Fixed MTP to work with TWRP

This commit is contained in:
awab228 2018-06-19 23:16:04 +02:00
commit f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions

205
include/math-emu/double.h Normal file
View file

@ -0,0 +1,205 @@
/* Software floating-point emulation.
Definitions for IEEE Double Precision
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_DOUBLE_H__
#define __MATH_EMU_DOUBLE_H__
#if _FP_W_TYPE_SIZE < 32
#error "Here's a nickel kid. Go buy yourself a real computer."
#endif
#if _FP_W_TYPE_SIZE < 64
#define _FP_FRACTBITS_D (2 * _FP_W_TYPE_SIZE)
#else
#define _FP_FRACTBITS_D _FP_W_TYPE_SIZE
#endif
#define _FP_FRACBITS_D 53
#define _FP_FRACXBITS_D (_FP_FRACTBITS_D - _FP_FRACBITS_D)
#define _FP_WFRACBITS_D (_FP_WORKBITS + _FP_FRACBITS_D)
#define _FP_WFRACXBITS_D (_FP_FRACTBITS_D - _FP_WFRACBITS_D)
#define _FP_EXPBITS_D 11
#define _FP_EXPBIAS_D 1023
#define _FP_EXPMAX_D 2047
#define _FP_QNANBIT_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-2) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_D \
((_FP_W_TYPE)1 << (_FP_FRACBITS_D-1) % _FP_W_TYPE_SIZE)
#define _FP_OVERFLOW_D \
((_FP_W_TYPE)1 << _FP_WFRACBITS_D % _FP_W_TYPE_SIZE)
#if _FP_W_TYPE_SIZE < 64
union _FP_UNION_D
{
double flt;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned frac0 : _FP_W_TYPE_SIZE;
#else
unsigned frac0 : _FP_W_TYPE_SIZE;
unsigned frac1 : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0) - _FP_W_TYPE_SIZE;
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
#endif
} bits __attribute__((packed));
};
#define FP_DECL_D(X) _FP_DECL(2,X)
#define FP_UNPACK_RAW_D(X,val) _FP_UNPACK_RAW_2(D,X,val)
#define FP_UNPACK_RAW_DP(X,val) _FP_UNPACK_RAW_2_P(D,X,val)
#define FP_PACK_RAW_D(val,X) _FP_PACK_RAW_2(D,val,X)
#define FP_PACK_RAW_DP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(D,val,X); \
} while (0)
#define FP_UNPACK_D(X,val) \
do { \
_FP_UNPACK_RAW_2(D,X,val); \
_FP_UNPACK_CANONICAL(D,2,X); \
} while (0)
#define FP_UNPACK_DP(X,val) \
do { \
_FP_UNPACK_RAW_2_P(D,X,val); \
_FP_UNPACK_CANONICAL(D,2,X); \
} while (0)
#define FP_PACK_D(val,X) \
do { \
_FP_PACK_CANONICAL(D,2,X); \
_FP_PACK_RAW_2(D,val,X); \
} while (0)
#define FP_PACK_DP(val,X) \
do { \
_FP_PACK_CANONICAL(D,2,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(D,val,X); \
} while (0)
#define FP_ISSIGNAN_D(X) _FP_ISSIGNAN(D,2,X)
#define FP_NEG_D(R,X) _FP_NEG(D,2,R,X)
#define FP_ADD_D(R,X,Y) _FP_ADD(D,2,R,X,Y)
#define FP_SUB_D(R,X,Y) _FP_SUB(D,2,R,X,Y)
#define FP_MUL_D(R,X,Y) _FP_MUL(D,2,R,X,Y)
#define FP_DIV_D(R,X,Y) _FP_DIV(D,2,R,X,Y)
#define FP_SQRT_D(R,X) _FP_SQRT(D,2,R,X)
#define _FP_SQRT_MEAT_D(R,S,T,X,Q) _FP_SQRT_MEAT_2(R,S,T,X,Q)
#define FP_CMP_D(r,X,Y,un) _FP_CMP(D,2,r,X,Y,un)
#define FP_CMP_EQ_D(r,X,Y) _FP_CMP_EQ(D,2,r,X,Y)
#define FP_TO_INT_D(r,X,rsz,rsg) _FP_TO_INT(D,2,r,X,rsz,rsg)
#define FP_TO_INT_ROUND_D(r,X,rsz,rsg) _FP_TO_INT_ROUND(D,2,r,X,rsz,rsg)
#define FP_FROM_INT_D(X,r,rs,rt) _FP_FROM_INT(D,2,X,r,rs,rt)
#define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_2(X)
#define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_2(X)
#else
union _FP_UNION_D
{
double flt;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_D;
unsigned long frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
#else
unsigned long frac : _FP_FRACBITS_D - (_FP_IMPLBIT_D != 0);
unsigned exp : _FP_EXPBITS_D;
unsigned sign : 1;
#endif
} bits __attribute__((packed));
};
#define FP_DECL_D(X) _FP_DECL(1,X)
#define FP_UNPACK_RAW_D(X,val) _FP_UNPACK_RAW_1(D,X,val)
#define FP_UNPACK_RAW_DP(X,val) _FP_UNPACK_RAW_1_P(D,X,val)
#define FP_PACK_RAW_D(val,X) _FP_PACK_RAW_1(D,val,X)
#define FP_PACK_RAW_DP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(D,val,X); \
} while (0)
#define FP_UNPACK_D(X,val) \
do { \
_FP_UNPACK_RAW_1(D,X,val); \
_FP_UNPACK_CANONICAL(D,1,X); \
} while (0)
#define FP_UNPACK_DP(X,val) \
do { \
_FP_UNPACK_RAW_1_P(D,X,val); \
_FP_UNPACK_CANONICAL(D,1,X); \
} while (0)
#define FP_PACK_D(val,X) \
do { \
_FP_PACK_CANONICAL(D,1,X); \
_FP_PACK_RAW_1(D,val,X); \
} while (0)
#define FP_PACK_DP(val,X) \
do { \
_FP_PACK_CANONICAL(D,1,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(D,val,X); \
} while (0)
#define FP_ISSIGNAN_D(X) _FP_ISSIGNAN(D,1,X)
#define FP_NEG_D(R,X) _FP_NEG(D,1,R,X)
#define FP_ADD_D(R,X,Y) _FP_ADD(D,1,R,X,Y)
#define FP_SUB_D(R,X,Y) _FP_SUB(D,1,R,X,Y)
#define FP_MUL_D(R,X,Y) _FP_MUL(D,1,R,X,Y)
#define FP_DIV_D(R,X,Y) _FP_DIV(D,1,R,X,Y)
#define FP_SQRT_D(R,X) _FP_SQRT(D,1,R,X)
#define _FP_SQRT_MEAT_D(R,S,T,X,Q) _FP_SQRT_MEAT_1(R,S,T,X,Q)
/* The implementation of _FP_MUL_D and _FP_DIV_D should be chosen by
the target machine. */
#define FP_CMP_D(r,X,Y,un) _FP_CMP(D,1,r,X,Y,un)
#define FP_CMP_EQ_D(r,X,Y) _FP_CMP_EQ(D,1,r,X,Y)
#define FP_TO_INT_D(r,X,rsz,rsg) _FP_TO_INT(D,1,r,X,rsz,rsg)
#define FP_TO_INT_ROUND_D(r,X,rsz,rsg) _FP_TO_INT_ROUND(D,1,r,X,rsz,rsg)
#define FP_FROM_INT_D(X,r,rs,rt) _FP_FROM_INT(D,1,X,r,rs,rt)
#define _FP_FRAC_HIGH_D(X) _FP_FRAC_HIGH_1(X)
#define _FP_FRAC_HIGH_RAW_D(X) _FP_FRAC_HIGH_1(X)
#endif /* W_TYPE_SIZE < 64 */
#endif /* __MATH_EMU_DOUBLE_H__ */

303
include/math-emu/op-1.h Normal file
View file

@ -0,0 +1,303 @@
/* Software floating-point emulation.
Basic one-word fraction declaration and manipulation.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_1_H__
#define __MATH_EMU_OP_1_H__
#define _FP_FRAC_DECL_1(X) _FP_W_TYPE X##_f=0
#define _FP_FRAC_COPY_1(D,S) (D##_f = S##_f)
#define _FP_FRAC_SET_1(X,I) (X##_f = I)
#define _FP_FRAC_HIGH_1(X) (X##_f)
#define _FP_FRAC_LOW_1(X) (X##_f)
#define _FP_FRAC_WORD_1(X,w) (X##_f)
#define _FP_FRAC_ADDI_1(X,I) (X##_f += I)
#define _FP_FRAC_SLL_1(X,N) \
do { \
if (__builtin_constant_p(N) && (N) == 1) \
X##_f += X##_f; \
else \
X##_f <<= (N); \
} while (0)
#define _FP_FRAC_SRL_1(X,N) (X##_f >>= N)
/* Right shift with sticky-lsb. */
#define _FP_FRAC_SRS_1(X,N,sz) __FP_FRAC_SRS_1(X##_f, N, sz)
#define __FP_FRAC_SRS_1(X,N,sz) \
(X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1 \
? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0)))
#define _FP_FRAC_ADD_1(R,X,Y) (R##_f = X##_f + Y##_f)
#define _FP_FRAC_SUB_1(R,X,Y) (R##_f = X##_f - Y##_f)
#define _FP_FRAC_DEC_1(X,Y) (X##_f -= Y##_f)
#define _FP_FRAC_CLZ_1(z, X) __FP_CLZ(z, X##_f)
/* Predicates */
#define _FP_FRAC_NEGP_1(X) ((_FP_WS_TYPE)X##_f < 0)
#define _FP_FRAC_ZEROP_1(X) (X##_f == 0)
#define _FP_FRAC_OVERP_1(fs,X) (X##_f & _FP_OVERFLOW_##fs)
#define _FP_FRAC_CLEAR_OVERP_1(fs,X) (X##_f &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_1(X, Y) (X##_f == Y##_f)
#define _FP_FRAC_GE_1(X, Y) (X##_f >= Y##_f)
#define _FP_FRAC_GT_1(X, Y) (X##_f > Y##_f)
#define _FP_ZEROFRAC_1 0
#define _FP_MINFRAC_1 1
#define _FP_MAXFRAC_1 (~(_FP_WS_TYPE)0)
/*
* Unpack the raw bits of a native fp value. Do not classify or
* normalize the data.
*/
#define _FP_UNPACK_RAW_1(fs, X, val) \
do { \
union _FP_UNION_##fs _flo; _flo.flt = (val); \
\
X##_f = _flo.bits.frac; \
X##_e = _flo.bits.exp; \
X##_s = _flo.bits.sign; \
} while (0)
#define _FP_UNPACK_RAW_1_P(fs, X, val) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
X##_f = _flo->bits.frac; \
X##_e = _flo->bits.exp; \
X##_s = _flo->bits.sign; \
} while (0)
/*
* Repack the raw bits of a native fp value.
*/
#define _FP_PACK_RAW_1(fs, val, X) \
do { \
union _FP_UNION_##fs _flo; \
\
_flo.bits.frac = X##_f; \
_flo.bits.exp = X##_e; \
_flo.bits.sign = X##_s; \
\
(val) = _flo.flt; \
} while (0)
#define _FP_PACK_RAW_1_P(fs, val, X) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
_flo->bits.frac = X##_f; \
_flo->bits.exp = X##_e; \
_flo->bits.sign = X##_s; \
} while (0)
/*
* Multiplication algorithms:
*/
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
multiplication immediately. */
#define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y) \
do { \
R##_f = X##_f * Y##_f; \
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits); \
} while (0)
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
#define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit) \
do { \
_FP_W_TYPE _Z_f0, _Z_f1; \
doit(_Z_f1, _Z_f0, X##_f, Y##_f); \
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits); \
R##_f = _Z_f0; \
} while (0)
/* Finally, a simple widening multiply algorithm. What fun! */
#define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y) \
do { \
_FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1; \
\
/* split the words in half */ \
_xh = X##_f >> (_FP_W_TYPE_SIZE/2); \
_xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
_yh = Y##_f >> (_FP_W_TYPE_SIZE/2); \
_yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1); \
\
/* multiply the pieces */ \
_z_f0 = _xl * _yl; \
_a_f0 = _xh * _yl; \
_a_f1 = _xl * _yh; \
_z_f1 = _xh * _yh; \
\
/* reassemble into two full words */ \
if ((_a_f0 += _a_f1) < _a_f1) \
_z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2); \
_a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2); \
_a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2); \
_FP_FRAC_ADD_2(_z, _z, _a); \
\
/* normalize */ \
_FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits); \
R##_f = _z_f0; \
} while (0)
/*
* Division algorithms:
*/
/* Basic. Assuming the host word size is >= 2*FRACBITS, we can do the
division immediately. Give this macro either _FP_DIV_HELP_imm for
C primitives or _FP_DIV_HELP_ldiv for the ISO function. Which you
choose will depend on what the compiler does with divrem4. */
#define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit) \
do { \
_FP_W_TYPE _q, _r; \
X##_f <<= (X##_f < Y##_f \
? R##_e--, _FP_WFRACBITS_##fs \
: _FP_WFRACBITS_##fs - 1); \
doit(_q, _r, X##_f, Y##_f); \
R##_f = _q | (_r != 0); \
} while (0)
/* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd
that may be useful in this situation. This first is for a primitive
that requires normalization, the second for one that does not. Look
for UDIV_NEEDS_NORMALIZATION to tell which your machine needs. */
#define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y) \
do { \
_FP_W_TYPE _nh, _nl, _q, _r, _y; \
\
/* Normalize Y -- i.e. make the most significant bit set. */ \
_y = Y##_f << _FP_WFRACXBITS_##fs; \
\
/* Shift X op correspondingly high, that is, up one full word. */ \
if (X##_f < Y##_f) \
{ \
R##_e--; \
_nl = 0; \
_nh = X##_f; \
} \
else \
{ \
_nl = X##_f << (_FP_W_TYPE_SIZE - 1); \
_nh = X##_f >> 1; \
} \
\
udiv_qrnnd(_q, _r, _nh, _nl, _y); \
R##_f = _q | (_r != 0); \
} while (0)
#define _FP_DIV_MEAT_1_udiv(fs, R, X, Y) \
do { \
_FP_W_TYPE _nh, _nl, _q, _r; \
if (X##_f < Y##_f) \
{ \
R##_e--; \
_nl = X##_f << _FP_WFRACBITS_##fs; \
_nh = X##_f >> _FP_WFRACXBITS_##fs; \
} \
else \
{ \
_nl = X##_f << (_FP_WFRACBITS_##fs - 1); \
_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1); \
} \
udiv_qrnnd(_q, _r, _nh, _nl, Y##_f); \
R##_f = _q | (_r != 0); \
} while (0)
/*
* Square root algorithms:
* We have just one right now, maybe Newton approximation
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_1(R, S, T, X, q) \
do { \
while (q != _FP_WORK_ROUND) \
{ \
T##_f = S##_f + q; \
if (T##_f <= X##_f) \
{ \
S##_f = T##_f + q; \
X##_f -= T##_f; \
R##_f += q; \
} \
_FP_FRAC_SLL_1(X, 1); \
q >>= 1; \
} \
if (X##_f) \
{ \
if (S##_f < X##_f) \
R##_f |= _FP_WORK_ROUND; \
R##_f |= _FP_WORK_STICKY; \
} \
} while (0)
/*
* Assembly/disassembly for converting to/from integral types.
* No shifting or overflow handled here.
*/
#define _FP_FRAC_ASSEMBLE_1(r, X, rsize) (r = X##_f)
#define _FP_FRAC_DISASSEMBLE_1(X, r, rsize) (X##_f = r)
/*
* Convert FP values between word sizes
*/
#define _FP_FRAC_CONV_1_1(dfs, sfs, D, S) \
do { \
D##_f = S##_f; \
if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs) \
{ \
if (S##_c != FP_CLS_NAN) \
_FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
else \
_FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs)); \
} \
else \
D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs; \
} while (0)
#endif /* __MATH_EMU_OP_1_H__ */

