mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-09 01:28:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
74
drivers/sbus/char/Kconfig
Normal file
74
drivers/sbus/char/Kconfig
Normal file
|
@ -0,0 +1,74 @@
|
|||
|
||||
menu "Misc Linux/SPARC drivers"
|
||||
|
||||
config SUN_OPENPROMIO
|
||||
tristate "/dev/openprom device support"
|
||||
help
|
||||
This driver provides user programs with an interface to the SPARC
|
||||
PROM device tree. The driver implements a SunOS-compatible
|
||||
interface and a NetBSD-compatible interface.
|
||||
|
||||
To compile this driver as a module, choose M here: the
|
||||
module will be called openprom.
|
||||
|
||||
If unsure, say Y.
|
||||
|
||||
config OBP_FLASH
|
||||
tristate "OBP Flash Device support"
|
||||
depends on SPARC64
|
||||
help
|
||||
The OpenBoot PROM on Ultra systems is flashable. If you want to be
|
||||
able to upgrade the OBP firmware, say Y here.
|
||||
|
||||
config TADPOLE_TS102_UCTRL
|
||||
tristate "Tadpole TS102 Microcontroller support"
|
||||
help
|
||||
Say Y here to directly support the TS102 Microcontroller interface
|
||||
on the Tadpole Sparcbook 3. This device handles power-management
|
||||
events, and can also notice the attachment/detachment of external
|
||||
monitors and mice.
|
||||
|
||||
config SUN_JSFLASH
|
||||
tristate "JavaStation OS Flash SIMM"
|
||||
depends on SPARC32
|
||||
help
|
||||
If you say Y here, you will be able to boot from your JavaStation's
|
||||
Flash memory.
|
||||
|
||||
config BBC_I2C
|
||||
tristate "UltraSPARC-III bootbus i2c controller driver"
|
||||
depends on PCI && SPARC64
|
||||
help
|
||||
The BBC devices on the UltraSPARC III have two I2C controllers. The
|
||||
first I2C controller connects mainly to configuration PROMs (NVRAM,
|
||||
CPU configuration, DIMM types, etc.). The second I2C controller
|
||||
connects to environmental control devices such as fans and
|
||||
temperature sensors. The second controller also connects to the
|
||||
smartcard reader, if present. Say Y to enable support for these.
|
||||
|
||||
config ENVCTRL
|
||||
tristate "SUNW, envctrl support"
|
||||
depends on PCI && SPARC64
|
||||
help
|
||||
Kernel support for temperature and fan monitoring on Sun SME
|
||||
machines.
|
||||
|
||||
To compile this driver as a module, choose M here: the
|
||||
module will be called envctrl.
|
||||
|
||||
config DISPLAY7SEG
|
||||
tristate "7-Segment Display support"
|
||||
depends on PCI && SPARC64
|
||||
---help---
|
||||
This is the driver for the 7-segment display and LED present on
|
||||
Sun Microsystems CompactPCI models CP1400 and CP1500.
|
||||
|
||||
To compile this driver as a module, choose M here: the
|
||||
module will be called display7seg.
|
||||
|
||||
If you do not have a CompactPCI model CP1400 or CP1500, or
|
||||
another UltraSPARC-IIi-cEngine boardset with a 7-segment display,
|
||||
you should say N to this option.
|
||||
|
||||
endmenu
|
||||
|
18
drivers/sbus/char/Makefile
Normal file
18
drivers/sbus/char/Makefile
Normal file
|
@ -0,0 +1,18 @@
|
|||
#
|
||||
# Makefile for the kernel miscellaneous SPARC device drivers.
|
||||
#
|
||||
# Dave Redman Frame Buffer tuning support.
|
||||
#
|
||||
# 7 October 2000, Bartlomiej Zolnierkiewicz <bkz@linux-ide.org>
|
||||
# Rewritten to use lists instead of if-statements.
|
||||
#
|
||||
|
||||
bbc-objs := bbc_i2c.o bbc_envctrl.o
|
||||
|
||||
obj-$(CONFIG_ENVCTRL) += envctrl.o
|
||||
obj-$(CONFIG_DISPLAY7SEG) += display7seg.o
|
||||
obj-$(CONFIG_OBP_FLASH) += flash.o
|
||||
obj-$(CONFIG_SUN_OPENPROMIO) += openprom.o
|
||||
obj-$(CONFIG_TADPOLE_TS102_UCTRL) += uctrl.o
|
||||
obj-$(CONFIG_SUN_JSFLASH) += jsflash.o
|
||||
obj-$(CONFIG_BBC_I2C) += bbc.o
|
601
drivers/sbus/char/bbc_envctrl.c
Normal file
601
drivers/sbus/char/bbc_envctrl.c
Normal file
|
@ -0,0 +1,601 @@
|
|||
/* bbc_envctrl.c: UltraSPARC-III environment control driver.
|
||||
*
|
||||
* Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
|
||||
*/
|
||||
|
||||
#include <linux/kthread.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/kmod.h>
|
||||
#include <linux/reboot.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <asm/oplib.h>
|
||||
|
||||
#include "bbc_i2c.h"
|
||||
#include "max1617.h"
|
||||
|
||||
#undef ENVCTRL_TRACE
|
||||
|
||||
/* WARNING: Making changes to this driver is very dangerous.
|
||||
* If you misprogram the sensor chips they can
|
||||
* cut the power on you instantly.
|
||||
*/
|
||||
|
||||
/* Two temperature sensors exist in the SunBLADE-1000 enclosure.
|
||||
* Both are implemented using max1617 i2c devices. Each max1617
|
||||
* monitors 2 temperatures, one for one of the cpu dies and the other
|
||||
* for the ambient temperature.
|
||||
*
|
||||
* The max1617 is capable of being programmed with power-off
|
||||
* temperature values, one low limit and one high limit. These
|
||||
* can be controlled independently for the cpu or ambient temperature.
|
||||
* If a limit is violated, the power is simply shut off. The frequency
|
||||
* with which the max1617 does temperature sampling can be controlled
|
||||
* as well.
|
||||
*
|
||||
* Three fans exist inside the machine, all three are controlled with
|
||||
* an i2c digital to analog converter. There is a fan directed at the
|
||||
* two processor slots, another for the rest of the enclosure, and the
|
||||
* third is for the power supply. The first two fans may be speed
|
||||
* controlled by changing the voltage fed to them. The third fan may
|
||||
* only be completely off or on. The third fan is meant to only be
|
||||
* disabled/enabled when entering/exiting the lowest power-saving
|
||||
* mode of the machine.
|
||||
*
|
||||
* An environmental control kernel thread periodically monitors all
|
||||
* temperature sensors. Based upon the samples it will adjust the
|
||||
* fan speeds to try and keep the system within a certain temperature
|
||||
* range (the goal being to make the fans as quiet as possible without
|
||||
* allowing the system to get too hot).
|
||||
*
|
||||
* If the temperature begins to rise/fall outside of the acceptable
|
||||
* operating range, a periodic warning will be sent to the kernel log.
|
||||
* The fans will be put on full blast to attempt to deal with this
|
||||
* situation. After exceeding the acceptable operating range by a
|
||||
* certain threshold, the kernel thread will shut down the system.
|
||||
* Here, the thread is attempting to shut the machine down cleanly
|
||||
* before the hardware based power-off event is triggered.
|
||||
*/
|
||||
|
||||
/* These settings are in Celsius. We use these defaults only
|
||||
* if we cannot interrogate the cpu-fru SEEPROM.
|
||||
*/
|
||||
struct temp_limits {
|
||||
s8 high_pwroff, high_shutdown, high_warn;
|
||||
s8 low_warn, low_shutdown, low_pwroff;
|
||||
};
|
||||
|
||||
static struct temp_limits cpu_temp_limits[2] = {
|
||||
{ 100, 85, 80, 5, -5, -10 },
|
||||
{ 100, 85, 80, 5, -5, -10 },
|
||||
};
|
||||
|
||||
static struct temp_limits amb_temp_limits[2] = {
|
||||
{ 65, 55, 40, 5, -5, -10 },
|
||||
{ 65, 55, 40, 5, -5, -10 },
|
||||
};
|
||||
|
||||
static LIST_HEAD(all_temps);
|
||||
static LIST_HEAD(all_fans);
|
||||
|
||||
#define CPU_FAN_REG 0xf0
|
||||
#define SYS_FAN_REG 0xf2
|
||||
#define PSUPPLY_FAN_REG 0xf4
|
||||
|
||||
#define FAN_SPEED_MIN 0x0c
|
||||
#define FAN_SPEED_MAX 0x3f
|
||||
|
||||
#define PSUPPLY_FAN_ON 0x1f
|
||||
#define PSUPPLY_FAN_OFF 0x00
|
||||
|
||||
static void set_fan_speeds(struct bbc_fan_control *fp)
|
||||
{
|
||||
/* Put temperatures into range so we don't mis-program
|
||||
* the hardware.
|
||||
*/
|
||||
if (fp->cpu_fan_speed < FAN_SPEED_MIN)
|
||||
fp->cpu_fan_speed = FAN_SPEED_MIN;
|
||||
if (fp->cpu_fan_speed > FAN_SPEED_MAX)
|
||||
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
||||
if (fp->system_fan_speed < FAN_SPEED_MIN)
|
||||
fp->system_fan_speed = FAN_SPEED_MIN;
|
||||
if (fp->system_fan_speed > FAN_SPEED_MAX)
|
||||
fp->system_fan_speed = FAN_SPEED_MAX;
|
||||
#ifdef ENVCTRL_TRACE
|
||||
printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
|
||||
fp->index,
|
||||
fp->cpu_fan_speed, fp->system_fan_speed);
|
||||
#endif
|
||||
|
||||
bbc_i2c_writeb(fp->client, fp->cpu_fan_speed, CPU_FAN_REG);
|
||||
bbc_i2c_writeb(fp->client, fp->system_fan_speed, SYS_FAN_REG);
|
||||
bbc_i2c_writeb(fp->client,
|
||||
(fp->psupply_fan_on ?
|
||||
PSUPPLY_FAN_ON : PSUPPLY_FAN_OFF),
|
||||
PSUPPLY_FAN_REG);
|
||||
}
|
||||
|
||||
static void get_current_temps(struct bbc_cpu_temperature *tp)
|
||||
{
|
||||
tp->prev_amb_temp = tp->curr_amb_temp;
|
||||
bbc_i2c_readb(tp->client,
|
||||
(unsigned char *) &tp->curr_amb_temp,
|
||||
MAX1617_AMB_TEMP);
|
||||
tp->prev_cpu_temp = tp->curr_cpu_temp;
|
||||
bbc_i2c_readb(tp->client,
|
||||
(unsigned char *) &tp->curr_cpu_temp,
|
||||
MAX1617_CPU_TEMP);
|
||||
#ifdef ENVCTRL_TRACE
|
||||
printk("temp%d: cpu(%d C) amb(%d C)\n",
|
||||
tp->index,
|
||||
(int) tp->curr_cpu_temp, (int) tp->curr_amb_temp);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static void do_envctrl_shutdown(struct bbc_cpu_temperature *tp)
|
||||
{
|
||||
static int shutting_down = 0;
|
||||
char *type = "???";
|
||||
s8 val = -1;
|
||||
|
||||
if (shutting_down != 0)
|
||||
return;
|
||||
|
||||
if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
|
||||
tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
|
||||
type = "ambient";
|
||||
val = tp->curr_amb_temp;
|
||||
} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
|
||||
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
|
||||
type = "CPU";
|
||||
val = tp->curr_cpu_temp;
|
||||
}
|
||||
|
||||
printk(KERN_CRIT "temp%d: Outside of safe %s "
|
||||
"operating temperature, %d C.\n",
|
||||
tp->index, type, val);
|
||||
|
||||
printk(KERN_CRIT "kenvctrld: Shutting down the system now.\n");
|
||||
|
||||
shutting_down = 1;
|
||||
if (orderly_poweroff(true) < 0)
|
||||
printk(KERN_CRIT "envctrl: shutdown execution failed\n");
|
||||
}
|
||||
|
||||
#define WARN_INTERVAL (30 * HZ)
|
||||
|
||||
static void analyze_ambient_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
|
||||
if (tp->curr_amb_temp >=
|
||||
amb_temp_limits[tp->index].high_warn) {
|
||||
printk(KERN_WARNING "temp%d: "
|
||||
"Above safe ambient operating temperature, %d C.\n",
|
||||
tp->index, (int) tp->curr_amb_temp);
|
||||
ret = 1;
|
||||
} else if (tp->curr_amb_temp <
|
||||
amb_temp_limits[tp->index].low_warn) {
|
||||
printk(KERN_WARNING "temp%d: "
|
||||
"Below safe ambient operating temperature, %d C.\n",
|
||||
tp->index, (int) tp->curr_amb_temp);
|
||||
ret = 1;
|
||||
}
|
||||
if (ret)
|
||||
*last_warn = jiffies;
|
||||
} else if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_warn ||
|
||||
tp->curr_amb_temp < amb_temp_limits[tp->index].low_warn)
|
||||
ret = 1;
|
||||
|
||||
/* Now check the shutdown limits. */
|
||||
if (tp->curr_amb_temp >= amb_temp_limits[tp->index].high_shutdown ||
|
||||
tp->curr_amb_temp < amb_temp_limits[tp->index].low_shutdown) {
|
||||
do_envctrl_shutdown(tp);
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (ret) {
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_FULLBLAST;
|
||||
} else if ((tick & (8 - 1)) == 0) {
|
||||
s8 amb_goal_hi = amb_temp_limits[tp->index].high_warn - 10;
|
||||
s8 amb_goal_lo;
|
||||
|
||||
amb_goal_lo = amb_goal_hi - 3;
|
||||
|
||||
/* We do not try to avoid 'too cold' events. Basically we
|
||||
* only try to deal with over-heating and fan noise reduction.
|
||||
*/
|
||||
if (tp->avg_amb_temp < amb_goal_hi) {
|
||||
if (tp->avg_amb_temp >= amb_goal_lo)
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
||||
else
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_SLOWER;
|
||||
} else {
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_FASTER;
|
||||
}
|
||||
} else {
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
||||
}
|
||||
}
|
||||
|
||||
static void analyze_cpu_temp(struct bbc_cpu_temperature *tp, unsigned long *last_warn, int tick)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
if (time_after(jiffies, (*last_warn + WARN_INTERVAL))) {
|
||||
if (tp->curr_cpu_temp >=
|
||||
cpu_temp_limits[tp->index].high_warn) {
|
||||
printk(KERN_WARNING "temp%d: "
|
||||
"Above safe CPU operating temperature, %d C.\n",
|
||||
tp->index, (int) tp->curr_cpu_temp);
|
||||
ret = 1;
|
||||
} else if (tp->curr_cpu_temp <
|
||||
cpu_temp_limits[tp->index].low_warn) {
|
||||
printk(KERN_WARNING "temp%d: "
|
||||
"Below safe CPU operating temperature, %d C.\n",
|
||||
tp->index, (int) tp->curr_cpu_temp);
|
||||
ret = 1;
|
||||
}
|
||||
if (ret)
|
||||
*last_warn = jiffies;
|
||||
} else if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_warn ||
|
||||
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_warn)
|
||||
ret = 1;
|
||||
|
||||
/* Now check the shutdown limits. */
|
||||
if (tp->curr_cpu_temp >= cpu_temp_limits[tp->index].high_shutdown ||
|
||||
tp->curr_cpu_temp < cpu_temp_limits[tp->index].low_shutdown) {
|
||||
do_envctrl_shutdown(tp);
|
||||
ret = 1;
|
||||
}
|
||||
|
||||
if (ret) {
|
||||
tp->fan_todo[FAN_CPU] = FAN_FULLBLAST;
|
||||
} else if ((tick & (8 - 1)) == 0) {
|
||||
s8 cpu_goal_hi = cpu_temp_limits[tp->index].high_warn - 10;
|
||||
s8 cpu_goal_lo;
|
||||
|
||||
cpu_goal_lo = cpu_goal_hi - 3;
|
||||
|
||||
/* We do not try to avoid 'too cold' events. Basically we
|
||||
* only try to deal with over-heating and fan noise reduction.
|
||||
*/
|
||||
if (tp->avg_cpu_temp < cpu_goal_hi) {
|
||||
if (tp->avg_cpu_temp >= cpu_goal_lo)
|
||||
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
||||
else
|
||||
tp->fan_todo[FAN_CPU] = FAN_SLOWER;
|
||||
} else {
|
||||
tp->fan_todo[FAN_CPU] = FAN_FASTER;
|
||||
}
|
||||
} else {
|
||||
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
||||
}
|
||||
}
|
||||
|
||||
static void analyze_temps(struct bbc_cpu_temperature *tp, unsigned long *last_warn)
|
||||
{
|
||||
tp->avg_amb_temp = (s8)((int)((int)tp->avg_amb_temp + (int)tp->curr_amb_temp) / 2);
|
||||
tp->avg_cpu_temp = (s8)((int)((int)tp->avg_cpu_temp + (int)tp->curr_cpu_temp) / 2);
|
||||
|
||||
analyze_ambient_temp(tp, last_warn, tp->sample_tick);
|
||||
analyze_cpu_temp(tp, last_warn, tp->sample_tick);
|
||||
|
||||
tp->sample_tick++;
|
||||
}
|
||||
|
||||
static enum fan_action prioritize_fan_action(int which_fan)
|
||||
{
|
||||
struct bbc_cpu_temperature *tp;
|
||||
enum fan_action decision = FAN_STATE_MAX;
|
||||
|
||||
/* Basically, prioritize what the temperature sensors
|
||||
* recommend we do, and perform that action on all the
|
||||
* fans.
