mirror of
				https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
				synced 2025-10-31 08:08:51 +01:00 
			
		
		
		
	Fixed MTP to work with TWRP
This commit is contained in:
		
						commit
						f6dfaef42e
					
				
					 50820 changed files with 20846062 additions and 0 deletions
				
			
		
							
								
								
									
										788
									
								
								kernel/time/time.c
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										788
									
								
								kernel/time/time.c
									
										
									
									
									
										Normal file
									
								
							|  | @ -0,0 +1,788 @@ | |||
| /*
 | ||||
|  *  linux/kernel/time.c | ||||
|  * | ||||
|  *  Copyright (C) 1991, 1992  Linus Torvalds | ||||
|  * | ||||
|  *  This file contains the interface functions for the various | ||||
|  *  time related system calls: time, stime, gettimeofday, settimeofday, | ||||
|  *			       adjtime | ||||
|  */ | ||||
| /*
 | ||||
|  * Modification history kernel/time.c | ||||
|  * | ||||
|  * 1993-09-02    Philip Gladstone | ||||
|  *      Created file with time related functions from sched/core.c and adjtimex() | ||||
|  * 1993-10-08    Torsten Duwe | ||||
|  *      adjtime interface update and CMOS clock write code | ||||
|  * 1995-08-13    Torsten Duwe | ||||
|  *      kernel PLL updated to 1994-12-13 specs (rfc-1589) | ||||
|  * 1999-01-16    Ulrich Windl | ||||
|  *	Introduced error checking for many cases in adjtimex(). | ||||
|  *	Updated NTP code according to technical memorandum Jan '96 | ||||
|  *	"A Kernel Model for Precision Timekeeping" by Dave Mills | ||||
|  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | ||||
|  *	(Even though the technical memorandum forbids it) | ||||
|  * 2004-07-14	 Christoph Lameter | ||||
|  *	Added getnstimeofday to allow the posix timer functions to return | ||||
|  *	with nanosecond accuracy | ||||
|  */ | ||||
| 
 | ||||
| #include <linux/export.h> | ||||
| #include <linux/timex.h> | ||||
| #include <linux/capability.h> | ||||
| #include <linux/timekeeper_internal.h> | ||||
| #include <linux/errno.h> | ||||
| #include <linux/syscalls.h> | ||||
| #include <linux/security.h> | ||||
| #include <linux/fs.h> | ||||
| #include <linux/math64.h> | ||||
| #include <linux/ptrace.h> | ||||
| 
 | ||||
| #include <asm/uaccess.h> | ||||
| #include <asm/unistd.h> | ||||
| 
 | ||||
| #include "timeconst.h" | ||||
| #include "timekeeping.h" | ||||
| 
 | ||||
| /*
 | ||||
|  * The timezone where the local system is located.  Used as a default by some | ||||
|  * programs who obtain this value by using gettimeofday. | ||||
|  */ | ||||
| struct timezone sys_tz; | ||||
| 
 | ||||
| EXPORT_SYMBOL(sys_tz); | ||||
| 
 | ||||
| #ifdef __ARCH_WANT_SYS_TIME | ||||
| 
 | ||||
| /*
 | ||||
|  * sys_time() can be implemented in user-level using | ||||
|  * sys_gettimeofday().  Is this for backwards compatibility?  If so, | ||||
|  * why not move it into the appropriate arch directory (for those | ||||
|  * architectures that need it). | ||||
|  */ | ||||
| SYSCALL_DEFINE1(time, time_t __user *, tloc) | ||||
| { | ||||
| 	time_t i = get_seconds(); | ||||
| 
 | ||||
| 	if (tloc) { | ||||
| 		if (put_user(i,tloc)) | ||||
| 			return -EFAULT; | ||||
| 	} | ||||
| 	force_successful_syscall_return(); | ||||
| 	return i; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * sys_stime() can be implemented in user-level using | ||||
|  * sys_settimeofday().  Is this for backwards compatibility?  If so, | ||||
|  * why not move it into the appropriate arch directory (for those | ||||
|  * architectures that need it). | ||||