613
include/math-emu/op-2.h Normal file
View file

@ -0,0 +1,613 @@
/* Software floating-point emulation.
Basic two-word fraction declaration and manipulation.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_2_H__
#define __MATH_EMU_OP_2_H__
#define _FP_FRAC_DECL_2(X) _FP_W_TYPE X##_f0 = 0, X##_f1 = 0
#define _FP_FRAC_COPY_2(D,S) (D##_f0 = S##_f0, D##_f1 = S##_f1)
#define _FP_FRAC_SET_2(X,I) __FP_FRAC_SET_2(X, I)
#define _FP_FRAC_HIGH_2(X) (X##_f1)
#define _FP_FRAC_LOW_2(X) (X##_f0)
#define _FP_FRAC_WORD_2(X,w) (X##_f##w)
#define _FP_FRAC_SLL_2(X,N) \
do { \
if ((N) < _FP_W_TYPE_SIZE) \
{ \
if (__builtin_constant_p(N) && (N) == 1) \
{ \
X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0); \
X##_f0 += X##_f0; \
} \
else \
{ \
X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N)); \
X##_f0 <<= (N); \
} \
} \
else \
{ \
X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE); \
X##_f0 = 0; \
} \
} while (0)
#define _FP_FRAC_SRL_2(X,N) \
do { \
if ((N) < _FP_W_TYPE_SIZE) \
{ \
X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N)); \
X##_f1 >>= (N); \
} \
else \
{ \
X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE); \
X##_f1 = 0; \
} \
} while (0)
/* Right shift with sticky-lsb. */
#define _FP_FRAC_SRS_2(X,N,sz) \
do { \
if ((N) < _FP_W_TYPE_SIZE) \
{ \
X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) | \
(__builtin_constant_p(N) && (N) == 1 \
? X##_f0 & 1 \
: (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0)); \
X##_f1 >>= (N); \
} \
else \
{ \
X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) | \
(((X##_f1 << (2*_FP_W_TYPE_SIZE - (N))) | X##_f0) != 0)); \
X##_f1 = 0; \
} \
} while (0)
#define _FP_FRAC_ADDI_2(X,I) \
__FP_FRAC_ADDI_2(X##_f1, X##_f0, I)
#define _FP_FRAC_ADD_2(R,X,Y) \
__FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
#define _FP_FRAC_SUB_2(R,X,Y) \
__FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0)
#define _FP_FRAC_DEC_2(X,Y) \
__FP_FRAC_DEC_2(X##_f1, X##_f0, Y##_f1, Y##_f0)
#define _FP_FRAC_CLZ_2(R,X) \
do { \
if (X##_f1) \
__FP_CLZ(R,X##_f1); \
else \
{ \
__FP_CLZ(R,X##_f0); \
R += _FP_W_TYPE_SIZE; \
} \
} while(0)
/* Predicates */
#define _FP_FRAC_NEGP_2(X) ((_FP_WS_TYPE)X##_f1 < 0)
#define _FP_FRAC_ZEROP_2(X) ((X##_f1 | X##_f0) == 0)
#define _FP_FRAC_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
#define _FP_FRAC_CLEAR_OVERP_2(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_2(X, Y) (X##_f1 == Y##_f1 && X##_f0 == Y##_f0)
#define _FP_FRAC_GT_2(X, Y) \
(X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0))
#define _FP_FRAC_GE_2(X, Y) \
(X##_f1 > Y##_f1 || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0))
#define _FP_ZEROFRAC_2 0, 0
#define _FP_MINFRAC_2 0, 1
#define _FP_MAXFRAC_2 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
/*
* Internals
*/
#define __FP_FRAC_SET_2(X,I1,I0) (X##_f0 = I0, X##_f1 = I1)
#define __FP_CLZ_2(R, xh, xl) \
do { \
if (xh) \
__FP_CLZ(R,xh); \
else \
{ \
__FP_CLZ(R,xl); \
R += _FP_W_TYPE_SIZE; \
} \
} while(0)
#if 0
#ifndef __FP_FRAC_ADDI_2
#define __FP_FRAC_ADDI_2(xh, xl, i) \
(xh += ((xl += i) < i))
#endif
#ifndef __FP_FRAC_ADD_2
#define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \
(rh = xh + yh + ((rl = xl + yl) < xl))
#endif
#ifndef __FP_FRAC_SUB_2
#define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \
(rh = xh - yh - ((rl = xl - yl) > xl))
#endif
#ifndef __FP_FRAC_DEC_2
#define __FP_FRAC_DEC_2(xh, xl, yh, yl) \
do { \
UWtype _t = xl; \
xh -= yh + ((xl -= yl) > _t); \
} while (0)
#endif
#else
#undef __FP_FRAC_ADDI_2
#define __FP_FRAC_ADDI_2(xh, xl, i) add_ssaaaa(xh, xl, xh, xl, 0, i)
#undef __FP_FRAC_ADD_2
#define __FP_FRAC_ADD_2 add_ssaaaa
#undef __FP_FRAC_SUB_2
#define __FP_FRAC_SUB_2 sub_ddmmss
#undef __FP_FRAC_DEC_2
#define __FP_FRAC_DEC_2(xh, xl, yh, yl) sub_ddmmss(xh, xl, xh, xl, yh, yl)
#endif
/*
* Unpack the raw bits of a native fp value. Do not classify or
* normalize the data.
*/
#define _FP_UNPACK_RAW_2(fs, X, val) \
do { \
union _FP_UNION_##fs _flo; _flo.flt = (val); \
\
X##_f0 = _flo.bits.frac0; \
X##_f1 = _flo.bits.frac1; \
X##_e = _flo.bits.exp; \
X##_s = _flo.bits.sign; \
} while (0)
#define _FP_UNPACK_RAW_2_P(fs, X, val) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
X##_f0 = _flo->bits.frac0; \
X##_f1 = _flo->bits.frac1; \
X##_e = _flo->bits.exp; \
X##_s = _flo->bits.sign; \
} while (0)
/*
* Repack the raw bits of a native fp value.
*/
#define _FP_PACK_RAW_2(fs, val, X) \
do { \
union _FP_UNION_##fs _flo; \
\
_flo.bits.frac0 = X##_f0; \
_flo.bits.frac1 = X##_f1; \
_flo.bits.exp = X##_e; \
_flo.bits.sign = X##_s; \
\
(val) = _flo.flt; \
} while (0)
#define _FP_PACK_RAW_2_P(fs, val, X) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
_flo->bits.frac0 = X##_f0; \
_flo->bits.frac1 = X##_f1; \
_flo->bits.exp = X##_e; \
_flo->bits.sign = X##_s; \
} while (0)
/*
* Multiplication algorithms:
*/
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
#define _FP_MUL_MEAT_2_wide(wfracbits, R, X, Y, doit) \
do { \
_FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \
\
doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \
doit(_b_f1, _b_f0, X##_f0, Y##_f1); \
doit(_c_f1, _c_f0, X##_f1, Y##_f0); \
doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \
\
__FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1), 0, _b_f1, _b_f0, \
_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0, \
_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1)); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \
R##_f0 = _FP_FRAC_WORD_4(_z,0); \
R##_f1 = _FP_FRAC_WORD_4(_z,1); \
} while (0)
/* Given a 1W * 1W => 2W primitive, do the extended multiplication.
Do only 3 multiplications instead of four. This one is for machines
where multiplication is much more expensive than subtraction. */
#define _FP_MUL_MEAT_2_wide_3mul(wfracbits, R, X, Y, doit) \
do { \
_FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \
_FP_W_TYPE _d; \
int _c1, _c2; \
\
_b_f0 = X##_f0 + X##_f1; \
_c1 = _b_f0 < X##_f0; \
_b_f1 = Y##_f0 + Y##_f1; \
_c2 = _b_f1 < Y##_f0; \
doit(_d, _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \
doit(_FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1), _b_f0, _b_f1); \
doit(_c_f1, _c_f0, X##_f1, Y##_f1); \
\
_b_f0 &= -_c2; \
_b_f1 &= -_c1; \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1), (_c1 & _c2), 0, _d, \
0, _FP_FRAC_WORD_4(_z,2), _FP_FRAC_WORD_4(_z,1)); \
__FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_b_f0); \
__FP_FRAC_ADDI_2(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_b_f1); \
__FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1), \
0, _d, _FP_FRAC_WORD_4(_z,0)); \
__FP_FRAC_DEC_3(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2), \
_FP_FRAC_WORD_4(_z,1), 0, _c_f1, _c_f0); \
__FP_FRAC_ADD_2(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), \
_c_f1, _c_f0, \
_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2)); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \
R##_f0 = _FP_FRAC_WORD_4(_z,0); \
R##_f1 = _FP_FRAC_WORD_4(_z,1); \
} while (0)
#define _FP_MUL_MEAT_2_gmp(wfracbits, R, X, Y) \
do { \
_FP_FRAC_DECL_4(_z); \
_FP_W_TYPE _x[2], _y[2]; \
_x[0] = X##_f0; _x[1] = X##_f1; \
_y[0] = Y##_f0; _y[1] = Y##_f1; \
\
mpn_mul_n(_z_f, _x, _y, 2); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_4(_z, wfracbits-1, 2*wfracbits); \
R##_f0 = _z_f[0]; \
R##_f1 = _z_f[1]; \
} while (0)
/* Do at most 120x120=240 bits multiplication using double floating
point multiplication. This is useful if floating point
multiplication has much bigger throughput than integer multiply.
It is supposed to work for _FP_W_TYPE_SIZE 64 and wfracbits
between 106 and 120 only.
Caller guarantees that X and Y has (1LLL << (wfracbits - 1)) set.
SETFETZ is a macro which will disable all FPU exceptions and set rounding
towards zero, RESETFE should optionally reset it back. */
#define _FP_MUL_MEAT_2_120_240_double(wfracbits, R, X, Y, setfetz, resetfe) \
do { \
static const double _const[] = { \
/* 2^-24 */ 5.9604644775390625e-08, \
/* 2^-48 */ 3.5527136788005009e-15, \
/* 2^-72 */ 2.1175823681357508e-22, \
/* 2^-96 */ 1.2621774483536189e-29, \
/* 2^28 */ 2.68435456e+08, \
/* 2^4 */ 1.600000e+01, \
/* 2^-20 */ 9.5367431640625e-07, \
/* 2^-44 */ 5.6843418860808015e-14, \
/* 2^-68 */ 3.3881317890172014e-21, \
/* 2^-92 */ 2.0194839173657902e-28, \
/* 2^-116 */ 1.2037062152420224e-35}; \
double _a240, _b240, _c240, _d240, _e240, _f240, \
_g240, _h240, _i240, _j240, _k240; \
union { double d; UDItype i; } _l240, _m240, _n240, _o240, \
_p240, _q240, _r240, _s240; \
UDItype _t240, _u240, _v240, _w240, _x240, _y240 = 0; \
\
if (wfracbits < 106 || wfracbits > 120) \
abort(); \
\
setfetz; \
\
_e240 = (double)(long)(X##_f0 & 0xffffff); \
_j240 = (double)(long)(Y##_f0 & 0xffffff); \
_d240 = (double)(long)((X##_f0 >> 24) & 0xffffff); \
_i240 = (double)(long)((Y##_f0 >> 24) & 0xffffff); \
_c240 = (double)(long)(((X##_f1 << 16) & 0xffffff) | (X##_f0 >> 48)); \
_h240 = (double)(long)(((Y##_f1 << 16) & 0xffffff) | (Y##_f0 >> 48)); \
_b240 = (double)(long)((X##_f1 >> 8) & 0xffffff); \
_g240 = (double)(long)((Y##_f1 >> 8) & 0xffffff); \
_a240 = (double)(long)(X##_f1 >> 32); \
_f240 = (double)(long)(Y##_f1 >> 32); \
_e240 *= _const[3]; \
_j240 *= _const[3]; \
_d240 *= _const[2]; \
_i240 *= _const[2]; \
_c240 *= _const[1]; \
_h240 *= _const[1]; \
_b240 *= _const[0]; \
_g240 *= _const[0]; \
_s240.d = _e240*_j240;\
_r240.d = _d240*_j240 + _e240*_i240;\
_q240.d = _c240*_j240 + _d240*_i240 + _e240*_h240;\
_p240.d = _b240*_j240 + _c240*_i240 + _d240*_h240 + _e240*_g240;\
_o240.d = _a240*_j240 + _b240*_i240 + _c240*_h240 + _d240*_g240 + _e240*_f240;\
_n240.d = _a240*_i240 + _b240*_h240 + _c240*_g240 + _d240*_f240; \
_m240.d = _a240*_h240 + _b240*_g240 + _c240*_f240; \
_l240.d = _a240*_g240 + _b240*_f240; \
_k240 = _a240*_f240; \
_r240.d += _s240.d; \
_q240.d += _r240.d; \
_p240.d += _q240.d; \
_o240.d += _p240.d; \
_n240.d += _o240.d; \
_m240.d += _n240.d; \
_l240.d += _m240.d; \
_k240 += _l240.d; \
_s240.d -= ((_const[10]+_s240.d)-_const[10]); \
_r240.d -= ((_const[9]+_r240.d)-_const[9]); \
_q240.d -= ((_const[8]+_q240.d)-_const[8]); \
_p240.d -= ((_const[7]+_p240.d)-_const[7]); \
_o240.d += _const[7]; \
_n240.d += _const[6]; \
_m240.d += _const[5]; \
_l240.d += _const[4]; \
if (_s240.d != 0.0) _y240 = 1; \
if (_r240.d != 0.0) _y240 = 1; \
if (_q240.d != 0.0) _y240 = 1; \
if (_p240.d != 0.0) _y240 = 1; \
_t240 = (DItype)_k240; \
_u240 = _l240.i; \
_v240 = _m240.i; \
_w240 = _n240.i; \
_x240 = _o240.i; \
R##_f1 = (_t240 << (128 - (wfracbits - 1))) \
| ((_u240 & 0xffffff) >> ((wfracbits - 1) - 104)); \
R##_f0 = ((_u240 & 0xffffff) << (168 - (wfracbits - 1))) \
| ((_v240 & 0xffffff) << (144 - (wfracbits - 1))) \
| ((_w240 & 0xffffff) << (120 - (wfracbits - 1))) \
| ((_x240 & 0xffffff) >> ((wfracbits - 1) - 96)) \
| _y240; \
resetfe; \
} while (0)
/*
* Division algorithms:
*/
#define _FP_DIV_MEAT_2_udiv(fs, R, X, Y) \
do { \
_FP_W_TYPE _n_f2, _n_f1, _n_f0, _r_f1, _r_f0, _m_f1, _m_f0; \
if (_FP_FRAC_GT_2(X, Y)) \
{ \
_n_f2 = X##_f1 >> 1; \
_n_f1 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1; \
_n_f0 = X##_f0 << (_FP_W_TYPE_SIZE - 1); \
} \
else \
{ \
R##_e--; \
_n_f2 = X##_f1; \
_n_f1 = X##_f0; \
_n_f0 = 0; \
} \
\
/* Normalize, i.e. make the most significant bit of the \
denominator set. */ \
_FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs); \
\
udiv_qrnnd(R##_f1, _r_f1, _n_f2, _n_f1, Y##_f1); \
umul_ppmm(_m_f1, _m_f0, R##_f1, Y##_f0); \
_r_f0 = _n_f0; \
if (_FP_FRAC_GT_2(_m, _r)) \
{ \
R##_f1--; \
_FP_FRAC_ADD_2(_r, Y, _r); \
if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \
{ \
R##_f1--; \
_FP_FRAC_ADD_2(_r, Y, _r); \
} \
} \
_FP_FRAC_DEC_2(_r, _m); \
\
if (_r_f1 == Y##_f1) \
{ \
/* This is a special case, not an optimization \
(_r/Y##_f1 would not fit into UWtype). \
As _r is guaranteed to be < Y, R##_f0 can be either \
(UWtype)-1 or (UWtype)-2. But as we know what kind \
of bits it is (sticky, guard, round), we don't care. \
We also don't care what the reminder is, because the \
guard bit will be set anyway. -jj */ \
R##_f0 = -1; \
} \
else \
{ \
udiv_qrnnd(R##_f0, _r_f1, _r_f1, _r_f0, Y##_f1); \
umul_ppmm(_m_f1, _m_f0, R##_f0, Y##_f0); \
_r_f0 = 0; \
if (_FP_FRAC_GT_2(_m, _r)) \
{ \
R##_f0--; \
_FP_FRAC_ADD_2(_r, Y, _r); \
if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r)) \
{ \
R##_f0--; \
_FP_FRAC_ADD_2(_r, Y, _r); \
} \
} \
if (!_FP_FRAC_EQ_2(_r, _m)) \
R##_f0 |= _FP_WORK_STICKY; \
} \
} while (0)
#define _FP_DIV_MEAT_2_gmp(fs, R, X, Y) \
do { \
_FP_W_TYPE _x[4], _y[2], _z[4]; \
_y[0] = Y##_f0; _y[1] = Y##_f1; \
_x[0] = _x[3] = 0; \
if (_FP_FRAC_GT_2(X, Y)) \
{ \
R##_e++; \
_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE) | \
X##_f1 >> (_FP_W_TYPE_SIZE - \
(_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE))); \
_x[2] = X##_f1 << (_FP_WFRACBITS_##fs-1 - _FP_W_TYPE_SIZE); \
} \
else \
{ \
_x[1] = (X##_f0 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE) | \
X##_f1 >> (_FP_W_TYPE_SIZE - \
(_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE))); \
_x[2] = X##_f1 << (_FP_WFRACBITS_##fs - _FP_W_TYPE_SIZE); \
} \
\
(void) mpn_divrem (_z, 0, _x, 4, _y, 2); \
R##_f1 = _z[1]; \
R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0); \
} while (0)
/*
* Square root algorithms:
* We have just one right now, maybe Newton approximation
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_2(R, S, T, X, q) \
do { \
while (q) \
{ \
T##_f1 = S##_f1 + q; \
if (T##_f1 <= X##_f1) \
{ \
S##_f1 = T##_f1 + q; \
X##_f1 -= T##_f1; \
R##_f1 += q; \
} \
_FP_FRAC_SLL_2(X, 1); \
q >>= 1; \
} \
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
while (q != _FP_WORK_ROUND) \
{ \
T##_f0 = S##_f0 + q; \
T##_f1 = S##_f1; \
if (T##_f1 < X##_f1 || \
(T##_f1 == X##_f1 && T##_f0 <= X##_f0)) \
{ \
S##_f0 = T##_f0 + q; \
S##_f1 += (T##_f0 > S##_f0); \
_FP_FRAC_DEC_2(X, T); \
R##_f0 += q; \
} \
_FP_FRAC_SLL_2(X, 1); \
q >>= 1; \
} \
if (X##_f0 | X##_f1) \
{ \
if (S##_f1 < X##_f1 || \
(S##_f1 == X##_f1 && S##_f0 < X##_f0)) \
R##_f0 |= _FP_WORK_ROUND; \
R##_f0 |= _FP_WORK_STICKY; \
} \
} while (0)
/*
* Assembly/disassembly for converting to/from integral types.
* No shifting or overflow handled here.
*/
#define _FP_FRAC_ASSEMBLE_2(r, X, rsize) \
do { \
if (rsize <= _FP_W_TYPE_SIZE) \
r = X##_f0; \
else \
{ \
r = X##_f1; \
r <<= _FP_W_TYPE_SIZE; \
r += X##_f0; \
} \
} while (0)
#define _FP_FRAC_DISASSEMBLE_2(X, r, rsize) \
do { \
X##_f0 = r; \
X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \
} while (0)
/*
* Convert FP values between word sizes
*/
#define _FP_FRAC_CONV_1_2(dfs, sfs, D, S) \
do { \
if (S##_c != FP_CLS_NAN) \
_FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
else \
_FP_FRAC_SRL_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \
D##_f = S##_f0; \
} while (0)
#define _FP_FRAC_CONV_2_1(dfs, sfs, D, S) \
do { \
D##_f0 = S##_f; \
D##_f1 = 0; \
_FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
} while (0)
#endif