|
||||
*/
|
||||
list_for_each_entry(tp, &all_temps, glob_list) {
|
||||
if (tp->fan_todo[which_fan] == FAN_FULLBLAST) {
|
||||
decision = FAN_FULLBLAST;
|
||||
break;
|
||||
}
|
||||
if (tp->fan_todo[which_fan] == FAN_SAME &&
|
||||
decision != FAN_FASTER)
|
||||
decision = FAN_SAME;
|
||||
else if (tp->fan_todo[which_fan] == FAN_FASTER)
|
||||
decision = FAN_FASTER;
|
||||
else if (decision != FAN_FASTER &&
|
||||
decision != FAN_SAME &&
|
||||
tp->fan_todo[which_fan] == FAN_SLOWER)
|
||||
decision = FAN_SLOWER;
|
||||
}
|
||||
if (decision == FAN_STATE_MAX)
|
||||
decision = FAN_SAME;
|
||||
|
||||
return decision;
|
||||
}
|
||||
|
||||
static int maybe_new_ambient_fan_speed(struct bbc_fan_control *fp)
|
||||
{
|
||||
enum fan_action decision = prioritize_fan_action(FAN_AMBIENT);
|
||||
int ret;
|
||||
|
||||
if (decision == FAN_SAME)
|
||||
return 0;
|
||||
|
||||
ret = 1;
|
||||
if (decision == FAN_FULLBLAST) {
|
||||
if (fp->system_fan_speed >= FAN_SPEED_MAX)
|
||||
ret = 0;
|
||||
else
|
||||
fp->system_fan_speed = FAN_SPEED_MAX;
|
||||
} else {
|
||||
if (decision == FAN_FASTER) {
|
||||
if (fp->system_fan_speed >= FAN_SPEED_MAX)
|
||||
ret = 0;
|
||||
else
|
||||
fp->system_fan_speed += 2;
|
||||
} else {
|
||||
int orig_speed = fp->system_fan_speed;
|
||||
|
||||
if (orig_speed <= FAN_SPEED_MIN ||
|
||||
orig_speed <= (fp->cpu_fan_speed - 3))
|
||||
ret = 0;
|
||||
else
|
||||
fp->system_fan_speed -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int maybe_new_cpu_fan_speed(struct bbc_fan_control *fp)
|
||||
{
|
||||
enum fan_action decision = prioritize_fan_action(FAN_CPU);
|
||||
int ret;
|
||||
|
||||
if (decision == FAN_SAME)
|
||||
return 0;
|
||||
|
||||
ret = 1;
|
||||
if (decision == FAN_FULLBLAST) {
|
||||
if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
|
||||
ret = 0;
|
||||
else
|
||||
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
||||
} else {
|
||||
if (decision == FAN_FASTER) {
|
||||
if (fp->cpu_fan_speed >= FAN_SPEED_MAX)
|
||||
ret = 0;
|
||||
else {
|
||||
fp->cpu_fan_speed += 2;
|
||||
if (fp->system_fan_speed <
|
||||
(fp->cpu_fan_speed - 3))
|
||||
fp->system_fan_speed =
|
||||
fp->cpu_fan_speed - 3;
|
||||
}
|
||||
} else {
|
||||
if (fp->cpu_fan_speed <= FAN_SPEED_MIN)
|
||||
ret = 0;
|
||||
else
|
||||
fp->cpu_fan_speed -= 1;
|
||||
}
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void maybe_new_fan_speeds(struct bbc_fan_control *fp)
|
||||
{
|
||||
int new;
|
||||
|
||||
new = maybe_new_ambient_fan_speed(fp);
|
||||
new |= maybe_new_cpu_fan_speed(fp);
|
||||
|
||||
if (new)
|
||||
set_fan_speeds(fp);
|
||||
}
|
||||
|
||||
static void fans_full_blast(void)
|
||||
{
|
||||
struct bbc_fan_control *fp;
|
||||
|
||||
/* Since we will not be monitoring things anymore, put
|
||||
* the fans on full blast.
|
||||
*/
|
||||
list_for_each_entry(fp, &all_fans, glob_list) {
|
||||
fp->cpu_fan_speed = FAN_SPEED_MAX;
|
||||
fp->system_fan_speed = FAN_SPEED_MAX;
|
||||
fp->psupply_fan_on = 1;
|
||||
set_fan_speeds(fp);
|
||||
}
|
||||
}
|
||||
|
||||
#define POLL_INTERVAL (5 * 1000)
|
||||
static unsigned long last_warning_jiffies;
|
||||
static struct task_struct *kenvctrld_task;
|
||||
|
||||
static int kenvctrld(void *__unused)
|
||||
{
|
||||
printk(KERN_INFO "bbc_envctrl: kenvctrld starting...\n");
|
||||
last_warning_jiffies = jiffies - WARN_INTERVAL;
|
||||
for (;;) {
|
||||
struct bbc_cpu_temperature *tp;
|
||||
struct bbc_fan_control *fp;
|
||||
|
||||
msleep_interruptible(POLL_INTERVAL);
|
||||
if (kthread_should_stop())
|
||||
break;
|
||||
|
||||
list_for_each_entry(tp, &all_temps, glob_list) {
|
||||
get_current_temps(tp);
|
||||
analyze_temps(tp, &last_warning_jiffies);
|
||||
}
|
||||
list_for_each_entry(fp, &all_fans, glob_list)
|
||||
maybe_new_fan_speeds(fp);
|
||||
}
|
||||
printk(KERN_INFO "bbc_envctrl: kenvctrld exiting...\n");
|
||||
|
||||
fans_full_blast();
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void attach_one_temp(struct bbc_i2c_bus *bp, struct platform_device *op,
|
||||
int temp_idx)
|
||||
{
|
||||
struct bbc_cpu_temperature *tp;
|
||||
|
||||
tp = kzalloc(sizeof(*tp), GFP_KERNEL);
|
||||
if (!tp)
|
||||
return;
|
||||
|
||||
INIT_LIST_HEAD(&tp->bp_list);
|
||||
INIT_LIST_HEAD(&tp->glob_list);
|
||||
|
||||
tp->client = bbc_i2c_attach(bp, op);
|
||||
if (!tp->client) {
|
||||
kfree(tp);
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
tp->index = temp_idx;
|
||||
|
||||
list_add(&tp->glob_list, &all_temps);
|
||||
list_add(&tp->bp_list, &bp->temps);
|
||||
|
||||
/* Tell it to convert once every 5 seconds, clear all cfg
|
||||
* bits.
|
||||
*/
|
||||
bbc_i2c_writeb(tp->client, 0x00, MAX1617_WR_CFG_BYTE);
|
||||
bbc_i2c_writeb(tp->client, 0x02, MAX1617_WR_CVRATE_BYTE);
|
||||
|
||||
/* Program the hard temperature limits into the chip. */
|
||||
bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].high_pwroff,
|
||||
MAX1617_WR_AMB_HIGHLIM);
|
||||
bbc_i2c_writeb(tp->client, amb_temp_limits[tp->index].low_pwroff,
|
||||
MAX1617_WR_AMB_LOWLIM);
|
||||
bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].high_pwroff,
|
||||
MAX1617_WR_CPU_HIGHLIM);
|
||||
bbc_i2c_writeb(tp->client, cpu_temp_limits[tp->index].low_pwroff,
|
||||
MAX1617_WR_CPU_LOWLIM);
|
||||
|
||||
get_current_temps(tp);
|
||||
tp->prev_cpu_temp = tp->avg_cpu_temp = tp->curr_cpu_temp;
|
||||
tp->prev_amb_temp = tp->avg_amb_temp = tp->curr_amb_temp;
|
||||
|
||||
tp->fan_todo[FAN_AMBIENT] = FAN_SAME;
|
||||
tp->fan_todo[FAN_CPU] = FAN_SAME;
|
||||
}
|
||||
|
||||
static void attach_one_fan(struct bbc_i2c_bus *bp, struct platform_device *op,
|
||||
int fan_idx)
|
||||
{
|
||||
struct bbc_fan_control *fp;
|
||||
|
||||
fp = kzalloc(sizeof(*fp), GFP_KERNEL);
|
||||
if (!fp)
|
||||
return;
|
||||
|
||||
INIT_LIST_HEAD(&fp->bp_list);
|
||||
INIT_LIST_HEAD(&fp->glob_list);
|
||||
|
||||
fp->client = bbc_i2c_attach(bp, op);
|
||||
if (!fp->client) {
|
||||
kfree(fp);
|
||||
return;
|
||||
}
|
||||
|
||||
fp->index = fan_idx;
|
||||
|
||||
list_add(&fp->glob_list, &all_fans);
|
||||
list_add(&fp->bp_list, &bp->fans);
|
||||
|
||||
/* The i2c device controlling the fans is write-only.
|
||||
* So the only way to keep track of the current power
|
||||
* level fed to the fans is via software. Choose half
|
||||
* power for cpu/system and 'on' fo the powersupply fan
|
||||
* and set it now.
|
||||
*/
|
||||
fp->psupply_fan_on = 1;
|
||||
fp->cpu_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
|
||||
fp->cpu_fan_speed += FAN_SPEED_MIN;
|
||||
fp->system_fan_speed = (FAN_SPEED_MAX - FAN_SPEED_MIN) / 2;
|
||||
fp->system_fan_speed += FAN_SPEED_MIN;
|
||||
|
||||
set_fan_speeds(fp);
|
||||
}
|
||||
|
||||
static void destroy_one_temp(struct bbc_cpu_temperature *tp)
|
||||
{
|
||||
bbc_i2c_detach(tp->client);
|
||||
kfree(tp);
|
||||
}
|
||||
|
||||
static void destroy_all_temps(struct bbc_i2c_bus *bp)
|
||||
{
|
||||
struct bbc_cpu_temperature *tp, *tpos;
|
||||
|
||||
list_for_each_entry_safe(tp, tpos, &bp->temps, bp_list) {
|
||||
list_del(&tp->bp_list);
|
||||
list_del(&tp->glob_list);
|
||||
destroy_one_temp(tp);
|
||||
}
|
||||
}
|
||||
|
||||
static void destroy_one_fan(struct bbc_fan_control *fp)
|
||||
{
|
||||
bbc_i2c_detach(fp->client);
|
||||
kfree(fp);
|
||||
}
|
||||
|
||||
static void destroy_all_fans(struct bbc_i2c_bus *bp)
|
||||
{
|
||||
struct bbc_fan_control *fp, *fpos;
|
||||
|
||||
list_for_each_entry_safe(fp, fpos, &bp->fans, bp_list) {
|
||||
list_del(&fp->bp_list);
|
||||
list_del(&fp->glob_list);
|
||||
destroy_one_fan(fp);
|
||||
}
|
||||
}
|
||||
|
||||
int bbc_envctrl_init(struct bbc_i2c_bus *bp)
|
||||
{
|
||||
struct platform_device *op;
|
||||
int temp_index = 0;
|
||||
int fan_index = 0;
|
||||
int devidx = 0;
|
||||
|
||||
while ((op = bbc_i2c_getdev(bp, devidx++)) != NULL) {
|
||||
if (!strcmp(op->dev.of_node->name, "temperature"))
|
||||
attach_one_temp(bp, op, temp_index++);
|
||||
if (!strcmp(op->dev.of_node->name, "fan-control"))
|
||||
attach_one_fan(bp, op, fan_index++);
|
||||
}
|
||||
if (temp_index != 0 && fan_index != 0) {
|
||||
kenvctrld_task = kthread_run(kenvctrld, NULL, "kenvctrld");
|
||||
if (IS_ERR(kenvctrld_task)) {
|
||||
int err = PTR_ERR(kenvctrld_task);
|
||||
|
||||
kenvctrld_task = NULL;
|
||||
destroy_all_temps(bp);
|
||||
destroy_all_fans(bp);
|
||||
return err;
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp)
|
||||
{
|
||||
if (kenvctrld_task)
|
||||
kthread_stop(kenvctrld_task);
|
||||
|
||||
destroy_all_temps(bp);
|
||||
destroy_all_fans(bp);
|
||||
}
|
425
drivers/sbus/char/bbc_i2c.c
Normal file
425
drivers/sbus/char/bbc_i2c.c
Normal file
|
@ -0,0 +1,425 @@
|
|||
/* bbc_i2c.c: I2C low-level driver for BBC device on UltraSPARC-III
|
||||
* platforms.
|
||||
*
|
||||
* Copyright (C) 2001, 2008 David S. Miller (davem@davemloft.net)
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/wait.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <asm/bbc.h>
|
||||
#include <asm/io.h>
|
||||
|
||||
#include "bbc_i2c.h"
|
||||
|
||||
/* Convert this driver to use i2c bus layer someday... */
|
||||
#define I2C_PCF_PIN 0x80
|
||||
#define I2C_PCF_ESO 0x40
|
||||
#define I2C_PCF_ES1 0x20
|
||||
#define I2C_PCF_ES2 0x10
|
||||
#define I2C_PCF_ENI 0x08
|
||||
#define I2C_PCF_STA 0x04
|
||||
#define I2C_PCF_STO 0x02
|
||||
#define I2C_PCF_ACK 0x01
|
||||
|
||||
#define I2C_PCF_START (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_ENI | I2C_PCF_STA | I2C_PCF_ACK)
|
||||
#define I2C_PCF_STOP (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_STO | I2C_PCF_ACK)
|
||||
#define I2C_PCF_REPSTART ( I2C_PCF_ESO | I2C_PCF_STA | I2C_PCF_ACK)
|
||||
#define I2C_PCF_IDLE (I2C_PCF_PIN | I2C_PCF_ESO | I2C_PCF_ACK)
|
||||
|
||||
#define I2C_PCF_INI 0x40 /* 1 if not initialized */
|
||||
#define I2C_PCF_STS 0x20
|
||||
#define I2C_PCF_BER 0x10
|
||||
#define I2C_PCF_AD0 0x08
|
||||
#define I2C_PCF_LRB 0x08
|
||||
#define I2C_PCF_AAS 0x04
|
||||
#define I2C_PCF_LAB 0x02
|
||||
#define I2C_PCF_BB 0x01
|
||||
|
||||
/* The BBC devices have two I2C controllers. The first I2C controller
|
||||
* connects mainly to configuration proms (NVRAM, cpu configuration,
|
||||
* dimm types, etc.). Whereas the second I2C controller connects to
|
||||
* environmental control devices such as fans and temperature sensors.
|
||||
* The second controller also connects to the smartcard reader, if present.
|
||||
*/
|
||||
|
||||
static void set_device_claimage(struct bbc_i2c_bus *bp, struct platform_device *op, int val)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < NUM_CHILDREN; i++) {
|
||||
if (bp->devs[i].device == op) {
|
||||
bp->devs[i].client_claimed = val;
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define claim_device(BP,ECHILD) set_device_claimage(BP,ECHILD,1)
|
||||
#define release_device(BP,ECHILD) set_device_claimage(BP,ECHILD,0)
|
||||
|
||||
struct platform_device *bbc_i2c_getdev(struct bbc_i2c_bus *bp, int index)
|
||||
{
|
||||
struct platform_device *op = NULL;
|
||||
int curidx = 0, i;
|
||||
|
||||
for (i = 0; i < NUM_CHILDREN; i++) {
|
||||
if (!(op = bp->devs[i].device))
|
||||
break;
|
||||
if (curidx == index)
|
||||
goto out;
|
||||
op = NULL;
|
||||
curidx++;
|
||||
}
|
||||
|
||||
out:
|
||||
if (curidx == index)
|
||||
return op;
|
||||
return NULL;
|
||||
}
|
||||
|
||||
struct bbc_i2c_client *bbc_i2c_attach(struct bbc_i2c_bus *bp, struct platform_device *op)
|
||||
{
|
||||
struct bbc_i2c_client *client;
|
||||
const u32 *reg;
|
||||
|
||||
client = kzalloc(sizeof(*client), GFP_KERNEL);
|
||||
if (!client)
|
||||
return NULL;
|
||||
client->bp = bp;
|
||||
client->op = op;
|
||||
|
||||
reg = of_get_property(op->dev.of_node, "reg", NULL);
|
||||
if (!reg) {
|
||||
kfree(client);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
client->bus = reg[0];
|
||||
client->address = reg[1];
|
||||
|
||||
claim_device(bp, op);
|
||||
|
||||
return client;
|
||||
}
|
||||
|
||||
void bbc_i2c_detach(struct bbc_i2c_client *client)
|
||||
{
|
||||
struct bbc_i2c_bus *bp = client->bp;
|
||||
struct platform_device *op = client->op;
|
||||
|
||||
release_device(bp, op);
|
||||
kfree(client);
|
||||
}
|
||||
|
||||
static int wait_for_pin(struct bbc_i2c_bus *bp, u8 *status)
|
||||
{
|
||||
DECLARE_WAITQUEUE(wait, current);
|
||||
int limit = 32;
|
||||
int ret = 1;
|
||||
|
||||
bp->waiting = 1;
|
||||
add_wait_queue(&bp->wq, &wait);
|
||||
while (limit-- > 0) {
|
||||
long val;
|
||||
|
||||
val = wait_event_interruptible_timeout(
|
||||
bp->wq,
|
||||
(((*status = readb(bp->i2c_control_regs + 0))
|
||||
& I2C_PCF_PIN) == 0),
|
||||
msecs_to_jiffies(250));
|
||||
if (val > 0) {
|
||||
ret = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
remove_wait_queue(&bp->wq, &wait);
|
||||
bp->waiting = 0;
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bbc_i2c_writeb(struct bbc_i2c_client *client, unsigned char val, int off)
|
||||
{
|
||||
struct bbc_i2c_bus *bp = client->bp;
|
||||
int address = client->address;
|
||||
u8 status;
|
||||
int ret = -1;
|
||||
|
||||
if (bp->i2c_bussel_reg != NULL)
|
||||
writeb(client->bus, bp->i2c_bussel_reg);
|
||||
|
||||
writeb(address, bp->i2c_control_regs + 0x1);
|
||||
writeb(I2C_PCF_START, bp->i2c_control_regs + 0x0);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
writeb(off, bp->i2c_control_regs + 0x1);
|
||||
if (wait_for_pin(bp, &status) ||
|
||||
(status & I2C_PCF_LRB) != 0)
|
||||
goto out;
|
||||
|
||||
writeb(val, bp->i2c_control_regs + 0x1);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
ret = 0;
|
||||
|
||||
out:
|
||||
writeb(I2C_PCF_STOP, bp->i2c_control_regs + 0x0);
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bbc_i2c_readb(struct bbc_i2c_client *client, unsigned char *byte, int off)
|
||||
{
|
||||
struct bbc_i2c_bus *bp = client->bp;
|
||||
unsigned char address = client->address, status;
|
||||
int ret = -1;
|
||||
|
||||
if (bp->i2c_bussel_reg != NULL)
|
||||
writeb(client->bus, bp->i2c_bussel_reg);
|
||||
|
||||
writeb(address, bp->i2c_control_regs + 0x1);
|
||||
writeb(I2C_PCF_START, bp->i2c_control_regs + 0x0);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
writeb(off, bp->i2c_control_regs + 0x1);
|
||||
if (wait_for_pin(bp, &status) ||
|
||||
(status & I2C_PCF_LRB) != 0)
|
||||
goto out;
|
||||
|
||||
writeb(I2C_PCF_STOP, bp->i2c_control_regs + 0x0);
|
||||
|
||||
address |= 0x1; /* READ */
|
||||
|
||||
writeb(address, bp->i2c_control_regs + 0x1);
|
||||
writeb(I2C_PCF_START, bp->i2c_control_regs + 0x0);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
/* Set PIN back to one so the device sends the first
|
||||
* byte.
|
||||
*/
|
||||
(void) readb(bp->i2c_control_regs + 0x1);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
writeb(I2C_PCF_ESO | I2C_PCF_ENI, bp->i2c_control_regs + 0x0);
|
||||
*byte = readb(bp->i2c_control_regs + 0x1);
|
||||
if (wait_for_pin(bp, &status))
|
||||
goto out;
|
||||
|
||||
ret = 0;
|
||||
|
||||
out:
|
||||
writeb(I2C_PCF_STOP, bp->i2c_control_regs + 0x0);
|
||||
(void) readb(bp->i2c_control_regs + 0x1);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bbc_i2c_write_buf(struct bbc_i2c_client *client,
|
||||
char *buf, int len, int off)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
while (len > 0) {
|
||||
ret = bbc_i2c_writeb(client, *buf, off);
|
||||
if (ret < 0)
|
||||
break;
|
||||
len--;
|
||||
buf++;
|
||||
off++;
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
int bbc_i2c_read_buf(struct bbc_i2c_client *client,
|
||||
char *buf, int len, int off)
|
||||
{
|
||||
int ret = 0;
|
||||
|
||||
while (len > 0) {
|
||||
ret = bbc_i2c_readb(client, buf, off);
|
||||
if (ret < 0)
|
||||
break;
|
||||
len--;
|
||||
buf++;
|
||||
off++;
|
||||
}
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
EXPORT_SYMBOL(bbc_i2c_getdev);
|
||||
EXPORT_SYMBOL(bbc_i2c_attach);
|
||||
EXPORT_SYMBOL(bbc_i2c_detach);
|
||||
EXPORT_SYMBOL(bbc_i2c_writeb);
|
||||
EXPORT_SYMBOL(bbc_i2c_readb);
|
||||
EXPORT_SYMBOL(bbc_i2c_write_buf);
|
||||
EXPORT_SYMBOL(bbc_i2c_read_buf);
|
||||
|
||||
static irqreturn_t bbc_i2c_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
struct bbc_i2c_bus *bp = dev_id;
|
||||
|
||||
/* PIN going from set to clear is the only event which
|
||||
* makes the i2c assert an interrupt.
|
||||
*/
|
||||
if (bp->waiting &&
|
||||
!(readb(bp->i2c_control_regs + 0x0) & I2C_PCF_PIN))
|
||||
wake_up_interruptible(&bp->wq);
|
||||
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static void reset_one_i2c(struct bbc_i2c_bus *bp)
|
||||
{
|
||||
writeb(I2C_PCF_PIN, bp->i2c_control_regs + 0x0);
|
||||
writeb(bp->own, bp->i2c_control_regs + 0x1);
|
||||
writeb(I2C_PCF_PIN | I2C_PCF_ES1, bp->i2c_control_regs + 0x0);
|
||||
writeb(bp->clock, bp->i2c_control_regs + 0x1);
|
||||
writeb(I2C_PCF_IDLE, bp->i2c_control_regs + 0x0);
|
||||
}
|
||||
|
||||
static struct bbc_i2c_bus * attach_one_i2c(struct platform_device *op, int index)
|
||||
{
|
||||
struct bbc_i2c_bus *bp;
|
||||
struct device_node *dp;
|
||||
int entry;
|
||||
|
||||
bp = kzalloc(sizeof(*bp), GFP_KERNEL);
|
||||
if (!bp)
|
||||
return NULL;
|
||||
|
||||
INIT_LIST_HEAD(&bp->temps);
|
||||
INIT_LIST_HEAD(&bp->fans);
|
||||
|
||||
bp->i2c_control_regs = of_ioremap(&op->resource[0], 0, 0x2, "bbc_i2c_regs");
|
||||
if (!bp->i2c_control_regs)
|
||||
goto fail;
|
||||
|
||||
if (op->num_resources == 2) {
|
||||
bp->i2c_bussel_reg = of_ioremap(&op->resource[1], 0, 0x1, "bbc_i2c_bussel");
|
||||
if (!bp->i2c_bussel_reg)
|
||||
goto fail;
|
||||
}
|
||||
|
||||
bp->waiting = 0;
|
||||
init_waitqueue_head(&bp->wq);
|
||||
if (request_irq(op->archdata.irqs[0], bbc_i2c_interrupt,
|
||||
IRQF_SHARED, "bbc_i2c", bp))
|
||||
goto fail;
|
||||
|
||||
bp->index = index;
|
||||
bp->op = op;
|
||||
|
||||
spin_lock_init(&bp->lock);
|
||||
|
||||
entry = 0;
|
||||
for (dp = op->dev.of_node->child;
|
||||
dp && entry < 8;
|
||||
dp = dp->sibling, entry++) {
|
||||
struct platform_device *child_op;
|
||||
|
||||
child_op = of_find_device_by_node(dp);
|
||||
bp->devs[entry].device = child_op;
|
||||
bp->devs[entry].client_claimed = 0;
|
||||
}
|
||||
|
||||
writeb(I2C_PCF_PIN, bp->i2c_control_regs + 0x0);
|
||||
bp->own = readb(bp->i2c_control_regs + 0x01);
|
||||
writeb(I2C_PCF_PIN | I2C_PCF_ES1, bp->i2c_control_regs + 0x0);
|
||||
bp->clock = readb(bp->i2c_control_regs + 0x01);
|
||||
|
||||
printk(KERN_INFO "i2c-%d: Regs at %p, %d devices, own %02x, clock %02x.\n",
|
||||
bp->index, bp->i2c_control_regs, entry, bp->own, bp->clock);
|
||||
|
||||
reset_one_i2c(bp);
|
||||
|
||||
return bp;
|
||||
|
||||
fail:
|
||||
if (bp->i2c_bussel_reg)
|
||||
of_iounmap(&op->resource[1], bp->i2c_bussel_reg, 1);
|
||||
if (bp->i2c_control_regs)
|
||||
of_iounmap(&op->resource[0], bp->i2c_control_regs, 2);
|
||||
kfree(bp);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
extern int bbc_envctrl_init(struct bbc_i2c_bus *bp);
|
||||
extern void bbc_envctrl_cleanup(struct bbc_i2c_bus *bp);
|
||||
|
||||
static int bbc_i2c_probe(struct platform_device *op)
|
||||
{
|
||||
struct bbc_i2c_bus *bp;
|
||||
int err, index = 0;
|
||||
|
||||
bp = attach_one_i2c(op, index);
|
||||
if (!bp)
|
||||
return -EINVAL;
|
||||
|
||||
err = bbc_envctrl_init(bp);
|
||||
if (err) {
|
||||
free_irq(op->archdata.irqs[0], bp);
|
||||
if (bp->i2c_bussel_reg)
|
||||
of_iounmap(&op->resource[0], bp->i2c_bussel_reg, 1);
|
||||
if (bp->i2c_control_regs)
|
||||
of_iounmap(&op->resource[1], bp->i2c_control_regs, 2);
|
||||
kfree(bp);
|
||||
} else {
|
||||
dev_set_drvdata(&op->dev, bp);
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int bbc_i2c_remove(struct platform_device *op)
|
||||
{
|
||||
struct bbc_i2c_bus *bp = dev_get_drvdata(&op->dev);
|
||||
|
||||
bbc_envctrl_cleanup(bp);
|
||||
|
||||
free_irq(op->archdata.irqs[0], bp);
|
||||
|
||||
if (bp->i2c_bussel_reg)
|
||||
of_iounmap(&op->resource[0], bp->i2c_bussel_reg, 1);
|
||||
if (bp->i2c_control_regs)
|
||||
of_iounmap(&op->resource[1], bp->i2c_control_regs, 2);
|
||||
|
||||
kfree(bp);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct of_device_id bbc_i2c_match[] = {
|
||||
{
|
||||
.name = "i2c",
|
||||
.compatible = "SUNW,bbc-i2c",
|
||||
},
|
||||
{},
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, bbc_i2c_match);
|
||||
|
||||
static struct platform_driver bbc_i2c_driver = {
|
||||
.driver = {
|
||||
.name = "bbc_i2c",
|
||||
.owner = THIS_MODULE,
|
||||
.of_match_table = bbc_i2c_match,
|
||||
},
|
||||
.probe = bbc_i2c_probe,
|
||||
.remove = bbc_i2c_remove,
|
||||
};
|
||||
|
||||
module_platform_driver(bbc_i2c_driver);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
85
drivers/sbus/char/bbc_i2c.h
Normal file
85
drivers/sbus/char/bbc_i2c.h
Normal file
|
@ -0,0 +1,85 @@
|
|||
#ifndef _BBC_I2C_H
|
||||
#define _BBC_I2C_H
|
||||
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/list.h>
|
||||
|
||||
struct bbc_i2c_client {
|
||||
struct bbc_i2c_bus *bp;
|
||||
struct platform_device *op;
|
||||
int bus;
|
||||
int address;
|
||||
};
|
||||
|
||||
enum fan_action { FAN_SLOWER, FAN_SAME, FAN_FASTER, FAN_FULLBLAST, FAN_STATE_MAX };
|
||||
|
||||
struct bbc_cpu_temperature {
|
||||
struct list_head bp_list;
|
||||
struct list_head glob_list;
|
||||
|
||||
struct bbc_i2c_client *client;
|
||||
int index;
|
||||
|
||||
/* Current readings, and history. */
|
||||
s8 curr_cpu_temp;
|
||||
s8 curr_amb_temp;
|
||||
s8 prev_cpu_temp;
|
||||
s8 prev_amb_temp;
|
||||
s8 avg_cpu_temp;
|
||||
s8 avg_amb_temp;
|
||||
|
||||
int sample_tick;
|
||||
|
||||
enum fan_action fan_todo[2];
|
||||
#define FAN_AMBIENT 0
|
||||
#define FAN_CPU 1
|
||||
};
|
||||
|
||||
struct bbc_fan_control {
|
||||
struct list_head bp_list;
|
||||
struct list_head glob_list;
|
||||
|
||||
struct bbc_i2c_client *client;
|
||||
int index;
|
||||
|
||||
int psupply_fan_on;
|
||||
int cpu_fan_speed;
|
||||
int system_fan_speed;
|
||||
};
|
||||
|
||||
#define NUM_CHILDREN 8
|
||||
|
||||
struct bbc_i2c_bus {
|
||||
struct bbc_i2c_bus *next;
|
||||
int index;
|
||||
spinlock_t lock;
|
||||
void __iomem *i2c_bussel_reg;
|
||||
void __iomem *i2c_control_regs;
|
||||
unsigned char own, clock;
|
||||
|
||||
wait_queue_head_t wq;
|
||||
volatile int waiting;
|
||||
|
||||
struct list_head temps;
|
||||
struct list_head fans;
|
||||
|
||||
struct platform_device *op;
|
||||
struct {
|
||||
struct platform_device *device;
|
||||
int client_claimed;
|
||||
} devs[NUM_CHILDREN];
|
||||
};
|
||||
|
||||
/* Probing and attachment. */
|
||||
extern struct platform_device *bbc_i2c_getdev(struct bbc_i2c_bus *, int);
|
||||
extern struct bbc_i2c_client *bbc_i2c_attach(struct bbc_i2c_bus *bp, struct platform_device *);
|
||||
extern void bbc_i2c_detach(struct bbc_i2c_client *);
|
||||
|
||||
/* Register read/write. NOTE: Blocking! */
|
||||
extern int bbc_i2c_writeb(struct bbc_i2c_client *, unsigned char val, int off);
|
||||
extern int bbc_i2c_readb(struct bbc_i2c_client *, unsigned char *byte, int off);
|
||||
extern int bbc_i2c_write_buf(struct bbc_i2c_client *, char *buf, int len, int off);
|
||||
extern int bbc_i2c_read_buf(struct bbc_i2c_client *, char *buf, int len, int off);
|
||||
|
||||
#endif /* _BBC_I2C_H */
|
273
drivers/sbus/char/display7seg.c
Normal file
273
drivers/sbus/char/display7seg.c
Normal file
|
@ -0,0 +1,273 @@
|
|||
/* display7seg.c - Driver implementation for the 7-segment display
|
||||
* present on Sun Microsystems CP1400 and CP1500
|
||||
*
|
||||
* Copyright (c) 2000 Eric Brower (ebrower@usa.net)
|
||||
*/
|
||||
|
||||
#include <linux/device.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/fs.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/major.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/ioport.h> /* request_region */
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
#include <linux/atomic.h>
|
||||
#include <asm/uaccess.h> /* put_/get_user */
|
||||
#include <asm/io.h>
|
||||
|
||||
#include <asm/display7seg.h>
|
||||
|
||||
#define D7S_MINOR 193
|
||||
#define DRIVER_NAME "d7s"
|
||||
#define PFX DRIVER_NAME ": "
|
||||
|
||||
static DEFINE_MUTEX(d7s_mutex);
|
||||
static int sol_compat = 0; /* Solaris compatibility mode */
|
||||
|
||||
/* Solaris compatibility flag -
|
||||
* The Solaris implementation omits support for several
|
||||
* documented driver features (ref Sun doc 806-0180-03).
|
||||
* By default, this module supports the documented driver
|
||||
* abilities, rather than the Solaris implementation:
|
||||
*
|
||||
* 1) Device ALWAYS reverts to OBP-specified FLIPPED mode
|
||||
* upon closure of device or module unload.
|
||||
* 2) Device ioctls D7SIOCRD/D7SIOCWR honor toggling of
|
||||
* FLIP bit
|
||||
*
|
||||
* If you wish the device to operate as under Solaris,
|
||||
* omitting above features, set this parameter to non-zero.
