Fixed MTP to work with TWRP

This commit is contained in:
awab228 2018-06-19 23:16:04 +02:00
commit f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions

View file

@ -0,0 +1,700 @@
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#ifndef _TTM_BO_API_H_
#define _TTM_BO_API_H_
#include <drm/drm_hashtab.h>
#include <drm/drm_vma_manager.h>
#include <linux/kref.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/bitmap.h>
#include <linux/reservation.h>
struct ttm_bo_device;
struct drm_mm_node;
/**
* struct ttm_place
*
* @fpfn: first valid page frame number to put the object
* @lpfn: last valid page frame number to put the object
* @flags: memory domain and caching flags for the object
*
* Structure indicating a possible place to put an object.
*/
struct ttm_place {
unsigned fpfn;
unsigned lpfn;
uint32_t flags;
};
/**
* struct ttm_placement
*
* @num_placement: number of preferred placements
* @placement: preferred placements
* @num_busy_placement: number of preferred placements when need to evict buffer
* @busy_placement: preferred placements when need to evict buffer
*
* Structure indicating the placement you request for an object.
*/
struct ttm_placement {
unsigned num_placement;
const struct ttm_place *placement;
unsigned num_busy_placement;
const struct ttm_place *busy_placement;
};
/**
* struct ttm_bus_placement
*
* @addr: mapped virtual address
* @base: bus base address
* @is_iomem: is this io memory ?
* @size: size in byte
* @offset: offset from the base address
* @io_reserved_vm: The VM system has a refcount in @io_reserved_count
* @io_reserved_count: Refcounting the numbers of callers to ttm_mem_io_reserve
*
* Structure indicating the bus placement of an object.
*/
struct ttm_bus_placement {
void *addr;
unsigned long base;
unsigned long size;
unsigned long offset;
bool is_iomem;
bool io_reserved_vm;
uint64_t io_reserved_count;
};
/**
* struct ttm_mem_reg
*
* @mm_node: Memory manager node.
* @size: Requested size of memory region.
* @num_pages: Actual size of memory region in pages.
* @page_alignment: Page alignment.
* @placement: Placement flags.
* @bus: Placement on io bus accessible to the CPU
*
* Structure indicating the placement and space resources used by a
* buffer object.
*/
struct ttm_mem_reg {
void *mm_node;
unsigned long start;
unsigned long size;
unsigned long num_pages;
uint32_t page_alignment;
uint32_t mem_type;
uint32_t placement;
struct ttm_bus_placement bus;
};
/**
* enum ttm_bo_type
*
* @ttm_bo_type_device: These are 'normal' buffers that can
* be mmapped by user space. Each of these bos occupy a slot in the
* device address space, that can be used for normal vm operations.
*
* @ttm_bo_type_kernel: These buffers are like ttm_bo_type_device buffers,
* but they cannot be accessed from user-space. For kernel-only use.
*
* @ttm_bo_type_sg: Buffer made from dmabuf sg table shared with another
* driver.
*/
enum ttm_bo_type {
ttm_bo_type_device,
ttm_bo_type_kernel,
ttm_bo_type_sg
};
struct ttm_tt;
/**
* struct ttm_buffer_object
*
* @bdev: Pointer to the buffer object device structure.
* @type: The bo type.
* @destroy: Destruction function. If NULL, kfree is used.
* @num_pages: Actual number of pages.
* @acc_size: Accounted size for this object.
* @kref: Reference count of this buffer object. When this refcount reaches
* zero, the object is put on the delayed delete list.
* @list_kref: List reference count of this buffer object. This member is
* used to avoid destruction while the buffer object is still on a list.
* Lru lists may keep one refcount, the delayed delete list, and kref != 0
* keeps one refcount. When this refcount reaches zero,
* the object is destroyed.
* @mem: structure describing current placement.
* @persistent_swap_storage: Usually the swap storage is deleted for buffers
* pinned in physical memory. If this behaviour is not desired, this member
* holds a pointer to a persistent shmem object.
* @ttm: TTM structure holding system pages.
* @evicted: Whether the object was evicted without user-space knowing.
* @cpu_writes: For synchronization. Number of cpu writers.
* @lru: List head for the lru list.
* @ddestroy: List head for the delayed destroy list.
* @swap: List head for swap LRU list.
* @priv_flags: Flags describing buffer object internal state.
* @vma_node: Address space manager node.
* @offset: The current GPU offset, which can have different meanings
* depending on the memory type. For SYSTEM type memory, it should be 0.
* @cur_placement: Hint of current placement.
* @wu_mutex: Wait unreserved mutex.
*
* Base class for TTM buffer object, that deals with data placement and CPU
* mappings. GPU mappings are really up to the driver, but for simpler GPUs
* the driver can usually use the placement offset @offset directly as the
* GPU virtual address. For drivers implementing multiple
* GPU memory manager contexts, the driver should manage the address space
* in these contexts separately and use these objects to get the correct
* placement and caching for these GPU maps. This makes it possible to use
* these objects for even quite elaborate memory management schemes.
* The destroy member, the API visibility of this object makes it possible
* to derive driver specific types.
*/
struct ttm_buffer_object {
/**
* Members constant at init.
*/
struct ttm_bo_global *glob;
struct ttm_bo_device *bdev;
enum ttm_bo_type type;
void (*destroy) (struct ttm_buffer_object *);
unsigned long num_pages;
size_t acc_size;
/**
* Members not needing protection.
*/
struct kref kref;
struct kref list_kref;
/**
* Members protected by the bo::resv::reserved lock.
*/
struct ttm_mem_reg mem;
struct file *persistent_swap_storage;
struct ttm_tt *ttm;
bool evicted;
/**
* Members protected by the bo::reserved lock only when written to.
*/
atomic_t cpu_writers;
/**
* Members protected by the bdev::lru_lock.
*/
struct list_head lru;
struct list_head ddestroy;
struct list_head swap;
struct list_head io_reserve_lru;
/**
* Members protected by a bo reservation.
*/
unsigned long priv_flags;
struct drm_vma_offset_node vma_node;
/**
* Special members that are protected by the reserve lock
* and the bo::lock when written to. Can be read with
* either of these locks held.
*/
unsigned long offset;
uint32_t cur_placement;
struct sg_table *sg;
struct reservation_object *resv;
struct reservation_object ttm_resv;
struct mutex wu_mutex;
};
/**
* struct ttm_bo_kmap_obj
*
* @virtual: The current kernel virtual address.
* @page: The page when kmap'ing a single page.
* @bo_kmap_type: Type of bo_kmap.
*
* Object describing a kernel mapping. Since a TTM bo may be located
