/* * max77823_fuelgauge.c * Samsung MAX77823 Fuel Gauge Driver * * Copyright (C) 2012 Samsung Electronics * * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define DEBUG #include #include #include #include static enum power_supply_property max77823_fuelgauge_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_VOLTAGE_AVG, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CURRENT_AVG, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TEMP_AMBIENT, }; #ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING static void max77823_init_regs(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_FILTERCFG, data) < 0) return; /* Clear average vcell (12 sec) */ data[0] &= 0x8f; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_FILTERCFG, data); } static void max77823_get_version(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VERSION, data) < 0) return; pr_debug("MAX77823 Fuel-Gauge Ver %d%d\n", data[0], data[1]); } static void max77823_alert_init(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; /* SALRT Threshold setting */ data[0] = fuelgauge->pdata->fuel_alert_soc; data[1] = 0xff; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_SALRT_TH, data); /* VALRT Threshold setting */ data[0] = 0x00; data[1] = 0xff; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_VALRT_TH, data); /* TALRT Threshold setting */ data[0] = 0x80; data[1] = 0x7f; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_TALRT_TH, data); } static bool max77823_check_status(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; bool ret = false; /* check if Smn was generated */ if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_STATUS, data) < 0) return ret; pr_info("%s: status_reg(%02x%02x)\n", __func__, data[1], data[0]); /* minimum SOC threshold exceeded. */ if (data[1] & (0x1 << 2)) ret = true; /* clear status reg */ if (!ret) { data[1] = 0; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_STATUS, data); msleep(200); } return ret; } static int max77823_set_temperature(struct max77823_fuelgauge_data *fuelgauge, int temperature) { u8 data[2]; data[0] = 0; data[1] = temperature; max77823_write_reg(fuelgauge->i2c, MAX77823_REG_TEMPERATURE, data); pr_debug("%s: temperature to (%d)\n", __func__, temperature); return temperature; } static int max77823_get_temperature(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; s32 temperature = 0; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_TEMPERATURE, data) < 0) return -ERANGE; /* data[] store 2's compliment format number */ if (data[1] & (0x1 << 7)) { /* Negative */ temperature = ((~(data[1])) & 0xFF) + 1; temperature *= (-1000); } else { temperature = data[1] & 0x7F; temperature *= 1000; temperature += data[0] * 39 / 10; } pr_debug("%s: temperature (%d)\n", __func__, temperature); return temperature; } /* soc should be 0.01% unit */ static int max77823_get_soc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int soc; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_SOC_VF, data) < 0) return -EINVAL; soc = ((data[1] * 100) + (data[0] * 100 / 256)); pr_debug("%s: raw capacity (%d)\n", __func__, soc); return min(soc, 10000); } static int max77823_get_vfocv(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 vfocv = 0; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VFOCV, data) < 0) return -EINVAL; vfocv = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s: vfocv (%d)\n", __func__, vfocv); return vfocv; } static int max77823_get_vcell(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 vcell = 0; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VCELL, data) < 0) return -EINVAL; vcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s: vcell (%d)\n", __func__, vcell); return vcell; } static int max77823_get_avgvcell(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 avgvcell = 0; if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_AVGVCELL, data) < 0) return -EINVAL; avgvcell = ((data[0] >> 3) + (data[1] << 5)) * 625 / 1000; pr_debug("%s: avgvcell (%d)\n", __func__, avgvcell); return avgvcell; } bool max77823_fg_init(struct max77823_fuelgauge_data *fuelgauge) { /* initialize fuel gauge registers */ max77823_init_regs(fuelgauge); max77823_get_version(fuelgauge); return true; } bool max77823_fg_fuelalert_init(struct max77823_fuelgauge_data *fuelgauge, int soc) { u8 data[2]; /* 1. Set max77823 alert configuration. */ max77823_alert_init(fuelgauge); if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data) < 0) return -1; /*Enable Alert (Aen = 1) */ data[0] |= (0x1 << 2); max77823_write_reg(fuelgauge, MAX77823_REG_CONFIG, data); pr_debug("%s: config_reg(%02x%02x) irq(%d)\n", __func__, data[1], data[0], fuelgauge->pdata->fg_irq); return true; } bool max77823_fg_is_fuelalerted(struct max77823_fuelgauge_data *fuelgauge) { return max77823_check_status(fuelgauge); } bool max77823_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted) { struct max77823_fuelgauge_data *fuelgauge = irq_data; u8 data[2]; /* update SOC */ /* max77823_get_soc(fuelgauge); */ if (is_fuel_alerted) { if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data) < 0) return false; data[1] |= (0x1 << 3); max77823_write_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data); pr_info("%s: Fuel-alert Alerted!! (%02x%02x)\n", __func__, data[1], data[0]); } else { if (max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data) < 0) return false; data[1] &= (~(0x1 << 3)); max77823_write_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data); pr_info("%s: Fuel-alert Released!! (%02x%02x)\n", __func__, data[1], data[0]); } max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VCELL, data); pr_debug("%s: MAX77823_REG_VCELL(%02x%02x)\n", __func__, data[1], data[0]); max77823_read_reg(fuelgauge->i2c, MAX77823_REG_TEMPERATURE, data); pr_debug("%s: MAX77823_REG_TEMPERATURE(%02x%02x)\n", __func__, data[1], data[0]); max77823_read_reg(fuelgauge->i2c, MAX77823_REG_CONFIG, data); pr_debug("%s: MAX77823_REG_CONFIG(%02x%02x)\n", __func__, data[1], data[0]); max77823_read_reg(fuelgauge->i2c, MAX77823_REG_VFOCV, data); pr_debug("%s: MAX77823_REG_VFOCV(%02x%02x)\n", __func__, data[1], data[0]); max77823_read_reg(fuelgauge->i2c, MAX77823_REG_SOC_VF, data); pr_debug("%s: MAX77823_REG_SOC_VF(%02x%02x)\n", __func__, data[1], data[0]); pr_debug("%s: FUEL GAUGE IRQ (%d)\n", __func__, gpio_get_value(fuelgauge->pdata->fg_irq)); return true; } bool max77823_fg_full_charged(struct max77823_fuelgauge_data *fuelgauge) { return true; } #endif #ifdef CONFIG_FUELGAUGE_MAX77823_COULOMB_COUNTING static void fg_test_print(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 average_vcell; u16 w_data; u32 temp; u32 temp2; u16 reg_data; if (max77823_bulk_write(fuelgauge->i2c, AVR_VCELL_REG, 2, data) < 0) { pr_err("%s: Failed to read VCELL\n", __func__); return; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; average_vcell = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; average_vcell += (temp2 << 4); pr_info("%s: AVG_VCELL(%d), data(0x%04x)\n", __func__, average_vcell, (data[1]<<8) | data[0]); reg_data = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); pr_info("%s: FULLCAP(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG); pr_info("%s: REMCAP_REP(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_MIX_REG); pr_info("%s: REMCAP_MIX(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = max77823_read_word(fuelgauge->i2c, REMCAP_AV_REG); pr_info("%s: REMCAP_AV(%d), data(0x%04x)\n", __func__, reg_data/2, reg_data); reg_data = max77823_read_word(fuelgauge->i2c, CONFIG_REG); pr_info("%s: CONFIG_REG(0x%02x), data(0x%04x)\n", __func__, CONFIG_REG, reg_data); } static void fg_periodic_read(struct max77823_fuelgauge_data *fuelgauge) { u8 reg; int i; int data[0x10]; char *str = NULL; str = kzalloc(sizeof(char)*1024, GFP_KERNEL); if (!str) return; for (i = 0; i < 16; i++) { for (reg = 0; reg < 0x10; reg++) data[reg] = max77823_read_word(fuelgauge->i2c, reg + i * 0x10); sprintf(str+strlen(str), "%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x00], data[0x01], data[0x02], data[0x03], data[0x04], data[0x05], data[0x06], data[0x07]); sprintf(str+strlen(str), "%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,%04xh,", data[0x08], data[0x09], data[0x0a], data[0x0b], data[0x0c], data[0x0d], data[0x0e], data[0x0f]); if (i == 4) i = 13; } pr_info("%s", str); kfree(str); } static int fg_read_vcell(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 vcell; u16 w_data; u32 temp; u32 temp2; if (max77823_bulk_read(fuelgauge->i2c, VCELL_REG, 2, data) < 0) { pr_err("%s: Failed to read VCELL\n", __func__); return -1; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; vcell = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; vcell += (temp2 << 4); if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_info("%s: VCELL(%d), data(0x%04x)\n", __func__, vcell, (data[1]<<8) | data[0]); return vcell; } static int fg_read_vfocv(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 vfocv = 0; u16 w_data; u32 temp; u32 temp2; if (max77823_bulk_read(fuelgauge->i2c, VFOCV_REG, 2, data) < 0) { pr_err("%s: Failed to read VFOCV\n", __func__); return -1; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; vfocv = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; vfocv += (temp2 << 4); return vfocv; } static int fg_read_avg_vcell(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; u32 avg_vcell = 0; u16 w_data; u32 temp; u32 temp2; if (max77823_bulk_read(fuelgauge->i2c, AVR_VCELL_REG, 2, data) < 0) { pr_err("%s: Failed to read AVG_VCELL\n", __func__); return -1; } w_data = (data[1]<<8) | data[0]; temp = (w_data & 0xFFF) * 78125; avg_vcell = temp / 1000000; temp = ((w_data & 0xF000) >> 4) * 78125; temp2 = temp / 1000000; avg_vcell += (temp2 << 4); return avg_vcell; } static int fg_check_battery_present(struct max77823_fuelgauge_data *fuelgauge) { u8 status_data[2]; int ret = 1; /* 1. Check Bst bit */ if (max77823_bulk_read(fuelgauge->i2c, STATUS_REG, 2, status_data) < 0) { pr_err("%s: Failed to read STATUS_REG\n", __func__); return 0; } if (status_data[0] & (0x1 << 3)) { pr_info("%s: addr(0x01), data(0x%04x)\n", __func__, (status_data[1]<<8) | status_data[0]); pr_info("%s: battery is absent!!\n", __func__); ret = 0; } return ret; } static int fg_write_temp(struct max77823_fuelgauge_data *fuelgauge, int temperature) { u8 data[2]; data[0] = (temperature%10) * 1000 / 39; data[1] = temperature / 10; max77823_bulk_read(fuelgauge->i2c, TEMPERATURE_REG, 2, data); pr_debug("%s: temperature to (%d, 0x%02x%02x)\n", __func__, temperature, data[1], data[0]); return temperature; } static int fg_read_temp(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2] = {0, 0}; int temper = 0; if (fg_check_battery_present(fuelgauge)) { if (max77823_bulk_read(fuelgauge->i2c, TEMPERATURE_REG, 2, data) < 0) { pr_err("%s: Failed to read TEMPERATURE_REG\n", __func__); return -1; } if (data[1]&(0x1 << 7)) { temper = ((~(data[1]))&0xFF)+1; temper *= (-1000); temper -= ((~((int)data[0]))+1) * 39 / 10; } else { temper = data[1] & 0x7f; temper *= 1000; temper += data[0] * 39 / 10; } } else temper = 20000; if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_info("%s: TEMPERATURE(%d), data(0x%04x)\n", __func__, temper, (data[1]<<8) | data[0]); return temper/100; } /* soc should be 0.1% unit */ static int fg_read_vfsoc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int soc; if (max77823_bulk_read(fuelgauge->i2c, VFSOC_REG, 2, data) < 0) { pr_err("%s: Failed to read VFSOC\n", __func__); return -1; } soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; return min(soc, 1000); } /* soc should be 0.1% unit */ static int fg_read_avsoc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int soc; if (max77823_bulk_read(fuelgauge->i2c, SOCAV_REG, 2, data) < 0) { pr_err("%s: Failed to read AVSOC\n", __func__); return -1; } soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; return min(soc, 1000); } /* soc should be 0.1% unit */ static int fg_read_soc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int soc; if (max77823_bulk_read(fuelgauge->i2c, SOCREP_REG, 2, data) < 0) { pr_err("%s: Failed to read SOCREP\n", __func__); return -1; } soc = ((data[1] * 100) + (data[0] * 100 / 256)) / 10; pr_debug("%s: raw capacity (%d)\n", __func__, soc); if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_debug("%s: raw capacity (%d), data(0x%04x)\n", __func__, soc, (data[1]<<8) | data[0]); return min(soc, 1000); } /* soc should be 0.01% unit */ static int fg_read_rawsoc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int soc; if (max77823_bulk_read(fuelgauge->i2c, SOCREP_REG, 2, data) < 0) { pr_err("%s: Failed to read SOCREP\n", __func__); return -1; } soc = (data[1] * 100) + (data[0] * 100 / 256); pr_debug("%s: raw capacity (0.01%%) (%d)\n", __func__, soc); if (!(fuelgauge->info.pr_cnt % PRINT_COUNT)) pr_debug("%s: raw capacity (%d), data(0x%04x)\n", __func__, soc, (data[1]<<8) | data[0]); return min(soc, 10000); } static int fg_read_fullcap(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int ret; if (max77823_bulk_read(fuelgauge->i2c, FULLCAP_REG, 2, data) < 0) { pr_err("%s: Failed to read FULLCAP\n", __func__); return -1; } ret = (data[1] << 8) + data[0]; return ret; } static int fg_read_mixcap(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int ret; if (max77823_bulk_read(fuelgauge->i2c, REMCAP_MIX_REG, 2, data) < 0) { pr_err("%s: Failed to read REMCAP_MIX_REG\n", __func__); return -1; } ret = (data[1] << 8) + data[0]; return ret; } static int fg_read_avcap(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int ret; if (max77823_bulk_read(fuelgauge->i2c, REMCAP_AV_REG, 2, data) < 0) { pr_err("%s: Failed to read REMCAP_AV_REG\n", __func__); return -1; } ret = (data[1] << 8) + data[0]; return ret; } static int fg_read_repcap(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int ret; if (max77823_bulk_read(fuelgauge->i2c, REMCAP_REP_REG, 2, data) < 0) { pr_err("%s: Failed to read REMCAP_REP_REG\n", __func__); return -1; } ret = (data[1] << 8) + data[0]; return ret; } static int fg_read_current(struct max77823_fuelgauge_data *fuelgauge, int unit) { u8 data1[2], data2[2]; u32 temp, sign; s32 i_current; s32 avg_current; if (max77823_bulk_read(fuelgauge->i2c, CURRENT_REG, 2, data1) < 0) { pr_err("%s: Failed to read CURRENT\n", __func__); return -1; } if (max77823_bulk_read(fuelgauge->i2c, AVG_CURRENT_REG, 2, data2) < 0) { pr_err("%s: Failed to read AVERAGE CURRENT\n", __func__); return -1; } temp = ((data1[1]<<8) | data1[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ switch (unit) { case SEC_BATTEY_CURRENT_UA: i_current = temp * 15625 / 100; break; case SEC_BATTEY_CURRENT_MA: default: i_current = temp * 15625 / 100000; } if (sign) i_current *= -1; temp = ((data2[1]<<8) | data2[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ avg_current = temp * 15625 / 100000; if (sign) avg_current *= -1; if (!(fuelgauge->info.pr_cnt++ % PRINT_COUNT)) { fg_test_print(fuelgauge); pr_info("%s: CURRENT(%dmA), AVG_CURRENT(%dmA)\n", __func__, i_current, avg_current); fuelgauge->info.pr_cnt = 1; /* Read max77823's all registers every 5 minute. */ fg_periodic_read(fuelgauge); } return i_current; } static int fg_read_avg_current(struct max77823_fuelgauge_data *fuelgauge, int unit) { u8 data2[2]; u32 temp, sign; s32 avg_current; if (max77823_bulk_read(fuelgauge->i2c, AVG_CURRENT_REG, 2, data2) < 0) { pr_err("%s: Failed to read AVERAGE CURRENT\n", __func__); return -1; } temp = ((data2[1]<<8) | data2[0]) & 0xFFFF; if (temp & (0x1 << 15)) { sign = NEGATIVE; temp = (~temp & 0xFFFF) + 1; } else sign = POSITIVE; /* 1.5625uV/0.01Ohm(Rsense) = 156.25uA */ switch (unit) { case SEC_BATTEY_CURRENT_UA: avg_current = temp * 15625 / 100; break; case SEC_BATTEY_CURRENT_MA: default: avg_current = temp * 15625 / 100000; } if (sign) avg_current *= -1; return avg_current; } int fg_reset_soc(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; int vfocv, fullcap; /* delay for current stablization */ msleep(500); pr_info("%s: Before quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vcell(fuelgauge), fg_read_vfocv(fuelgauge), fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge)); pr_info("%s: Before quick-start - current(%d), avg current(%d)\n", __func__, fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA), fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA)); if (fuelgauge->pdata->check_jig_status || !fuelgauge->pdata->check_jig_status()) { pr_info("%s : Return by No JIG_ON signal\n", __func__); return 0; } max77823_write_word(fuelgauge->i2c, CYCLES_REG, 0); if (max77823_bulk_read(fuelgauge->i2c, MISCCFG_REG, 2, data) < 0) { pr_err("%s: Failed to read MiscCFG\n", __func__); return -1; } data[1] |= (0x1 << 2); if (max77823_bulk_write(fuelgauge->i2c, MISCCFG_REG, 2, data) < 0) { pr_err("%s: Failed to write MiscCFG\n", __func__); return -1; } msleep(250); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, fuelgauge->battery_data->Capacity); msleep(500); pr_info("%s: After quick-start - VCELL(%d), VFOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vcell(fuelgauge), fg_read_vfocv(fuelgauge), fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge)); pr_info("%s: After quick-start - current(%d), avg current(%d)\n", __func__, fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA), fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA)); max77823_write_word(fuelgauge->i2c, CYCLES_REG, 0x00a0); /* P8 is not turned off by Quickstart @3.4V * (It's not a problem, depend on mode data) * Power off for factory test(File system, etc..) */ vfocv = fg_read_vfocv(fuelgauge); if (vfocv < POWER_OFF_VOLTAGE_LOW_MARGIN) { pr_info("%s: Power off condition(%d)\n", __func__, vfocv); fullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); /* FullCAP * 0.009 */ max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(fullcap * 9 / 1000)); msleep(200); pr_info("%s: new soc=%d, vfocv=%d\n", __func__, fg_read_soc(fuelgauge), vfocv); } pr_info("%s: Additional step - VfOCV(%d), VfSOC(%d), RepSOC(%d)\n", __func__, fg_read_vfocv(fuelgauge), fg_read_vfsoc(fuelgauge), fg_read_soc(fuelgauge)); return 0; } int fg_reset_capacity_by_jig_connection(struct max77823_fuelgauge_data *fuelgauge) { pr_info("%s: DesignCap = Capacity - 1 (Jig Connection)\n", __func__); return max77823_write_word(fuelgauge->i2c, DESIGNCAP_REG, fuelgauge->battery_data->Capacity-1); } int fg_adjust_capacity(struct max77823_fuelgauge_data *fuelgauge) { u8 data[2]; data[0] = 0; data[1] = 0; /* 1. Write RemCapREP(05h)=0; */ if (max77823_bulk_write(fuelgauge->i2c, REMCAP_REP_REG, 2, data) < 0) { pr_err("%s: Failed to write RemCap_REP\n", __func__); return -1; } msleep(200); pr_info("%s: After adjust - RepSOC(%d)\n", __func__, fg_read_soc(fuelgauge)); return 0; } void fg_low_batt_compensation(struct max77823_fuelgauge_data *fuelgauge, u32 level) { int read_val; u32 temp; pr_info("%s: Adjust SOCrep to %d!!\n", __func__, level); read_val = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); /* RemCapREP (05h) = FullCap(10h) x 0.0090 */ temp = read_val * (level*90) / 10000; max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)temp); } static int fg_check_status_reg(struct max77823_fuelgauge_data *fuelgauge) { u8 status_data[2]; int ret = 0; /* 1. Check Smn was generatedread */ if (max77823_bulk_read(fuelgauge->i2c, STATUS_REG, 2, status_data) < 0) { pr_err("%s: Failed to read STATUS_REG\n", __func__); return -1; } pr_info("%s: addr(0x00), data(0x%04x)\n", __func__, (status_data[1]<<8) | status_data[0]); if (status_data[1] & (0x1 << 2)) ret = 1; /* 2. clear Status reg */ status_data[1] = 0; if (max77823_bulk_write(fuelgauge->i2c, STATUS_REG, 2, status_data) < 0) { pr_info("%s: Failed to write STATUS_REG\n", __func__); return -1; } return ret; } int get_fuelgauge_value(struct max77823_fuelgauge_data *fuelgauge, int data) { int ret; switch (data) { case FG_LEVEL: ret = fg_read_soc(fuelgauge); break; case FG_TEMPERATURE: ret = fg_read_temp(fuelgauge); break; case FG_VOLTAGE: ret = fg_read_vcell(fuelgauge); break; case FG_CURRENT: ret = fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_MA); break; case FG_CURRENT_AVG: ret = fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA); break; case FG_CHECK_STATUS: ret = fg_check_status_reg(fuelgauge); break; case FG_RAW_SOC: ret = fg_read_rawsoc(fuelgauge); break; case FG_VF_SOC: ret = fg_read_vfsoc(fuelgauge); break; case FG_AV_SOC: ret = fg_read_avsoc(fuelgauge); break; case FG_FULLCAP: ret = fg_read_fullcap(fuelgauge); break; case FG_MIXCAP: ret = fg_read_mixcap(fuelgauge); break; case FG_AVCAP: ret = fg_read_avcap(fuelgauge); break; case FG_REPCAP: ret = fg_read_repcap(fuelgauge); break; default: ret = -1; break; } return ret; } int max77823_alert_init(struct max77823_fuelgauge_data *fuelgauge, int soc) { u8 misccgf_data[2]; u8 salrt_data[2]; u8 config_data[2]; u8 valrt_data[2]; u8 talrt_data[2]; u16 read_data = 0; /* Using RepSOC */ if (max77823_bulk_read(fuelgauge->i2c, MISCCFG_REG, 2, misccgf_data) < 0) { pr_err("%s: Failed to read MISCCFG_REG\n", __func__); return -1; } misccgf_data[0] = misccgf_data[0] & ~(0x03); if (max77823_bulk_write(fuelgauge->i2c, MISCCFG_REG, 2, misccgf_data) < 0) { pr_info("%s: Failed to write MISCCFG_REG\n", __func__); return -1; } /* SALRT Threshold setting */ salrt_data[1] = 0xff; salrt_data[0] = soc; if (max77823_bulk_write(fuelgauge->i2c, SALRT_THRESHOLD_REG, 2, salrt_data) < 0) { pr_info("%s: Failed to write SALRT_THRESHOLD_REG\n", __func__); return -1; } /* Reset VALRT Threshold setting (disable) */ valrt_data[1] = 0xFF; valrt_data[0] = 0x00; if (max77823_bulk_write(fuelgauge->i2c, VALRT_THRESHOLD_REG, 2, valrt_data) < 0) { pr_info("%s: Failed to write VALRT_THRESHOLD_REG\n", __func__); return -1; } read_data = max77823_read_word(fuelgauge->i2c, (u8)VALRT_THRESHOLD_REG); if (read_data != 0xff00) pr_err("%s: VALRT_THRESHOLD_REG is not valid (0x%x)\n", __func__, read_data); /* Reset TALRT Threshold setting (disable) */ talrt_data[1] = 0x7F; talrt_data[0] = 0x80; if (max77823_bulk_write(fuelgauge->i2c, TALRT_THRESHOLD_REG, 