mirror of
https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
synced 2025-09-09 01:28:05 -04:00
Fixed MTP to work with TWRP
This commit is contained in:
commit
f6dfaef42e
50820 changed files with 20846062 additions and 0 deletions
248
kernel/sched/cpupri.c
Normal file
248
kernel/sched/cpupri.c
Normal file
|
@ -0,0 +1,248 @@
|
|||
/*
|
||||
* kernel/sched/cpupri.c
|
||||
*
|
||||
* CPU priority management
|
||||
*
|
||||
* Copyright (C) 2007-2008 Novell
|
||||
*
|
||||
* Author: Gregory Haskins <ghaskins@novell.com>
|
||||
*
|
||||
* This code tracks the priority of each CPU so that global migration
|
||||
* decisions are easy to calculate. Each CPU can be in a state as follows:
|
||||
*
|
||||
* (INVALID), IDLE, NORMAL, RT1, ... RT99
|
||||
*
|
||||
* going from the lowest priority to the highest. CPUs in the INVALID state
|
||||
* are not eligible for routing. The system maintains this state with
|
||||
* a 2 dimensional bitmap (the first for priority class, the second for cpus
|
||||
* in that class). Therefore a typical application without affinity
|
||||
* restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
|
||||
* searches). For tasks with affinity restrictions, the algorithm has a
|
||||
* worst case complexity of O(min(102, nr_domcpus)), though the scenario that
|
||||
* yields the worst case search is fairly contrived.
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License
|
||||
* as published by the Free Software Foundation; version 2
|
||||
* of the License.
|
||||
*/
|
||||
|
||||
#include <linux/gfp.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/sched/rt.h>
|
||||
#include <linux/slab.h>
|
||||
#include "cpupri.h"
|
||||
|
||||
/* Convert between a 140 based task->prio, and our 102 based cpupri */
|
||||
static int convert_prio(int prio)
|
||||
{
|
||||
int cpupri;
|
||||
|
||||
if (prio == CPUPRI_INVALID)
|
||||
cpupri = CPUPRI_INVALID;
|
||||
else if (prio == MAX_PRIO)
|
||||
cpupri = CPUPRI_IDLE;
|
||||
else if (prio >= MAX_RT_PRIO)
|
||||
cpupri = CPUPRI_NORMAL;
|
||||
else
|
||||
cpupri = MAX_RT_PRIO - prio + 1;
|
||||
|
||||
return cpupri;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_find - find the best (lowest-pri) CPU in the system
|
||||
* @cp: The cpupri context
|
||||
* @p: The task
|
||||
* @lowest_mask: A mask to fill in with selected CPUs (or NULL)
|
||||
*
|
||||
* Note: This function returns the recommended CPUs as calculated during the
|
||||
* current invocation. By the time the call returns, the CPUs may have in
|
||||
* fact changed priorities any number of times. While not ideal, it is not
|
||||
* an issue of correctness since the normal rebalancer logic will correct
|
||||
* any discrepancies created by racing against the uncertainty of the current
|
||||
* priority configuration.
|
||||
*
|
||||
* Return: (int)bool - CPUs were found
|
||||
*/
|
||||
int cpupri_find(struct cpupri *cp, struct task_struct *p,
|
||||
struct cpumask *lowest_mask)
|
||||
{
|
||||
int idx = 0;
|
||||
int task_pri = convert_prio(p->prio);
|
||||
|
||||
BUG_ON(task_pri >= CPUPRI_NR_PRIORITIES);
|
||||
|
||||
for (idx = 0; idx < task_pri; idx++) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
|
||||
int skip = 0;
|
||||
|
||||
if (!atomic_read(&(vec)->count))
|
||||
skip = 1;
|
||||
/*
|
||||
* When looking at the vector, we need to read the counter,
|
||||
* do a memory barrier, then read the mask.
|
||||
*
|
||||
* Note: This is still all racey, but we can deal with it.
|
||||
* Ideally, we only want to look at masks that are set.
|
||||
*
|
||||
* If a mask is not set, then the only thing wrong is that we
|
||||
* did a little more work than necessary.
|
||||
*
|
||||
* If we read a zero count but the mask is set, because of the
|
||||
* memory barriers, that can only happen when the highest prio
|
||||
* task for a run queue has left the run queue, in which case,
|
||||
* it will be followed by a pull. If the task we are processing
|
||||
* fails to find a proper place to go, that pull request will
|
||||
* pull this task if the run queue is running at a lower
|
||||
* priority.
|
||||
*/
|
||||
smp_rmb();
|
||||
|
||||
/* Need to do the rmb for every iteration */
|
||||
if (skip)
|
||||
continue;
|
||||
|
||||
if (cpumask_any_and(&p->cpus_allowed, vec->mask) >= nr_cpu_ids)
|
||||
continue;
|
||||
|
||||
if (lowest_mask) {
|
||||
cpumask_and(lowest_mask, &p->cpus_allowed, vec->mask);
|
||||
|
||||
/*
|
||||
* We have to ensure that we have at least one bit
|
||||
* still set in the array, since the map could have
|
||||
* been concurrently emptied between the first and
|
||||
* second reads of vec->mask. If we hit this
|
||||
* condition, simply act as though we never hit this
|
||||
* priority level and continue on.
