mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-08 01:08:03 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
390
kernel/pid_namespace.c
Normal file
390
kernel/pid_namespace.c
Normal file
|
@ -0,0 +1,390 @@
|
|||
/*
|
||||
* Pid namespaces
|
||||
*
|
||||
* Authors:
|
||||
* (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
|
||||
* (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
|
||||
* Many thanks to Oleg Nesterov for comments and help
|
||||
*
|
||||
*/
|
||||
|
||||
#include <linux/pid.h>
|
||||
#include <linux/pid_namespace.h>
|
||||
#include <linux/user_namespace.h>
|
||||
#include <linux/syscalls.h>
|
||||
#include <linux/err.h>
|
||||
#include <linux/acct.h>
|
||||
#include <linux/slab.h>
|
||||
#include <linux/proc_ns.h>
|
||||
#include <linux/reboot.h>
|
||||
#include <linux/export.h>
|
||||
|
||||
struct pid_cache {
|
||||
int nr_ids;
|
||||
char name[16];
|
||||
struct kmem_cache *cachep;
|
||||
struct list_head list;
|
||||
};
|
||||
|
||||
static LIST_HEAD(pid_caches_lh);
|
||||
static DEFINE_MUTEX(pid_caches_mutex);
|
||||
static struct kmem_cache *pid_ns_cachep;
|
||||
|
||||
/*
|
||||
* creates the kmem cache to allocate pids from.
|
||||
* @nr_ids: the number of numerical ids this pid will have to carry
|
||||
*/
|
||||
|
||||
static struct kmem_cache *create_pid_cachep(int nr_ids)
|
||||
{
|
||||
struct pid_cache *pcache;
|
||||
struct kmem_cache *cachep;
|
||||
|
||||
mutex_lock(&pid_caches_mutex);
|
||||
list_for_each_entry(pcache, &pid_caches_lh, list)
|
||||
if (pcache->nr_ids == nr_ids)
|
||||
goto out;
|
||||
|
||||
pcache = kmalloc(sizeof(struct pid_cache), GFP_KERNEL);
|
||||
if (pcache == NULL)
|
||||
goto err_alloc;
|
||||
|
||||
snprintf(pcache->name, sizeof(pcache->name), "pid_%d", nr_ids);
|
||||
cachep = kmem_cache_create(pcache->name,
|
||||
sizeof(struct pid) + (nr_ids - 1) * sizeof(struct upid),
|
||||
0, SLAB_HWCACHE_ALIGN, NULL);
|
||||
if (cachep == NULL)
|
||||
goto err_cachep;
|
||||
|
||||
pcache->nr_ids = nr_ids;
|
||||
pcache->cachep = cachep;
|
||||
list_add(&pcache->list, &pid_caches_lh);
|
||||
out:
|
||||
mutex_unlock(&pid_caches_mutex);
|
||||
return pcache->cachep;
|
||||
|
||||
err_cachep:
|
||||
kfree(pcache);
|
||||
err_alloc:
|
||||
mutex_unlock(&pid_caches_mutex);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void proc_cleanup_work(struct work_struct *work)
|
||||
{
|
||||
struct pid_namespace *ns = container_of(work, struct pid_namespace, proc_work);
|
||||
pid_ns_release_proc(ns);
|
||||
}
|
||||
|
||||
/* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
|
||||
#define MAX_PID_NS_LEVEL 32
|
||||
|
||||
static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
|
||||
struct pid_namespace *parent_pid_ns)
|
||||
{
|
||||
struct pid_namespace *ns;
|
||||
unsigned int level = parent_pid_ns->level + 1;
|
||||
int i;
|
||||
int err;
|
||||
|
||||
if (level > MAX_PID_NS_LEVEL) {
|
||||
err = -EINVAL;
|
||||
goto out;
|
||||
}
|
||||
|
||||
err = -ENOMEM;
|
||||
ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
|
||||
if (ns == NULL)
|
||||
goto out;
|
||||
|
||||
ns->pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
|
||||
if (!ns->pidmap[0].page)
|
||||
goto out_free;
|
||||
|
||||
ns->pid_cachep = create_pid_cachep(level + 1);
|
||||
if (ns->pid_cachep == NULL)
|
||||
goto out_free_map;
|
||||
|
||||
err = proc_alloc_inum(&ns->proc_inum);
|
||||
if (err)
|
||||
goto out_free_map;
|
||||
|
||||
kref_init(&ns->kref);
|
||||
ns->level = level;
|
||||
ns->parent = get_pid_ns(parent_pid_ns);
|
||||
ns->user_ns = get_user_ns(user_ns);
|
||||
ns->nr_hashed = PIDNS_HASH_ADDING;
|
||||
INIT_WORK(&ns->proc_work, proc_cleanup_work);
|
||||
|
||||
set_bit(0, ns->pidmap[0].page);
|
||||
atomic_set(&ns->pidmap[0].nr_free, BITS_PER_PAGE - 1);
|
||||
|
||||
for (i = 1; i < PIDMAP_ENTRIES; i++)
|
||||
atomic_set(&ns->pidmap[i].nr_free, BITS_PER_PAGE);
|
||||
|
||||
return ns;
|
||||
|
||||
out_free_map:
|
||||
kfree(ns->pidmap[0].page);
|
||||
out_free:
|
||||
kmem_cache_free(pid_ns_cachep, ns);
|
||||
out:
|
||||
return ERR_PTR(err);
|
||||
}
|
||||
|
||||
static void delayed_free_pidns(struct rcu_head *p)
|
||||
{
|
||||
kmem_cache_free(pid_ns_cachep,
|
||||
container_of(p, struct pid_namespace, rcu));
|
||||
}
|
||||
|
||||
static void destroy_pid_namespace(struct pid_namespace *ns)
|
||||
{
|
||||
int i;
|
||||
|
||||
proc_free_inum(ns->proc_inum);
|
||||
for (i = 0; i < PIDMAP_ENTRIES; i++)
|
||||
kfree(ns->pidmap[i].page);
|
||||
put_user_ns(ns->user_ns);
|
||||
call_rcu(&ns->rcu, delayed_free_pidns);
|
||||
}
|
||||
|
||||
struct pid_namespace *copy_pid_ns(unsigned long flags,
|
||||
struct user_namespace *user_ns, struct pid_namespace *old_ns)
|
||||
{
|
||||
if (!(flags & CLONE_NEWPID))
|
||||
return get_pid_ns(old_ns);
|
||||
if (task_active_pid_ns(current) != old_ns)
|
||||
return ERR_PTR(-EINVAL);
|
||||
return create_pid_namespace(user_ns, old_ns);
|
||||
}
|
||||
|
||||
static void free_pid_ns(struct kref *kref)
|
||||
{
|
||||
struct pid_namespace *ns;
|
||||
|
||||
ns = container_of(kref, struct pid_namespace, kref);
|
||||
destroy_pid_namespace(ns);
|
||||
}
|
||||
|
||||
void put_pid_ns(struct pid_namespace *ns)
|
||||
{
|
||||
struct pid_namespace *parent;
|
||||
|
||||
while (ns != &init_pid_ns) {
|
||||
parent = ns->parent;
|
||||
if (!kref_put(&ns->kref, free_pid_ns))
|
||||
break;
|
||||
ns = parent;
|
||||
}
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(put_pid_ns);
|
||||
|
||||
void zap_pid_ns_processes(struct pid_namespace *pid_ns)
|
||||
{
|
||||
int nr;
|
||||
int rc;
|
||||
struct task_struct *task, *me = current;
|
||||
int init_pids = thread_group_leader(me) ? 1 : 2;
|
||||
|
||||
/* Don't allow any more processes into the pid namespace */
|
||||
disable_pid_allocation(pid_ns);
|
||||
|
||||
/* Ignore SIGCHLD causing any terminated children to autoreap */
|
||||
spin_lock_irq(&me->sighand->siglock);
|
||||
me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
|
||||
spin_unlock_irq(&me->sighand->siglock);
|
||||
|
||||
/*
|
||||
* The last thread in the cgroup-init thread group is terminating.
|
||||
* Find remaining pid_ts in the namespace, signal and wait for them
|
||||
* to exit.
|
||||
*
|
||||
* Note: This signals each threads in the namespace - even those that
|
||||
* belong to the same thread group, To avoid this, we would have
|
||||
* to walk the entire tasklist looking a processes in this
|
||||
* namespace, but that could be unnecessarily expensive if the
|
||||
* pid namespace has just a few processes. Or we need to
|
||||
* maintain a tasklist for each pid namespace.
|
||||
*
|
||||
*/
|
||||
read_lock(&tasklist_lock);
|
||||
nr = next_pidmap(pid_ns, 1);
|
||||
while (nr > 0) {
|
||||
rcu_read_lock();
|
||||
|
||||
task = pid_task(find_vpid(nr), PIDTYPE_PID);
|
||||
if (task && !__fatal_signal_pending(task))
|
||||
send_sig_info(SIGKILL, SEND_SIG_FORCED, task);
|
||||
|
||||
rcu_read_unlock();
|
||||
|
||||
nr = next_pidmap(pid_ns, nr);
|
||||
}
|
||||
read_unlock(&tasklist_lock);
|
||||
|
||||
/* Firstly reap the EXIT_ZOMBIE children we may have. */
|
||||
do {
|
||||
clear_thread_flag(TIF_SIGPENDING);
|
||||
rc = sys_wait4(-1, NULL, __WALL, NULL);
|
||||
} while (rc != -ECHILD);
|
||||
|
||||
/*
|
||||
* sys_wait4() above can't reap the TASK_DEAD children.
|
||||
* Make sure they all go away, see free_pid().