692
include/math-emu/op-4.h Normal file
View file

@ -0,0 +1,692 @@
/* Software floating-point emulation.
Basic four-word fraction declaration and manipulation.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_4_H__
#define __MATH_EMU_OP_4_H__
#define _FP_FRAC_DECL_4(X) _FP_W_TYPE X##_f[4]
#define _FP_FRAC_COPY_4(D,S) \
(D##_f[0] = S##_f[0], D##_f[1] = S##_f[1], \
D##_f[2] = S##_f[2], D##_f[3] = S##_f[3])
#define _FP_FRAC_SET_4(X,I) __FP_FRAC_SET_4(X, I)
#define _FP_FRAC_HIGH_4(X) (X##_f[3])
#define _FP_FRAC_LOW_4(X) (X##_f[0])
#define _FP_FRAC_WORD_4(X,w) (X##_f[w])
#define _FP_FRAC_SLL_4(X,N) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_up = (N) % _FP_W_TYPE_SIZE; \
_down = _FP_W_TYPE_SIZE - _up; \
if (!_up) \
for (_i = 3; _i >= _skip; --_i) \
X##_f[_i] = X##_f[_i-_skip]; \
else \
{ \
for (_i = 3; _i > _skip; --_i) \
X##_f[_i] = X##_f[_i-_skip] << _up \
| X##_f[_i-_skip-1] >> _down; \
X##_f[_i--] = X##_f[0] << _up; \
} \
for (; _i >= 0; --_i) \
X##_f[_i] = 0; \
} while (0)
/* This one was broken too */
#define _FP_FRAC_SRL_4(X,N) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_down = (N) % _FP_W_TYPE_SIZE; \
_up = _FP_W_TYPE_SIZE - _down; \
if (!_down) \
for (_i = 0; _i <= 3-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip]; \
else \
{ \
for (_i = 0; _i < 3-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip] >> _down \
| X##_f[_i+_skip+1] << _up; \
X##_f[_i++] = X##_f[3] >> _down; \
} \
for (; _i < 4; ++_i) \
X##_f[_i] = 0; \
} while (0)
/* Right shift with sticky-lsb.
* What this actually means is that we do a standard right-shift,
* but that if any of the bits that fall off the right hand side
* were one then we always set the LSbit.
*/
#define _FP_FRAC_SRS_4(X,N,size) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_FP_W_TYPE _s; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_down = (N) % _FP_W_TYPE_SIZE; \
_up = _FP_W_TYPE_SIZE - _down; \
for (_s = _i = 0; _i < _skip; ++_i) \
_s |= X##_f[_i]; \
_s |= X##_f[_i] << _up; \
/* s is now != 0 if we want to set the LSbit */ \
if (!_down) \
for (_i = 0; _i <= 3-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip]; \
else \
{ \
for (_i = 0; _i < 3-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip] >> _down \
| X##_f[_i+_skip+1] << _up; \
X##_f[_i++] = X##_f[3] >> _down; \
} \
for (; _i < 4; ++_i) \
X##_f[_i] = 0; \
/* don't fix the LSB until the very end when we're sure f[0] is stable */ \
X##_f[0] |= (_s != 0); \
} while (0)
#define _FP_FRAC_ADD_4(R,X,Y) \
__FP_FRAC_ADD_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_SUB_4(R,X,Y) \
__FP_FRAC_SUB_4(R##_f[3], R##_f[2], R##_f[1], R##_f[0], \
X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_DEC_4(X,Y) \
__FP_FRAC_DEC_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[3], Y##_f[2], Y##_f[1], Y##_f[0])
#define _FP_FRAC_ADDI_4(X,I) \
__FP_FRAC_ADDI_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], I)
#define _FP_ZEROFRAC_4 0,0,0,0
#define _FP_MINFRAC_4 0,0,0,1
#define _FP_MAXFRAC_4 (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0), (~(_FP_WS_TYPE)0)
#define _FP_FRAC_ZEROP_4(X) ((X##_f[0] | X##_f[1] | X##_f[2] | X##_f[3]) == 0)
#define _FP_FRAC_NEGP_4(X) ((_FP_WS_TYPE)X##_f[3] < 0)
#define _FP_FRAC_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) & _FP_OVERFLOW_##fs)
#define _FP_FRAC_CLEAR_OVERP_4(fs,X) (_FP_FRAC_HIGH_##fs(X) &= ~_FP_OVERFLOW_##fs)
#define _FP_FRAC_EQ_4(X,Y) \
(X##_f[0] == Y##_f[0] && X##_f[1] == Y##_f[1] \
&& X##_f[2] == Y##_f[2] && X##_f[3] == Y##_f[3])
#define _FP_FRAC_GT_4(X,Y) \
(X##_f[3] > Y##_f[3] || \
(X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
(X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
(X##_f[1] == Y##_f[1] && X##_f[0] > Y##_f[0]) \
)) \
)) \
)
#define _FP_FRAC_GE_4(X,Y) \
(X##_f[3] > Y##_f[3] || \
(X##_f[3] == Y##_f[3] && (X##_f[2] > Y##_f[2] || \
(X##_f[2] == Y##_f[2] && (X##_f[1] > Y##_f[1] || \
(X##_f[1] == Y##_f[1] && X##_f[0] >= Y##_f[0]) \
)) \
)) \
)
#define _FP_FRAC_CLZ_4(R,X) \
do { \
if (X##_f[3]) \
{ \
__FP_CLZ(R,X##_f[3]); \
} \
else if (X##_f[2]) \
{ \
__FP_CLZ(R,X##_f[2]); \
R += _FP_W_TYPE_SIZE; \
} \
else if (X##_f[1]) \
{ \
__FP_CLZ(R,X##_f[2]); \
R += _FP_W_TYPE_SIZE*2; \
} \
else \
{ \
__FP_CLZ(R,X##_f[0]); \
R += _FP_W_TYPE_SIZE*3; \
} \
} while(0)
#define _FP_UNPACK_RAW_4(fs, X, val) \
do { \
union _FP_UNION_##fs _flo; _flo.flt = (val); \
X##_f[0] = _flo.bits.frac0; \
X##_f[1] = _flo.bits.frac1; \
X##_f[2] = _flo.bits.frac2; \
X##_f[3] = _flo.bits.frac3; \
X##_e = _flo.bits.exp; \
X##_s = _flo.bits.sign; \
} while (0)
#define _FP_UNPACK_RAW_4_P(fs, X, val) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
X##_f[0] = _flo->bits.frac0; \
X##_f[1] = _flo->bits.frac1; \
X##_f[2] = _flo->bits.frac2; \
X##_f[3] = _flo->bits.frac3; \
X##_e = _flo->bits.exp; \
X##_s = _flo->bits.sign; \
} while (0)
#define _FP_PACK_RAW_4(fs, val, X) \
do { \
union _FP_UNION_##fs _flo; \
_flo.bits.frac0 = X##_f[0]; \
_flo.bits.frac1 = X##_f[1]; \
_flo.bits.frac2 = X##_f[2]; \
_flo.bits.frac3 = X##_f[3]; \
_flo.bits.exp = X##_e; \
_flo.bits.sign = X##_s; \
(val) = _flo.flt; \
} while (0)
#define _FP_PACK_RAW_4_P(fs, val, X) \
do { \
union _FP_UNION_##fs *_flo = \
(union _FP_UNION_##fs *)(val); \
\
_flo->bits.frac0 = X##_f[0]; \
_flo->bits.frac1 = X##_f[1]; \
_flo->bits.frac2 = X##_f[2]; \
_flo->bits.frac3 = X##_f[3]; \
_flo->bits.exp = X##_e; \
_flo->bits.sign = X##_s; \
} while (0)
/*
* Multiplication algorithms:
*/
/* Given a 1W * 1W => 2W primitive, do the extended multiplication. */
#define _FP_MUL_MEAT_4_wide(wfracbits, R, X, Y, doit) \
do { \
_FP_FRAC_DECL_8(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c); \
_FP_FRAC_DECL_2(_d); _FP_FRAC_DECL_2(_e); _FP_FRAC_DECL_2(_f); \
\
doit(_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0), X##_f[0], Y##_f[0]); \
doit(_b_f1, _b_f0, X##_f[0], Y##_f[1]); \
doit(_c_f1, _c_f0, X##_f[1], Y##_f[0]); \
doit(_d_f1, _d_f0, X##_f[1], Y##_f[1]); \
doit(_e_f1, _e_f0, X##_f[0], Y##_f[2]); \
doit(_f_f1, _f_f0, X##_f[2], Y##_f[0]); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
_FP_FRAC_WORD_8(_z,1), 0,_b_f1,_b_f0, \
0,0,_FP_FRAC_WORD_8(_z,1)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
_FP_FRAC_WORD_8(_z,1), 0,_c_f1,_c_f0, \
_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2), \
_FP_FRAC_WORD_8(_z,1)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
_FP_FRAC_WORD_8(_z,2), 0,_d_f1,_d_f0, \
0,_FP_FRAC_WORD_8(_z,3),_FP_FRAC_WORD_8(_z,2)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
_FP_FRAC_WORD_8(_z,2), 0,_e_f1,_e_f0, \
_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
_FP_FRAC_WORD_8(_z,2)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
_FP_FRAC_WORD_8(_z,2), 0,_f_f1,_f_f0, \
_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3), \
_FP_FRAC_WORD_8(_z,2)); \
doit(_b_f1, _b_f0, X##_f[0], Y##_f[3]); \
doit(_c_f1, _c_f0, X##_f[3], Y##_f[0]); \
doit(_d_f1, _d_f0, X##_f[1], Y##_f[2]); \
doit(_e_f1, _e_f0, X##_f[2], Y##_f[1]); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3), 0,_b_f1,_b_f0, \
0,_FP_FRAC_WORD_8(_z,4),_FP_FRAC_WORD_8(_z,3)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3), 0,_c_f1,_c_f0, \
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3), 0,_d_f1,_d_f0, \
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3), 0,_e_f1,_e_f0, \
_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4), \
_FP_FRAC_WORD_8(_z,3)); \
doit(_b_f1, _b_f0, X##_f[2], Y##_f[2]); \
doit(_c_f1, _c_f0, X##_f[1], Y##_f[3]); \
doit(_d_f1, _d_f0, X##_f[3], Y##_f[1]); \
doit(_e_f1, _e_f0, X##_f[2], Y##_f[3]); \
doit(_f_f1, _f_f0, X##_f[3], Y##_f[2]); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
_FP_FRAC_WORD_8(_z,4), 0,_b_f1,_b_f0, \
0,_FP_FRAC_WORD_8(_z,5),_FP_FRAC_WORD_8(_z,4)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
_FP_FRAC_WORD_8(_z,4), 0,_c_f1,_c_f0, \
_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
_FP_FRAC_WORD_8(_z,4)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
_FP_FRAC_WORD_8(_z,4), 0,_d_f1,_d_f0, \
_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5), \
_FP_FRAC_WORD_8(_z,4)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
_FP_FRAC_WORD_8(_z,5), 0,_e_f1,_e_f0, \
0,_FP_FRAC_WORD_8(_z,6),_FP_FRAC_WORD_8(_z,5)); \
__FP_FRAC_ADD_3(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
_FP_FRAC_WORD_8(_z,5), 0,_f_f1,_f_f0, \
_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
_FP_FRAC_WORD_8(_z,5)); \
doit(_b_f1, _b_f0, X##_f[3], Y##_f[3]); \
__FP_FRAC_ADD_2(_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6), \
_b_f1,_b_f0, \
_FP_FRAC_WORD_8(_z,7),_FP_FRAC_WORD_8(_z,6)); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
__FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
} while (0)
#define _FP_MUL_MEAT_4_gmp(wfracbits, R, X, Y) \
do { \
_FP_FRAC_DECL_8(_z); \
\
mpn_mul_n(_z_f, _x_f, _y_f, 4); \
\
/* Normalize since we know where the msb of the multiplicands \
were (bit B), we know that the msb of the of the product is \
at either 2B or 2B-1. */ \
_FP_FRAC_SRS_8(_z, wfracbits-1, 2*wfracbits); \
__FP_FRAC_SET_4(R, _FP_FRAC_WORD_8(_z,3), _FP_FRAC_WORD_8(_z,2), \
_FP_FRAC_WORD_8(_z,1), _FP_FRAC_WORD_8(_z,0)); \
} while (0)
/*
* Helper utility for _FP_DIV_MEAT_4_udiv:
* pppp = m * nnn
*/
#define umul_ppppmnnn(p3,p2,p1,p0,m,n2,n1,n0) \
do { \
UWtype _t; \
umul_ppmm(p1,p0,m,n0); \
umul_ppmm(p2,_t,m,n1); \
__FP_FRAC_ADDI_2(p2,p1,_t); \
umul_ppmm(p3,_t,m,n2); \
__FP_FRAC_ADDI_2(p3,p2,_t); \
} while (0)
/*
* Division algorithms:
*/
#define _FP_DIV_MEAT_4_udiv(fs, R, X, Y) \
do { \
int _i; \
_FP_FRAC_DECL_4(_n); _FP_FRAC_DECL_4(_m); \
_FP_FRAC_SET_4(_n, _FP_ZEROFRAC_4); \
if (_FP_FRAC_GT_4(X, Y)) \
{ \
_n_f[3] = X##_f[0] << (_FP_W_TYPE_SIZE - 1); \
_FP_FRAC_SRL_4(X, 1); \
} \
else \
R##_e--; \
\
/* Normalize, i.e. make the most significant bit of the \
denominator set. */ \
_FP_FRAC_SLL_4(Y, _FP_WFRACXBITS_##fs); \
\
for (_i = 3; ; _i--) \
{ \
if (X##_f[3] == Y##_f[3]) \
{ \
/* This is a special case, not an optimization \
(X##_f[3]/Y##_f[3] would not fit into UWtype). \
As X## is guaranteed to be < Y, R##_f[_i] can be either \
(UWtype)-1 or (UWtype)-2. */ \
R##_f[_i] = -1; \
if (!_i) \
break; \
__FP_FRAC_SUB_4(X##_f[3], X##_f[2], X##_f[1], X##_f[0], \
Y##_f[2], Y##_f[1], Y##_f[0], 0, \
X##_f[2], X##_f[1], X##_f[0], _n_f[_i]); \
_FP_FRAC_SUB_4(X, Y, X); \
if (X##_f[3] > Y##_f[3]) \
{ \
R##_f[_i] = -2; \
_FP_FRAC_ADD_4(X, Y, X); \
} \
} \
else \
{ \
udiv_qrnnd(R##_f[_i], X##_f[3], X##_f[3], X##_f[2], Y##_f[3]); \
umul_ppppmnnn(_m_f[3], _m_f[2], _m_f[1], _m_f[0], \
R##_f[_i], Y##_f[2], Y##_f[1], Y##_f[0]); \
X##_f[2] = X##_f[1]; \
X##_f[1] = X##_f[0]; \
X##_f[0] = _n_f[_i]; \
if (_FP_FRAC_GT_4(_m, X)) \
{ \
R##_f[_i]--; \
_FP_FRAC_ADD_4(X, Y, X); \
if (_FP_FRAC_GE_4(X, Y) && _FP_FRAC_GT_4(_m, X)) \
{ \
R##_f[_i]--; \
_FP_FRAC_ADD_4(X, Y, X); \
} \
} \
_FP_FRAC_DEC_4(X, _m); \
if (!_i) \
{ \
if (!_FP_FRAC_EQ_4(X, _m)) \
R##_f[0] |= _FP_WORK_STICKY; \
break; \
} \
} \
} \
} while (0)
/*
* Square root algorithms:
* We have just one right now, maybe Newton approximation
* should be added for those machines where division is fast.
*/
#define _FP_SQRT_MEAT_4(R, S, T, X, q) \
do { \
while (q) \
{ \
T##_f[3] = S##_f[3] + q; \
if (T##_f[3] <= X##_f[3]) \
{ \
S##_f[3] = T##_f[3] + q; \
X##_f[3] -= T##_f[3]; \
R##_f[3] += q; \
} \
_FP_FRAC_SLL_4(X, 1); \
q >>= 1; \
} \
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
while (q) \
{ \
T##_f[2] = S##_f[2] + q; \
T##_f[3] = S##_f[3]; \
if (T##_f[3] < X##_f[3] || \
(T##_f[3] == X##_f[3] && T##_f[2] <= X##_f[2])) \
{ \
S##_f[2] = T##_f[2] + q; \
S##_f[3] += (T##_f[2] > S##_f[2]); \
__FP_FRAC_DEC_2(X##_f[3], X##_f[2], \
T##_f[3], T##_f[2]); \
R##_f[2] += q; \
} \
_FP_FRAC_SLL_4(X, 1); \
q >>= 1; \
} \
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
while (q) \
{ \
T##_f[1] = S##_f[1] + q; \
T##_f[2] = S##_f[2]; \
T##_f[3] = S##_f[3]; \
if (T##_f[3] < X##_f[3] || \
(T##_f[3] == X##_f[3] && (T##_f[2] < X##_f[2] || \
(T##_f[2] == X##_f[2] && T##_f[1] <= X##_f[1])))) \
{ \
S##_f[1] = T##_f[1] + q; \
S##_f[2] += (T##_f[1] > S##_f[1]); \
S##_f[3] += (T##_f[2] > S##_f[2]); \
__FP_FRAC_DEC_3(X##_f[3], X##_f[2], X##_f[1], \
T##_f[3], T##_f[2], T##_f[1]); \
R##_f[1] += q; \
} \
_FP_FRAC_SLL_4(X, 1); \
q >>= 1; \
} \
q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1); \
while (q != _FP_WORK_ROUND) \
{ \
T##_f[0] = S##_f[0] + q; \
T##_f[1] = S##_f[1]; \
T##_f[2] = S##_f[2]; \
T##_f[3] = S##_f[3]; \
if (_FP_FRAC_GE_4(X,T)) \
{ \
S##_f[0] = T##_f[0] + q; \
S##_f[1] += (T##_f[0] > S##_f[0]); \
S##_f[2] += (T##_f[1] > S##_f[1]); \
S##_f[3] += (T##_f[2] > S##_f[2]); \
_FP_FRAC_DEC_4(X, T); \
R##_f[0] += q; \
} \
_FP_FRAC_SLL_4(X, 1); \
q >>= 1; \
} \
if (!_FP_FRAC_ZEROP_4(X)) \
{ \
if (_FP_FRAC_GT_4(X,S)) \
R##_f[0] |= _FP_WORK_ROUND; \
R##_f[0] |= _FP_WORK_STICKY; \
} \
} while (0)
/*
* Internals
*/
#define __FP_FRAC_SET_4(X,I3,I2,I1,I0) \
(X##_f[3] = I3, X##_f[2] = I2, X##_f[1] = I1, X##_f[0] = I0)
#ifndef __FP_FRAC_ADD_3
#define __FP_FRAC_ADD_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
do { \
int _c1, _c2; \
r0 = x0 + y0; \
_c1 = r0 < x0; \
r1 = x1 + y1; \
_c2 = r1 < x1; \
r1 += _c1; \
_c2 |= r1 < _c1; \
r2 = x2 + y2 + _c2; \
} while (0)
#endif
#ifndef __FP_FRAC_ADD_4
#define __FP_FRAC_ADD_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
int _c1, _c2, _c3; \
r0 = x0 + y0; \
_c1 = r0 < x0; \
r1 = x1 + y1; \
_c2 = r1 < x1; \
r1 += _c1; \
_c2 |= r1 < _c1; \
r2 = x2 + y2; \
_c3 = r2 < x2; \
r2 += _c2; \
_c3 |= r2 < _c2; \
r3 = x3 + y3 + _c3; \
} while (0)
#endif
#ifndef __FP_FRAC_SUB_3
#define __FP_FRAC_SUB_3(r2,r1,r0,x2,x1,x0,y2,y1,y0) \
do { \
int _c1, _c2; \
r0 = x0 - y0; \
_c1 = r0 > x0; \
r1 = x1 - y1; \
_c2 = r1 > x1; \
r1 -= _c1; \
_c2 |= r1 > _c1; \
r2 = x2 - y2 - _c2; \
} while (0)
#endif
#ifndef __FP_FRAC_SUB_4
#define __FP_FRAC_SUB_4(r3,r2,r1,r0,x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
int _c1, _c2, _c3; \
r0 = x0 - y0; \
_c1 = r0 > x0; \
r1 = x1 - y1; \
_c2 = r1 > x1; \
r1 -= _c1; \
_c2 |= r1 > _c1; \
r2 = x2 - y2; \
_c3 = r2 > x2; \
r2 -= _c2; \
_c3 |= r2 > _c2; \
r3 = x3 - y3 - _c3; \
} while (0)
#endif
#ifndef __FP_FRAC_DEC_3
#define __FP_FRAC_DEC_3(x2,x1,x0,y2,y1,y0) \
do { \
UWtype _t0, _t1, _t2; \
_t0 = x0, _t1 = x1, _t2 = x2; \
__FP_FRAC_SUB_3 (x2, x1, x0, _t2, _t1, _t0, y2, y1, y0); \
} while (0)
#endif
#ifndef __FP_FRAC_DEC_4
#define __FP_FRAC_DEC_4(x3,x2,x1,x0,y3,y2,y1,y0) \
do { \
UWtype _t0, _t1, _t2, _t3; \
_t0 = x0, _t1 = x1, _t2 = x2, _t3 = x3; \
__FP_FRAC_SUB_4 (x3,x2,x1,x0,_t3,_t2,_t1,_t0, y3,y2,y1,y0); \
} while (0)
#endif
#ifndef __FP_FRAC_ADDI_4
#define __FP_FRAC_ADDI_4(x3,x2,x1,x0,i) \
do { \
UWtype _t; \
_t = ((x0 += i) < i); \
x1 += _t; _t = (x1 < _t); \
x2 += _t; _t = (x2 < _t); \
x3 += _t; \
} while (0)
#endif
/* Convert FP values between word sizes. This appears to be more
* complicated than I'd have expected it to be, so these might be
* wrong... These macros are in any case somewhat bogus because they
* use information about what various FRAC_n variables look like
* internally [eg, that 2 word vars are X_f0 and x_f1]. But so do
* the ones in op-2.h and op-1.h.
*/
#define _FP_FRAC_CONV_1_4(dfs, sfs, D, S) \
do { \
if (S##_c != FP_CLS_NAN) \
_FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
else \
_FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \
D##_f = S##_f[0]; \
} while (0)
#define _FP_FRAC_CONV_2_4(dfs, sfs, D, S) \
do { \
if (S##_c != FP_CLS_NAN) \
_FP_FRAC_SRS_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
else \
_FP_FRAC_SRL_4(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs)); \
D##_f0 = S##_f[0]; \
D##_f1 = S##_f[1]; \
} while (0)
/* Assembly/disassembly for converting to/from integral types.
* No shifting or overflow handled here.
*/
/* Put the FP value X into r, which is an integer of size rsize. */
#define _FP_FRAC_ASSEMBLE_4(r, X, rsize) \
do { \
if (rsize <= _FP_W_TYPE_SIZE) \
r = X##_f[0]; \
else if (rsize <= 2*_FP_W_TYPE_SIZE) \
{ \
r = X##_f[1]; \
r <<= _FP_W_TYPE_SIZE; \
r += X##_f[0]; \
} \
else \
{ \
/* I'm feeling lazy so we deal with int == 3words (implausible)*/ \
/* and int == 4words as a single case. */ \
r = X##_f[3]; \
r <<= _FP_W_TYPE_SIZE; \
r += X##_f[2]; \
r <<= _FP_W_TYPE_SIZE; \
r += X##_f[1]; \
r <<= _FP_W_TYPE_SIZE; \
r += X##_f[0]; \
} \
} while (0)
/* "No disassemble Number Five!" */
/* move an integer of size rsize into X's fractional part. We rely on
* the _f[] array consisting of words of size _FP_W_TYPE_SIZE to avoid
* having to mask the values we store into it.
*/
#define _FP_FRAC_DISASSEMBLE_4(X, r, rsize) \
do { \
X##_f[0] = r; \
X##_f[1] = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE); \
X##_f[2] = (rsize <= 2*_FP_W_TYPE_SIZE ? 0 : r >> 2*_FP_W_TYPE_SIZE); \
X##_f[3] = (rsize <= 3*_FP_W_TYPE_SIZE ? 0 : r >> 3*_FP_W_TYPE_SIZE); \
} while (0)
#define _FP_FRAC_CONV_4_1(dfs, sfs, D, S) \
do { \
D##_f[0] = S##_f; \
D##_f[1] = D##_f[2] = D##_f[3] = 0; \
_FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
} while (0)
#define _FP_FRAC_CONV_4_2(dfs, sfs, D, S) \
do { \
D##_f[0] = S##_f0; \
D##_f[1] = S##_f1; \
D##_f[2] = D##_f[3] = 0; \
_FP_FRAC_SLL_4(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs)); \
} while (0)
#endif