|
||||
*/
|
||||
if (cpumask_any(lowest_mask) >= nr_cpu_ids)
|
||||
continue;
|
||||
}
|
||||
|
||||
return 1;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_set - update the cpu priority setting
|
||||
* @cp: The cpupri context
|
||||
* @cpu: The target cpu
|
||||
* @newpri: The priority (INVALID-RT99) to assign to this CPU
|
||||
*
|
||||
* Note: Assumes cpu_rq(cpu)->lock is locked
|
||||
*
|
||||
* Returns: (void)
|
||||
*/
|
||||
void cpupri_set(struct cpupri *cp, int cpu, int newpri)
|
||||
{
|
||||
int *currpri = &cp->cpu_to_pri[cpu];
|
||||
int oldpri = *currpri;
|
||||
int do_mb = 0;
|
||||
|
||||
newpri = convert_prio(newpri);
|
||||
|
||||
BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
|
||||
|
||||
if (newpri == oldpri)
|
||||
return;
|
||||
|
||||
/*
|
||||
* If the cpu was currently mapped to a different value, we
|
||||
* need to map it to the new value then remove the old value.
|
||||
* Note, we must add the new value first, otherwise we risk the
|
||||
* cpu being missed by the priority loop in cpupri_find.
|
||||
*/
|
||||
if (likely(newpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
|
||||
|
||||
cpumask_set_cpu(cpu, vec->mask);
|
||||
/*
|
||||
* When adding a new vector, we update the mask first,
|
||||
* do a write memory barrier, and then update the count, to
|
||||
* make sure the vector is visible when count is set.
|
||||
*/
|
||||
smp_mb__before_atomic();
|
||||
atomic_inc(&(vec)->count);
|
||||
do_mb = 1;
|
||||
}
|
||||
if (likely(oldpri != CPUPRI_INVALID)) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
|
||||
|
||||
/*
|
||||
* Because the order of modification of the vec->count
|
||||
* is important, we must make sure that the update
|
||||
* of the new prio is seen before we decrement the
|
||||
* old prio. This makes sure that the loop sees
|
||||
* one or the other when we raise the priority of
|
||||
* the run queue. We don't care about when we lower the
|
||||
* priority, as that will trigger an rt pull anyway.
|
||||
*
|
||||
* We only need to do a memory barrier if we updated
|
||||
* the new priority vec.
|
||||
*/
|
||||
if (do_mb)
|
||||
smp_mb__after_atomic();
|
||||
|
||||
/*
|
||||
* When removing from the vector, we decrement the counter first
|
||||
* do a memory barrier and then clear the mask.
|
||||
*/
|
||||
atomic_dec(&(vec)->count);
|
||||
smp_mb__after_atomic();
|
||||
cpumask_clear_cpu(cpu, vec->mask);
|
||||
}
|
||||
|
||||
*currpri = newpri;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_init - initialize the cpupri structure
|
||||
* @cp: The cpupri context
|
||||
*
|
||||
* Return: -ENOMEM on memory allocation failure.
|
||||
*/
|
||||
int cpupri_init(struct cpupri *cp)
|
||||
{
|
||||
int i;
|
||||
|
||||
memset(cp, 0, sizeof(*cp));
|
||||
|
||||
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
|
||||
struct cpupri_vec *vec = &cp->pri_to_cpu[i];
|
||||
|
||||
atomic_set(&vec->count, 0);
|
||||
if (!zalloc_cpumask_var(&vec->mask, GFP_KERNEL))
|
||||
goto cleanup;
|
||||
}
|
||||
|
||||
cp->cpu_to_pri = kcalloc(nr_cpu_ids, sizeof(int), GFP_KERNEL);
|
||||
if (!cp->cpu_to_pri)
|
||||
goto cleanup;
|
||||
|
||||
for_each_possible_cpu(i)
|
||||
cp->cpu_to_pri[i] = CPUPRI_INVALID;
|
||||
|
||||
return 0;
|
||||
|
||||
cleanup:
|
||||
for (i--; i >= 0; i--)
|
||||
free_cpumask_var(cp->pri_to_cpu[i].mask);
|
||||
return -ENOMEM;
|
||||
}
|
||||
|
||||
/**
|
||||
* cpupri_cleanup - clean up the cpupri structure
|
||||
* @cp: The cpupri context
|
||||
*/
|
||||
void cpupri_cleanup(struct cpupri *cp)
|
||||
{
|
||||
int i;
|
||||
|
||||
kfree(cp->cpu_to_pri);
|
||||
for (i = 0; i < CPUPRI_NR_PRIORITIES; i++)
|
||||
free_cpumask_var(cp->pri_to_cpu[i].mask);
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue