||
return val == ESCAPE_CODE;
|
||||
}
|
||||
|
||||
|
||||
/* Move tasks along towards death. Any tasks on dead_tasks
|
||||
* will definitely have no remaining references in any
|
||||
* CPU buffers at this point, because we use two lists,
|
||||
* and to have reached the list, it must have gone through
|
||||
* one full sync already.
|
||||
*/
|
||||
static void process_task_mortuary(void)
|
||||
{
|
||||
unsigned long flags;
|
||||
LIST_HEAD(local_dead_tasks);
|
||||
struct task_struct *task;
|
||||
struct task_struct *ttask;
|
||||
|
||||
spin_lock_irqsave(&task_mortuary, flags);
|
||||
|
||||
list_splice_init(&dead_tasks, &local_dead_tasks);
|
||||
list_splice_init(&dying_tasks, &dead_tasks);
|
||||
|
||||
spin_unlock_irqrestore(&task_mortuary, flags);
|
||||
|
||||
list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
|
||||
list_del(&task->tasks);
|
||||
free_task(task);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void mark_done(int cpu)
|
||||
{
|
||||
int i;
|
||||
|
||||
cpumask_set_cpu(cpu, marked_cpus);
|
||||
|
||||
for_each_online_cpu(i) {
|
||||
if (!cpumask_test_cpu(i, marked_cpus))
|
||||
return;
|
||||
}
|
||||
|
||||
/* All CPUs have been processed at least once,
|
||||
* we can process the mortuary once
|
||||
*/
|
||||
process_task_mortuary();
|
||||
|
||||
cpumask_clear(marked_cpus);
|
||||
}
|
||||
|
||||
|
||||
/* FIXME: this is not sufficient if we implement syscall barrier backtrace
|
||||
* traversal, the code switch to sb_sample_start at first kernel enter/exit
|
||||
* switch so we need a fifth state and some special handling in sync_buffer()
|
||||
*/
|
||||
typedef enum {
|
||||
sb_bt_ignore = -2,
|
||||
sb_buffer_start,
|
||||
sb_bt_start,
|
||||
sb_sample_start,
|
||||
} sync_buffer_state;
|
||||
|
||||
/* Sync one of the CPU's buffers into the global event buffer.
|
||||
* Here we need to go through each batch of samples punctuated
|
||||
* by context switch notes, taking the task's mmap_sem and doing
|
||||
* lookup in task->mm->mmap to convert EIP into dcookie/offset
|
||||
* value.
|
||||
*/
|
||||
void sync_buffer(int cpu)
|
||||
{
|
||||
struct mm_struct *mm = NULL;
|
||||
struct mm_struct *oldmm;
|
||||
unsigned long val;
|
||||
struct task_struct *new;
|
||||
unsigned long cookie = 0;
|
||||
int in_kernel = 1;
|
||||
sync_buffer_state state = sb_buffer_start;
|
||||
unsigned int i;
|
||||
unsigned long available;
|
||||
unsigned long flags;
|
||||
struct op_entry entry;
|
||||
struct op_sample *sample;
|
||||
|
||||
mutex_lock(&buffer_mutex);
|
||||
|
||||
add_cpu_switch(cpu);
|
||||
|
||||
op_cpu_buffer_reset(cpu);
|
||||
available = op_cpu_buffer_entries(cpu);
|
||||
|
||||
for (i = 0; i < available; ++i) {
|
||||
sample = op_cpu_buffer_read_entry(&entry, cpu);
|
||||
if (!sample)
|
||||
break;
|
||||
|
||||
if (is_code(sample->eip)) {
|
||||
flags = sample->event;
|
||||
if (flags & TRACE_BEGIN) {
|
||||
state = sb_bt_start;
|
||||
add_trace_begin();
|
||||
}
|
||||
if (flags & KERNEL_CTX_SWITCH) {
|
||||
/* kernel/userspace switch */
|
||||
in_kernel = flags & IS_KERNEL;
|
||||
if (state == sb_buffer_start)
|
||||
state = sb_sample_start;
|
||||
add_kernel_ctx_switch(flags & IS_KERNEL);
|
||||
}
|
||||
if (flags & USER_CTX_SWITCH
|
||||
&& op_cpu_buffer_get_data(&entry, &val)) {
|
||||
/* userspace context switch */
|
||||
new = (struct task_struct *)val;
|
||||
oldmm = mm;
|
||||
release_mm(oldmm);
|
||||
mm = take_tasks_mm(new);
|
||||
if (mm != oldmm)
|
||||
cookie = get_exec_dcookie(mm);
|
||||
add_user_ctx_switch(new, cookie);
|
||||
}
|
||||
if (op_cpu_buffer_get_size(&entry))
|
||||
add_data(&entry, mm);
|
||||
continue;
|
||||
}
|
||||
|
||||
if (state < sb_bt_start)
|
||||
/* ignore sample */
|
||||
continue;
|
||||
|
||||
if (add_sample(mm, sample, in_kernel))
|
||||
continue;
|
||||
|
||||
/* ignore backtraces if failed to add a sample */
|
||||
if (state == sb_bt_start) {
|
||||
state = sb_bt_ignore;
|
||||
atomic_inc(&oprofile_stats.bt_lost_no_mapping);
|
||||
}
|
||||
}
|
||||
release_mm(mm);
|
||||
|
||||
mark_done(cpu);
|
||||
|
||||
mutex_unlock(&buffer_mutex);
|
||||
}
|
||||
|
||||
/* The function can be used to add a buffer worth of data directly to
|
||||
* the kernel buffer. The buffer is assumed to be a circular buffer.
|
||||
* Take the entries from index start and end at index end, wrapping
|
||||
* at max_entries.
|
||||
*/
|
||||
void oprofile_put_buff(unsigned long *buf, unsigned int start,
|
||||
unsigned int stop, unsigned int max)
|
||||
{
|
||||
int i;
|
||||
|
||||
i = start;
|
||||
|
||||
mutex_lock(&buffer_mutex);
|
||||
while (i != stop) {
|
||||
add_event_entry(buf[i++]);
|
||||
|
||||
if (i >= max)
|
||||
i = 0;
|
||||
}
|
||||
|
||||
mutex_unlock(&buffer_mutex);
|
||||
}
|
||||
|
Loading…
Add table
Add a link
Reference in a new issue