107
include/math-emu/op-8.h Normal file
View file

@ -0,0 +1,107 @@
/* Software floating-point emulation.
Basic eight-word fraction declaration and manipulation.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_8_H__
#define __MATH_EMU_OP_8_H__
/* We need just a few things from here for op-4, if we ever need some
other macros, they can be added. */
#define _FP_FRAC_DECL_8(X) _FP_W_TYPE X##_f[8]
#define _FP_FRAC_HIGH_8(X) (X##_f[7])
#define _FP_FRAC_LOW_8(X) (X##_f[0])
#define _FP_FRAC_WORD_8(X,w) (X##_f[w])
#define _FP_FRAC_SLL_8(X,N) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_up = (N) % _FP_W_TYPE_SIZE; \
_down = _FP_W_TYPE_SIZE - _up; \
if (!_up) \
for (_i = 7; _i >= _skip; --_i) \
X##_f[_i] = X##_f[_i-_skip]; \
else \
{ \
for (_i = 7; _i > _skip; --_i) \
X##_f[_i] = X##_f[_i-_skip] << _up \
| X##_f[_i-_skip-1] >> _down; \
X##_f[_i--] = X##_f[0] << _up; \
} \
for (; _i >= 0; --_i) \
X##_f[_i] = 0; \
} while (0)
#define _FP_FRAC_SRL_8(X,N) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_down = (N) % _FP_W_TYPE_SIZE; \
_up = _FP_W_TYPE_SIZE - _down; \
if (!_down) \
for (_i = 0; _i <= 7-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip]; \
else \
{ \
for (_i = 0; _i < 7-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip] >> _down \
| X##_f[_i+_skip+1] << _up; \
X##_f[_i++] = X##_f[7] >> _down; \
} \
for (; _i < 8; ++_i) \
X##_f[_i] = 0; \
} while (0)
/* Right shift with sticky-lsb.
* What this actually means is that we do a standard right-shift,
* but that if any of the bits that fall off the right hand side
* were one then we always set the LSbit.
*/
#define _FP_FRAC_SRS_8(X,N,size) \
do { \
_FP_I_TYPE _up, _down, _skip, _i; \
_FP_W_TYPE _s; \
_skip = (N) / _FP_W_TYPE_SIZE; \
_down = (N) % _FP_W_TYPE_SIZE; \
_up = _FP_W_TYPE_SIZE - _down; \
for (_s = _i = 0; _i < _skip; ++_i) \
_s |= X##_f[_i]; \
_s |= X##_f[_i] << _up; \
/* s is now != 0 if we want to set the LSbit */ \
if (!_down) \
for (_i = 0; _i <= 7-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip]; \
else \
{ \
for (_i = 0; _i < 7-_skip; ++_i) \
X##_f[_i] = X##_f[_i+_skip] >> _down \
| X##_f[_i+_skip+1] << _up; \
X##_f[_i++] = X##_f[7] >> _down; \
} \
for (; _i < 8; ++_i) \
X##_f[_i] = 0; \
/* don't fix the LSB until the very end when we're sure f[0] is stable */ \
X##_f[0] |= (_s != 0); \
} while (0)
#endif

View file

@ -0,0 +1,876 @@
/* Software floating-point emulation. Common operations.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_OP_COMMON_H__
#define __MATH_EMU_OP_COMMON_H__
#define _FP_DECL(wc, X) \
_FP_I_TYPE X##_c=0, X##_s=0, X##_e=0; \
_FP_FRAC_DECL_##wc(X)
/*
* Finish truly unpacking a native fp value by classifying the kind
* of fp value and normalizing both the exponent and the fraction.
*/
#define _FP_UNPACK_CANONICAL(fs, wc, X) \
do { \
switch (X##_e) \
{ \
default: \
_FP_FRAC_HIGH_RAW_##fs(X) |= _FP_IMPLBIT_##fs; \
_FP_FRAC_SLL_##wc(X, _FP_WORKBITS); \
X##_e -= _FP_EXPBIAS_##fs; \
X##_c = FP_CLS_NORMAL; \
break; \
\
case 0: \
if (_FP_FRAC_ZEROP_##wc(X)) \
X##_c = FP_CLS_ZERO; \
else \
{ \
/* a denormalized number */ \
_FP_I_TYPE _shift; \
_FP_FRAC_CLZ_##wc(_shift, X); \
_shift -= _FP_FRACXBITS_##fs; \
_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS)); \
X##_e -= _FP_EXPBIAS_##fs - 1 + _shift; \
X##_c = FP_CLS_NORMAL; \
FP_SET_EXCEPTION(FP_EX_DENORM); \
if (FP_DENORM_ZERO) \
{ \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
X##_c = FP_CLS_ZERO; \
} \
} \
break; \
\
case _FP_EXPMAX_##fs: \
if (_FP_FRAC_ZEROP_##wc(X)) \
X##_c = FP_CLS_INF; \
else \
{ \
X##_c = FP_CLS_NAN; \
/* Check for signaling NaN */ \
if (!(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_SNAN); \
} \
break; \
} \
} while (0)
/*
* Before packing the bits back into the native fp result, take care
* of such mundane things as rounding and overflow. Also, for some
* kinds of fp values, the original parts may not have been fully
* extracted -- but that is ok, we can regenerate them now.
*/
#define _FP_PACK_CANONICAL(fs, wc, X) \
do { \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
X##_e += _FP_EXPBIAS_##fs; \
if (X##_e > 0) \
{ \
_FP_ROUND(wc, X); \
if (_FP_FRAC_OVERP_##wc(fs, X)) \
{ \
_FP_FRAC_CLEAR_OVERP_##wc(fs, X); \
X##_e++; \
} \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
if (X##_e >= _FP_EXPMAX_##fs) \
{ \
/* overflow */ \
switch (FP_ROUNDMODE) \
{ \
case FP_RND_NEAREST: \
X##_c = FP_CLS_INF; \
break; \
case FP_RND_PINF: \
if (!X##_s) X##_c = FP_CLS_INF; \
break; \
case FP_RND_MINF: \
if (X##_s) X##_c = FP_CLS_INF; \
break; \
} \
if (X##_c == FP_CLS_INF) \
{ \
/* Overflow to infinity */ \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
/* Overflow to maximum normal */ \
X##_e = _FP_EXPMAX_##fs - 1; \
_FP_FRAC_SET_##wc(X, _FP_MAXFRAC_##wc); \
} \
FP_SET_EXCEPTION(FP_EX_OVERFLOW); \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
} \
} \
else \
{ \
/* we've got a denormalized number */ \
X##_e = -X##_e + 1; \
if (X##_e <= _FP_WFRACBITS_##fs) \
{ \
_FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs); \
if (_FP_FRAC_HIGH_##fs(X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
X##_e = 1; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
_FP_ROUND(wc, X); \
if (_FP_FRAC_HIGH_##fs(X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
X##_e = 1; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
} \
else \
{ \
X##_e = 0; \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
} \
} \
if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) || \
(FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
} \
else \
{ \
/* underflow to zero */ \
X##_e = 0; \
if (!_FP_FRAC_ZEROP_##wc(X)) \
{ \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
_FP_ROUND(wc, X); \
_FP_FRAC_LOW_##wc(X) >>= (_FP_WORKBITS); \
} \
FP_SET_EXCEPTION(FP_EX_UNDERFLOW); \
} \
} \
break; \
\
case FP_CLS_ZERO: \
X##_e = 0; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_INF: \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_NAN: \
X##_e = _FP_EXPMAX_##fs; \
if (!_FP_KEEPNANFRACP) \
{ \
_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs); \
X##_s = _FP_NANSIGN_##fs; \
} \
else \
_FP_FRAC_HIGH_RAW_##fs(X) |= _FP_QNANBIT_##fs; \
break; \
} \
} while (0)
/* This one accepts raw argument and not cooked, returns
* 1 if X is a signaling NaN.
*/
#define _FP_ISSIGNAN(fs, wc, X) \
({ \
int __ret = 0; \
if (X##_e == _FP_EXPMAX_##fs) \
{ \
if (!_FP_FRAC_ZEROP_##wc(X) \
&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs)) \
__ret = 1; \
} \
__ret; \
})
/*
* Main addition routine. The input values should be cooked.
*/
#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
do { \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
{ \
/* shift the smaller number so that its exponent matches the larger */ \
_FP_I_TYPE diff = X##_e - Y##_e; \
\
if (diff < 0) \
{ \
diff = -diff; \
if (diff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc(X)) \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
R##_e = Y##_e; \
} \
else \
{ \
if (diff > 0) \
{ \
if (diff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc(Y)) \
_FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc); \
} \
R##_e = X##_e; \
} \
\
R##_c = FP_CLS_NORMAL; \
\
if (X##_s == Y##_s) \
{ \
R##_s = X##_s; \
_FP_FRAC_ADD_##wc(R, X, Y); \
if (_FP_FRAC_OVERP_##wc(fs, R)) \
{ \
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
R##_e++; \
} \
} \
else \
{ \
R##_s = X##_s; \
_FP_FRAC_SUB_##wc(R, X, Y); \
if (_FP_FRAC_ZEROP_##wc(R)) \
{ \
/* return an exact zero */ \
if (FP_ROUNDMODE == FP_RND_MINF) \
R##_s |= Y##_s; \
else \
R##_s &= Y##_s; \
R##_c = FP_CLS_ZERO; \
} \
else \
{ \
if (_FP_FRAC_NEGP_##wc(R)) \
{ \
_FP_FRAC_SUB_##wc(R, Y, X); \
R##_s = Y##_s; \
} \
\
/* renormalize after subtraction */ \
_FP_FRAC_CLZ_##wc(diff, R); \
diff -= _FP_WFRACXBITS_##fs; \
if (diff) \
{ \
R##_e -= diff; \
_FP_FRAC_SLL_##wc(R, diff); \
} \
} \
} \
break; \
} \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, OP); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
R##_e = X##_e; \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, X); \
R##_s = X##_s; \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
R##_e = Y##_e; \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
_FP_FRAC_COPY_##wc(R, Y); \
R##_s = Y##_s; \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
if (X##_s != Y##_s) \
{ \
/* +INF + -INF => NAN */ \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ISI); \
break; \
} \
/* FALLTHRU */ \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
R##_s = X##_s; \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
R##_s = Y##_s; \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
/* make sure the sign is correct */ \
if (FP_ROUNDMODE == FP_RND_MINF) \
R##_s = X##_s | Y##_s; \
else \
R##_s = X##_s & Y##_s; \
R##_c = FP_CLS_ZERO; \
break; \
\
default: \
abort(); \
} \
} while (0)
#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL(fs, wc, R, X, Y, '+')
#define _FP_SUB(fs, wc, R, X, Y) \
do { \
if (Y##_c != FP_CLS_NAN) Y##_s ^= 1; \
_FP_ADD_INTERNAL(fs, wc, R, X, Y, '-'); \
} while (0)
/*
* Main negation routine. FIXME -- when we care about setting exception
* bits reliably, this will not do. We should examine all of the fp classes.
*/
#define _FP_NEG(fs, wc, R, X) \
do { \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
R##_e = X##_e; \
R##_s = 1 ^ X##_s; \
} while (0)
/*
* Main multiplication routine. The input values should be cooked.
*/
#define _FP_MUL(fs, wc, R, X, Y) \
do { \
R##_s = X##_s ^ Y##_s; \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
R##_e = X##_e + Y##_e + 1; \
\
_FP_MUL_MEAT_##fs(R,X,Y); \
\
if (_FP_FRAC_OVERP_##wc(fs, R)) \
_FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs); \
else \
R##_e--; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, '*'); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
R##_s = X##_s; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
R##_s = Y##_s; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc(R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IMZ);\
break; \
\
default: \
abort(); \
} \
} while (0)
/*
* Main division routine. The input values should be cooked.
*/
#define _FP_DIV(fs, wc, R, X, Y) \
do { \
R##_s = X##_s ^ Y##_s; \
switch (_FP_CLS_COMBINE(X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
R##_e = X##_e - Y##_e; \
\
_FP_DIV_MEAT_##fs(R,X,Y); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN): \
_FP_CHOOSENAN(fs, wc, R, X, Y, '/'); \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO): \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc(R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN): \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc(R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF): \
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL): \
R##_c = FP_CLS_ZERO; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO): \
FP_SET_EXCEPTION(FP_EX_DIVZERO); \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO): \
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL): \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_IDI);\
break; \
\
case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID | FP_EX_INVALID_ZDZ);\
break; \
\
default: \
abort(); \
} \
} while (0)
/*
* Main differential comparison routine. The inputs should be raw not
* cooked. The return is -1,0,1 for normal values, 2 otherwise.
*/
#define _FP_CMP(fs, wc, ret, X, Y, un) \
do { \
/* NANs are unordered */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
{ \
ret = un; \
} \
else \
{ \
int __is_zero_x; \
int __is_zero_y; \
\
__is_zero_x = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0; \
__is_zero_y = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0; \
\
if (__is_zero_x && __is_zero_y) \
ret = 0; \
else if (__is_zero_x) \
ret = Y##_s ? 1 : -1; \
else if (__is_zero_y) \
ret = X##_s ? -1 : 1; \
else if (X##_s != Y##_s) \
ret = X##_s ? -1 : 1; \
else if (X##_e > Y##_e) \
ret = X##_s ? -1 : 1; \
else if (X##_e < Y##_e) \
ret = X##_s ? 1 : -1; \
else if (_FP_FRAC_GT_##wc(X, Y)) \
ret = X##_s ? -1 : 1; \
else if (_FP_FRAC_GT_##wc(Y, X)) \
ret = X##_s ? 1 : -1; \
else \
ret = 0; \
} \
} while (0)
/* Simplification for strict equality. */
#define _FP_CMP_EQ(fs, wc, ret, X, Y) \
do { \
/* NANs are unordered */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y))) \
{ \
ret = 1; \
} \
else \
{ \
ret = !(X##_e == Y##_e \
&& _FP_FRAC_EQ_##wc(X, Y) \
&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \
} \
} while (0)
/*
* Main square root routine. The input value should be cooked.
*/
#define _FP_SQRT(fs, wc, R, X) \
do { \
_FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S); \
_FP_W_TYPE q; \
switch (X##_c) \
{ \
case FP_CLS_NAN: \
_FP_FRAC_COPY_##wc(R, X); \
R##_s = X##_s; \
R##_c = FP_CLS_NAN; \
break; \
case FP_CLS_INF: \
if (X##_s) \
{ \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; /* NAN */ \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
else \
{ \
R##_s = 0; \
R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
} \
break; \
case FP_CLS_ZERO: \
R##_s = X##_s; \
R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
break; \
case FP_CLS_NORMAL: \
R##_s = 0; \
if (X##_s) \
{ \
R##_c = FP_CLS_NAN; /* sNAN */ \
R##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION(FP_EX_INVALID); \
break; \
} \
R##_c = FP_CLS_NORMAL; \
if (X##_e & 1) \
_FP_FRAC_SLL_##wc(X, 1); \
R##_e = X##_e >> 1; \
_FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc); \
_FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc); \
q = _FP_OVERFLOW_##fs >> 1; \
_FP_SQRT_MEAT_##wc(R, S, T, X, q); \
} \
} while (0)
/*
* Convert from FP to integer
*/
/* RSIGNED can have following values:
* 0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
* the result is either 0 or (2^rsize)-1 depending on the sign in such case.
* 1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
* set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
* on the sign in such case.
* 2: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not, NV is
* set plus the result is truncated to fit into destination.
* -1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
* set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1 depending
* on the sign in such case.
*/
#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
do { \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
if (X##_e < 0) \
{ \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
case FP_CLS_ZERO: \
r = 0; \
} \
else if (X##_e >= rsize - (rsigned > 0 || X##_s) \
|| (!rsigned && X##_s)) \
{ /* overflow */ \
case FP_CLS_NAN: \
case FP_CLS_INF: \
if (rsigned == 2) \
{ \
if (X##_c != FP_CLS_NORMAL \
|| X##_e >= rsize - 1 + _FP_WFRACBITS_##fs) \
r = 0; \
else \
{ \
_FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
} \
else if (rsigned) \
{ \
r = 1; \
r <<= rsize - 1; \
r -= 1 - X##_s; \
} \
else \
{ \
r = 0; \
if (!X##_s) \
r = ~r; \
} \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
else \
{ \
if (_FP_W_TYPE_SIZE*wc < rsize) \
{ \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
r <<= X##_e - _FP_WFRACBITS_##fs; \
} \
else \
{ \
if (X##_e >= _FP_WFRACBITS_##fs) \
_FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1)); \
else if (X##_e < _FP_WFRACBITS_##fs - 1) \
{ \
_FP_FRAC_SRS_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 2), \
_FP_WFRACBITS_##fs); \
if (_FP_FRAC_LOW_##wc(X) & 1) \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
_FP_FRAC_SRL_##wc(X, 1); \
} \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
if (rsigned && X##_s) \
r = -r; \
} \
break; \
} \
} while (0)
#define _FP_TO_INT_ROUND(fs, wc, r, X, rsize, rsigned) \
do { \
r = 0; \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
if (X##_e >= _FP_FRACBITS_##fs - 1) \
{ \
if (X##_e < rsize - 1 + _FP_WFRACBITS_##fs) \
{ \
if (X##_e >= _FP_WFRACBITS_##fs - 1) \
{ \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
r <<= X##_e - _FP_WFRACBITS_##fs + 1; \
} \
else \
{ \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS - X##_e \
+ _FP_FRACBITS_##fs - 1); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
} \
} \
else \
{ \
int _lz0, _lz1; \
if (X##_e <= -_FP_WORKBITS - 1) \
_FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc); \
else \
_FP_FRAC_SRS_##wc(X, _FP_FRACBITS_##fs - 1 - X##_e, \
_FP_WFRACBITS_##fs); \
_FP_FRAC_CLZ_##wc(_lz0, X); \
_FP_ROUND(wc, X); \
_FP_FRAC_CLZ_##wc(_lz1, X); \
if (_lz1 < _lz0) \
X##_e++; /* For overflow detection. */ \
_FP_FRAC_SRL_##wc(X, _FP_WORKBITS); \
_FP_FRAC_ASSEMBLE_##wc(r, X, rsize); \
} \
if (rsigned && X##_s) \
r = -r; \
if (X##_e >= rsize - (rsigned > 0 || X##_s) \
|| (!rsigned && X##_s)) \
{ /* overflow */ \
case FP_CLS_NAN: \
case FP_CLS_INF: \
if (!rsigned) \
{ \
r = 0; \
if (!X##_s) \
r = ~r; \
} \
else if (rsigned != 2) \
{ \
r = 1; \
r <<= rsize - 1; \
r -= 1 - X##_s; \
} \
FP_SET_EXCEPTION(FP_EX_INVALID); \
} \
break; \
case FP_CLS_ZERO: \
break; \
} \
} while (0)
#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
do { \
if (r) \
{ \
unsigned rtype ur_; \
X##_c = FP_CLS_NORMAL; \
\
if ((X##_s = (r < 0))) \
ur_ = (unsigned rtype) -r; \
else \
ur_ = (unsigned rtype) r; \
if (rsize <= _FP_W_TYPE_SIZE) \
__FP_CLZ(X##_e, ur_); \
else \
__FP_CLZ_2(X##_e, (_FP_W_TYPE)(ur_ >> _FP_W_TYPE_SIZE), \
(_FP_W_TYPE)ur_); \
if (rsize < _FP_W_TYPE_SIZE) \
X##_e -= (_FP_W_TYPE_SIZE - rsize); \
X##_e = rsize - X##_e - 1; \
\
if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs <= X##_e) \
__FP_FRAC_SRS_1(ur_, (X##_e - _FP_WFRACBITS_##fs + 1), rsize);\
_FP_FRAC_DISASSEMBLE_##wc(X, ur_, rsize); \
if ((_FP_WFRACBITS_##fs - X##_e - 1) > 0) \
_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1)); \
} \
else \
{ \
X##_c = FP_CLS_ZERO, X##_s = 0; \
} \
} while (0)
#define FP_CONV(dfs,sfs,dwc,swc,D,S) \
do { \
_FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S); \
D##_e = S##_e; \
D##_c = S##_c; \
D##_s = S##_s; \
} while (0)
/*
* Helper primitives.
*/
/* Count leading zeros in a word. */
#ifndef __FP_CLZ
#if _FP_W_TYPE_SIZE < 64
/* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */
#define __FP_CLZ(r, x) \
do { \
_FP_W_TYPE _t = (x); \
r = _FP_W_TYPE_SIZE - 1; \
if (_t > 0xffff) r -= 16; \
if (_t > 0xffff) _t >>= 16; \
if (_t > 0xff) r -= 8; \
if (_t > 0xff) _t >>= 8; \
if (_t & 0xf0) r -= 4; \
if (_t & 0xf0) _t >>= 4; \
if (_t & 0xc) r -= 2; \
if (_t & 0xc) _t >>= 2; \
if (_t & 0x2) r -= 1; \
} while (0)
#else /* not _FP_W_TYPE_SIZE < 64 */
#define __FP_CLZ(r, x) \
do { \
_FP_W_TYPE _t = (x); \
r = _FP_W_TYPE_SIZE - 1; \
if (_t > 0xffffffff) r -= 32; \
if (_t > 0xffffffff) _t >>= 32; \
if (_t > 0xffff) r -= 16; \
if (_t > 0xffff) _t >>= 16; \
if (_t > 0xff) r -= 8; \
if (_t > 0xff) _t >>= 8; \
if (_t & 0xf0) r -= 4; \
if (_t & 0xf0) _t >>= 4; \
if (_t & 0xc) r -= 2; \
if (_t & 0xc) _t >>= 2; \
if (_t & 0x2) r -= 1; \
} while (0)
#endif /* not _FP_W_TYPE_SIZE < 64 */
#endif /* ndef __FP_CLZ */
#define _FP_DIV_HELP_imm(q, r, n, d) \
do { \
q = n / d, r = n % d; \
} while (0)
#endif /* __MATH_EMU_OP_COMMON_H__ */