|
||||
*/
|
||||
module_param(sol_compat, int, 0);
|
||||
MODULE_PARM_DESC(sol_compat,
|
||||
"Disables documented functionality omitted from Solaris driver");
|
||||
|
||||
MODULE_AUTHOR("Eric Brower <ebrower@usa.net>");
|
||||
MODULE_DESCRIPTION("7-Segment Display driver for Sun Microsystems CP1400/1500");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_SUPPORTED_DEVICE("d7s");
|
||||
|
||||
struct d7s {
|
||||
void __iomem *regs;
|
||||
bool flipped;
|
||||
};
|
||||
struct d7s *d7s_device;
|
||||
|
||||
/*
|
||||
* Register block address- see header for details
|
||||
* -----------------------------------------
|
||||
* | DP | ALARM | FLIP | 4 | 3 | 2 | 1 | 0 |
|
||||
* -----------------------------------------
|
||||
*
|
||||
* DP - Toggles decimal point on/off
|
||||
* ALARM - Toggles "Alarm" LED green/red
|
||||
* FLIP - Inverts display for upside-down mounted board
|
||||
* bits 0-4 - 7-segment display contents
|
||||
*/
|
||||
static atomic_t d7s_users = ATOMIC_INIT(0);
|
||||
|
||||
static int d7s_open(struct inode *inode, struct file *f)
|
||||
{
|
||||
if (D7S_MINOR != iminor(inode))
|
||||
return -ENODEV;
|
||||
atomic_inc(&d7s_users);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int d7s_release(struct inode *inode, struct file *f)
|
||||
{
|
||||
/* Reset flipped state to OBP default only if
|
||||
* no other users have the device open and we
|
||||
* are not operating in solaris-compat mode
|
||||
*/
|
||||
if (atomic_dec_and_test(&d7s_users) && !sol_compat) {
|
||||
struct d7s *p = d7s_device;
|
||||
u8 regval = 0;
|
||||
|
||||
regval = readb(p->regs);
|
||||
if (p->flipped)
|
||||
regval |= D7S_FLIP;
|
||||
else
|
||||
regval &= ~D7S_FLIP;
|
||||
writeb(regval, p->regs);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static long d7s_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
struct d7s *p = d7s_device;
|
||||
u8 regs = readb(p->regs);
|
||||
int error = 0;
|
||||
u8 ireg = 0;
|
||||
|
||||
if (D7S_MINOR != iminor(file_inode(file)))
|
||||
return -ENODEV;
|
||||
|
||||
mutex_lock(&d7s_mutex);
|
||||
switch (cmd) {
|
||||
case D7SIOCWR:
|
||||
/* assign device register values we mask-out D7S_FLIP
|
||||
* if in sol_compat mode
|
||||
*/
|
||||
if (get_user(ireg, (int __user *) arg)) {
|
||||
error = -EFAULT;
|
||||
break;
|
||||
}
|
||||
if (sol_compat) {
|
||||
if (regs & D7S_FLIP)
|
||||
ireg |= D7S_FLIP;
|
||||
else
|
||||
ireg &= ~D7S_FLIP;
|
||||
}
|
||||
writeb(ireg, p->regs);
|
||||
break;
|
||||
|
||||
case D7SIOCRD:
|
||||
/* retrieve device register values
|
||||
* NOTE: Solaris implementation returns D7S_FLIP bit
|
||||
* as toggled by user, even though it does not honor it.
|
||||
* This driver will not misinform you about the state
|
||||
* of your hardware while in sol_compat mode
|
||||
*/
|
||||
if (put_user(regs, (int __user *) arg)) {
|
||||
error = -EFAULT;
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case D7SIOCTM:
|
||||
/* toggle device mode-- flip display orientation */
|
||||
regs ^= D7S_FLIP;
|
||||
writeb(regs, p->regs);
|
||||
break;
|
||||
}
|
||||
mutex_unlock(&d7s_mutex);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
static const struct file_operations d7s_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.unlocked_ioctl = d7s_ioctl,
|
||||
.compat_ioctl = d7s_ioctl,
|
||||
.open = d7s_open,
|
||||
.release = d7s_release,
|
||||
.llseek = noop_llseek,
|
||||
};
|
||||
|
||||
static struct miscdevice d7s_miscdev = {
|
||||
.minor = D7S_MINOR,
|
||||
.name = DRIVER_NAME,
|
||||
.fops = &d7s_fops
|
||||
};
|
||||
|
||||
static int d7s_probe(struct platform_device *op)
|
||||
{
|
||||
struct device_node *opts;
|
||||
int err = -EINVAL;
|
||||
struct d7s *p;
|
||||
u8 regs;
|
||||
|
||||
if (d7s_device)
|
||||
goto out;
|
||||
|
||||
p = devm_kzalloc(&op->dev, sizeof(*p), GFP_KERNEL);
|
||||
err = -ENOMEM;
|
||||
if (!p)
|
||||
goto out;
|
||||
|
||||
p->regs = of_ioremap(&op->resource[0], 0, sizeof(u8), "d7s");
|
||||
if (!p->regs) {
|
||||
printk(KERN_ERR PFX "Cannot map chip registers\n");
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
err = misc_register(&d7s_miscdev);
|
||||
if (err) {
|
||||
printk(KERN_ERR PFX "Unable to acquire miscdevice minor %i\n",
|
||||
D7S_MINOR);
|
||||
goto out_iounmap;
|
||||
}
|
||||
|
||||
/* OBP option "d7s-flipped?" is honored as default for the
|
||||
* device, and reset default when detached
|
||||
*/
|
||||
regs = readb(p->regs);
|
||||
opts = of_find_node_by_path("/options");
|
||||
if (opts &&
|
||||
of_get_property(opts, "d7s-flipped?", NULL))
|
||||
p->flipped = true;
|
||||
|
||||
if (p->flipped)
|
||||
regs |= D7S_FLIP;
|
||||
else
|
||||
regs &= ~D7S_FLIP;
|
||||
|
||||
writeb(regs, p->regs);
|
||||
|
||||
printk(KERN_INFO PFX "7-Segment Display%s at [%s:0x%llx] %s\n",
|
||||
op->dev.of_node->full_name,
|
||||
(regs & D7S_FLIP) ? " (FLIPPED)" : "",
|
||||
op->resource[0].start,
|
||||
sol_compat ? "in sol_compat mode" : "");
|
||||
|
||||
dev_set_drvdata(&op->dev, p);
|
||||
d7s_device = p;
|
||||
err = 0;
|
||||
|
||||
out:
|
||||
return err;
|
||||
|
||||
out_iounmap:
|
||||
of_iounmap(&op->resource[0], p->regs, sizeof(u8));
|
||||
|
||||
out_free:
|
||||
goto out;
|
||||
}
|
||||
|
||||
static int d7s_remove(struct platform_device *op)
|
||||
{
|
||||
struct d7s *p = dev_get_drvdata(&op->dev);
|
||||
u8 regs = readb(p->regs);
|
||||
|
||||
/* Honor OBP d7s-flipped? unless operating in solaris-compat mode */
|
||||
if (sol_compat) {
|
||||
if (p->flipped)
|
||||
regs |= D7S_FLIP;
|
||||
else
|
||||
regs &= ~D7S_FLIP;
|
||||
writeb(regs, p->regs);
|
||||
}
|
||||
|
||||
misc_deregister(&d7s_miscdev);
|
||||
of_iounmap(&op->resource[0], p->regs, sizeof(u8));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct of_device_id d7s_match[] = {
|
||||
{
|
||||
.name = "display7seg",
|
||||
},
|
||||
{},
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, d7s_match);
|
||||
|
||||
static struct platform_driver d7s_driver = {
|
||||
.driver = {
|
||||
.name = DRIVER_NAME,
|
||||
.owner = THIS_MODULE,
|
||||
.of_match_table = d7s_match,
|
||||
},
|
||||
.probe = d7s_probe,
|
||||
.remove = d7s_remove,
|
||||
};
|
||||
|
||||
module_platform_driver(d7s_driver);
|
1142
drivers/sbus/char/envctrl.c
Normal file
1142
drivers/sbus/char/envctrl.c
Normal file
File diff suppressed because it is too large
Load diff
219
drivers/sbus/char/flash.c
Normal file
219
drivers/sbus/char/flash.c
Normal file
|
@ -0,0 +1,219 @@
|
|||
/* flash.c: Allow mmap access to the OBP Flash, for OBP updates.
|
||||
*
|
||||
* Copyright (C) 1997 Eddie C. Dost (ecd@skynet.be)
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/fcntl.h>
|
||||
#include <linux/poll.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/spinlock.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/upa.h>
|
||||
|
||||
static DEFINE_MUTEX(flash_mutex);
|
||||
static DEFINE_SPINLOCK(flash_lock);
|
||||
static struct {
|
||||
unsigned long read_base; /* Physical read address */
|
||||
unsigned long write_base; /* Physical write address */
|
||||
unsigned long read_size; /* Size of read area */
|
||||
unsigned long write_size; /* Size of write area */
|
||||
unsigned long busy; /* In use? */
|
||||
} flash;
|
||||
|
||||
#define FLASH_MINOR 152
|
||||
|
||||
static int
|
||||
flash_mmap(struct file *file, struct vm_area_struct *vma)
|
||||
{
|
||||
unsigned long addr;
|
||||
unsigned long size;
|
||||
|
||||
spin_lock(&flash_lock);
|
||||
if (flash.read_base == flash.write_base) {
|
||||
addr = flash.read_base;
|
||||
size = flash.read_size;
|
||||
} else {
|
||||
if ((vma->vm_flags & VM_READ) &&
|
||||
(vma->vm_flags & VM_WRITE)) {
|
||||
spin_unlock(&flash_lock);
|
||||
return -EINVAL;
|
||||
}
|
||||
if (vma->vm_flags & VM_READ) {
|
||||
addr = flash.read_base;
|
||||
size = flash.read_size;
|
||||
} else if (vma->vm_flags & VM_WRITE) {
|
||||
addr = flash.write_base;
|
||||
size = flash.write_size;
|
||||
} else {
|
||||
spin_unlock(&flash_lock);
|
||||
return -ENXIO;
|
||||
}
|
||||
}
|
||||
spin_unlock(&flash_lock);
|
||||
|
||||
if ((vma->vm_pgoff << PAGE_SHIFT) > size)
|
||||
return -ENXIO;
|
||||
addr = vma->vm_pgoff + (addr >> PAGE_SHIFT);
|
||||
|
||||
if (vma->vm_end - (vma->vm_start + (vma->vm_pgoff << PAGE_SHIFT)) > size)
|
||||
size = vma->vm_end - (vma->vm_start + (vma->vm_pgoff << PAGE_SHIFT));
|
||||
|
||||
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
||||
|
||||
if (io_remap_pfn_range(vma, vma->vm_start, addr, size, vma->vm_page_prot))
|
||||
return -EAGAIN;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static long long
|
||||
flash_llseek(struct file *file, long long offset, int origin)
|
||||
{
|
||||
mutex_lock(&flash_mutex);
|
||||
switch (origin) {
|
||||
case 0:
|
||||
file->f_pos = offset;
|
||||
break;
|
||||
case 1:
|
||||
file->f_pos += offset;
|
||||
if (file->f_pos > flash.read_size)
|
||||
file->f_pos = flash.read_size;
|
||||
break;
|
||||
case 2:
|
||||
file->f_pos = flash.read_size;
|
||||
break;
|
||||
default:
|
||||
mutex_unlock(&flash_mutex);
|
||||
return -EINVAL;
|
||||
}
|
||||
mutex_unlock(&flash_mutex);
|
||||
return file->f_pos;
|
||||
}
|
||||
|
||||
static ssize_t
|
||||
flash_read(struct file * file, char __user * buf,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
loff_t p = *ppos;
|
||||
int i;
|
||||
|
||||
if (count > flash.read_size - p)
|
||||
count = flash.read_size - p;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
u8 data = upa_readb(flash.read_base + p + i);
|
||||
if (put_user(data, buf))
|
||||
return -EFAULT;
|
||||
buf++;
|
||||
}
|
||||
|
||||
*ppos += count;
|
||||
return count;
|
||||
}
|
||||
|
||||
static int
|
||||
flash_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
mutex_lock(&flash_mutex);
|
||||
if (test_and_set_bit(0, (void *)&flash.busy) != 0) {
|
||||
mutex_unlock(&flash_mutex);
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
mutex_unlock(&flash_mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
flash_release(struct inode *inode, struct file *file)
|
||||
{
|
||||
spin_lock(&flash_lock);
|
||||
flash.busy = 0;
|
||||
spin_unlock(&flash_lock);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct file_operations flash_fops = {
|
||||
/* no write to the Flash, use mmap
|
||||
* and play flash dependent tricks.
|
||||
*/
|
||||
.owner = THIS_MODULE,
|
||||
.llseek = flash_llseek,
|
||||
.read = flash_read,
|
||||
.mmap = flash_mmap,
|
||||
.open = flash_open,
|
||||
.release = flash_release,
|
||||
};
|
||||
|
||||
static struct miscdevice flash_dev = { FLASH_MINOR, "flash", &flash_fops };
|
||||
|
||||
static int flash_probe(struct platform_device *op)
|
||||
{
|
||||
struct device_node *dp = op->dev.of_node;
|
||||
struct device_node *parent;
|
||||
|
||||
parent = dp->parent;
|
||||
|
||||
if (strcmp(parent->name, "sbus") &&
|
||||
strcmp(parent->name, "sbi") &&
|
||||
strcmp(parent->name, "ebus"))
|
||||
return -ENODEV;
|
||||
|
||||
flash.read_base = op->resource[0].start;
|
||||
flash.read_size = resource_size(&op->resource[0]);
|
||||
if (op->resource[1].flags) {
|
||||
flash.write_base = op->resource[1].start;
|
||||
flash.write_size = resource_size(&op->resource[1]);
|
||||
} else {
|
||||
flash.write_base = op->resource[0].start;
|
||||
flash.write_size = resource_size(&op->resource[0]);
|
||||
}
|
||||
flash.busy = 0;
|
||||
|
||||
printk(KERN_INFO "%s: OBP Flash, RD %lx[%lx] WR %lx[%lx]\n",
|
||||
op->dev.of_node->full_name,
|
||||
flash.read_base, flash.read_size,
|
||||
flash.write_base, flash.write_size);
|
||||
|
||||
return misc_register(&flash_dev);
|
||||
}
|
||||
|
||||
static int flash_remove(struct platform_device *op)
|
||||
{
|
||||
misc_deregister(&flash_dev);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct of_device_id flash_match[] = {
|
||||
{
|
||||
.name = "flashprom",
|
||||
},
|
||||
{},
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, flash_match);
|
||||
|
||||
static struct platform_driver flash_driver = {
|
||||
.driver = {
|
||||
.name = "flash",
|
||||
.owner = THIS_MODULE,
|
||||
.of_match_table = flash_match,
|
||||
},
|
||||
.probe = flash_probe,
|
||||
.remove = flash_remove,
|
||||
};
|
||||
|
||||
module_platform_driver(flash_driver);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
635
drivers/sbus/char/jsflash.c
Normal file
635
drivers/sbus/char/jsflash.c
Normal file
|
@ -0,0 +1,635 @@
|
|||
/*
|
||||
* drivers/sbus/char/jsflash.c
|
||||
*
|
||||
* Copyright (C) 1991, 1992 Linus Torvalds (drivers/char/mem.c)
|
||||
* Copyright (C) 1997 Eddie C. Dost (drivers/sbus/char/flash.c)
|
||||
* Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz> (drivers/block/nbd.c)
|
||||
* Copyright (C) 1999-2000 Pete Zaitcev
|
||||
*
|
||||
* This driver is used to program OS into a Flash SIMM on
|
||||
* Krups and Espresso platforms.
|
||||
*
|
||||
* TODO: do not allow erase/programming if file systems are mounted.
|
||||
* TODO: Erase/program both banks of a 8MB SIMM.
|
||||
*
|
||||
* It is anticipated that programming an OS Flash will be a routine
|
||||
* procedure. In the same time it is exceedingly dangerous because
|
||||
* a user can program its OBP flash with OS image and effectively
|
||||
* kill the machine.
|
||||
*
|
||||
* This driver uses an interface different from Eddie's flash.c
|
||||
* as a silly safeguard.
|
||||
*
|
||||
* XXX The flash.c manipulates page caching characteristics in a certain
|
||||
* dubious way; also it assumes that remap_pfn_range() can remap
|
||||
* PCI bus locations, which may be false. ioremap() must be used
|
||||
* instead. We should discuss this.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/types.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/fcntl.h>
|
||||
#include <linux/poll.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/genhd.h>
|
||||
#include <linux/blkdev.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/pgtable.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/pcic.h>
|
||||
#include <asm/oplib.h>
|
||||
|
||||
#include <asm/jsflash.h> /* ioctl arguments. <linux/> ?? */
|
||||
#define JSFIDSZ (sizeof(struct jsflash_ident_arg))
|
||||
#define JSFPRGSZ (sizeof(struct jsflash_program_arg))
|
||||
|
||||
/*
|
||||
* Our device numbers have no business in system headers.
|
||||
* The only thing a user knows is the device name /dev/jsflash.
|
||||
*
|
||||
* Block devices are laid out like this:
|
||||
* minor+0 - Bootstrap, for 8MB SIMM 0x20400000[0x800000]
|
||||
* minor+1 - Filesystem to mount, normally 0x20400400[0x7ffc00]
|
||||
* minor+2 - Whole flash area for any case... 0x20000000[0x01000000]
|
||||
* Total 3 minors per flash device.
|
||||
*
|
||||
* It is easier to have static size vectors, so we define
|
||||
* a total minor range JSF_MAX, which must cover all minors.
|
||||
*/
|
||||
/* character device */
|
||||
#define JSF_MINOR 178 /* 178 is registered with hpa */
|
||||
/* block device */
|
||||
#define JSF_MAX 3 /* 3 minors wasted total so far. */
|
||||
#define JSF_NPART 3 /* 3 minors per flash device */
|
||||
#define JSF_PART_BITS 2 /* 2 bits of minors to cover JSF_NPART */
|
||||
#define JSF_PART_MASK 0x3 /* 2 bits mask */
|
||||
|
||||
static DEFINE_MUTEX(jsf_mutex);
|
||||
|
||||
/*
|
||||
* Access functions.
|
||||
* We could ioremap(), but it's easier this way.
|
||||
*/
|
||||
static unsigned int jsf_inl(unsigned long addr)
|
||||
{
|
||||
unsigned long retval;
|
||||
|
||||
__asm__ __volatile__("lda [%1] %2, %0\n\t" :
|
||||
"=r" (retval) :
|
||||
"r" (addr), "i" (ASI_M_BYPASS));
|
||||
return retval;
|
||||
}
|
||||
|
||||
static void jsf_outl(unsigned long addr, __u32 data)
|
||||
{
|
||||
|
||||
__asm__ __volatile__("sta %0, [%1] %2\n\t" : :
|
||||
"r" (data), "r" (addr), "i" (ASI_M_BYPASS) :
|
||||
"memory");
|
||||
}
|
||||
|
||||
/*
|
||||
* soft carrier
|
||||
*/
|
||||
|
||||
struct jsfd_part {
|
||||
unsigned long dbase;
|
||||
unsigned long dsize;
|
||||
};
|
||||
|
||||
struct jsflash {
|
||||
unsigned long base;
|
||||
unsigned long size;
|
||||
unsigned long busy; /* In use? */
|
||||
struct jsflash_ident_arg id;
|
||||
/* int mbase; */ /* Minor base, typically zero */
|
||||
struct jsfd_part dv[JSF_NPART];
|
||||
};
|
||||
|
||||
/*
|
||||
* We do not map normal memory or obio as a safety precaution.
|
||||
* But offsets are real, for ease of userland programming.
|
||||
*/
|
||||
#define JSF_BASE_TOP 0x30000000
|
||||
#define JSF_BASE_ALL 0x20000000
|
||||
|
||||
#define JSF_BASE_JK 0x20400000
|
||||
|
||||
/*
|
||||
*/
|
||||
static struct gendisk *jsfd_disk[JSF_MAX];
|
||||
|
||||
/*
|
||||
* Let's pretend we may have several of these...
|
||||
*/
|
||||
static struct jsflash jsf0;
|
||||
|
||||
/*
|
||||
* Wait for AMD to finish its embedded algorithm.
|
||||
* We use the Toggle bit DQ6 (0x40) because it does not
|
||||
* depend on the data value as /DATA bit DQ7 does.
|
||||
*
|
||||
* XXX Do we need any timeout here? So far it never hanged, beware broken hw.
|
||||
*/
|
||||
static void jsf_wait(unsigned long p) {
|
||||
unsigned int x1, x2;
|
||||
|
||||
for (;;) {
|
||||
x1 = jsf_inl(p);
|
||||
x2 = jsf_inl(p);
|
||||
if ((x1 & 0x40404040) == (x2 & 0x40404040)) return;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Programming will only work if Flash is clean,
|
||||
* we leave it to the programmer application.
|
||||
*
|
||||
* AMD must be programmed one byte at a time;
|
||||
* thus, Simple Tech SIMM must be written 4 bytes at a time.
|
||||
*
|
||||
* Write waits for the chip to become ready after the write
|
||||
* was finished. This is done so that application would read
|
||||
* consistent data after the write is done.
|
||||
*/
|
||||
static void jsf_write4(unsigned long fa, u32 data) {
|
||||
|
||||
jsf_outl(fa, 0xAAAAAAAA); /* Unlock 1 Write 1 */
|
||||
jsf_outl(fa, 0x55555555); /* Unlock 1 Write 2 */
|
||||
jsf_outl(fa, 0xA0A0A0A0); /* Byte Program */
|
||||
jsf_outl(fa, data);
|
||||
|
||||
jsf_wait(fa);
|
||||
}
|
||||
|
||||
/*
|
||||
*/
|
||||
static void jsfd_read(char *buf, unsigned long p, size_t togo) {
|
||||
union byte4 {
|
||||
char s[4];
|
||||
unsigned int n;
|
||||
} b;
|
||||
|
||||
while (togo >= 4) {
|
||||
togo -= 4;
|
||||
b.n = jsf_inl(p);
|
||||
memcpy(buf, b.s, 4);
|
||||
p += 4;
|
||||
buf += 4;
|
||||
}
|
||||
}
|
||||
|
||||
static void jsfd_do_request(struct request_queue *q)
|
||||
{
|
||||
struct request *req;
|
||||
|
||||
req = blk_fetch_request(q);
|
||||
while (req) {
|
||||
struct jsfd_part *jdp = req->rq_disk->private_data;
|
||||
unsigned long offset = blk_rq_pos(req) << 9;
|
||||
size_t len = blk_rq_cur_bytes(req);
|
||||
int err = -EIO;
|
||||
|
||||
if ((offset + len) > jdp->dsize)
|
||||
goto end;
|
||||
|
||||
if (rq_data_dir(req) != READ) {
|
||||
printk(KERN_ERR "jsfd: write\n");
|
||||
goto end;
|
||||
}
|
||||
|
||||
if ((jdp->dbase & 0xff000000) != 0x20000000) {
|
||||
printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase);
|
||||
goto end;
|
||||
}
|
||||
|
||||
jsfd_read(bio_data(req->bio), jdp->dbase + offset, len);
|
||||
err = 0;
|
||||
end:
|
||||
if (!__blk_end_request_cur(req, err))
|
||||
req = blk_fetch_request(q);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* The memory devices use the full 32/64 bits of the offset, and so we cannot
|
||||
* check against negative addresses: they are ok. The return value is weird,
|
||||
* though, in that case (0).
|
||||
*
|
||||
* also note that seeking relative to the "end of file" isn't supported:
|
||||
* it has no meaning, so it returns -EINVAL.
|
||||
*/
|
||||
static loff_t jsf_lseek(struct file * file, loff_t offset, int orig)
|
||||
{
|
||||
loff_t ret;
|
||||
|
||||
mutex_lock(&jsf_mutex);
|
||||
switch (orig) {
|
||||
case 0:
|
||||
file->f_pos = offset;
|
||||
ret = file->f_pos;
|
||||
break;
|
||||
case 1:
|
||||
file->f_pos += offset;
|
||||
ret = file->f_pos;
|
||||
break;
|
||||
default:
|
||||
ret = -EINVAL;
|
||||
}
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/*
|
||||
* OS SIMM Cannot be read in other size but a 32bits word.
|
||||
*/
|
||||
static ssize_t jsf_read(struct file * file, char __user * buf,
|
||||
size_t togo, loff_t *ppos)
|
||||
{
|
||||
unsigned long p = *ppos;
|
||||
char __user *tmp = buf;
|
||||
|
||||
union byte4 {
|
||||
char s[4];
|
||||
unsigned int n;
|
||||
} b;
|
||||
|
||||
if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
if ((p + togo) < p /* wrap */
|
||||
|| (p + togo) >= JSF_BASE_TOP) {
|
||||
togo = JSF_BASE_TOP - p;
|
||||
}
|
||||
|
||||
if (p < JSF_BASE_ALL && togo != 0) {
|
||||
#if 0 /* __bzero XXX */
|
||||
size_t x = JSF_BASE_ALL - p;
|
||||
if (x > togo) x = togo;
|
||||
clear_user(tmp, x);
|
||||
tmp += x;
|
||||
p += x;
|
||||
togo -= x;
|
||||
#else
|
||||
/*
|
||||
* Implementation of clear_user() calls __bzero
|
||||
* without regard to modversions,
|
||||
* so we cannot build a module.
|
||||
*/
|
||||
return 0;
|
||||
#endif
|
||||
}
|
||||
|
||||
while (togo >= 4) {
|
||||
togo -= 4;
|
||||
b.n = jsf_inl(p);
|
||||
if (copy_to_user(tmp, b.s, 4))
|
||||
return -EFAULT;
|
||||
tmp += 4;
|
||||
p += 4;
|
||||
}
|
||||
|
||||
/*
|
||||
* XXX Small togo may remain if 1 byte is ordered.
|
||||
* It would be nice if we did a word size read and unpacked it.
|
||||
*/
|
||||
|
||||
*ppos = p;
|
||||
return tmp-buf;
|
||||
}
|
||||
|
||||
static ssize_t jsf_write(struct file * file, const char __user * buf,
|
||||
size_t count, loff_t *ppos)
|
||||
{
|
||||
return -ENOSPC;
|
||||
}
|
||||
|
||||
/*
|
||||
*/
|
||||
static int jsf_ioctl_erase(unsigned long arg)
|
||||
{
|
||||
unsigned long p;
|
||||
|
||||
/* p = jsf0.base; hits wrong bank */
|
||||
p = 0x20400000;
|
||||
|
||||
jsf_outl(p, 0xAAAAAAAA); /* Unlock 1 Write 1 */
|
||||
jsf_outl(p, 0x55555555); /* Unlock 1 Write 2 */
|
||||
jsf_outl(p, 0x80808080); /* Erase setup */
|
||||
jsf_outl(p, 0xAAAAAAAA); /* Unlock 2 Write 1 */
|
||||
jsf_outl(p, 0x55555555); /* Unlock 2 Write 2 */
|
||||
jsf_outl(p, 0x10101010); /* Chip erase */
|
||||
|
||||
#if 0
|
||||
/*
|
||||
* This code is ok, except that counter based timeout
|
||||
* has no place in this world. Let's just drop timeouts...
|
||||
*/
|
||||
{
|
||||
int i;
|
||||
__u32 x;
|
||||
for (i = 0; i < 1000000; i++) {
|
||||
x = jsf_inl(p);
|
||||
if ((x & 0x80808080) == 0x80808080) break;
|
||||
}
|
||||
if ((x & 0x80808080) != 0x80808080) {
|
||||
printk("jsf0: erase timeout with 0x%08x\n", x);
|
||||
} else {
|
||||
printk("jsf0: erase done with 0x%08x\n", x);
|
||||
}
|
||||
}
|
||||
#else
|
||||
jsf_wait(p);
|
||||
#endif
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* Program a block of flash.
|
||||
* Very simple because we can do it byte by byte anyway.
|
||||
*/
|
||||
static int jsf_ioctl_program(void __user *arg)
|
||||
{
|
||||
struct jsflash_program_arg abuf;
|
||||
char __user *uptr;
|
||||
unsigned long p;
|
||||
unsigned int togo;
|
||||
union {
|
||||
unsigned int n;
|
||||
char s[4];
|
||||
} b;
|
||||
|
||||
if (copy_from_user(&abuf, arg, JSFPRGSZ))
|
||||
return -EFAULT;
|
||||
p = abuf.off;
|
||||
togo = abuf.size;
|
||||
if ((togo & 3) || (p & 3)) return -EINVAL;
|
||||
|
||||
uptr = (char __user *) (unsigned long) abuf.data;
|
||||
while (togo != 0) {
|
||||
togo -= 4;
|
||||
if (copy_from_user(&b.s[0], uptr, 4))
|
||||
return -EFAULT;
|
||||
jsf_write4(p, b.n);
|
||||
p += 4;
|
||||
uptr += 4;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static long jsf_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
mutex_lock(&jsf_mutex);
|
||||
int error = -ENOTTY;
|
||||
void __user *argp = (void __user *)arg;
|
||||
|
||||
if (!capable(CAP_SYS_ADMIN)) {
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return -EPERM;
|
||||
}
|
||||
switch (cmd) {
|
||||
case JSFLASH_IDENT:
|
||||
if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) {
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return -EFAULT;
|
||||
}
|
||||
break;
|
||||
case JSFLASH_ERASE:
|
||||
error = jsf_ioctl_erase(arg);
|
||||
break;
|
||||
case JSFLASH_PROGRAM:
|
||||
error = jsf_ioctl_program(argp);
|
||||
break;
|
||||
}
|
||||
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return error;
|
||||
}
|
||||
|
||||
static int jsf_mmap(struct file * file, struct vm_area_struct * vma)
|
||||
{
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
static int jsf_open(struct inode * inode, struct file * filp)
|
||||
{
|
||||
mutex_lock(&jsf_mutex);
|
||||
if (jsf0.base == 0) {
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return -ENXIO;
|
||||
}
|
||||
if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) {
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return -EBUSY;
|
||||
}
|
||||
|
||||
mutex_unlock(&jsf_mutex);
|
||||
return 0; /* XXX What security? */
|
||||
}
|
||||
|
||||
static int jsf_release(struct inode *inode, struct file *file)
|
||||
{
|
||||
jsf0.busy = 0;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct file_operations jsf_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.llseek = jsf_lseek,
|
||||
.read = jsf_read,
|
||||
.write = jsf_write,
|
||||
.unlocked_ioctl = jsf_ioctl,
|
||||
.mmap = jsf_mmap,
|
||||
.open = jsf_open,
|
||||
.release = jsf_release,
|
||||
};
|
||||
|
||||
static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops };
|
||||
|
||||
static const struct block_device_operations jsfd_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
};
|
||||
|
||||
static int jsflash_init(void)
|
||||
{
|
||||
int rc;
|
||||
struct jsflash *jsf;
|
||||
phandle node;
|
||||
char banner[128];
|
||||
struct linux_prom_registers reg0;
|
||||
|
||||
node = prom_getchild(prom_root_node);
|
||||
node = prom_searchsiblings(node, "flash-memory");
|
||||
if (node != 0 && (s32)node != -1) {
|
||||
if (prom_getproperty(node, "reg",
|
||||
(char *)®0, sizeof(reg0)) == -1) {
|
||||
printk("jsflash: no \"reg\" property\n");
|
||||
return -ENXIO;
|
||||
}
|
||||
if (reg0.which_io != 0) {
|
||||
printk("jsflash: bus number nonzero: 0x%x:%x\n",
|
||||
reg0.which_io, reg0.phys_addr);
|
||||
return -ENXIO;
|
||||
}
|
||||
/*
|
||||
* Flash may be somewhere else, for instance on Ebus.
|
||||
* So, don't do the following check for IIep flash space.
|
||||
*/
|
||||
#if 0
|
||||
if ((reg0.phys_addr >> 24) != 0x20) {
|
||||
printk("jsflash: suspicious address: 0x%x:%x\n",
|
||||
reg0.which_io, reg0.phys_addr);
|
||||
return -ENXIO;
|
||||
}
|
||||
#endif
|
||||
if ((int)reg0.reg_size <= 0) {
|
||||
printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size);
|
||||
return -ENXIO;
|
||||
}
|
||||
} else {
|
||||
/* XXX Remove this code once PROLL ID12 got widespread */
|
||||
printk("jsflash: no /flash-memory node, use PROLL >= 12\n");
|
||||
prom_getproperty(prom_root_node, "banner-name", banner, 128);
|
||||
if (strcmp (banner, "JavaStation-NC") != 0 &&
|
||||
strcmp (banner, "JavaStation-E") != 0) {
|
||||
return -ENXIO;
|
||||
}
|
||||
reg0.which_io = 0;
|
||||
reg0.phys_addr = 0x20400000;
|
||||
reg0.reg_size = 0x00800000;
|
||||
}
|
||||
|
||||
/* Let us be really paranoid for modifications to probing code. */
|
||||
if (sparc_cpu_model != sun4m) {
|
||||
/* We must be on sun4m because we use MMU Bypass ASI. */
|
||||
return -ENXIO;
|
||||
}
|
||||
|
||||
if (jsf0.base == 0) {
|
||||
jsf = &jsf0;
|
||||
|
||||
jsf->base = reg0.phys_addr;
|
||||
jsf->size = reg0.reg_size;
|
||||
|
||||
/* XXX Redo the userland interface. */
|
||||
jsf->id.off = JSF_BASE_ALL;
|
||||
jsf->id.size = 0x01000000; /* 16M - all segments */
|
||||
strcpy(jsf->id.name, "Krups_all");
|
||||
|
||||
jsf->dv[0].dbase = jsf->base;
|
||||
jsf->dv[0].dsize = jsf->size;
|
||||
jsf->dv[1].dbase = jsf->base + 1024;
|
||||
jsf->dv[1].dsize = jsf->size - 1024;
|
||||
jsf->dv[2].dbase = JSF_BASE_ALL;
|
||||
jsf->dv[2].dsize = 0x01000000;
|
||||
|
||||
printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base,
|
||||
(int) (jsf->size / (1024*1024)));
|
||||
}
|
||||
|
||||
if ((rc = misc_register(&jsf_dev)) != 0) {
|
||||
printk(KERN_ERR "jsf: unable to get misc minor %d\n",
|
||||
JSF_MINOR);
|
||||
jsf0.base = 0;
|
||||
return rc;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static struct request_queue *jsf_queue;
|
||||
|
||||
static int jsfd_init(void)
|
||||
{
|
||||
static DEFINE_SPINLOCK(lock);
|
||||
struct jsflash *jsf;
|
||||
struct jsfd_part *jdp;
|
||||
int err;
|
||||
int i;
|
||||
|
||||
if (jsf0.base == 0)
|
||||
return -ENXIO;
|
||||
|
||||
err = -ENOMEM;
|
||||
for (i = 0; i < JSF_MAX; i++) {
|
||||
struct gendisk *disk = alloc_disk(1);
|
||||
if (!disk)
|
||||
goto out;
|
||||
jsfd_disk[i] = disk;
|
||||
}
|
||||
|
||||
if (register_blkdev(JSFD_MAJOR, "jsfd")) {
|
||||
err = -EIO;
|
||||
goto out;
|
||||
}
|
||||
|
||||
jsf_queue = blk_init_queue(jsfd_do_request, &lock);
|
||||
if (!jsf_queue) {
|
||||
err = -ENOMEM;
|
||||
unregister_blkdev(JSFD_MAJOR, "jsfd");
|
||||
goto out;
|
||||
}
|
||||
|
||||
for (i = 0; i < JSF_MAX; i++) {
|
||||
struct gendisk *disk = jsfd_disk[i];
|
||||
if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
|
||||
jsf = &jsf0; /* actually, &jsfv[i >> JSF_PART_BITS] */
|
||||
jdp = &jsf->dv[i&JSF_PART_MASK];
|
||||
|
||||
disk->major = JSFD_MAJOR;
|
||||
disk->first_minor = i;
|
||||
sprintf(disk->disk_name, "jsfd%d", i);
|
||||
disk->fops = &jsfd_fops;
|
||||
set_capacity(disk, jdp->dsize >> 9);
|
||||
disk->private_data = jdp;
|
||||
disk->queue = jsf_queue;
|
||||
add_disk(disk);
|
||||
set_disk_ro(disk, 1);
|
||||
}
|
||||
return 0;
|
||||
out:
|
||||
while (i--)
|
||||
put_disk(jsfd_disk[i]);
|
||||
return err;
|
||||
}
|
||||
|
||||
MODULE_LICENSE("GPL");
|
||||
|
||||
static int __init jsflash_init_module(void) {
|
||||
int rc;
|
||||
|
||||
if ((rc = jsflash_init()) == 0) {
|
||||
jsfd_init();
|
||||
return 0;
|
||||
}
|
||||
return rc;
|
||||
}
|
||||
|
||||
static void __exit jsflash_cleanup_module(void)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < JSF_MAX; i++) {
|
||||
if ((i & JSF_PART_MASK) >= JSF_NPART) continue;
|
||||
del_gendisk(jsfd_disk[i]);
|
||||
put_disk(jsfd_disk[i]);
|
||||
}
|
||||
if (jsf0.busy)
|
||||
printk("jsf0: cleaning busy unit\n");
|
||||
jsf0.base = 0;
|
||||
jsf0.busy = 0;
|
||||
|
||||
misc_deregister(&jsf_dev);
|
||||
unregister_blkdev(JSFD_MAJOR, "jsfd");
|
||||
blk_cleanup_queue(jsf_queue);
|
||||
}
|
||||
|
||||
module_init(jsflash_init_module);
|
||||
module_exit(jsflash_cleanup_module);
|
27
drivers/sbus/char/max1617.h
Normal file
27
drivers/sbus/char/max1617.h
Normal file
|
@ -0,0 +1,27 @@
|
|||
/* $Id: max1617.h,v 1.1 2001/04/02 09:59:08 davem Exp $ */
|
||||
#ifndef _MAX1617_H
|
||||
#define _MAX1617_H
|
||||
|
||||
#define MAX1617_AMB_TEMP 0x00 /* Ambient temp in C */
|
||||
#define MAX1617_CPU_TEMP 0x01 /* Processor die temp in C */
|
||||
#define MAX1617_STATUS 0x02 /* Chip status bits */
|
||||
|
||||
/* Read-only versions of changeable registers. */
|
||||
#define MAX1617_RD_CFG_BYTE 0x03 /* Config register */
|
||||
#define MAX1617_RD_CVRATE_BYTE 0x04 /* Temp conversion rate */
|
||||
#define MAX1617_RD_AMB_HIGHLIM 0x05 /* Ambient high limit */
|
||||
#define MAX1617_RD_AMB_LOWLIM 0x06 /* Ambient low limit */
|
||||
#define MAX1617_RD_CPU_HIGHLIM 0x07 /* Processor high limit */
|
||||
#define MAX1617_RD_CPU_LOWLIM 0x08 /* Processor low limit */
|
||||
|
||||
/* Write-only versions of the same. */
|
||||
#define MAX1617_WR_CFG_BYTE 0x09
|
||||
#define MAX1617_WR_CVRATE_BYTE 0x0a
|
||||
#define MAX1617_WR_AMB_HIGHLIM 0x0b
|
||||
#define MAX1617_WR_AMB_LOWLIM 0x0c
|
||||
#define MAX1617_WR_CPU_HIGHLIM 0x0d
|
||||
#define MAX1617_WR_CPU_LOWLIM 0x0e
|
||||
|
||||
#define MAX1617_ONESHOT 0x0f
|
||||
|
||||
#endif /* _MAX1617_H */
|
762
drivers/sbus/char/openprom.c
Normal file
762
drivers/sbus/char/openprom.c
Normal file
|
@ -0,0 +1,762 @@
|
|||
/*
|
||||
* Linux/SPARC PROM Configuration Driver
|
||||
* Copyright (C) 1996 Thomas K. Dyas (tdyas@noc.rutgers.edu)
|
||||
* Copyright (C) 1996 Eddie C. Dost (ecd@skynet.be)
|
||||
*
|
||||
* This character device driver allows user programs to access the
|
||||
* PROM device tree. It is compatible with the SunOS /dev/openprom
|
||||
* driver and the NetBSD /dev/openprom driver. The SunOS eeprom
|
||||
* utility works without any modifications.
|
||||
*
|
||||
* The driver uses a minor number under the misc device major. The
|
||||
* file read/write mode determines the type of access to the PROM.
|
||||
* Interrupts are disabled whenever the driver calls into the PROM for
|
||||
* sanity's sake.
|
||||
*/
|
||||
|
||||
/* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 of the
|
||||
* License, or (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful, but
|
||||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/kernel.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/string.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/init.h>
|
||||
#include <linux/fs.h>
|
||||
#include <asm/oplib.h>
|
||||
#include <asm/prom.h>
|
||||
#include <asm/uaccess.h>
|
||||
#include <asm/openpromio.h>
|
||||
#ifdef CONFIG_PCI
|
||||
#include <linux/pci.h>
|
||||
#endif
|
||||
|
||||
MODULE_AUTHOR("Thomas K. Dyas (tdyas@noc.rutgers.edu) and Eddie C. Dost (ecd@skynet.be)");
|
||||
MODULE_DESCRIPTION("OPENPROM Configuration Driver");
|
||||
MODULE_LICENSE("GPL");
|
||||
MODULE_VERSION("1.0");
|
||||
MODULE_ALIAS_MISCDEV(SUN_OPENPROM_MINOR);
|
||||
|
||||
/* Private data kept by the driver for each descriptor. */
|
||||
typedef struct openprom_private_data
|
||||
{
|
||||
struct device_node *current_node; /* Current node for SunOS ioctls. */
|
||||
struct device_node *lastnode; /* Last valid node used by BSD ioctls. */
|
||||
} DATA;
|
||||
|
||||
/* ID of the PROM node containing all of the EEPROM options. */
|
||||
static DEFINE_MUTEX(openprom_mutex);
|
||||
static struct device_node *options_node;
|
||||
|
||||
/*
|
||||
* Copy an openpromio structure into kernel space from user space.
|
||||
* This routine does error checking to make sure that all memory
|
||||
* accesses are within bounds. A pointer to the allocated openpromio
|
||||
* structure will be placed in "*opp_p". Return value is the length
|
||||
* of the user supplied buffer.
|
||||
*/
|
||||
static int copyin(struct openpromio __user *info, struct openpromio **opp_p)
|
||||
{
|
||||
unsigned int bufsize;
|
||||
|
||||
if (!info || !opp_p)
|
||||
return -EFAULT;
|
||||
|
||||
if (get_user(bufsize, &info->oprom_size))
|
||||
return -EFAULT;
|
||||
|
||||
if (bufsize == 0)
|
||||
return -EINVAL;
|
||||
|
||||
/* If the bufsize is too large, just limit it.
|
||||
* Fix from Jason Rappleye.
|
||||
*/
|
||||
if (bufsize > OPROMMAXPARAM)
|
||||
bufsize = OPROMMAXPARAM;
|
||||
|
||||
if (!(*opp_p = kzalloc(sizeof(int) + bufsize + 1, GFP_KERNEL)))
|
||||
return -ENOMEM;
|
||||
|
||||
if (copy_from_user(&(*opp_p)->oprom_array,
|
||||
&info->oprom_array, bufsize)) {
|
||||
kfree(*opp_p);
|
||||
return -EFAULT;
|
||||
}
|
||||
return bufsize;
|
||||
}
|
||||
|
||||
static int getstrings(struct openpromio __user *info, struct openpromio **opp_p)
|
||||
{
|
||||
int n, bufsize;
|
||||
char c;
|
||||
|
||||
if (!info || !opp_p)
|
||||
return -EFAULT;
|
||||
|
||||
if (!(*opp_p = kzalloc(sizeof(int) + OPROMMAXPARAM + 1, GFP_KERNEL)))
|
||||
return -ENOMEM;
|
||||
|
||||
(*opp_p)->oprom_size = 0;
|
||||
|
||||
n = bufsize = 0;
|
||||
while ((n < 2) && (bufsize < OPROMMAXPARAM)) {
|
||||
if (get_user(c, &info->oprom_array[bufsize])) {
|
||||
kfree(*opp_p);
|
||||
return -EFAULT;
|
||||
}
|
||||
if (c == '\0')
|
||||
n++;
|
||||
(*opp_p)->oprom_array[bufsize++] = c;
|
||||
}
|
||||
if (!n) {
|
||||
kfree(*opp_p);
|
||||
return -EINVAL;
|
||||
}
|
||||
return bufsize;
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy an openpromio structure in kernel space back to user space.
|
||||
*/
|
||||
static int copyout(void __user *info, struct openpromio *opp, int len)
|
||||
{
|
||||
if (copy_to_user(info, opp, len))
|
||||
return -EFAULT;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int opromgetprop(void __user *argp, struct device_node *dp, struct openpromio *op, int bufsize)
|
||||
{
|
||||
const void *pval;
|
||||
int len;
|
||||
|
||||
if (!dp ||
|
||||
!(pval = of_get_property(dp, op->oprom_array, &len)) ||
|
||||
len <= 0 || len > bufsize)
|
||||
return copyout(argp, op, sizeof(int));
|
||||
|
||||
memcpy(op->oprom_array, pval, len);
|
||||
op->oprom_array[len] = '\0';
|
||||
op->oprom_size = len;
|
||||
|
||||
return copyout(argp, op, sizeof(int) + bufsize);
|
||||
}
|
||||
|
||||
static int opromnxtprop(void __user *argp, struct device_node *dp, struct openpromio *op, int bufsize)
|
||||
{
|
||||
struct property *prop;
|
||||
int len;
|
||||
|
||||
if (!dp)
|
||||
return copyout(argp, op, sizeof(int));
|
||||
if (op->oprom_array[0] == '\0') {
|
||||
prop = dp->properties;
|
||||
if (!prop)
|
||||
return copyout(argp, op, sizeof(int));
|
||||
len = strlen(prop->name);
|
||||
} else {
|
||||
prop = of_find_property(dp, op->oprom_array, NULL);
|
||||
|
||||
if (!prop ||
|
||||
!prop->next ||
|
||||
(len = strlen(prop->next->name)) + 1 > bufsize)
|
||||
return copyout(argp, op, sizeof(int));
|
||||
|
||||
prop = prop->next;
|
||||
}
|
||||
|
||||
memcpy(op->oprom_array, prop->name, len);
|
||||
op->oprom_array[len] = '\0';
|
||||
op->oprom_size = ++len;
|
||||
|
||||
return copyout(argp, op, sizeof(int) + bufsize);
|
||||
}
|
||||
|
||||
static int opromsetopt(struct device_node *dp, struct openpromio *op, int bufsize)
|
||||
{
|
||||
char *buf = op->oprom_array + strlen(op->oprom_array) + 1;
|
||||
int len = op->oprom_array + bufsize - buf;
|
||||
|
||||
return of_set_property(options_node, op->oprom_array, buf, len);
|
||||
}
|
||||
|
||||
static int opromnext(void __user *argp, unsigned int cmd, struct device_node *dp, struct openpromio *op, int bufsize, DATA *data)
|
||||
{
|
||||
phandle ph;
|
||||
|
||||
BUILD_BUG_ON(sizeof(phandle) != sizeof(int));
|
||||
|
||||
if (bufsize < sizeof(phandle))
|
||||
return -EINVAL;
|
||||
|
||||
ph = *((int *) op->oprom_array);
|
||||
if (ph) {
|
||||
dp = of_find_node_by_phandle(ph);
|
||||
if (!dp)
|
||||
return -EINVAL;
|
||||
|
||||
switch (cmd) {
|
||||
case OPROMNEXT:
|
||||
dp = dp->sibling;
|
||||
break;
|
||||
|
||||
case OPROMCHILD:
|
||||
dp = dp->child;
|
||||
break;
|
||||
|
||||
case OPROMSETCUR:
|
||||
default:
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
/* Sibling of node zero is the root node. */
|
||||
if (cmd != OPROMNEXT)
|
||||
return -EINVAL;
|
||||
|
||||
dp = of_find_node_by_path("/");
|
||||
}
|
||||
|
||||
ph = 0;
|
||||
if (dp)
|
||||
ph = dp->phandle;
|
||||
|
||||
data->current_node = dp;
|
||||
*((int *) op->oprom_array) = ph;
|
||||
op->oprom_size = sizeof(phandle);
|
||||
|
||||
return copyout(argp, op, bufsize + sizeof(int));
|
||||
}
|
||||
|
||||
static int oprompci2node(void __user *argp, struct device_node *dp, struct openpromio *op, int bufsize, DATA *data)
|
||||
{
|
||||
int err = -EINVAL;
|
||||
|
||||
if (bufsize >= 2*sizeof(int)) {
|
||||
#ifdef CONFIG_PCI
|
||||
struct pci_dev *pdev;
|
||||
struct device_node *dp;
|
||||
|
||||
pdev = pci_get_bus_and_slot (((int *) op->oprom_array)[0],
|
||||
((int *) op->oprom_array)[1]);
|
||||
|
||||
dp = pci_device_to_OF_node(pdev);
|
||||
data->current_node = dp;
|
||||
*((int *)op->oprom_array) = dp->phandle;
|
||||
op->oprom_size = sizeof(int);
|
||||
err = copyout(argp, op, bufsize + sizeof(int));
|
||||
|
||||
pci_dev_put(pdev);
|
||||
#endif
|
||||
}
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int oprompath2node(void __user *argp, struct device_node *dp, struct openpromio *op, int bufsize, DATA *data)
|
||||
{
|
||||
phandle ph = 0;
|
||||
|
||||
dp = of_find_node_by_path(op->oprom_array);
|
||||
if (dp)
|
||||
ph = dp->phandle;
|
||||
data->current_node = dp;
|
||||
*((int *)op->oprom_array) = ph;
|
||||
op->oprom_size = sizeof(int);
|
||||
|
||||
return copyout(argp, op, bufsize + sizeof(int));
|
||||
}
|
||||
|
||||
static int opromgetbootargs(void __user *argp, struct openpromio *op, int bufsize)
|
||||
{
|
||||
char *buf = saved_command_line;
|
||||
int len = strlen(buf);
|
||||
|
||||
if (len > bufsize)
|
||||
return -EINVAL;
|
||||
|
||||
strcpy(op->oprom_array, buf);
|
||||
op->oprom_size = len;
|
||||
|
||||
return copyout(argp, op, bufsize + sizeof(int));
|
||||
}
|
||||
|
||||
/*
|
||||
* SunOS and Solaris /dev/openprom ioctl calls.
|
||||
*/
|
||||
static long openprom_sunos_ioctl(struct file * file,
|
||||
unsigned int cmd, unsigned long arg,
|
||||
struct device_node *dp)
|
||||
{
|
||||
DATA *data = file->private_data;
|
||||
struct openpromio *opp = NULL;
|
||||
int bufsize, error = 0;
|
||||
static int cnt;
|
||||
void __user *argp = (void __user *)arg;
|
||||
|
||||
if (cmd == OPROMSETOPT)
|
||||
bufsize = getstrings(argp, &opp);
|
||||
else
|
||||
bufsize = copyin(argp, &opp);
|
||||
|
||||
if (bufsize < 0)
|
||||
return bufsize;
|
||||
|
||||
mutex_lock(&openprom_mutex);
|
||||
|
||||
switch (cmd) {
|
||||
case OPROMGETOPT:
|
||||
case OPROMGETPROP:
|
||||
error = opromgetprop(argp, dp, opp, bufsize);
|
||||
break;
|
||||
|
||||
case OPROMNXTOPT:
|
||||
case OPROMNXTPROP:
|
||||
error = opromnxtprop(argp, dp, opp, bufsize);
|
||||
break;
|
||||
|
||||
case OPROMSETOPT:
|
||||
case OPROMSETOPT2:
|
||||
error = opromsetopt(dp, opp, bufsize);
|
||||
break;
|
||||
|
||||
case OPROMNEXT:
|
||||
case OPROMCHILD:
|
||||
case OPROMSETCUR:
|
||||
error = opromnext(argp, cmd, dp, opp, bufsize, data);
|
||||
break;
|
||||
|
||||
case OPROMPCI2NODE:
|
||||
error = oprompci2node(argp, dp, opp, bufsize, data);
|
||||
break;
|
||||
|
||||
case OPROMPATH2NODE:
|
||||
error = oprompath2node(argp, dp, opp, bufsize, data);
|
||||
break;
|
||||
|
||||
case OPROMGETBOOTARGS:
|
||||
error = opromgetbootargs(argp, opp, bufsize);
|
||||
break;
|
||||
|
||||
case OPROMU2P:
|
||||
case OPROMGETCONS:
|
||||
case OPROMGETFBNAME:
|
||||
if (cnt++ < 10)
|
||||
printk(KERN_INFO "openprom_sunos_ioctl: unimplemented ioctl\n");
|
||||
error = -EINVAL;
|
||||
break;
|
||||
default:
|
||||
if (cnt++ < 10)
|
||||
printk(KERN_INFO "openprom_sunos_ioctl: cmd 0x%X, arg 0x%lX\n", cmd, arg);
|
||||
error = -EINVAL;
|
||||
break;
|
||||
}
|
||||
|
||||
kfree(opp);
|
||||
mutex_unlock(&openprom_mutex);
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
static struct device_node *get_node(phandle n, DATA *data)
|
||||
{
|
||||
struct device_node *dp = of_find_node_by_phandle(n);
|
||||
|
||||
if (dp)
|
||||
data->lastnode = dp;
|
||||
|
||||
return dp;
|
||||
}
|
||||
|
||||
/* Copy in a whole string from userspace into kernelspace. */
|
||||
static int copyin_string(char __user *user, size_t len, char **ptr)
|
||||
{
|
||||
char *tmp;
|
||||
|
||||
if ((ssize_t)len < 0 || (ssize_t)(len + 1) < 0)
|
||||
return -EINVAL;
|
||||
|
||||
tmp = kmalloc(len + 1, GFP_KERNEL);
|
||||
if (!tmp)
|
||||
return -ENOMEM;
|
||||
|
||||
if (copy_from_user(tmp, user, len)) {
|
||||
kfree(tmp);
|
||||
return -EFAULT;
|
||||
}
|
||||
|
||||
tmp[len] = '\0';
|
||||
|
||||
*ptr = tmp;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* NetBSD /dev/openprom ioctl calls.
|
||||
*/
|
||||
static int opiocget(void __user *argp, DATA *data)
|
||||
{
|
||||
struct opiocdesc op;
|
||||
struct device_node *dp;
|
||||
char *str;
|
||||
const void *pval;
|
||||
int err, len;
|
||||
|
||||
if (copy_from_user(&op, argp, sizeof(op)))
|
||||
return -EFAULT;
|
||||
|
||||
dp = get_node(op.op_nodeid, data);
|
||||
|
||||
err = copyin_string(op.op_name, op.op_namelen, &str);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
pval = of_get_property(dp, str, &len);
|
||||
err = 0;
|
||||
if (!pval || len > op.op_buflen) {
|
||||
err = -EINVAL;
|
||||
} else {
|
||||
op.op_buflen = len;
|
||||
if (copy_to_user(argp, &op, sizeof(op)) ||
|
||||
copy_to_user(op.op_buf, pval, len))
|
||||
err = -EFAULT;
|
||||
}
|
||||
kfree(str);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int opiocnextprop(void __user *argp, DATA *data)
|
||||
{
|
||||
struct opiocdesc op;
|
||||
struct device_node *dp;
|
||||
struct property *prop;
|
||||
char *str;
|
||||
int err, len;
|
||||
|
||||
if (copy_from_user(&op, argp, sizeof(op)))
|
||||
return -EFAULT;
|
||||
|
||||
dp = get_node(op.op_nodeid, data);
|
||||
if (!dp)
|
||||
return -EINVAL;
|
||||
|
||||
err = copyin_string(op.op_name, op.op_namelen, &str);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
if (str[0] == '\0') {
|
||||
prop = dp->properties;
|
||||
} else {
|
||||
prop = of_find_property(dp, str, NULL);
|
||||
if (prop)
|
||||
prop = prop->next;
|
||||
}
|
||||
kfree(str);
|
||||
|
||||
if (!prop)
|
||||
len = 0;
|
||||
else
|
||||
len = prop->length;
|
||||
|
||||
if (len > op.op_buflen)
|
||||
len = op.op_buflen;
|
||||
|
||||
if (copy_to_user(argp, &op, sizeof(op)))
|
||||
return -EFAULT;
|
||||
|
||||
if (len &&
|
||||
copy_to_user(op.op_buf, prop->value, len))
|
||||
return -EFAULT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int opiocset(void __user *argp, DATA *data)
|
||||
{
|
||||
struct opiocdesc op;
|
||||
struct device_node *dp;
|
||||
char *str, *tmp;
|
||||
int err;
|
||||
|
||||
if (copy_from_user(&op, argp, sizeof(op)))
|
||||
return -EFAULT;
|
||||
|
||||
dp = get_node(op.op_nodeid, data);
|
||||
if (!dp)
|
||||
return -EINVAL;
|
||||
|
||||
err = copyin_string(op.op_name, op.op_namelen, &str);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
err = copyin_string(op.op_buf, op.op_buflen, &tmp);
|
||||
if (err) {
|
||||
kfree(str);
|
||||
return err;
|
||||
}
|
||||
|
||||
err = of_set_property(dp, str, tmp, op.op_buflen);
|
||||
|
||||
kfree(str);
|
||||
kfree(tmp);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
static int opiocgetnext(unsigned int cmd, void __user *argp)
|
||||
{
|
||||
struct device_node *dp;
|
||||
phandle nd;
|
||||
|
||||
BUILD_BUG_ON(sizeof(phandle) != sizeof(int));
|
||||
|
||||
if (copy_from_user(&nd, argp, sizeof(phandle)))
|
||||
return -EFAULT;
|
||||
|
||||
if (nd == 0) {
|
||||
if (cmd != OPIOCGETNEXT)
|
||||
return -EINVAL;
|
||||
dp = of_find_node_by_path("/");
|
||||
} else {
|
||||
dp = of_find_node_by_phandle(nd);
|
||||
nd = 0;
|
||||
if (dp) {
|
||||
if (cmd == OPIOCGETNEXT)
|
||||
dp = dp->sibling;
|
||||
else
|
||||
dp = dp->child;
|
||||
}
|
||||
}
|
||||
if (dp)
|
||||
nd = dp->phandle;
|
||||
if (copy_to_user(argp, &nd, sizeof(phandle)))
|
||||
return -EFAULT;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int openprom_bsd_ioctl(struct file * file,
|
||||
unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
DATA *data = file->private_data;
|
||||
void __user *argp = (void __user *)arg;
|
||||
int err;
|
||||
|
||||
mutex_lock(&openprom_mutex);
|
||||
switch (cmd) {
|
||||
case OPIOCGET:
|
||||
err = opiocget(argp, data);
|
||||
break;
|
||||
|
||||
case OPIOCNEXTPROP:
|
||||
err = opiocnextprop(argp, data);
|
||||
break;
|
||||
|
||||
case OPIOCSET:
|
||||
err = opiocset(argp, data);
|
||||
break;
|
||||
|
||||
case OPIOCGETOPTNODE:
|
||||
BUILD_BUG_ON(sizeof(phandle) != sizeof(int));
|
||||
|
||||
err = 0;
|
||||
if (copy_to_user(argp, &options_node->phandle, sizeof(phandle)))
|
||||
err = -EFAULT;
|
||||
break;
|
||||
|
||||
case OPIOCGETNEXT:
|
||||
case OPIOCGETCHILD:
|
||||
err = opiocgetnext(cmd, argp);
|
||||
break;
|
||||
|
||||
default:
|
||||
err = -EINVAL;
|
||||
break;
|
||||
}
|
||||
mutex_unlock(&openprom_mutex);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
|
||||
/*
|
||||
* Handoff control to the correct ioctl handler.
|
||||
*/
|
||||
static long openprom_ioctl(struct file * file,
|
||||
unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
DATA *data = file->private_data;
|
||||
|
||||
switch (cmd) {
|
||||
case OPROMGETOPT:
|
||||
case OPROMNXTOPT:
|
||||
if ((file->f_mode & FMODE_READ) == 0)
|
||||
return -EPERM;
|
||||
return openprom_sunos_ioctl(file, cmd, arg,
|
||||
options_node);
|
||||
|
||||
case OPROMSETOPT:
|
||||
case OPROMSETOPT2:
|
||||
if ((file->f_mode & FMODE_WRITE) == 0)
|
||||
return -EPERM;
|
||||
return openprom_sunos_ioctl(file, cmd, arg,
|
||||
options_node);
|
||||
|
||||
case OPROMNEXT:
|
||||
case OPROMCHILD:
|
||||
case OPROMGETPROP:
|
||||
case OPROMNXTPROP:
|
||||
if ((file->f_mode & FMODE_READ) == 0)
|
||||
return -EPERM;
|
||||
return openprom_sunos_ioctl(file, cmd, arg,
|
||||
data->current_node);
|
||||
|
||||
case OPROMU2P:
|
||||
case OPROMGETCONS:
|
||||
case OPROMGETFBNAME:
|
||||
case OPROMGETBOOTARGS:
|
||||
case OPROMSETCUR:
|
||||
case OPROMPCI2NODE:
|
||||
case OPROMPATH2NODE:
|
||||
if ((file->f_mode & FMODE_READ) == 0)
|
||||
return -EPERM;
|
||||
return openprom_sunos_ioctl(file, cmd, arg, NULL);
|
||||
|
||||
case OPIOCGET:
|
||||
case OPIOCNEXTPROP:
|
||||
case OPIOCGETOPTNODE:
|
||||
case OPIOCGETNEXT:
|
||||
case OPIOCGETCHILD:
|
||||
if ((file->f_mode & FMODE_READ) == 0)
|
||||
return -EBADF;
|
||||
return openprom_bsd_ioctl(file,cmd,arg);
|
||||
|
||||
case OPIOCSET:
|
||||
if ((file->f_mode & FMODE_WRITE) == 0)
|
||||
return -EBADF;
|
||||
return openprom_bsd_ioctl(file,cmd,arg);
|
||||
|
||||
default:
|
||||
return -EINVAL;
|
||||
};
|
||||
}
|
||||
|
||||
static long openprom_compat_ioctl(struct file *file, unsigned int cmd,
|
||||
unsigned long arg)
|
||||
{
|
||||
long rval = -ENOTTY;
|
||||
|
||||
/*
|
||||
* SunOS/Solaris only, the NetBSD one's have embedded pointers in
|
||||
* the arg which we'd need to clean up...
|
||||
*/
|
||||
switch (cmd) {
|
||||
case OPROMGETOPT:
|
||||
case OPROMSETOPT:
|
||||
case OPROMNXTOPT:
|
||||
case OPROMSETOPT2:
|
||||
case OPROMNEXT:
|
||||
case OPROMCHILD:
|
||||
case OPROMGETPROP:
|
||||
case OPROMNXTPROP:
|
||||
case OPROMU2P:
|
||||
case OPROMGETCONS:
|
||||
case OPROMGETFBNAME:
|
||||
case OPROMGETBOOTARGS:
|
||||
case OPROMSETCUR:
|
||||
case OPROMPCI2NODE:
|
||||
case OPROMPATH2NODE:
|
||||
rval = openprom_ioctl(file, cmd, arg);
|
||||
break;
|
||||
}
|
||||
|
||||
return rval;
|
||||
}
|
||||
|
||||
static int openprom_open(struct inode * inode, struct file * file)
|
||||
{
|
||||
DATA *data;
|
||||
|
||||
data = kmalloc(sizeof(DATA), GFP_KERNEL);
|
||||
if (!data)
|
||||
return -ENOMEM;
|
||||
|
||||
mutex_lock(&openprom_mutex);
|
||||
data->current_node = of_find_node_by_path("/");
|
||||
data->lastnode = data->current_node;
|
||||
file->private_data = (void *) data;
|
||||
mutex_unlock(&openprom_mutex);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int openprom_release(struct inode * inode, struct file * file)
|
||||
{
|
||||
kfree(file->private_data);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct file_operations openprom_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.llseek = no_llseek,
|
||||
.unlocked_ioctl = openprom_ioctl,
|
||||
.compat_ioctl = openprom_compat_ioctl,
|
||||
.open = openprom_open,
|
||||
.release = openprom_release,
|
||||
};
|
||||
|
||||
static struct miscdevice openprom_dev = {
|
||||
.minor = SUN_OPENPROM_MINOR,
|
||||
.name = "openprom",
|
||||
.fops = &openprom_fops,
|
||||
};
|
||||
|
||||
static int __init openprom_init(void)
|
||||
{
|
||||
struct device_node *dp;
|
||||
int err;
|
||||
|
||||
err = misc_register(&openprom_dev);
|
||||
if (err)
|
||||
return err;
|
||||
|
||||
dp = of_find_node_by_path("/");
|
||||
dp = dp->child;
|
||||
while (dp) {
|
||||
if (!strcmp(dp->name, "options"))
|
||||
break;
|
||||
dp = dp->sibling;
|
||||
}
|
||||
options_node = dp;
|
||||
|
||||
if (!options_node) {
|
||||
misc_deregister(&openprom_dev);
|
||||
return -EIO;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void __exit openprom_cleanup(void)
|
||||
{
|
||||
misc_deregister(&openprom_dev);
|
||||
}
|
||||
|
||||
module_init(openprom_init);
|
||||
module_exit(openprom_cleanup);
|
438
drivers/sbus/char/uctrl.c
Normal file
438
drivers/sbus/char/uctrl.c
Normal file
|
@ -0,0 +1,438 @@
|
|||
/* uctrl.c: TS102 Microcontroller interface on Tadpole Sparcbook 3
|
||||
*
|
||||
* Copyright 1999 Derrick J Brashear (shadow@dementia.org)
|
||||
* Copyright 2008 David S. Miller (davem@davemloft.net)
|
||||
*/
|
||||
|
||||
#include <linux/module.h>
|
||||
#include <linux/errno.h>
|
||||
#include <linux/delay.h>
|
||||
#include <linux/interrupt.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/mutex.h>
|
||||
#include <linux/ioport.h>
|
||||
#include <linux/miscdevice.h>
|
||||
#include <linux/mm.h>
|
||||
#include <linux/of.h>
|
||||
#include <linux/of_device.h>
|
||||
|
||||
#include <asm/openprom.h>
|
||||
#include <asm/oplib.h>
|
||||
#include <asm/irq.h>
|
||||
#include <asm/io.h>
|
||||
#include <asm/pgtable.h>
|
||||
|
||||
#define UCTRL_MINOR 174
|
||||
|
||||
#define DEBUG 1
|
||||
#ifdef DEBUG
|
||||
#define dprintk(x) printk x
|
||||
#else
|
||||
#define dprintk(x)
|
||||
#endif
|
||||
|