|
||||
*/
|
||||
for (;;) {
|
||||
set_current_state(TASK_UNINTERRUPTIBLE);
|
||||
if (pid_ns->nr_hashed == init_pids)
|
||||
break;
|
||||
schedule();
|
||||
}
|
||||
__set_current_state(TASK_RUNNING);
|
||||
|
||||
if (pid_ns->reboot)
|
||||
current->signal->group_exit_code = pid_ns->reboot;
|
||||
|
||||
acct_exit_ns(pid_ns);
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_CHECKPOINT_RESTORE
|
||||
static int pid_ns_ctl_handler(struct ctl_table *table, int write,
|
||||
void __user *buffer, size_t *lenp, loff_t *ppos)
|
||||
{
|
||||
struct pid_namespace *pid_ns = task_active_pid_ns(current);
|
||||
struct ctl_table tmp = *table;
|
||||
|
||||
if (write && !ns_capable(pid_ns->user_ns, CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
|
||||
/*
|
||||
* Writing directly to ns' last_pid field is OK, since this field
|
||||
* is volatile in a living namespace anyway and a code writing to
|
||||
* it should synchronize its usage with external means.
|
||||
*/
|
||||
|
||||
tmp.data = &pid_ns->last_pid;
|
||||
return proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
|
||||
}
|
||||
|
||||
extern int pid_max;
|
||||
static int zero = 0;
|
||||
static struct ctl_table pid_ns_ctl_table[] = {
|
||||
{
|
||||
.procname = "ns_last_pid",
|
||||
.maxlen = sizeof(int),
|
||||
.mode = 0666, /* permissions are checked in the handler */
|
||||
.proc_handler = pid_ns_ctl_handler,
|
||||
.extra1 = &zero,
|
||||
.extra2 = &pid_max,
|
||||
},
|
||||
{ }
|
||||
};
|
||||
static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
|
||||
#endif /* CONFIG_CHECKPOINT_RESTORE */
|
||||
|
||||
int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
|
||||
{
|
||||
if (pid_ns == &init_pid_ns)
|
||||
return 0;
|
||||
|
||||
switch (cmd) {
|
||||
case LINUX_REBOOT_CMD_RESTART2:
|
||||
case LINUX_REBOOT_CMD_RESTART:
|
||||
pid_ns->reboot = SIGHUP;
|
||||
break;
|
||||
|
||||
case LINUX_REBOOT_CMD_POWER_OFF:
|
||||
case LINUX_REBOOT_CMD_HALT:
|
||||
pid_ns->reboot = SIGINT;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
read_lock(&tasklist_lock);
|
||||
force_sig(SIGKILL, pid_ns->child_reaper);
|
||||
read_unlock(&tasklist_lock);
|
||||
|
||||
do_exit(0);
|
||||
|
||||
/* Not reached */
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void *pidns_get(struct task_struct *task)
|
||||
{
|
||||
struct pid_namespace *ns;
|
||||
|
||||
rcu_read_lock();
|
||||
ns = task_active_pid_ns(task);
|
||||
if (ns)
|
||||
get_pid_ns(ns);
|
||||
rcu_read_unlock();
|
||||
|
||||
return ns;
|
||||
}
|
||||
|
||||
static void pidns_put(void *ns)
|
||||
{
|
||||
put_pid_ns(ns);
|
||||
}
|
||||
|
||||
static int pidns_install(struct nsproxy *nsproxy, void *ns)
|
||||
{
|
||||
struct pid_namespace *active = task_active_pid_ns(current);
|
||||
struct pid_namespace *ancestor, *new = ns;
|
||||
|
||||
if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
|
||||
!ns_capable(current_user_ns(), CAP_SYS_ADMIN))
|
||||
return -EPERM;
|
||||
|
||||
/*
|
||||
* Only allow entering the current active pid namespace
|
||||
* or a child of the current active pid namespace.
|
||||
*
|
||||
* This is required for fork to return a usable pid value and
|
||||
* this maintains the property that processes and their
|
||||
* children can not escape their current pid namespace.
|
||||
*/
|
||||
if (new->level < active->level)
|
||||
return -EINVAL;
|
||||
|
||||
ancestor = new;
|
||||
while (ancestor->level > active->level)
|
||||
ancestor = ancestor->parent;
|
||||
if (ancestor != active)
|
||||
return -EINVAL;
|
||||
|
||||
put_pid_ns(nsproxy->pid_ns_for_children);
|
||||
nsproxy->pid_ns_for_children = get_pid_ns(new);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static unsigned int pidns_inum(void *ns)
|
||||
{
|
||||
struct pid_namespace *pid_ns = ns;
|
||||
return pid_ns->proc_inum;
|
||||
}
|
||||
|
||||
const struct proc_ns_operations pidns_operations = {
|
||||
.name = "pid",
|
||||
.type = CLONE_NEWPID,
|
||||
.get = pidns_get,
|
||||
.put = pidns_put,
|
||||
.install = pidns_install,
|
||||
.inum = pidns_inum,
|
||||
};
|
||||
|
||||
static __init int pid_namespaces_init(void)
|
||||
{
|
||||
pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC);
|
||||
|
||||
#ifdef CONFIG_CHECKPOINT_RESTORE
|
||||
register_sysctl_paths(kern_path, pid_ns_ctl_table);
|
||||
#endif
|
||||
return 0;
|
||||
}
|
||||
|
||||
__initcall(pid_namespaces_init);
|
Loading…
Add table
Add a link
Reference in a new issue