208
include/math-emu/quad.h Normal file
View file

@ -0,0 +1,208 @@
/* Software floating-point emulation.
Definitions for IEEE Quad Precision.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_QUAD_H__
#define __MATH_EMU_QUAD_H__
#if _FP_W_TYPE_SIZE < 32
#error "Here's a nickel, kid. Go buy yourself a real computer."
#endif
#if _FP_W_TYPE_SIZE < 64
#define _FP_FRACTBITS_Q (4*_FP_W_TYPE_SIZE)
#else
#define _FP_FRACTBITS_Q (2*_FP_W_TYPE_SIZE)
#endif
#define _FP_FRACBITS_Q 113
#define _FP_FRACXBITS_Q (_FP_FRACTBITS_Q - _FP_FRACBITS_Q)
#define _FP_WFRACBITS_Q (_FP_WORKBITS + _FP_FRACBITS_Q)
#define _FP_WFRACXBITS_Q (_FP_FRACTBITS_Q - _FP_WFRACBITS_Q)
#define _FP_EXPBITS_Q 15
#define _FP_EXPBIAS_Q 16383
#define _FP_EXPMAX_Q 32767
#define _FP_QNANBIT_Q \
((_FP_W_TYPE)1 << (_FP_FRACBITS_Q-2) % _FP_W_TYPE_SIZE)
#define _FP_IMPLBIT_Q \
((_FP_W_TYPE)1 << (_FP_FRACBITS_Q-1) % _FP_W_TYPE_SIZE)
#define _FP_OVERFLOW_Q \
((_FP_W_TYPE)1 << (_FP_WFRACBITS_Q % _FP_W_TYPE_SIZE))
#if _FP_W_TYPE_SIZE < 64
union _FP_UNION_Q
{
long double flt;
struct
{
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_Q;
unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
unsigned long frac2 : _FP_W_TYPE_SIZE;
unsigned long frac1 : _FP_W_TYPE_SIZE;
unsigned long frac0 : _FP_W_TYPE_SIZE;
#else
unsigned long frac0 : _FP_W_TYPE_SIZE;
unsigned long frac1 : _FP_W_TYPE_SIZE;
unsigned long frac2 : _FP_W_TYPE_SIZE;
unsigned long frac3 : _FP_FRACBITS_Q - (_FP_IMPLBIT_Q != 0)-(_FP_W_TYPE_SIZE * 3);
unsigned exp : _FP_EXPBITS_Q;
unsigned sign : 1;
#endif /* not bigendian */
} bits __attribute__((packed));
};
#define FP_DECL_Q(X) _FP_DECL(4,X)
#define FP_UNPACK_RAW_Q(X,val) _FP_UNPACK_RAW_4(Q,X,val)
#define FP_UNPACK_RAW_QP(X,val) _FP_UNPACK_RAW_4_P(Q,X,val)
#define FP_PACK_RAW_Q(val,X) _FP_PACK_RAW_4(Q,val,X)
#define FP_PACK_RAW_QP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_4_P(Q,val,X); \
} while (0)
#define FP_UNPACK_Q(X,val) \
do { \
_FP_UNPACK_RAW_4(Q,X,val); \
_FP_UNPACK_CANONICAL(Q,4,X); \
} while (0)
#define FP_UNPACK_QP(X,val) \
do { \
_FP_UNPACK_RAW_4_P(Q,X,val); \
_FP_UNPACK_CANONICAL(Q,4,X); \
} while (0)
#define FP_PACK_Q(val,X) \
do { \
_FP_PACK_CANONICAL(Q,4,X); \
_FP_PACK_RAW_4(Q,val,X); \
} while (0)
#define FP_PACK_QP(val,X) \
do { \
_FP_PACK_CANONICAL(Q,4,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_4_P(Q,val,X); \
} while (0)
#define FP_ISSIGNAN_Q(X) _FP_ISSIGNAN(Q,4,X)
#define FP_NEG_Q(R,X) _FP_NEG(Q,4,R,X)
#define FP_ADD_Q(R,X,Y) _FP_ADD(Q,4,R,X,Y)
#define FP_SUB_Q(R,X,Y) _FP_SUB(Q,4,R,X,Y)
#define FP_MUL_Q(R,X,Y) _FP_MUL(Q,4,R,X,Y)
#define FP_DIV_Q(R,X,Y) _FP_DIV(Q,4,R,X,Y)
#define FP_SQRT_Q(R,X) _FP_SQRT(Q,4,R,X)
#define _FP_SQRT_MEAT_Q(R,S,T,X,Q) _FP_SQRT_MEAT_4(R,S,T,X,Q)
#define FP_CMP_Q(r,X,Y,un) _FP_CMP(Q,4,r,X,Y,un)
#define FP_CMP_EQ_Q(r,X,Y) _FP_CMP_EQ(Q,4,r,X,Y)
#define FP_TO_INT_Q(r,X,rsz,rsg) _FP_TO_INT(Q,4,r,X,rsz,rsg)
#define FP_TO_INT_ROUND_Q(r,X,rsz,rsg) _FP_TO_INT_ROUND(Q,4,r,X,rsz,rsg)
#define FP_FROM_INT_Q(X,r,rs,rt) _FP_FROM_INT(Q,4,X,r,rs,rt)
#define _FP_FRAC_HIGH_Q(X) _FP_FRAC_HIGH_4(X)
#define _FP_FRAC_HIGH_RAW_Q(X) _FP_FRAC_HIGH_4(X)
#else /* not _FP_W_TYPE_SIZE < 64 */
union _FP_UNION_Q
{
long double flt /* __attribute__((mode(TF))) */ ;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_Q;
unsigned long frac1 : _FP_FRACBITS_Q-(_FP_IMPLBIT_Q != 0)-_FP_W_TYPE_SIZE;
unsigned long frac0 : _FP_W_TYPE_SIZE;
#else
unsigned long frac0 : _FP_W_TYPE_SIZE;
unsigned long frac1 : _FP_FRACBITS_Q-(_FP_IMPLBIT_Q != 0)-_FP_W_TYPE_SIZE;
unsigned exp : _FP_EXPBITS_Q;
unsigned sign : 1;
#endif
} bits;
};
#define FP_DECL_Q(X) _FP_DECL(2,X)
#define FP_UNPACK_RAW_Q(X,val) _FP_UNPACK_RAW_2(Q,X,val)
#define FP_UNPACK_RAW_QP(X,val) _FP_UNPACK_RAW_2_P(Q,X,val)
#define FP_PACK_RAW_Q(val,X) _FP_PACK_RAW_2(Q,val,X)
#define FP_PACK_RAW_QP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(Q,val,X); \
} while (0)
#define FP_UNPACK_Q(X,val) \
do { \
_FP_UNPACK_RAW_2(Q,X,val); \
_FP_UNPACK_CANONICAL(Q,2,X); \
} while (0)
#define FP_UNPACK_QP(X,val) \
do { \
_FP_UNPACK_RAW_2_P(Q,X,val); \
_FP_UNPACK_CANONICAL(Q,2,X); \
} while (0)
#define FP_PACK_Q(val,X) \
do { \
_FP_PACK_CANONICAL(Q,2,X); \
_FP_PACK_RAW_2(Q,val,X); \
} while (0)
#define FP_PACK_QP(val,X) \
do { \
_FP_PACK_CANONICAL(Q,2,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_2_P(Q,val,X); \
} while (0)
#define FP_ISSIGNAN_Q(X) _FP_ISSIGNAN(Q,2,X)
#define FP_NEG_Q(R,X) _FP_NEG(Q,2,R,X)
#define FP_ADD_Q(R,X,Y) _FP_ADD(Q,2,R,X,Y)
#define FP_SUB_Q(R,X,Y) _FP_SUB(Q,2,R,X,Y)
#define FP_MUL_Q(R,X,Y) _FP_MUL(Q,2,R,X,Y)
#define FP_DIV_Q(R,X,Y) _FP_DIV(Q,2,R,X,Y)
#define FP_SQRT_Q(R,X) _FP_SQRT(Q,2,R,X)
#define _FP_SQRT_MEAT_Q(R,S,T,X,Q) _FP_SQRT_MEAT_2(R,S,T,X,Q)
#define FP_CMP_Q(r,X,Y,un) _FP_CMP(Q,2,r,X,Y,un)
#define FP_CMP_EQ_Q(r,X,Y) _FP_CMP_EQ(Q,2,r,X,Y)
#define FP_TO_INT_Q(r,X,rsz,rsg) _FP_TO_INT(Q,2,r,X,rsz,rsg)
#define FP_TO_INT_ROUND_Q(r,X,rsz,rsg) _FP_TO_INT_ROUND(Q,2,r,X,rsz,rsg)
#define FP_FROM_INT_Q(X,r,rs,rt) _FP_FROM_INT(Q,2,X,r,rs,rt)
#define _FP_FRAC_HIGH_Q(X) _FP_FRAC_HIGH_2(X)
#define _FP_FRAC_HIGH_RAW_Q(X) _FP_FRAC_HIGH_2(X)
#endif /* not _FP_W_TYPE_SIZE < 64 */
#endif /* __MATH_EMU_QUAD_H__ */

116
include/math-emu/single.h Normal file
View file

@ -0,0 +1,116 @@
/* Software floating-point emulation.
Definitions for IEEE Single Precision.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_SINGLE_H__
#define __MATH_EMU_SINGLE_H__
#if _FP_W_TYPE_SIZE < 32
#error "Here's a nickel kid. Go buy yourself a real computer."
#endif
#define _FP_FRACBITS_S 24
#define _FP_FRACXBITS_S (_FP_W_TYPE_SIZE - _FP_FRACBITS_S)
#define _FP_WFRACBITS_S (_FP_WORKBITS + _FP_FRACBITS_S)
#define _FP_WFRACXBITS_S (_FP_W_TYPE_SIZE - _FP_WFRACBITS_S)
#define _FP_EXPBITS_S 8
#define _FP_EXPBIAS_S 127
#define _FP_EXPMAX_S 255
#define _FP_QNANBIT_S ((_FP_W_TYPE)1 << (_FP_FRACBITS_S-2))
#define _FP_IMPLBIT_S ((_FP_W_TYPE)1 << (_FP_FRACBITS_S-1))
#define _FP_OVERFLOW_S ((_FP_W_TYPE)1 << (_FP_WFRACBITS_S))
/* The implementation of _FP_MUL_MEAT_S and _FP_DIV_MEAT_S should be
chosen by the target machine. */
union _FP_UNION_S
{
float flt;
struct {
#if __BYTE_ORDER == __BIG_ENDIAN
unsigned sign : 1;
unsigned exp : _FP_EXPBITS_S;
unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
#else
unsigned frac : _FP_FRACBITS_S - (_FP_IMPLBIT_S != 0);
unsigned exp : _FP_EXPBITS_S;
unsigned sign : 1;
#endif
} bits __attribute__((packed));
};
#define FP_DECL_S(X) _FP_DECL(1,X)
#define FP_UNPACK_RAW_S(X,val) _FP_UNPACK_RAW_1(S,X,val)
#define FP_UNPACK_RAW_SP(X,val) _FP_UNPACK_RAW_1_P(S,X,val)
#define FP_PACK_RAW_S(val,X) _FP_PACK_RAW_1(S,val,X)
#define FP_PACK_RAW_SP(val,X) \
do { \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(S,val,X); \
} while (0)
#define FP_UNPACK_S(X,val) \
do { \
_FP_UNPACK_RAW_1(S,X,val); \
_FP_UNPACK_CANONICAL(S,1,X); \
} while (0)
#define FP_UNPACK_SP(X,val) \
do { \
_FP_UNPACK_RAW_1_P(S,X,val); \
_FP_UNPACK_CANONICAL(S,1,X); \
} while (0)
#define FP_PACK_S(val,X) \
do { \
_FP_PACK_CANONICAL(S,1,X); \
_FP_PACK_RAW_1(S,val,X); \
} while (0)
#define FP_PACK_SP(val,X) \
do { \
_FP_PACK_CANONICAL(S,1,X); \
if (!FP_INHIBIT_RESULTS) \
_FP_PACK_RAW_1_P(S,val,X); \
} while (0)
#define FP_ISSIGNAN_S(X) _FP_ISSIGNAN(S,1,X)
#define FP_NEG_S(R,X) _FP_NEG(S,1,R,X)
#define FP_ADD_S(R,X,Y) _FP_ADD(S,1,R,X,Y)
#define FP_SUB_S(R,X,Y) _FP_SUB(S,1,R,X,Y)
#define FP_MUL_S(R,X,Y) _FP_MUL(S,1,R,X,Y)
#define FP_DIV_S(R,X,Y) _FP_DIV(S,1,R,X,Y)
#define FP_SQRT_S(R,X) _FP_SQRT(S,1,R,X)
#define _FP_SQRT_MEAT_S(R,S,T,X,Q) _FP_SQRT_MEAT_1(R,S,T,X,Q)
#define FP_CMP_S(r,X,Y,un) _FP_CMP(S,1,r,X,Y,un)
#define FP_CMP_EQ_S(r,X,Y) _FP_CMP_EQ(S,1,r,X,Y)
#define FP_TO_INT_S(r,X,rsz,rsg) _FP_TO_INT(S,1,r,X,rsz,rsg)
#define FP_TO_INT_ROUND_S(r,X,rsz,rsg) _FP_TO_INT_ROUND(S,1,r,X,rsz,rsg)
#define FP_FROM_INT_S(X,r,rs,rt) _FP_FROM_INT(S,1,X,r,rs,rt)
#define _FP_FRAC_HIGH_S(X) _FP_FRAC_HIGH_1(X)
#define _FP_FRAC_HIGH_RAW_S(X) _FP_FRAC_HIGH_1(X)
#endif /* __MATH_EMU_SINGLE_H__ */

207
include/math-emu/soft-fp.h Normal file
View file

@ -0,0 +1,207 @@
/* Software floating-point emulation.
Copyright (C) 1997,1998,1999 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc.,
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
#ifndef __MATH_EMU_SOFT_FP_H__
#define __MATH_EMU_SOFT_FP_H__
#include <asm/sfp-machine.h>
/* Allow sfp-machine to have its own byte order definitions. */
#ifndef __BYTE_ORDER
#include <endian.h>
#endif
#define _FP_WORKBITS 3
#define _FP_WORK_LSB ((_FP_W_TYPE)1 << 3)
#define _FP_WORK_ROUND ((_FP_W_TYPE)1 << 2)
#define _FP_WORK_GUARD ((_FP_W_TYPE)1 << 1)
#define _FP_WORK_STICKY ((_FP_W_TYPE)1 << 0)
#ifndef FP_RND_NEAREST
# define FP_RND_NEAREST 0
# define FP_RND_ZERO 1
# define FP_RND_PINF 2
# define FP_RND_MINF 3
#ifndef FP_ROUNDMODE
# define FP_ROUNDMODE FP_RND_NEAREST
#endif
#endif
/* By default don't care about exceptions. */
#ifndef FP_EX_INVALID
#define FP_EX_INVALID 0
#endif
#ifndef FP_EX_INVALID_SNAN
#define FP_EX_INVALID_SNAN 0
#endif
/* inf - inf */
#ifndef FP_EX_INVALID_ISI
#define FP_EX_INVALID_ISI 0
#endif
/* inf / inf */
#ifndef FP_EX_INVALID_IDI
#define FP_EX_INVALID_IDI 0
#endif
/* 0 / 0 */
#ifndef FP_EX_INVALID_ZDZ
#define FP_EX_INVALID_ZDZ 0
#endif
/* inf * 0 */
#ifndef FP_EX_INVALID_IMZ
#define FP_EX_INVALID_IMZ 0
#endif
#ifndef FP_EX_OVERFLOW
#define FP_EX_OVERFLOW 0
#endif
#ifndef FP_EX_UNDERFLOW
#define FP_EX_UNDERFLOW
#endif
#ifndef FP_EX_DIVZERO
#define FP_EX_DIVZERO 0
#endif
#ifndef FP_EX_INEXACT
#define FP_EX_INEXACT 0
#endif
#ifndef FP_EX_DENORM
#define FP_EX_DENORM 0
#endif
#ifdef _FP_DECL_EX
#define FP_DECL_EX \
int _fex = 0; \
_FP_DECL_EX
#else
#define FP_DECL_EX int _fex = 0
#endif
#ifndef FP_INIT_ROUNDMODE
#define FP_INIT_ROUNDMODE do {} while (0)
#endif
#ifndef FP_HANDLE_EXCEPTIONS
#define FP_HANDLE_EXCEPTIONS do {} while (0)
#endif
/* By default we never flush denormal input operands to signed zero. */
#ifndef FP_DENORM_ZERO
#define FP_DENORM_ZERO 0
#endif
#ifndef FP_INHIBIT_RESULTS
/* By default we write the results always.
* sfp-machine may override this and e.g.
* check if some exceptions are unmasked
* and inhibit it in such a case.
*/
#define FP_INHIBIT_RESULTS 0
#endif
#ifndef FP_TRAPPING_EXCEPTIONS
#define FP_TRAPPING_EXCEPTIONS 0
#endif
#define FP_SET_EXCEPTION(ex) \
_fex |= (ex)
#define FP_UNSET_EXCEPTION(ex) \
_fex &= ~(ex)
#define FP_CUR_EXCEPTIONS \
(_fex)
#define FP_CLEAR_EXCEPTIONS \
_fex = 0
#define _FP_ROUND_NEAREST(wc, X) \
do { \
if ((_FP_FRAC_LOW_##wc(X) & 15) != _FP_WORK_ROUND) \
_FP_FRAC_ADDI_##wc(X, _FP_WORK_ROUND); \
} while (0)
#define _FP_ROUND_ZERO(wc, X) 0
#define _FP_ROUND_PINF(wc, X) \
do { \
if (!X##_s && (_FP_FRAC_LOW_##wc(X) & 7)) \
_FP_FRAC_ADDI_##wc(X, _FP_WORK_LSB); \
} while (0)
#define _FP_ROUND_MINF(wc, X) \
do { \
if (X##_s && (_FP_FRAC_LOW_##wc(X) & 7)) \
_FP_FRAC_ADDI_##wc(X, _FP_WORK_LSB); \
} while (0)
#define _FP_ROUND(wc, X) \
do { \
if (_FP_FRAC_LOW_##wc(X) & 7) \
FP_SET_EXCEPTION(FP_EX_INEXACT); \
switch (FP_ROUNDMODE) \
{ \
case FP_RND_NEAREST: \
_FP_ROUND_NEAREST(wc,X); \
break; \
case FP_RND_ZERO: \
_FP_ROUND_ZERO(wc,X); \
break; \
case FP_RND_PINF: \
_FP_ROUND_PINF(wc,X); \
break; \
case FP_RND_MINF: \
_FP_ROUND_MINF(wc,X); \
break; \
} \
} while (0)
#define FP_CLS_NORMAL 0
#define FP_CLS_ZERO 1
#define FP_CLS_INF 2
#define FP_CLS_NAN 3
#define _FP_CLS_COMBINE(x,y) (((x) << 2) | (y))
#include <math-emu/op-1.h>
#include <math-emu/op-2.h>
#include <math-emu/op-4.h>
#include <math-emu/op-8.h>
#include <math-emu/op-common.h>
/* Sigh. Silly things longlong.h needs. */
#define UWtype _FP_W_TYPE
#define W_TYPE_SIZE _FP_W_TYPE_SIZE
typedef int SItype __attribute__((mode(SI)));
typedef int DItype __attribute__((mode(DI)));
typedef unsigned int USItype __attribute__((mode(SI)));
typedef unsigned int UDItype __attribute__((mode(DI)));
#if _FP_W_TYPE_SIZE == 32
typedef unsigned int UHWtype __attribute__((mode(HI)));
#elif _FP_W_TYPE_SIZE == 64
typedef USItype UHWtype;
#endif
#ifndef umul_ppmm
#include <stdlib/longlong.h>
#endif
#endif /* __MATH_EMU_SOFT_FP_H__ */