* in various memory types with various caching policies, the
* mapping can either be an ioremap, a vmap, a kmap or part of a
* premapped region.
*/
#define TTM_BO_MAP_IOMEM_MASK 0x80
struct ttm_bo_kmap_obj {
void *virtual;
struct page *page;
enum {
ttm_bo_map_iomap = 1 | TTM_BO_MAP_IOMEM_MASK,
ttm_bo_map_vmap = 2,
ttm_bo_map_kmap = 3,
ttm_bo_map_premapped = 4 | TTM_BO_MAP_IOMEM_MASK,
} bo_kmap_type;
struct ttm_buffer_object *bo;
};
/**
* ttm_bo_reference - reference a struct ttm_buffer_object
*
* @bo: The buffer object.
*
* Returns a refcounted pointer to a buffer object.
*/
static inline struct ttm_buffer_object *
ttm_bo_reference(struct ttm_buffer_object *bo)
{
kref_get(&bo->kref);
return bo;
}
/**
* ttm_bo_wait - wait for buffer idle.
*
* @bo: The buffer object.
* @interruptible: Use interruptible wait.
* @no_wait: Return immediately if buffer is busy.
*
* This function must be called with the bo::mutex held, and makes
* sure any previous rendering to the buffer is completed.
* Note: It might be necessary to block validations before the
* wait by reserving the buffer.
* Returns -EBUSY if no_wait is true and the buffer is busy.
* Returns -ERESTARTSYS if interrupted by a signal.
*/
extern int ttm_bo_wait(struct ttm_buffer_object *bo, bool lazy,
bool interruptible, bool no_wait);
/**
* ttm_bo_validate
*
* @bo: The buffer object.
* @placement: Proposed placement for the buffer object.
* @interruptible: Sleep interruptible if sleeping.
* @no_wait_gpu: Return immediately if the GPU is busy.
*
* Changes placement and caching policy of the buffer object
* according proposed placement.
* Returns
* -EINVAL on invalid proposed placement.
* -ENOMEM on out-of-memory condition.
* -EBUSY if no_wait is true and buffer busy.
* -ERESTARTSYS if interrupted by a signal.
*/
extern int ttm_bo_validate(struct ttm_buffer_object *bo,
struct ttm_placement *placement,
bool interruptible,
bool no_wait_gpu);
/**
* ttm_bo_unref
*
* @bo: The buffer object.
*
* Unreference and clear a pointer to a buffer object.
*/
extern void ttm_bo_unref(struct ttm_buffer_object **bo);
/**
* ttm_bo_list_ref_sub
*
* @bo: The buffer object.
* @count: The number of references with which to decrease @bo::list_kref;
* @never_free: The refcount should not reach zero with this operation.
*
* Release @count lru list references to this buffer object.
*/
extern void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
bool never_free);
/**
* ttm_bo_add_to_lru
*
* @bo: The buffer object.
*
* Add this bo to the relevant mem type lru and, if it's backed by
* system pages (ttms) to the swap list.
* This function must be called with struct ttm_bo_global::lru_lock held, and
* is typically called immediately prior to unreserving a bo.
*/
extern void ttm_bo_add_to_lru(struct ttm_buffer_object *bo);
/**
* ttm_bo_del_from_lru
*
* @bo: The buffer object.
*
* Remove this bo from all lru lists used to lookup and reserve an object.
* This function must be called with struct ttm_bo_global::lru_lock held,
* and is usually called just immediately after the bo has been reserved to
* avoid recursive reservation from lru lists.
*/
extern int ttm_bo_del_from_lru(struct ttm_buffer_object *bo);
/**
* ttm_bo_lock_delayed_workqueue
*
* Prevent the delayed workqueue from running.
* Returns
* True if the workqueue was queued at the time
*/
extern int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev);
/**
* ttm_bo_unlock_delayed_workqueue
*
* Allows the delayed workqueue to run.
*/
extern void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev,
int resched);
/**
* ttm_bo_synccpu_write_grab
*
* @bo: The buffer object:
* @no_wait: Return immediately if buffer is busy.
*
* Synchronizes a buffer object for CPU RW access. This means
* command submission that affects the buffer will return -EBUSY
* until ttm_bo_synccpu_write_release is called.
*
* Returns
* -EBUSY if the buffer is busy and no_wait is true.
* -ERESTARTSYS if interrupted by a signal.
*/
extern int
ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait);
/**
* ttm_bo_synccpu_write_release:
*
* @bo : The buffer object.
*
* Releases a synccpu lock.
*/
extern void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo);
/**
* ttm_bo_acc_size
*
* @bdev: Pointer to a ttm_bo_device struct.
* @bo_size: size of the buffer object in byte.
* @struct_size: size of the structure holding buffer object datas
*
* Returns size to account for a buffer object
*/
size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size);
size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
unsigned long bo_size,
unsigned struct_size);
/**
* ttm_bo_init
*
* @bdev: Pointer to a ttm_bo_device struct.
* @bo: Pointer to a ttm_buffer_object to be initialized.
* @size: Requested size of buffer object.
* @type: Requested type of buffer object.
* @flags: Initial placement flags.
* @page_alignment: Data alignment in pages.
* @interruptible: If needing to sleep to wait for GPU resources,
* sleep interruptible.
* @persistent_swap_storage: Usually the swap storage is deleted for buffers
* pinned in physical memory. If this behaviour is not desired, this member
* holds a pointer to a persistent shmem object. Typically, this would
* point to the shmem object backing a GEM object if TTM is used to back a
* GEM user interface.
* @acc_size: Accounted size for this object.
* @resv: Pointer to a reservation_object, or NULL to let ttm allocate one.
* @destroy: Destroy function. Use NULL for kfree().
*
* This function initializes a pre-allocated struct ttm_buffer_object.
* As this object may be part of a larger structure, this function,
* together with the @destroy function,
* enables driver-specific objects derived from a ttm_buffer_object.
* On successful return, the object kref and list_kref are set to 1.
* If a failure occurs, the function will call the @destroy function, or
* kfree() if @destroy is NULL. Thus, after a failure, dereferencing @bo is
* illegal and will likely cause memory corruption.
*
* Returns
* -ENOMEM: Out of memory.
* -EINVAL: Invalid placement flags.
* -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
*/
extern int ttm_bo_init(struct ttm_bo_device *bdev,
struct ttm_buffer_object *bo,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interrubtible,
struct file *persistent_swap_storage,
size_t acc_size,
struct sg_table *sg,
struct reservation_object *resv,
void (*destroy) (struct ttm_buffer_object *));
/**
* ttm_bo_create
*
* @bdev: Pointer to a ttm_bo_device struct.
* @size: Requested size of buffer object.
* @type: Requested type of buffer object.
* @placement: Initial placement.
* @page_alignment: Data alignment in pages.
* @interruptible: If needing to sleep while waiting for GPU resources,
* sleep interruptible.
* @persistent_swap_storage: Usually the swap storage is deleted for buffers
* pinned in physical memory. If this behaviour is not desired, this member
* holds a pointer to a persistent shmem object. Typically, this would
* point to the shmem object backing a GEM object if TTM is used to back a
* GEM user interface.
* @p_bo: On successful completion *p_bo points to the created object.
*
* This function allocates a ttm_buffer_object, and then calls ttm_bo_init
* on that object. The destroy function is set to kfree().
* Returns
* -ENOMEM: Out of memory.
* -EINVAL: Invalid placement flags.
* -ERESTARTSYS: Interrupted by signal while waiting for resources.
*/
extern int ttm_bo_create(struct ttm_bo_device *bdev,
unsigned long size,
enum ttm_bo_type type,
struct ttm_placement *placement,
uint32_t page_alignment,
bool interruptible,
struct file *persistent_swap_storage,
struct ttm_buffer_object **p_bo);
/**
* ttm_bo_init_mm
*
* @bdev: Pointer to a ttm_bo_device struct.
* @mem_type: The memory type.
* @p_size: size managed area in pages.
*
* Initialize a manager for a given memory type.
* Note: if part of driver firstopen, it must be protected from a
* potentially racing lastclose.
* Returns:
* -EINVAL: invalid size or memory type.
* -ENOMEM: Not enough memory.
* May also return driver-specified errors.
*/
extern int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
unsigned long p_size);
/**
* ttm_bo_clean_mm
*
* @bdev: Pointer to a ttm_bo_device struct.
* @mem_type: The memory type.
*
* Take down a manager for a given memory type after first walking
* the LRU list to evict any buffers left alive.
*
* Normally, this function is part of lastclose() or unload(), and at that
* point there shouldn't be any buffers left created by user-space, since
* there should've been removed by the file descriptor release() method.
* However, before this function is run, make sure to signal all sync objects,
* and verify that the delayed delete queue is empty. The driver must also
* make sure that there are no NO_EVICT buffers present in this memory type
* when the call is made.
*
* If this function is part of a VT switch, the caller must make sure that
* there are no appications currently validating buffers before this
* function is called. The caller can do that by first taking the
* struct ttm_bo_device::ttm_lock in write mode.
*
* Returns:
* -EINVAL: invalid or uninitialized memory type.
* -EBUSY: There are still buffers left in this memory type.
*/
extern int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type);
/**
* ttm_bo_evict_mm
*
* @bdev: Pointer to a ttm_bo_device struct.
* @mem_type: The memory type.
*
* Evicts all buffers on the lru list of the memory type.
* This is normally part of a VT switch or an
* out-of-memory-space-due-to-fragmentation handler.
* The caller must make sure that there are no other processes
* currently validating buffers, and can do that by taking the
* struct ttm_bo_device::ttm_lock in write mode.
*
* Returns:
* -EINVAL: Invalid or uninitialized memory type.
* -ERESTARTSYS: The call was interrupted by a signal while waiting to
* evict a buffer.
*/
extern int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type);
/**
* ttm_kmap_obj_virtual
*
* @map: A struct ttm_bo_kmap_obj returned from ttm_bo_kmap.
* @is_iomem: Pointer to an integer that on return indicates 1 if the
* virtual map is io memory, 0 if normal memory.
*
* Returns the virtual address of a buffer object area mapped by ttm_bo_kmap.
* If *is_iomem is 1 on return, the virtual address points to an io memory area,
* that should strictly be accessed by the iowriteXX() and similar functions.
*/
static inline void *ttm_kmap_obj_virtual(struct ttm_bo_kmap_obj *map,
bool *is_iomem)
{
*is_iomem = !!(map->bo_kmap_type & TTM_BO_MAP_IOMEM_MASK);
return map->virtual;
}
/**
* ttm_bo_kmap
*
* @bo: The buffer object.
* @start_page: The first page to map.
* @num_pages: Number of pages to map.
* @map: pointer to a struct ttm_bo_kmap_obj representing the map.
*
* Sets up a kernel virtual mapping, using ioremap, vmap or kmap to the
* data in the buffer object. The ttm_kmap_obj_virtual function can then be
* used to obtain a virtual address to the data.
*
* Returns
* -ENOMEM: Out of memory.
* -EINVAL: Invalid range.
*/
extern int ttm_bo_kmap(struct ttm_buffer_object *bo, unsigned long start_page,
unsigned long num_pages, struct ttm_bo_kmap_obj *map);
/**
* ttm_bo_kunmap
*
* @map: Object describing the map to unmap.
*
* Unmaps a kernel map set up by ttm_bo_kmap.
*/
extern void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map);
/**
* ttm_fbdev_mmap - mmap fbdev memory backed by a ttm buffer object.
*
* @vma: vma as input from the fbdev mmap method.
* @bo: The bo backing the address space. The address space will
* have the same size as the bo, and start at offset 0.
*
* This function is intended to be called by the fbdev mmap method
* if the fbdev address space is to be backed by a bo.
*/
extern int ttm_fbdev_mmap(struct vm_area_struct *vma,
struct ttm_buffer_object *bo);
/**
* ttm_bo_mmap - mmap out of the ttm device address space.
*
* @filp: filp as input from the mmap method.
* @vma: vma as input from the mmap method.
* @bdev: Pointer to the ttm_bo_device with the address space manager.
*
* This function is intended to be called by the device mmap method.
* if the device address space is to be backed by the bo manager.
*/
extern int ttm_bo_mmap(struct file *filp, struct vm_area_struct *vma,
struct ttm_bo_device *bdev);
/**
* ttm_bo_io
*
* @bdev: Pointer to the struct ttm_bo_device.
* @filp: Pointer to the struct file attempting to read / write.
* @wbuf: User-space pointer to address of buffer to write. NULL on read.
* @rbuf: User-space pointer to address of buffer to read into.
* Null on write.
* @count: Number of bytes to read / write.
* @f_pos: Pointer to current file position.
* @write: 1 for read, 0 for write.
*
* This function implements read / write into ttm buffer objects, and is
* intended to
* be called from the fops::read and fops::write method.
* Returns:
* See man (2) write, man(2) read. In particular,
* the function may return -ERESTARTSYS if
* interrupted by a signal.
*/
extern ssize_t ttm_bo_io(struct ttm_bo_device *bdev, struct file *filp,
const char __user *wbuf, char __user *rbuf,
size_t count, loff_t *f_pos, bool write);
extern void ttm_bo_swapout_all(struct ttm_bo_device *bdev);
extern int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo);
#endif