||||
struct uctrl_regs {
|
||||
u32 uctrl_intr;
|
||||
u32 uctrl_data;
|
||||
u32 uctrl_stat;
|
||||
u32 uctrl_xxx[5];
|
||||
};
|
||||
|
||||
struct ts102_regs {
|
||||
u32 card_a_intr;
|
||||
u32 card_a_stat;
|
||||
u32 card_a_ctrl;
|
||||
u32 card_a_xxx;
|
||||
u32 card_b_intr;
|
||||
u32 card_b_stat;
|
||||
u32 card_b_ctrl;
|
||||
u32 card_b_xxx;
|
||||
u32 uctrl_intr;
|
||||
u32 uctrl_data;
|
||||
u32 uctrl_stat;
|
||||
u32 uctrl_xxx;
|
||||
u32 ts102_xxx[4];
|
||||
};
|
||||
|
||||
/* Bits for uctrl_intr register */
|
||||
#define UCTRL_INTR_TXE_REQ 0x01 /* transmit FIFO empty int req */
|
||||
#define UCTRL_INTR_TXNF_REQ 0x02 /* transmit FIFO not full int req */
|
||||
#define UCTRL_INTR_RXNE_REQ 0x04 /* receive FIFO not empty int req */
|
||||
#define UCTRL_INTR_RXO_REQ 0x08 /* receive FIFO overflow int req */
|
||||
#define UCTRL_INTR_TXE_MSK 0x10 /* transmit FIFO empty mask */
|
||||
#define UCTRL_INTR_TXNF_MSK 0x20 /* transmit FIFO not full mask */
|
||||
#define UCTRL_INTR_RXNE_MSK 0x40 /* receive FIFO not empty mask */
|
||||
#define UCTRL_INTR_RXO_MSK 0x80 /* receive FIFO overflow mask */
|
||||
|
||||
/* Bits for uctrl_stat register */
|
||||
#define UCTRL_STAT_TXE_STA 0x01 /* transmit FIFO empty status */
|
||||
#define UCTRL_STAT_TXNF_STA 0x02 /* transmit FIFO not full status */
|
||||
#define UCTRL_STAT_RXNE_STA 0x04 /* receive FIFO not empty status */
|
||||
#define UCTRL_STAT_RXO_STA 0x08 /* receive FIFO overflow status */
|
||||
|
||||
static DEFINE_MUTEX(uctrl_mutex);
|
||||
static const char *uctrl_extstatus[16] = {
|
||||
"main power available",
|
||||
"internal battery attached",
|
||||
"external battery attached",
|
||||
"external VGA attached",
|
||||
"external keyboard attached",
|
||||
"external mouse attached",
|
||||
"lid down",
|
||||
"internal battery currently charging",
|
||||
"external battery currently charging",
|
||||
"internal battery currently discharging",
|
||||
"external battery currently discharging",
|
||||
};
|
||||
|
||||
/* Everything required for one transaction with the uctrl */
|
||||
struct uctrl_txn {
|
||||
u8 opcode;
|
||||
u8 inbits;
|
||||
u8 outbits;
|
||||
u8 *inbuf;
|
||||
u8 *outbuf;
|
||||
};
|
||||
|
||||
struct uctrl_status {
|
||||
u8 current_temp; /* 0x07 */
|
||||
u8 reset_status; /* 0x0b */
|
||||
u16 event_status; /* 0x0c */
|
||||
u16 error_status; /* 0x10 */
|
||||
u16 external_status; /* 0x11, 0x1b */
|
||||
u8 internal_charge; /* 0x18 */
|
||||
u8 external_charge; /* 0x19 */
|
||||
u16 control_lcd; /* 0x20 */
|
||||
u8 control_bitport; /* 0x21 */
|
||||
u8 speaker_volume; /* 0x23 */
|
||||
u8 control_tft_brightness; /* 0x24 */
|
||||
u8 control_kbd_repeat_delay; /* 0x28 */
|
||||
u8 control_kbd_repeat_period; /* 0x29 */
|
||||
u8 control_screen_contrast; /* 0x2F */
|
||||
};
|
||||
|
||||
enum uctrl_opcode {
|
||||
READ_SERIAL_NUMBER=0x1,
|
||||
READ_ETHERNET_ADDRESS=0x2,
|
||||
READ_HARDWARE_VERSION=0x3,
|
||||
READ_MICROCONTROLLER_VERSION=0x4,
|
||||
READ_MAX_TEMPERATURE=0x5,
|
||||
READ_MIN_TEMPERATURE=0x6,
|
||||
READ_CURRENT_TEMPERATURE=0x7,
|
||||
READ_SYSTEM_VARIANT=0x8,
|
||||
READ_POWERON_CYCLES=0x9,
|
||||
READ_POWERON_SECONDS=0xA,
|
||||
READ_RESET_STATUS=0xB,
|
||||
READ_EVENT_STATUS=0xC,
|
||||
READ_REAL_TIME_CLOCK=0xD,
|
||||
READ_EXTERNAL_VGA_PORT=0xE,
|
||||
READ_MICROCONTROLLER_ROM_CHECKSUM=0xF,
|
||||
READ_ERROR_STATUS=0x10,
|
||||
READ_EXTERNAL_STATUS=0x11,
|
||||
READ_USER_CONFIGURATION_AREA=0x12,
|
||||
READ_MICROCONTROLLER_VOLTAGE=0x13,
|
||||
READ_INTERNAL_BATTERY_VOLTAGE=0x14,
|
||||
READ_DCIN_VOLTAGE=0x15,
|
||||
READ_HORIZONTAL_POINTER_VOLTAGE=0x16,
|
||||
READ_VERTICAL_POINTER_VOLTAGE=0x17,
|
||||
READ_INTERNAL_BATTERY_CHARGE_LEVEL=0x18,
|
||||
READ_EXTERNAL_BATTERY_CHARGE_LEVEL=0x19,
|
||||
READ_REAL_TIME_CLOCK_ALARM=0x1A,
|
||||
READ_EVENT_STATUS_NO_RESET=0x1B,
|
||||
READ_INTERNAL_KEYBOARD_LAYOUT=0x1C,
|
||||
READ_EXTERNAL_KEYBOARD_LAYOUT=0x1D,
|
||||
READ_EEPROM_STATUS=0x1E,
|
||||
CONTROL_LCD=0x20,
|
||||
CONTROL_BITPORT=0x21,
|
||||
SPEAKER_VOLUME=0x23,
|
||||
CONTROL_TFT_BRIGHTNESS=0x24,
|
||||
CONTROL_WATCHDOG=0x25,
|
||||
CONTROL_FACTORY_EEPROM_AREA=0x26,
|
||||
CONTROL_KBD_TIME_UNTIL_REPEAT=0x28,
|
||||
CONTROL_KBD_TIME_BETWEEN_REPEATS=0x29,
|
||||
CONTROL_TIMEZONE=0x2A,
|
||||
CONTROL_MARK_SPACE_RATIO=0x2B,
|
||||
CONTROL_DIAGNOSTIC_MODE=0x2E,
|
||||
CONTROL_SCREEN_CONTRAST=0x2F,
|
||||
RING_BELL=0x30,
|
||||
SET_DIAGNOSTIC_STATUS=0x32,
|
||||
CLEAR_KEY_COMBINATION_TABLE=0x33,
|
||||
PERFORM_SOFTWARE_RESET=0x34,
|
||||
SET_REAL_TIME_CLOCK=0x35,
|
||||
RECALIBRATE_POINTING_STICK=0x36,
|
||||
SET_BELL_FREQUENCY=0x37,
|
||||
SET_INTERNAL_BATTERY_CHARGE_RATE=0x39,
|
||||
SET_EXTERNAL_BATTERY_CHARGE_RATE=0x3A,
|
||||
SET_REAL_TIME_CLOCK_ALARM=0x3B,
|
||||
READ_EEPROM=0x40,
|
||||
WRITE_EEPROM=0x41,
|
||||
WRITE_TO_STATUS_DISPLAY=0x42,
|
||||
DEFINE_SPECIAL_CHARACTER=0x43,
|
||||
DEFINE_KEY_COMBINATION_ENTRY=0x50,
|
||||
DEFINE_STRING_TABLE_ENTRY=0x51,
|
||||
DEFINE_STATUS_SCREEN_DISPLAY=0x52,
|
||||
PERFORM_EMU_COMMANDS=0x64,
|
||||
READ_EMU_REGISTER=0x65,
|
||||
WRITE_EMU_REGISTER=0x66,
|
||||
READ_EMU_RAM=0x67,
|
||||
WRITE_EMU_RAM=0x68,
|
||||
READ_BQ_REGISTER=0x69,
|
||||
WRITE_BQ_REGISTER=0x6A,
|
||||
SET_USER_PASSWORD=0x70,
|
||||
VERIFY_USER_PASSWORD=0x71,
|
||||
GET_SYSTEM_PASSWORD_KEY=0x72,
|
||||
VERIFY_SYSTEM_PASSWORD=0x73,
|
||||
POWER_OFF=0x82,
|
||||
POWER_RESTART=0x83,
|
||||
};
|
||||
|
||||
static struct uctrl_driver {
|
||||
struct uctrl_regs __iomem *regs;
|
||||
int irq;
|
||||
int pending;
|
||||
struct uctrl_status status;
|
||||
} *global_driver;
|
||||
|
||||
static void uctrl_get_event_status(struct uctrl_driver *);
|
||||
static void uctrl_get_external_status(struct uctrl_driver *);
|
||||
|
||||
static long
|
||||
uctrl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
||||
{
|
||||
switch (cmd) {
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int
|
||||
uctrl_open(struct inode *inode, struct file *file)
|
||||
{
|
||||
mutex_lock(&uctrl_mutex);
|
||||
uctrl_get_event_status(global_driver);
|
||||
uctrl_get_external_status(global_driver);
|
||||
mutex_unlock(&uctrl_mutex);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static irqreturn_t uctrl_interrupt(int irq, void *dev_id)
|
||||
{
|
||||
return IRQ_HANDLED;
|
||||
}
|
||||
|
||||
static const struct file_operations uctrl_fops = {
|
||||
.owner = THIS_MODULE,
|
||||
.llseek = no_llseek,
|
||||
.unlocked_ioctl = uctrl_ioctl,
|
||||
.open = uctrl_open,
|
||||
};
|
||||
|
||||
static struct miscdevice uctrl_dev = {
|
||||
UCTRL_MINOR,
|
||||
"uctrl",
|
||||
&uctrl_fops
|
||||
};
|
||||
|
||||
/* Wait for space to write, then write to it */
|
||||
#define WRITEUCTLDATA(value) \
|
||||
{ \
|
||||
unsigned int i; \
|
||||
for (i = 0; i < 10000; i++) { \
|
||||
if (UCTRL_STAT_TXNF_STA & sbus_readl(&driver->regs->uctrl_stat)) \
|
||||
break; \
|
||||
} \
|
||||
dprintk(("write data 0x%02x\n", value)); \
|
||||
sbus_writel(value, &driver->regs->uctrl_data); \
|
||||
}
|
||||
|
||||
/* Wait for something to read, read it, then clear the bit */
|
||||
#define READUCTLDATA(value) \
|
||||
{ \
|
||||
unsigned int i; \
|
||||
value = 0; \
|
||||
for (i = 0; i < 10000; i++) { \
|
||||
if ((UCTRL_STAT_RXNE_STA & sbus_readl(&driver->regs->uctrl_stat)) == 0) \
|
||||
break; \
|
||||
udelay(1); \
|
||||
} \
|
||||
value = sbus_readl(&driver->regs->uctrl_data); \
|
||||
dprintk(("read data 0x%02x\n", value)); \
|
||||
sbus_writel(UCTRL_STAT_RXNE_STA, &driver->regs->uctrl_stat); \
|
||||
}
|
||||
|
||||
static void uctrl_do_txn(struct uctrl_driver *driver, struct uctrl_txn *txn)
|
||||
{
|
||||
int stat, incnt, outcnt, bytecnt, intr;
|
||||
u32 byte;
|
||||
|
||||
stat = sbus_readl(&driver->regs->uctrl_stat);
|
||||
intr = sbus_readl(&driver->regs->uctrl_intr);
|
||||
sbus_writel(stat, &driver->regs->uctrl_stat);
|
||||
|
||||
dprintk(("interrupt stat 0x%x int 0x%x\n", stat, intr));
|
||||
|
||||
incnt = txn->inbits;
|
||||
outcnt = txn->outbits;
|
||||
byte = (txn->opcode << 8);
|
||||
WRITEUCTLDATA(byte);
|
||||
|
||||
bytecnt = 0;
|
||||
while (incnt > 0) {
|
||||
byte = (txn->inbuf[bytecnt] << 8);
|
||||
WRITEUCTLDATA(byte);
|
||||
incnt--;
|
||||
bytecnt++;
|
||||
}
|
||||
|
||||
/* Get the ack */
|
||||
READUCTLDATA(byte);
|
||||
dprintk(("ack was %x\n", (byte >> 8)));
|
||||
|
||||
bytecnt = 0;
|
||||
while (outcnt > 0) {
|
||||
READUCTLDATA(byte);
|
||||
txn->outbuf[bytecnt] = (byte >> 8);
|
||||
dprintk(("set byte to %02x\n", byte));
|
||||
outcnt--;
|
||||
bytecnt++;
|
||||
}
|
||||
}
|
||||
|
||||
static void uctrl_get_event_status(struct uctrl_driver *driver)
|
||||
{
|
||||
struct uctrl_txn txn;
|
||||
u8 outbits[2];
|
||||
|
||||
txn.opcode = READ_EVENT_STATUS;
|
||||
txn.inbits = 0;
|
||||
txn.outbits = 2;
|
||||
txn.inbuf = NULL;
|
||||
txn.outbuf = outbits;
|
||||
|
||||
uctrl_do_txn(driver, &txn);
|
||||
|
||||
dprintk(("bytes %x %x\n", (outbits[0] & 0xff), (outbits[1] & 0xff)));
|
||||
driver->status.event_status =
|
||||
((outbits[0] & 0xff) << 8) | (outbits[1] & 0xff);
|
||||
dprintk(("ev is %x\n", driver->status.event_status));
|
||||
}
|
||||
|
||||
static void uctrl_get_external_status(struct uctrl_driver *driver)
|
||||
{
|
||||
struct uctrl_txn txn;
|
||||
u8 outbits[2];
|
||||
int i, v;
|
||||
|
||||
txn.opcode = READ_EXTERNAL_STATUS;
|
||||
txn.inbits = 0;
|
||||
txn.outbits = 2;
|
||||
txn.inbuf = NULL;
|
||||
txn.outbuf = outbits;
|
||||
|
||||
uctrl_do_txn(driver, &txn);
|
||||
|
||||
dprintk(("bytes %x %x\n", (outbits[0] & 0xff), (outbits[1] & 0xff)));
|
||||
driver->status.external_status =
|
||||
((outbits[0] * 256) + (outbits[1]));
|
||||
dprintk(("ex is %x\n", driver->status.external_status));
|
||||
v = driver->status.external_status;
|
||||
for (i = 0; v != 0; i++, v >>= 1) {
|
||||
if (v & 1) {
|
||||
dprintk(("%s%s", " ", uctrl_extstatus[i]));
|
||||
}
|
||||
}
|
||||
dprintk(("\n"));
|
||||
|
||||
}
|
||||
|
||||
static int uctrl_probe(struct platform_device *op)
|
||||
{
|
||||
struct uctrl_driver *p;
|
||||
int err = -ENOMEM;
|
||||
|
||||
p = kzalloc(sizeof(*p), GFP_KERNEL);
|
||||
if (!p) {
|
||||
printk(KERN_ERR "uctrl: Unable to allocate device struct.\n");
|
||||
goto out;
|
||||
}
|
||||
|
||||
p->regs = of_ioremap(&op->resource[0], 0,
|
||||
resource_size(&op->resource[0]),
|
||||
"uctrl");
|
||||
if (!p->regs) {
|
||||
printk(KERN_ERR "uctrl: Unable to map registers.\n");
|
||||
goto out_free;
|
||||
}
|
||||
|
||||
p->irq = op->archdata.irqs[0];
|
||||
err = request_irq(p->irq, uctrl_interrupt, 0, "uctrl", p);
|
||||
if (err) {
|
||||
printk(KERN_ERR "uctrl: Unable to register irq.\n");
|
||||
goto out_iounmap;
|
||||
}
|
||||
|
||||
err = misc_register(&uctrl_dev);
|
||||
if (err) {
|
||||
printk(KERN_ERR "uctrl: Unable to register misc device.\n");
|
||||
goto out_free_irq;
|
||||
}
|
||||
|
||||
sbus_writel(UCTRL_INTR_RXNE_REQ|UCTRL_INTR_RXNE_MSK, &p->regs->uctrl_intr);
|
||||
printk(KERN_INFO "%s: uctrl regs[0x%p] (irq %d)\n",
|
||||
op->dev.of_node->full_name, p->regs, p->irq);
|
||||
uctrl_get_event_status(p);
|
||||
uctrl_get_external_status(p);
|
||||
|
||||
dev_set_drvdata(&op->dev, p);
|
||||
global_driver = p;
|
||||
|
||||
out:
|
||||
return err;
|
||||
|
||||
out_free_irq:
|
||||
free_irq(p->irq, p);
|
||||
|
||||
out_iounmap:
|
||||
of_iounmap(&op->resource[0], p->regs, resource_size(&op->resource[0]));
|
||||
|
||||
out_free:
|
||||
kfree(p);
|
||||
goto out;
|
||||
}
|
||||
|
||||
static int uctrl_remove(struct platform_device *op)
|
||||
{
|
||||
struct uctrl_driver *p = dev_get_drvdata(&op->dev);
|
||||
|
||||
if (p) {
|
||||
misc_deregister(&uctrl_dev);
|
||||
free_irq(p->irq, p);
|
||||
of_iounmap(&op->resource[0], p->regs, resource_size(&op->resource[0]));
|
||||
kfree(p);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct of_device_id uctrl_match[] = {
|
||||
{
|
||||
.name = "uctrl",
|
||||
},
|
||||
{},
|
||||
};
|
||||
MODULE_DEVICE_TABLE(of, uctrl_match);
|
||||
|
||||
static struct platform_driver uctrl_driver = {
|
||||
.driver = {
|
||||
.name = "uctrl",
|
||||
.owner = THIS_MODULE,
|
||||
.of_match_table = uctrl_match,
|
||||
},
|
||||
.probe = uctrl_probe,
|
||||
.remove = uctrl_remove,
|
||||
};
|
||||
|
||||
|
||||
module_platform_driver(uctrl_driver);
|
||||
|
||||
MODULE_LICENSE("GPL");
|
Loading…
Add table
Add a link
Reference in a new issue