|  */ | ||||
| 
 | ||||
| SYSCALL_DEFINE1(stime, time_t __user *, tptr) | ||||
| { | ||||
| 	struct timespec tv; | ||||
| 	int err; | ||||
| 
 | ||||
| 	if (get_user(tv.tv_sec, tptr)) | ||||
| 		return -EFAULT; | ||||
| 
 | ||||
| 	tv.tv_nsec = 0; | ||||
| 
 | ||||
| 	err = security_settime(&tv, NULL); | ||||
| 	if (err) | ||||
| 		return err; | ||||
| 
 | ||||
| 	do_settimeofday(&tv); | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| #endif /* __ARCH_WANT_SYS_TIME */ | ||||
| 
 | ||||
| SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv, | ||||
| 		struct timezone __user *, tz) | ||||
| { | ||||
| 	if (likely(tv != NULL)) { | ||||
| 		struct timeval ktv; | ||||
| 		do_gettimeofday(&ktv); | ||||
| 		if (copy_to_user(tv, &ktv, sizeof(ktv))) | ||||
| 			return -EFAULT; | ||||
| 	} | ||||
| 	if (unlikely(tz != NULL)) { | ||||
| 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | ||||
| 			return -EFAULT; | ||||
| 	} | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * Indicates if there is an offset between the system clock and the hardware | ||||
|  * clock/persistent clock/rtc. | ||||
|  */ | ||||
| int persistent_clock_is_local; | ||||
| 
 | ||||
| /*
 | ||||
|  * Adjust the time obtained from the CMOS to be UTC time instead of | ||||
|  * local time. | ||||
|  * | ||||
|  * This is ugly, but preferable to the alternatives.  Otherwise we | ||||
|  * would either need to write a program to do it in /etc/rc (and risk | ||||
|  * confusion if the program gets run more than once; it would also be | ||||
|  * hard to make the program warp the clock precisely n hours)  or | ||||
|  * compile in the timezone information into the kernel.  Bad, bad.... | ||||
|  * | ||||
|  *						- TYT, 1992-01-01 | ||||
|  * | ||||
|  * The best thing to do is to keep the CMOS clock in universal time (UTC) | ||||
|  * as real UNIX machines always do it. This avoids all headaches about | ||||
|  * daylight saving times and warping kernel clocks. | ||||
|  */ | ||||
| static inline void warp_clock(void) | ||||
| { | ||||
| 	if (sys_tz.tz_minuteswest != 0) { | ||||
| 		struct timespec adjust; | ||||
| 
 | ||||
| 		persistent_clock_is_local = 1; | ||||
| 		adjust.tv_sec = sys_tz.tz_minuteswest * 60; | ||||
| 		adjust.tv_nsec = 0; | ||||
| 		timekeeping_inject_offset(&adjust); | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| /*
 | ||||
|  * In case for some reason the CMOS clock has not already been running | ||||
|  * in UTC, but in some local time: The first time we set the timezone, | ||||
|  * we will warp the clock so that it is ticking UTC time instead of | ||||
|  * local time. Presumably, if someone is setting the timezone then we | ||||
|  * are running in an environment where the programs understand about | ||||
|  * timezones. This should be done at boot time in the /etc/rc script, | ||||
|  * as soon as possible, so that the clock can be set right. Otherwise, | ||||
|  * various programs will get confused when the clock gets warped. | ||||
|  */ | ||||
| 
 | ||||
| int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz) | ||||
| { | ||||
| 	static int firsttime = 1; | ||||
| 	int error = 0; | ||||
| 
 | ||||
| 	if (tv && !timespec_valid(tv)) | ||||
| 		return -EINVAL; | ||||
| 
 | ||||
| 	error = security_settime(tv, tz); | ||||
| 	if (error) | ||||
| 		return error; | ||||
| 
 | ||||
| 	if (tz) { | ||||
| 		sys_tz = *tz; | ||||
| 		update_vsyscall_tz(); | ||||
| 		if (firsttime) { | ||||
| 			firsttime = 0; | ||||
| 			if (!tv) | ||||
| 				warp_clock(); | ||||
| 		} | ||||
| 	} | ||||
| 	if (tv) | ||||
| 		return do_settimeofday(tv); | ||||
| 	return 0; | ||||
| } | ||||
| 
 | ||||
| SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv, | ||||
| 		struct timezone __user *, tz) | ||||
| { | ||||
| 	struct timeval user_tv; | ||||
| 	struct timespec	new_ts; | ||||
| 	struct timezone new_tz; | ||||
| 
 | ||||
| 	if (tv) { | ||||
| 		if (copy_from_user(&user_tv, tv, sizeof(*tv))) | ||||
| 			return -EFAULT; | ||||
| 
 | ||||
| 		if (!timeval_valid(&user_tv)) | ||||
| 			return -EINVAL; | ||||
| 
 | ||||
| 		new_ts.tv_sec = user_tv.tv_sec; | ||||
| 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | ||||
| 	} | ||||
| 	if (tz) { | ||||
| 		if (copy_from_user(&new_tz, tz, sizeof(*tz))) | ||||
| 			return -EFAULT; | ||||
| 	} | ||||
| 
 | ||||
| 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | ||||
| } | ||||
| 
 | ||||
| SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p) | ||||
| { | ||||
| 	struct timex txc;		/* Local copy of parameter */ | ||||
| 	int ret; | ||||
| 
 | ||||
| 	/* Copy the user data space into the kernel copy
 | ||||
| 	 * structure. But bear in mind that the structures | ||||
| 	 * may change | ||||
| 	 */ | ||||
| 	if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | ||||
| 		return -EFAULT; | ||||
| 	ret = do_adjtimex(&txc); | ||||
| 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | ||||
| } | ||||
| 
 | ||||
| /**
 | ||||
|  * current_fs_time - Return FS time | ||||
|  * @sb: Superblock. | ||||
|  * | ||||
|  * Return the current time truncated to the time granularity supported by | ||||
|  * the fs. | ||||
|  */ | ||||
| struct timespec current_fs_time(struct super_block *sb) | ||||
| { | ||||
| 	struct timespec now = current_kernel_time(); | ||||
| 	return timespec_trunc(now, sb->s_time_gran); | ||||
| } | ||||
| EXPORT_SYMBOL(current_fs_time); | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert jiffies to milliseconds and back. | ||||
|  * | ||||
|  * Avoid unnecessary multiplications/divisions in the | ||||
|  * two most common HZ cases: | ||||
|  */ | ||||
| unsigned int jiffies_to_msecs(const unsigned long j) | ||||
| { | ||||
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | ||||
| 	return (MSEC_PER_SEC / HZ) * j; | ||||
| #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | ||||
| 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC); | ||||
| #else | ||||
| # if BITS_PER_LONG == 32 | ||||
| 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32; | ||||
| # else | ||||
| 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN; | ||||
| # endif | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_to_msecs); | ||||
| 
 | ||||
| unsigned int jiffies_to_usecs(const unsigned long j) | ||||
| { | ||||
| #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | ||||
| 	return (USEC_PER_SEC / HZ) * j; | ||||
| #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | ||||
| 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC); | ||||
| #else | ||||
| # if BITS_PER_LONG == 32 | ||||
| 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32; | ||||
| # else | ||||
| 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN; | ||||
| # endif | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_to_usecs); | ||||
| 
 | ||||
| /**
 | ||||
|  * timespec_trunc - Truncate timespec to a granularity | ||||
|  * @t: Timespec | ||||
|  * @gran: Granularity in ns. | ||||
|  * | ||||
|  * Truncate a timespec to a granularity. gran must be smaller than a second. | ||||
|  * Always rounds down. | ||||
|  * | ||||
|  * This function should be only used for timestamps returned by | ||||
|  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | ||||
|  * it doesn't handle the better resolution of the latter. | ||||
|  */ | ||||
| struct timespec timespec_trunc(struct timespec t, unsigned gran) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * Division is pretty slow so avoid it for common cases. | ||||
| 	 * Currently current_kernel_time() never returns better than | ||||
| 	 * jiffies resolution. Exploit that. | ||||
| 	 */ | ||||
| 	if (gran <= jiffies_to_usecs(1) * 1000) { | ||||
| 		/* nothing */ | ||||
| 	} else if (gran == 1000000000) { | ||||
| 		t.tv_nsec = 0; | ||||
| 	} else { | ||||
| 		t.tv_nsec -= t.tv_nsec % gran; | ||||
| 	} | ||||
| 	return t; | ||||
| } | ||||
| EXPORT_SYMBOL(timespec_trunc); | ||||
| 
 | ||||
| /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 | ||||
|  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | ||||
|  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | ||||
|  * | ||||
|  * [For the Julian calendar (which was used in Russia before 1917, | ||||
|  * Britain & colonies before 1752, anywhere else before 1582, | ||||
|  * and is still in use by some communities) leave out the | ||||
|  * -year/100+year/400 terms, and add 10.] | ||||
|  * | ||||
|  * This algorithm was first published by Gauss (I think). | ||||
|  * | ||||
|  * WARNING: this function will overflow on 2106-02-07 06:28:16 on | ||||
|  * machines where long is 32-bit! (However, as time_t is signed, we | ||||
|  * will already get problems at other places on 2038-01-19 03:14:08) | ||||
|  */ | ||||
| unsigned long | ||||
| mktime(const unsigned int year0, const unsigned int mon0, | ||||
|        const unsigned int day, const unsigned int hour, | ||||
|        const unsigned int min, const unsigned int sec) | ||||
| { | ||||
| 	unsigned int mon = mon0, year = year0; | ||||
| 
 | ||||
| 	/* 1..12 -> 11,12,1..10 */ | ||||
| 	if (0 >= (int) (mon -= 2)) { | ||||
| 		mon += 12;	/* Puts Feb last since it has leap day */ | ||||
| 		year -= 1; | ||||
| 	} | ||||
| 
 | ||||
| 	return ((((unsigned long) | ||||
| 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) + | ||||
| 		  year*365 - 719499 | ||||
| 	    )*24 + hour /* now have hours */ | ||||
| 	  )*60 + min /* now have minutes */ | ||||
| 	)*60 + sec; /* finally seconds */ | ||||
| } | ||||
| 
 | ||||
| EXPORT_SYMBOL(mktime); | ||||
| 
 | ||||
| /**
 | ||||
|  * set_normalized_timespec - set timespec sec and nsec parts and normalize | ||||
|  * | ||||
|  * @ts:		pointer to timespec variable to be set | ||||
|  * @sec:	seconds to set | ||||
|  * @nsec:	nanoseconds to set | ||||
|  * | ||||
|  * Set seconds and nanoseconds field of a timespec variable and | ||||
|  * normalize to the timespec storage format | ||||
|  * | ||||
|  * Note: The tv_nsec part is always in the range of | ||||
|  *	0 <= tv_nsec < NSEC_PER_SEC | ||||
|  * For negative values only the tv_sec field is negative ! | ||||
|  */ | ||||
| void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec) | ||||
| { | ||||
| 	while (nsec >= NSEC_PER_SEC) { | ||||
| 		/*
 | ||||
| 		 * The following asm() prevents the compiler from | ||||
| 		 * optimising this loop into a modulo operation. See | ||||
| 		 * also __iter_div_u64_rem() in include/linux/time.h | ||||
| 		 */ | ||||
| 		asm("" : "+rm"(nsec)); | ||||
| 		nsec -= NSEC_PER_SEC; | ||||
| 		++sec; | ||||
| 	} | ||||
| 	while (nsec < 0) { | ||||
| 		asm("" : "+rm"(nsec)); | ||||
| 		nsec += NSEC_PER_SEC; | ||||
| 		--sec; | ||||
| 	} | ||||
| 	ts->tv_sec = sec; | ||||
| 	ts->tv_nsec = nsec; | ||||
| } | ||||
| EXPORT_SYMBOL(set_normalized_timespec); | ||||
| 
 | ||||
| /**
 | ||||
|  * ns_to_timespec - Convert nanoseconds to timespec | ||||
|  * @nsec:       the nanoseconds value to be converted | ||||
|  * | ||||
|  * Returns the timespec representation of the nsec parameter. | ||||
|  */ | ||||
| struct timespec ns_to_timespec(const s64 nsec) | ||||
| { | ||||
| 	struct timespec ts; | ||||
| 	s32 rem; | ||||
| 
 | ||||
| 	if (!nsec) | ||||
| 		return (struct timespec) {0, 0}; | ||||
| 
 | ||||
| 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); | ||||
| 	if (unlikely(rem < 0)) { | ||||
| 		ts.tv_sec--; | ||||
| 		rem += NSEC_PER_SEC; | ||||
| 	} | ||||
| 	ts.tv_nsec = rem; | ||||
| 
 | ||||
| 	return ts; | ||||
| } | ||||
| EXPORT_SYMBOL(ns_to_timespec); | ||||
| 
 | ||||
| /**
 | ||||
|  * ns_to_timeval - Convert nanoseconds to timeval | ||||
|  * @nsec:       the nanoseconds value to be converted | ||||
|  * | ||||
|  * Returns the timeval representation of the nsec parameter. | ||||
|  */ | ||||
| struct timeval ns_to_timeval(const s64 nsec) | ||||
| { | ||||
| 	struct timespec ts = ns_to_timespec(nsec); | ||||
| 	struct timeval tv; | ||||
| 
 | ||||
| 	tv.tv_sec = ts.tv_sec; | ||||
| 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | ||||
| 
 | ||||
| 	return tv; | ||||
| } | ||||
| EXPORT_SYMBOL(ns_to_timeval); | ||||
| 
 | ||||
| #if BITS_PER_LONG == 32 | ||||
| /**
 | ||||
|  * set_normalized_timespec - set timespec sec and nsec parts and normalize | ||||
|  * | ||||
|  * @ts:		pointer to timespec variable to be set | ||||
|  * @sec:	seconds to set | ||||
|  * @nsec:	nanoseconds to set | ||||
|  * | ||||
|  * Set seconds and nanoseconds field of a timespec variable and | ||||
|  * normalize to the timespec storage format | ||||
|  * | ||||
|  * Note: The tv_nsec part is always in the range of | ||||
|  *	0 <= tv_nsec < NSEC_PER_SEC | ||||
|  * For negative values only the tv_sec field is negative ! | ||||
|  */ | ||||
| void set_normalized_timespec64(struct timespec64 *ts, time64_t sec, s64 nsec) | ||||
| { | ||||
| 	while (nsec >= NSEC_PER_SEC) { | ||||
| 		/*
 | ||||
| 		 * The following asm() prevents the compiler from | ||||
| 		 * optimising this loop into a modulo operation. See | ||||
| 		 * also __iter_div_u64_rem() in include/linux/time.h | ||||
| 		 */ | ||||
| 		asm("" : "+rm"(nsec)); | ||||
| 		nsec -= NSEC_PER_SEC; | ||||
| 		++sec; | ||||
| 	} | ||||
| 	while (nsec < 0) { | ||||
| 		asm("" : "+rm"(nsec)); | ||||
| 		nsec += NSEC_PER_SEC; | ||||
| 		--sec; | ||||
| 	} | ||||
| 	ts->tv_sec = sec; | ||||
| 	ts->tv_nsec = nsec; | ||||
| } | ||||
| EXPORT_SYMBOL(set_normalized_timespec64); | ||||
| 
 | ||||
| /**
 | ||||
|  * ns_to_timespec64 - Convert nanoseconds to timespec64 | ||||
|  * @nsec:       the nanoseconds value to be converted | ||||
|  * | ||||
|  * Returns the timespec64 representation of the nsec parameter. | ||||
|  */ | ||||
| struct timespec64 ns_to_timespec64(const s64 nsec) | ||||
| { | ||||
| 	struct timespec64 ts; | ||||
| 	s32 rem; | ||||
| 
 | ||||
| 	if (!nsec) | ||||
| 		return (struct timespec64) {0, 0}; | ||||
| 
 | ||||
| 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem); | ||||
| 	if (unlikely(rem < 0)) { | ||||
| 		ts.tv_sec--; | ||||
| 		rem += NSEC_PER_SEC; | ||||
| 	} | ||||
| 	ts.tv_nsec = rem; | ||||
| 
 | ||||
| 	return ts; | ||||
| } | ||||
| EXPORT_SYMBOL(ns_to_timespec64); | ||||
| #endif | ||||
| /*
 | ||||
|  * When we convert to jiffies then we interpret incoming values | ||||
|  * the following way: | ||||
|  * | ||||
|  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET) | ||||
|  * | ||||
|  * - 'too large' values [that would result in larger than | ||||
|  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too. | ||||
|  * | ||||
|  * - all other values are converted to jiffies by either multiplying | ||||
|  *   the input value by a factor or dividing it with a factor | ||||
|  * | ||||
|  * We must also be careful about 32-bit overflows. | ||||
|  */ | ||||
| unsigned long msecs_to_jiffies(const unsigned int m) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * Negative value, means infinite timeout: | ||||
| 	 */ | ||||
| 	if ((int)m < 0) | ||||
| 		return MAX_JIFFY_OFFSET; | ||||
| 
 | ||||
| #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ) | ||||
| 	/*
 | ||||
| 	 * HZ is equal to or smaller than 1000, and 1000 is a nice | ||||
| 	 * round multiple of HZ, divide with the factor between them, | ||||
| 	 * but round upwards: | ||||
| 	 */ | ||||
| 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ); | ||||
| #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC) | ||||
| 	/*
 | ||||
| 	 * HZ is larger than 1000, and HZ is a nice round multiple of | ||||
| 	 * 1000 - simply multiply with the factor between them. | ||||
| 	 * | ||||
| 	 * But first make sure the multiplication result cannot | ||||
| 	 * overflow: | ||||
| 	 */ | ||||
| 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | ||||
| 		return MAX_JIFFY_OFFSET; | ||||
| 
 | ||||
| 	return m * (HZ / MSEC_PER_SEC); | ||||
| #else | ||||
| 	/*
 | ||||
| 	 * Generic case - multiply, round and divide. But first | ||||
| 	 * check that if we are doing a net multiplication, that | ||||
| 	 * we wouldn't overflow: | ||||
| 	 */ | ||||
| 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET)) | ||||
| 		return MAX_JIFFY_OFFSET; | ||||
| 
 | ||||
| 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32) | ||||
| 		>> MSEC_TO_HZ_SHR32; | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(msecs_to_jiffies); | ||||
| 
 | ||||
| unsigned long usecs_to_jiffies(const unsigned int u) | ||||
| { | ||||
| 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET)) | ||||
| 		return MAX_JIFFY_OFFSET; | ||||
| #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ) | ||||
| 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ); | ||||
| #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC) | ||||
| 	return u * (HZ / USEC_PER_SEC); | ||||
| #else | ||||
| 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32) | ||||
| 		>> USEC_TO_HZ_SHR32; | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(usecs_to_jiffies); | ||||
| 
 | ||||
| /*
 | ||||
|  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note | ||||
|  * that a remainder subtract here would not do the right thing as the | ||||
|  * resolution values don't fall on second boundries.  I.e. the line: | ||||
|  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding. | ||||
|  * Note that due to the small error in the multiplier here, this | ||||
|  * rounding is incorrect for sufficiently large values of tv_nsec, but | ||||
|  * well formed timespecs should have tv_nsec < NSEC_PER_SEC, so we're | ||||
|  * OK. | ||||
|  * | ||||
|  * Rather, we just shift the bits off the right. | ||||
|  * | ||||
|  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec | ||||
|  * value to a scaled second value. | ||||
|  */ | ||||
| static unsigned long | ||||
| __timespec_to_jiffies(unsigned long sec, long nsec) | ||||
| { | ||||
| 	nsec = nsec + TICK_NSEC - 1; | ||||
| 
 | ||||
| 	if (sec >= MAX_SEC_IN_JIFFIES){ | ||||
| 		sec = MAX_SEC_IN_JIFFIES; | ||||
| 		nsec = 0; | ||||
| 	} | ||||
| 	return (((u64)sec * SEC_CONVERSION) + | ||||
| 		(((u64)nsec * NSEC_CONVERSION) >> | ||||
| 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC; | ||||
| 
 | ||||
| } | ||||
| 
 | ||||
| unsigned long | ||||
| timespec_to_jiffies(const struct timespec *value) | ||||
| { | ||||
| 	return __timespec_to_jiffies(value->tv_sec, value->tv_nsec); | ||||
| } | ||||
| 
 | ||||
| EXPORT_SYMBOL(timespec_to_jiffies); | ||||
| 
 | ||||
| void | ||||
| jiffies_to_timespec(const unsigned long jiffies, struct timespec *value) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * Convert jiffies to nanoseconds and separate with | ||||
| 	 * one divide. | ||||
| 	 */ | ||||
| 	u32 rem; | ||||
| 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, | ||||
| 				    NSEC_PER_SEC, &rem); | ||||
| 	value->tv_nsec = rem; | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_to_timespec); | ||||
| 
 | ||||
| /*
 | ||||
|  * We could use a similar algorithm to timespec_to_jiffies (with a | ||||
|  * different multiplier for usec instead of nsec). But this has a | ||||
|  * problem with rounding: we can't exactly add TICK_NSEC - 1 to the | ||||
|  * usec value, since it's not necessarily integral. | ||||
|  * | ||||
|  * We could instead round in the intermediate scaled representation | ||||
|  * (i.e. in units of 1/2^(large scale) jiffies) but that's also | ||||
|  * perilous: the scaling introduces a small positive error, which | ||||
|  * combined with a division-rounding-upward (i.e. adding 2^(scale) - 1 | ||||
|  * units to the intermediate before shifting) leads to accidental | ||||
|  * overflow and overestimates. | ||||
|  * | ||||
|  * At the cost of one additional multiplication by a constant, just | ||||
|  * use the timespec implementation. | ||||
|  */ | ||||
| unsigned long | ||||
| timeval_to_jiffies(const struct timeval *value) | ||||
| { | ||||
| 	return __timespec_to_jiffies(value->tv_sec, | ||||
| 				     value->tv_usec * NSEC_PER_USEC); | ||||
| } | ||||
| EXPORT_SYMBOL(timeval_to_jiffies); | ||||
| 
 | ||||
| void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value) | ||||
| { | ||||
| 	/*
 | ||||
| 	 * Convert jiffies to nanoseconds and separate with | ||||
| 	 * one divide. | ||||
| 	 */ | ||||
| 	u32 rem; | ||||
| 
 | ||||
| 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC, | ||||
| 				    NSEC_PER_SEC, &rem); | ||||
| 	value->tv_usec = rem / NSEC_PER_USEC; | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_to_timeval); | ||||
| 
 | ||||
| /*
 | ||||
|  * Convert jiffies/jiffies_64 to clock_t and back. | ||||
|  */ | ||||
| clock_t jiffies_to_clock_t(unsigned long x) | ||||
| { | ||||
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||||
| # if HZ < USER_HZ | ||||
| 	return x * (USER_HZ / HZ); | ||||
| # else | ||||
| 	return x / (HZ / USER_HZ); | ||||
| # endif | ||||
| #else | ||||
| 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ); | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_to_clock_t); | ||||
| 
 | ||||
| unsigned long clock_t_to_jiffies(unsigned long x) | ||||
| { | ||||
| #if (HZ % USER_HZ)==0 | ||||
| 	if (x >= ~0UL / (HZ / USER_HZ)) | ||||
| 		return ~0UL; | ||||
| 	return x * (HZ / USER_HZ); | ||||
| #else | ||||
| 	/* Don't worry about loss of precision here .. */ | ||||
| 	if (x >= ~0UL / HZ * USER_HZ) | ||||
| 		return ~0UL; | ||||
| 
 | ||||
| 	/* .. but do try to contain it here */ | ||||
| 	return div_u64((u64)x * HZ, USER_HZ); | ||||
| #endif | ||||
| } | ||||
| EXPORT_SYMBOL(clock_t_to_jiffies); | ||||
| 
 | ||||
| u64 jiffies_64_to_clock_t(u64 x) | ||||
| { | ||||
| #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0 | ||||
| # if HZ < USER_HZ | ||||
| 	x = div_u64(x * USER_HZ, HZ); | ||||
| # elif HZ > USER_HZ | ||||
| 	x = div_u64(x, HZ / USER_HZ); | ||||
| # else | ||||
| 	/* Nothing to do */ | ||||
| # endif | ||||
| #else | ||||
| 	/*
 | ||||
| 	 * There are better ways that don't overflow early, | ||||
| 	 * but even this doesn't overflow in hundreds of years | ||||
| 	 * in 64 bits, so.. | ||||
| 	 */ | ||||
| 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ)); | ||||
| #endif | ||||
| 	return x; | ||||
| } | ||||
| EXPORT_SYMBOL(jiffies_64_to_clock_t); | ||||
| 
 | ||||
| u64 nsec_to_clock_t(u64 x) | ||||
| { | ||||
| #if (NSEC_PER_SEC % USER_HZ) == 0 | ||||
| 	return div_u64(x, NSEC_PER_SEC / USER_HZ); | ||||
| #elif (USER_HZ % 512) == 0 | ||||
| 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512); | ||||
| #else | ||||
| 	/*
 | ||||
|          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024, | ||||
|          * overflow after 64.99 years. | ||||
|          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ... | ||||
|          */ | ||||
| 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ); | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| /**
 | ||||
|  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64 | ||||
|  * | ||||
|  * @n:	nsecs in u64 | ||||
|  * | ||||
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. | ||||
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed | ||||
|  * for scheduler, not for use in device drivers to calculate timeout value. | ||||
|  * | ||||
|  * note: | ||||
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) | ||||
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years | ||||
|  */ | ||||
| u64 nsecs_to_jiffies64(u64 n) | ||||
| { | ||||
| #if (NSEC_PER_SEC % HZ) == 0 | ||||
| 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */ | ||||
| 	return div_u64(n, NSEC_PER_SEC / HZ); | ||||
| #elif (HZ % 512) == 0 | ||||
| 	/* overflow after 292 years if HZ = 1024 */ | ||||
| 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512); | ||||
| #else | ||||
| 	/*
 | ||||
| 	 * Generic case - optimized for cases where HZ is a multiple of 3. | ||||
| 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc. | ||||
| 	 */ | ||||
| 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ); | ||||
| #endif | ||||
| } | ||||
| 
 | ||||
| /**
 | ||||
|  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies | ||||
|  * | ||||
|  * @n:	nsecs in u64 | ||||
|  * | ||||
|  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64. | ||||
|  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed | ||||
|  * for scheduler, not for use in device drivers to calculate timeout value. | ||||
|  * | ||||
|  * note: | ||||
|  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512) | ||||
|  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years | ||||
|  */ | ||||
| unsigned long nsecs_to_jiffies(u64 n) | ||||
| { | ||||
| 	return (unsigned long)nsecs_to_jiffies64(n); | ||||
| } | ||||
| EXPORT_SYMBOL_GPL(nsecs_to_jiffies); | ||||
| 
 | ||||
| /*
 | ||||
|  * Add two timespec values and do a safety check for overflow. | ||||
|  * It's assumed that both values are valid (>= 0) | ||||
|  */ | ||||
| struct timespec timespec_add_safe(const struct timespec lhs, | ||||
| 				  const struct timespec rhs) | ||||
| { | ||||
| 	struct timespec res; | ||||
| 
 | ||||
| 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec, | ||||
| 				lhs.tv_nsec + rhs.tv_nsec); | ||||
| 
 | ||||
| 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec) | ||||
| 		res.tv_sec = TIME_T_MAX; | ||||
| 
 | ||||
| 	return res; | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue
	
	 awab228
						awab228