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,112 @@
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#ifndef _TTM_EXECBUF_UTIL_H_
#define _TTM_EXECBUF_UTIL_H_
#include <ttm/ttm_bo_api.h>
#include <linux/list.h>
/**
* struct ttm_validate_buffer
*
* @head: list head for thread-private list.
* @bo: refcounted buffer object pointer.
* @shared: should the fence be added shared?
*/
struct ttm_validate_buffer {
struct list_head head;
struct ttm_buffer_object *bo;
bool shared;
};
/**
* function ttm_eu_backoff_reservation
*
* @ticket: ww_acquire_ctx from reserve call
* @list: thread private list of ttm_validate_buffer structs.
*
* Undoes all buffer validation reservations for bos pointed to by
* the list entries.
*/
extern void ttm_eu_backoff_reservation(struct ww_acquire_ctx *ticket,
struct list_head *list);
/**
* function ttm_eu_reserve_buffers
*
* @ticket: [out] ww_acquire_ctx filled in by call, or NULL if only
* non-blocking reserves should be tried.
* @list: thread private list of ttm_validate_buffer structs.
* @intr: should the wait be interruptible
*
* Tries to reserve bos pointed to by the list entries for validation.
* If the function returns 0, all buffers are marked as "unfenced",
* taken off the lru lists and are not synced for write CPU usage.
*
* If the function detects a deadlock due to multiple threads trying to
* reserve the same buffers in reverse order, all threads except one will
* back off and retry. This function may sleep while waiting for
* CPU write reservations to be cleared, and for other threads to
* unreserve their buffers.
*
* If intr is set to true, this function may return -ERESTARTSYS if the
* calling process receives a signal while waiting. In that case, no
* buffers on the list will be reserved upon return.
*
* Buffers reserved by this function should be unreserved by
* a call to either ttm_eu_backoff_reservation() or
* ttm_eu_fence_buffer_objects() when command submission is complete or
* has failed.
*/
extern int ttm_eu_reserve_buffers(struct ww_acquire_ctx *ticket,
struct list_head *list, bool intr);
/**
* function ttm_eu_fence_buffer_objects.
*
* @ticket: ww_acquire_ctx from reserve call
* @list: thread private list of ttm_validate_buffer structs.
* @fence: The new exclusive fence for the buffers.
*
* This function should be called when command submission is complete, and
* it will add a new sync object to bos pointed to by entries on @list.
* It also unreserves all buffers, putting them on lru lists.
*
*/
extern void ttm_eu_fence_buffer_objects(struct ww_acquire_ctx *ticket,
struct list_head *list,
struct fence *fence);
#endif

247
include/drm/ttm/ttm_lock.h Normal file
View file

@ -0,0 +1,247 @@
/**************************************************************************
*
* Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
/** @file ttm_lock.h
* This file implements a simple replacement for the buffer manager use
* of the DRM heavyweight hardware lock.
* The lock is a read-write lock. Taking it in read mode and write mode
* is relatively fast, and intended for in-kernel use only.
*
* The vt mode is used only when there is a need to block all
* user-space processes from validating buffers.
* It's allowed to leave kernel space with the vt lock held.
* If a user-space process dies while having the vt-lock,
* it will be released during the file descriptor release. The vt lock
* excludes write lock and read lock.
*
* The suspend mode is used to lock out all TTM users when preparing for
* and executing suspend operations.
*
*/
#ifndef _TTM_LOCK_H_
#define _TTM_LOCK_H_
#include <ttm/ttm_object.h>
#include <linux/wait.h>
#include <linux/atomic.h>
/**
* struct ttm_lock
*
* @base: ttm base object used solely to release the lock if the client
* holding the lock dies.
* @queue: Queue for processes waiting for lock change-of-status.
* @lock: Spinlock protecting some lock members.
* @rw: Read-write lock counter. Protected by @lock.
* @flags: Lock state. Protected by @lock.
* @kill_takers: Boolean whether to kill takers of the lock.
* @signal: Signal to send when kill_takers is true.
*/
struct ttm_lock {
struct ttm_base_object base;
wait_queue_head_t queue;
spinlock_t lock;
int32_t rw;
uint32_t flags;
bool kill_takers;
int signal;
struct ttm_object_file *vt_holder;
};
/**
* ttm_lock_init
*
* @lock: Pointer to a struct ttm_lock
* Initializes the lock.
*/
extern void ttm_lock_init(struct ttm_lock *lock);
/**
* ttm_read_unlock
*
* @lock: Pointer to a struct ttm_lock
*
* Releases a read lock.
*/
extern void ttm_read_unlock(struct ttm_lock *lock);
/**
* ttm_read_lock
*
* @lock: Pointer to a struct ttm_lock
* @interruptible: Interruptible sleeping while waiting for a lock.
*
* Takes the lock in read mode.
* Returns:
* -ERESTARTSYS If interrupted by a signal and interruptible is true.
*/
extern int ttm_read_lock(struct ttm_lock *lock, bool interruptible);
/**
* ttm_read_trylock
*
* @lock: Pointer to a struct ttm_lock
* @interruptible: Interruptible sleeping while waiting for a lock.
*
* Tries to take the lock in read mode. If the lock is already held
* in write mode, the function will return -EBUSY. If the lock is held
* in vt or suspend mode, the function will sleep until these modes
* are unlocked.
*
* Returns:
* -EBUSY The lock was already held in write mode.
* -ERESTARTSYS If interrupted by a signal and interruptible is true.
*/
extern int ttm_read_trylock(struct ttm_lock *lock, bool interruptible);
/**
* ttm_write_unlock
*
* @lock: Pointer to a struct ttm_lock
*
* Releases a write lock.
*/
extern void ttm_write_unlock(struct ttm_lock *lock);
/**
* ttm_write_lock
*
* @lock: Pointer to a struct ttm_lock
* @interruptible: Interruptible sleeping while waiting for a lock.
*
* Takes the lock in write mode.
* Returns:
* -ERESTARTSYS If interrupted by a signal and interruptible is true.
*/
extern int ttm_write_lock(struct ttm_lock *lock, bool interruptible);
/**
* ttm_lock_downgrade
*
* @lock: Pointer to a struct ttm_lock
*
* Downgrades a write lock to a read lock.
*/
extern void ttm_lock_downgrade(struct ttm_lock *lock);
/**
* ttm_suspend_lock
*
* @lock: Pointer to a struct ttm_lock
*
* Takes the lock in suspend mode. Excludes read and write mode.
*/
extern void ttm_suspend_lock(struct ttm_lock *lock);
/**
* ttm_suspend_unlock
*
* @lock: Pointer to a struct ttm_lock
*
* Releases a suspend lock
*/
extern void ttm_suspend_unlock(struct ttm_lock *lock);
/**
* ttm_vt_lock
*
* @lock: Pointer to a struct ttm_lock
* @interruptible: Interruptible sleeping while waiting for a lock.
* @tfile: Pointer to a struct ttm_object_file to register the lock with.
*
* Takes the lock in vt mode.
* Returns:
* -ERESTARTSYS If interrupted by a signal and interruptible is true.
* -ENOMEM: Out of memory when locking.
*/
extern int ttm_vt_lock(struct ttm_lock *lock, bool interruptible,
struct ttm_object_file *tfile);
/**
* ttm_vt_unlock
*
* @lock: Pointer to a struct ttm_lock
*
* Releases a vt lock.
* Returns:
* -EINVAL If the lock was not held.
*/
extern int ttm_vt_unlock(struct ttm_lock *lock);
/**
* ttm_write_unlock
*
* @lock: Pointer to a struct ttm_lock
*
* Releases a write lock.
*/
extern void ttm_write_unlock(struct ttm_lock *lock);
/**
* ttm_write_lock
*
* @lock: Pointer to a struct ttm_lock
* @interruptible: Interruptible sleeping while waiting for a lock.
*
* Takes the lock in write mode.
* Returns:
* -ERESTARTSYS If interrupted by a signal and interruptible is true.
*/
extern int ttm_write_lock(struct ttm_lock *lock, bool interruptible);
/**
* ttm_lock_set_kill
*
* @lock: Pointer to a struct ttm_lock
* @val: Boolean whether to kill processes taking the lock.
* @signal: Signal to send to the process taking the lock.
*
* The kill-when-taking-lock functionality is used to kill processes that keep
* on using the TTM functionality when its resources has been taken down, for
* example when the X server exits. A typical sequence would look like this:
* - X server takes lock in write mode.
* - ttm_lock_set_kill() is called with @val set to true.
* - As part of X server exit, TTM resources are taken down.
* - X server releases the lock on file release.
* - Another dri client wants to render, takes the lock and is killed.
*
*/
static inline void ttm_lock_set_kill(struct ttm_lock *lock, bool val,
int signal)
{
lock->kill_takers = val;
if (val)
lock->signal = signal;
}
#endif

View file

@ -0,0 +1,158 @@
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#ifndef TTM_MEMORY_H
#define TTM_MEMORY_H
#include <linux/workqueue.h>
#include <linux/spinlock.h>
#include <linux/bug.h>
#include <linux/wait.h>
#include <linux/errno.h>
#include <linux/kobject.h>
#include <linux/mm.h>
/**
* struct ttm_mem_shrink - callback to shrink TTM memory usage.
*
* @do_shrink: The callback function.
*
* Arguments to the do_shrink functions are intended to be passed using
* inheritance. That is, the argument class derives from struct ttm_mem_shrink,
* and can be accessed using container_of().
*/
struct ttm_mem_shrink {
int (*do_shrink) (struct ttm_mem_shrink *);
};
/**
* struct ttm_mem_global - Global memory accounting structure.
*
* @shrink: A single callback to shrink TTM memory usage. Extend this
* to a linked list to be able to handle multiple callbacks when needed.
* @swap_queue: A workqueue to handle shrinking in low memory situations. We
* need a separate workqueue since it will spend a lot of time waiting
* for the GPU, and this will otherwise block other workqueue tasks(?)
* At this point we use only a single-threaded workqueue.
* @work: The workqueue callback for the shrink queue.
* @lock: Lock to protect the @shrink - and the memory accounting members,
* that is, essentially the whole structure with some exceptions.
* @zones: Array of pointers to accounting zones.
* @num_zones: Number of populated entries in the @zones array.
* @zone_kernel: Pointer to the kernel zone.
* @zone_highmem: Pointer to the highmem zone if there is one.
* @zone_dma32: Pointer to the dma32 zone if there is one.
*
* Note that this structure is not per device. It should be global for all
* graphics devices.
*/
#define TTM_MEM_MAX_ZONES 2
struct ttm_mem_zone;
struct ttm_mem_global {
struct kobject kobj;
struct ttm_mem_shrink *shrink;
struct workqueue_struct *swap_queue;
struct work_struct work;
spinlock_t lock;
struct ttm_mem_zone *zones[TTM_MEM_MAX_ZONES];
unsigned int num_zones;
struct ttm_mem_zone *zone_kernel;
#ifdef CONFIG_HIGHMEM
struct ttm_mem_zone *zone_highmem;
#else
struct ttm_mem_zone *zone_dma32;
#endif
};
/**
* ttm_mem_init_shrink - initialize a struct ttm_mem_shrink object
*
* @shrink: The object to initialize.
* @func: The callback function.
*/
static inline void ttm_mem_init_shrink(struct ttm_mem_shrink *shrink,
int (*func) (struct ttm_mem_shrink *))
{
shrink->do_shrink = func;
}
/**
* ttm_mem_register_shrink - register a struct ttm_mem_shrink object.
*
* @glob: The struct ttm_mem_global object to register with.
* @shrink: An initialized struct ttm_mem_shrink object to register.
*
* Returns:
* -EBUSY: There's already a callback registered. (May change).
*/
static inline int ttm_mem_register_shrink(struct ttm_mem_global *glob,
struct ttm_mem_shrink *shrink)
{
spin_lock(&glob->lock);
if (glob->shrink != NULL) {
spin_unlock(&glob->lock);
return -EBUSY;
}
glob->shrink = shrink;
spin_unlock(&glob->lock);
return 0;
}
/**
* ttm_mem_unregister_shrink - unregister a struct ttm_mem_shrink object.
*
* @glob: The struct ttm_mem_global object to unregister from.
* @shrink: A previously registert struct ttm_mem_shrink object.
*
*/
static inline void ttm_mem_unregister_shrink(struct ttm_mem_global *glob,
struct ttm_mem_shrink *shrink)
{
spin_lock(&glob->lock);
BUG_ON(glob->shrink != shrink);
glob->shrink = NULL;
spin_unlock(&glob->lock);
}
extern int ttm_mem_global_init(struct ttm_mem_global *glob);
extern void ttm_mem_global_release(struct ttm_mem_global *glob);
extern int ttm_mem_global_alloc(struct ttm_mem_global *glob, uint64_t memory,
bool no_wait, bool interruptible);
extern void ttm_mem_global_free(struct ttm_mem_global *glob,
uint64_t amount);
extern int ttm_mem_global_alloc_page(struct ttm_mem_global *glob,
struct page *page,
bool no_wait, bool interruptible);
extern void ttm_mem_global_free_page(struct ttm_mem_global *glob,
struct page *page);
extern size_t ttm_round_pot(size_t size);
#endif

View file

@ -0,0 +1,40 @@
/**************************************************************************
*
* Copyright 2008-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#ifndef _TTM_MODULE_H_
#define _TTM_MODULE_H_
#include <linux/kernel.h>
struct kobject;
#define TTM_PFX "[TTM] "
extern struct kobject *ttm_get_kobj(void);
#endif /* _TTM_MODULE_H_ */

View file

@ -0,0 +1,350 @@
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
/** @file ttm_object.h
*
* Base- and reference object implementation for the various
* ttm objects. Implements reference counting, minimal security checks
* and release on file close.
*/
#ifndef _TTM_OBJECT_H_
#define _TTM_OBJECT_H_
#include <linux/list.h>
#include <drm/drm_hashtab.h>
#include <linux/kref.h>
#include <linux/rcupdate.h>
#include <linux/dma-buf.h>
#include <ttm/ttm_memory.h>
/**
* enum ttm_ref_type
*
* Describes what type of reference a ref object holds.
*
* TTM_REF_USAGE is a simple refcount on a base object.
*
* TTM_REF_SYNCCPU_READ is a SYNCCPU_READ reference on a
* buffer object.
*
* TTM_REF_SYNCCPU_WRITE is a SYNCCPU_WRITE reference on a
* buffer object.
*
*/
enum ttm_ref_type {
TTM_REF_USAGE,
TTM_REF_SYNCCPU_READ,
TTM_REF_SYNCCPU_WRITE,
TTM_REF_NUM
};
/**
* enum ttm_object_type
*
* One entry per ttm object type.
* Device-specific types should use the
* ttm_driver_typex types.
*/
enum ttm_object_type {
ttm_fence_type,
ttm_buffer_type,
ttm_lock_type,
ttm_prime_type,
ttm_driver_type0 = 256,
ttm_driver_type1,
ttm_driver_type2,
ttm_driver_type3,
ttm_driver_type4,
ttm_driver_type5
};
struct ttm_object_file;
struct ttm_object_device;
/**
* struct ttm_base_object
*
* @hash: hash entry for the per-device object hash.
* @type: derived type this object is base class for.
* @shareable: Other ttm_object_files can access this object.
*
* @tfile: Pointer to ttm_object_file of the creator.
* NULL if the object was not created by a user request.
* (kernel object).
*
* @refcount: Number of references to this object, not
* including the hash entry. A reference to a base object can
* only be held by a ref object.
*
* @refcount_release: A function to be called when there are
* no more references to this object. This function should
* destroy the object (or make sure destruction eventually happens),
* and when it is called, the object has
* already been taken out of the per-device hash. The parameter
* "base" should be set to NULL by the function.
*
* @ref_obj_release: A function to be called when a reference object
* with another ttm_ref_type than TTM_REF_USAGE is deleted.
* This function may, for example, release a lock held by a user-space
* process.
*
* This struct is intended to be used as a base struct for objects that
* are visible to user-space. It provides a global name, race-safe
* access and refcounting, minimal access contol and hooks for unref actions.
*/
struct ttm_base_object {
struct rcu_head rhead;
struct drm_hash_item hash;
enum ttm_object_type object_type;
bool shareable;
struct ttm_object_file *tfile;
struct kref refcount;
void (*refcount_release) (struct ttm_base_object **base);
void (*ref_obj_release) (struct ttm_base_object *base,
enum ttm_ref_type ref_type);
};
/**
* struct ttm_prime_object - Modified base object that is prime-aware
*
* @base: struct ttm_base_object that we derive from
* @mutex: Mutex protecting the @dma_buf member.
* @size: Size of the dma_buf associated with this object
* @real_type: Type of the underlying object. Needed since we're setting
* the value of @base::object_type to ttm_prime_type
* @dma_buf: Non ref-coutned pointer to a struct dma_buf created from this
* object.
* @refcount_release: The underlying object's release method. Needed since
* we set @base::refcount_release to our own release method.
*/
struct ttm_prime_object {
struct ttm_base_object base;
struct mutex mutex;
size_t size;
enum ttm_object_type real_type;
struct dma_buf *dma_buf;
void (*refcount_release) (struct ttm_base_object **);
};
/**
* ttm_base_object_init
*
* @tfile: Pointer to a struct ttm_object_file.
* @base: The struct ttm_base_object to initialize.
* @shareable: This object is shareable with other applcations.
* (different @tfile pointers.)
* @type: The object type.
* @refcount_release: See the struct ttm_base_object description.
* @ref_obj_release: See the struct ttm_base_object description.
*
* Initializes a struct ttm_base_object.
*/
extern int ttm_base_object_init(struct ttm_object_file *tfile,
struct ttm_base_object *base,
bool shareable,
enum ttm_object_type type,
void (*refcount_release) (struct ttm_base_object
**),
void (*ref_obj_release) (struct ttm_base_object
*,
enum ttm_ref_type
ref_type));
/**
* ttm_base_object_lookup
*
* @tfile: Pointer to a struct ttm_object_file.
* @key: Hash key
*
* Looks up a struct ttm_base_object with the key @key.
*/
extern struct ttm_base_object *ttm_base_object_lookup(struct ttm_object_file
*tfile, uint32_t key);
/**
* ttm_base_object_lookup_for_ref
*
* @tdev: Pointer to a struct ttm_object_device.
* @key: Hash key
*
* Looks up a struct ttm_base_object with the key @key.
* This function should only be used when the struct tfile associated with the
* caller doesn't yet have a reference to the base object.
*/
extern struct ttm_base_object *
ttm_base_object_lookup_for_ref(struct ttm_object_device *tdev, uint32_t key);
/**
* ttm_base_object_unref
*
* @p_base: Pointer to a pointer referencing a struct ttm_base_object.
*
* Decrements the base object refcount and clears the pointer pointed to by
* p_base.
*/
extern void ttm_base_object_unref(struct ttm_base_object **p_base);
/**
* ttm_ref_object_add.
*
* @tfile: A struct ttm_object_file representing the application owning the
* ref_object.
* @base: The base object to reference.
* @ref_type: The type of reference.
* @existed: Upon completion, indicates that an identical reference object
* already existed, and the refcount was upped on that object instead.
*
* Checks that the base object is shareable and adds a ref object to it.
*
* Adding a ref object to a base object is basically like referencing the
* base object, but a user-space application holds the reference. When the
* file corresponding to @tfile is closed, all its reference objects are
* deleted. A reference object can have different types depending on what
* it's intended for. It can be refcounting to prevent object destruction,
* When user-space takes a lock, it can add a ref object to that lock to
* make sure the lock is released if the application dies. A ref object
* will hold a single reference on a base object.
*/
extern int ttm_ref_object_add(struct ttm_object_file *tfile,
struct ttm_base_object *base,
enum ttm_ref_type ref_type, bool *existed);
extern bool ttm_ref_object_exists(struct ttm_object_file *tfile,
struct ttm_base_object *base);
/**
* ttm_ref_object_base_unref
*
* @key: Key representing the base object.
* @ref_type: Ref type of the ref object to be dereferenced.
*
* Unreference a ref object with type @ref_type
* on the base object identified by @key. If there are no duplicate
* references, the ref object will be destroyed and the base object
* will be unreferenced.
*/
extern int ttm_ref_object_base_unref(struct ttm_object_file *tfile,
unsigned long key,
enum ttm_ref_type ref_type);
/**
* ttm_object_file_init - initialize a struct ttm_object file
*
* @tdev: A struct ttm_object device this file is initialized on.
* @hash_order: Order of the hash table used to hold the reference objects.
*
* This is typically called by the file_ops::open function.
*/
extern struct ttm_object_file *ttm_object_file_init(struct ttm_object_device
*tdev,
unsigned int hash_order);
/**
* ttm_object_file_release - release data held by a ttm_object_file
*
* @p_tfile: Pointer to pointer to the ttm_object_file object to release.
* *p_tfile will be set to NULL by this function.
*
* Releases all data associated by a ttm_object_file.
* Typically called from file_ops::release. The caller must
* ensure that there are no concurrent users of tfile.
*/
extern void ttm_object_file_release(struct ttm_object_file **p_tfile);
/**
* ttm_object device init - initialize a struct ttm_object_device
*
* @mem_glob: struct ttm_mem_global for memory accounting.
* @hash_order: Order of hash table used to hash the base objects.
* @ops: DMA buf ops for prime objects of this device.
*
* This function is typically called on device initialization to prepare
* data structures needed for ttm base and ref objects.
*/
extern struct ttm_object_device *
ttm_object_device_init(struct ttm_mem_global *mem_glob,
unsigned int hash_order,
const struct dma_buf_ops *ops);
/**
* ttm_object_device_release - release data held by a ttm_object_device
*
* @p_tdev: Pointer to pointer to the ttm_object_device object to release.
* *p_tdev will be set to NULL by this function.
*
* Releases all data associated by a ttm_object_device.
* Typically called from driver::unload before the destruction of the
* device private data structure.
*/
extern void ttm_object_device_release(struct ttm_object_device **p_tdev);
#define ttm_base_object_kfree(__object, __base)\
kfree_rcu(__object, __base.rhead)
extern int ttm_prime_object_init(struct ttm_object_file *tfile,
size_t size,
struct ttm_prime_object *prime,
bool shareable,
enum ttm_object_type type,
void (*refcount_release)
(struct ttm_base_object **),
void (*ref_obj_release)
(struct ttm_base_object *,
enum ttm_ref_type ref_type));
static inline enum ttm_object_type
ttm_base_object_type(struct ttm_base_object *base)
{
return (base->object_type == ttm_prime_type) ?
container_of(base, struct ttm_prime_object, base)->real_type :
base->object_type;
}
extern int ttm_prime_fd_to_handle(struct ttm_object_file *tfile,
int fd, u32 *handle);
extern int ttm_prime_handle_to_fd(struct ttm_object_file *tfile,
uint32_t handle, uint32_t flags,
int *prime_fd);
#define ttm_prime_object_kfree(__obj, __prime) \
kfree_rcu(__obj, __prime.base.rhead)
#endif

View file

@ -0,0 +1,110 @@
/*
* Copyright (c) Red Hat Inc.
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sub license,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie <airlied@redhat.com>
* Jerome Glisse <jglisse@redhat.com>
*/
#ifndef TTM_PAGE_ALLOC
#define TTM_PAGE_ALLOC
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_memory.h>
struct device;
/**
* Initialize pool allocator.
*/
int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages);
/**
* Free pool allocator.
*/
void ttm_page_alloc_fini(void);
/**
* ttm_pool_populate:
*
* @ttm: The struct ttm_tt to contain the backing pages.
*
* Add backing pages to all of @ttm
*/
extern int ttm_pool_populate(struct ttm_tt *ttm);
/**
* ttm_pool_unpopulate:
*
* @ttm: The struct ttm_tt which to free backing pages.
*
* Free all pages of @ttm
*/
extern void ttm_pool_unpopulate(struct ttm_tt *ttm);
/**
* Output the state of pools to debugfs file
*/
extern int ttm_page_alloc_debugfs(struct seq_file *m, void *data);
#if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
/**
* Initialize pool allocator.
*/
int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages);
/**
* Free pool allocator.
*/
void ttm_dma_page_alloc_fini(void);
/**
* Output the state of pools to debugfs file
*/
extern int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data);
extern int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev);
extern void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev);
#else
static inline int ttm_dma_page_alloc_init(struct ttm_mem_global *glob,
unsigned max_pages)
{
return -ENODEV;
}
static inline void ttm_dma_page_alloc_fini(void) { return; }
static inline int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
{
return 0;
}
static inline int ttm_dma_populate(struct ttm_dma_tt *ttm_dma,
struct device *dev)
{
return -ENOMEM;
}
static inline void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma,
struct device *dev)
{
}
#endif
#endif

View file

@ -0,0 +1,95 @@
/**************************************************************************
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#ifndef _TTM_PLACEMENT_H_
#define _TTM_PLACEMENT_H_
/*
* Memory regions for data placement.
*/
#define TTM_PL_SYSTEM 0
#define TTM_PL_TT 1
#define TTM_PL_VRAM 2
#define TTM_PL_PRIV0 3
#define TTM_PL_PRIV1 4
#define TTM_PL_PRIV2 5
#define TTM_PL_PRIV3 6
#define TTM_PL_PRIV4 7
#define TTM_PL_PRIV5 8
#define TTM_PL_SWAPPED 15
#define TTM_PL_FLAG_SYSTEM (1 << TTM_PL_SYSTEM)
#define TTM_PL_FLAG_TT (1 << TTM_PL_TT)
#define TTM_PL_FLAG_VRAM (1 << TTM_PL_VRAM)
#define TTM_PL_FLAG_PRIV0 (1 << TTM_PL_PRIV0)
#define TTM_PL_FLAG_PRIV1 (1 << TTM_PL_PRIV1)
#define TTM_PL_FLAG_PRIV2 (1 << TTM_PL_PRIV2)
#define TTM_PL_FLAG_PRIV3 (1 << TTM_PL_PRIV3)
#define TTM_PL_FLAG_PRIV4 (1 << TTM_PL_PRIV4)
#define TTM_PL_FLAG_PRIV5 (1 << TTM_PL_PRIV5)
#define TTM_PL_FLAG_SWAPPED (1 << TTM_PL_SWAPPED)
#define TTM_PL_MASK_MEM 0x0000FFFF
/*
* Other flags that affects data placement.
* TTM_PL_FLAG_CACHED indicates cache-coherent mappings
* if available.
* TTM_PL_FLAG_SHARED means that another application may
* reference the buffer.
* TTM_PL_FLAG_NO_EVICT means that the buffer may never
* be evicted to make room for other buffers.
* TTM_PL_FLAG_TOPDOWN requests to be placed from the
* top of the memory area, instead of the bottom.
*/
#define TTM_PL_FLAG_CACHED (1 << 16)
#define TTM_PL_FLAG_UNCACHED (1 << 17)
#define TTM_PL_FLAG_WC (1 << 18)
#define TTM_PL_FLAG_SHARED (1 << 20)
#define TTM_PL_FLAG_NO_EVICT (1 << 21)
#define TTM_PL_FLAG_TOPDOWN (1 << 22)
#define TTM_PL_MASK_CACHING (TTM_PL_FLAG_CACHED | \
TTM_PL_FLAG_UNCACHED | \
TTM_PL_FLAG_WC)
#define TTM_PL_MASK_MEMTYPE (TTM_PL_MASK_MEM | TTM_PL_MASK_CACHING)
/*
* Access flags to be used for CPU- and GPU- mappings.
* The idea is that the TTM synchronization mechanism will
* allow concurrent READ access and exclusive write access.
* Currently GPU- and CPU accesses are exclusive.
*/
#define TTM_ACCESS_READ (1 << 0)
#define TTM_ACCESS_WRITE (1 << 1)
#endif