2, talrt_data) < 0) { pr_info("%s: Failed to write TALRT_THRESHOLD_REG\n", __func__); return -1; } read_data = max77823_read_word(fuelgauge->i2c, (u8)TALRT_THRESHOLD_REG); if (read_data != 0x7f80) pr_err("%s: TALRT_THRESHOLD_REG is not valid (0x%x)\n", __func__, read_data); /*mdelay(100);*/ /* Enable SOC alerts */ if (max77823_bulk_read(fuelgauge->i2c, CONFIG_REG, 2, config_data) < 0) { pr_err("%s: Failed to read CONFIG_REG\n", __func__); return -1; } config_data[0] = config_data[0] | (0x1 << 2); if (max77823_bulk_write(fuelgauge->i2c, CONFIG_REG, 2, config_data) < 0) { pr_info("%s: Failed to write CONFIG_REG\n", __func__); return -1; } pr_info("[%s] SALRT(0x%x%x), VALRT(0x%x%x), CONFIG(0x%x%x)\n", __func__, salrt_data[1], salrt_data[0], valrt_data[1], valrt_data[0], config_data[1], config_data[0]); return 1; } void fg_fullcharged_compensation(struct max77823_fuelgauge_data *fuelgauge, u32 is_recharging, bool pre_update) { static int new_fullcap_data; pr_info("%s: is_recharging(%d), pre_update(%d)\n", __func__, is_recharging, pre_update); new_fullcap_data = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); if (new_fullcap_data < 0) new_fullcap_data = fuelgauge->battery_data->Capacity; /* compare with initial capacity */ if (new_fullcap_data > (fuelgauge->battery_data->Capacity * 110 / 100)) { pr_info("%s: [Case 1] capacity = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->battery_data->Capacity, new_fullcap_data); new_fullcap_data = (fuelgauge->battery_data->Capacity * 110) / 100; max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(new_fullcap_data)); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, (u16)(new_fullcap_data)); } else if (new_fullcap_data < (fuelgauge->battery_data->Capacity * 50 / 100)) { pr_info("%s: [Case 5] capacity = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->battery_data->Capacity, new_fullcap_data); new_fullcap_data = (fuelgauge->battery_data->Capacity * 50) / 100; max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(new_fullcap_data)); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, (u16)(new_fullcap_data)); } else { /* compare with previous capacity */ if (new_fullcap_data > (fuelgauge->info.previous_fullcap * 110 / 100)) { pr_info("%s: [Case 2] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.previous_fullcap * 110) / 100; max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(new_fullcap_data)); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, (u16)(new_fullcap_data)); } else if (new_fullcap_data < (fuelgauge->info.previous_fullcap * 90 / 100)) { pr_info("%s: [Case 3] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); new_fullcap_data = (fuelgauge->info.previous_fullcap * 90) / 100; max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(new_fullcap_data)); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, (u16)(new_fullcap_data)); } else { pr_info("%s: [Case 4] previous_fullcap = 0x%04x, NewFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_fullcap, new_fullcap_data); } } /* 4. Write RepSOC(06h)=100%; */ max77823_write_word(fuelgauge->i2c, SOCREP_REG, (u16)(0x64 << 8)); /* 5. Write MixSOC(0Dh)=100%; */ max77823_write_word(fuelgauge->i2c, SOCMIX_REG, (u16)(0x64 << 8)); /* 6. Write AVSOC(0Eh)=100%; */ max77823_write_word(fuelgauge->i2c, SOCAV_REG, (u16)(0x64 << 8)); /* if pre_update case, skip updating PrevFullCAP value. */ if (!pre_update) fuelgauge->info.previous_fullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); pr_info("%s: (A) FullCap = 0x%04x, RemCap = 0x%04x\n", __func__, max77823_read_word(fuelgauge->i2c, FULLCAP_REG), max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)); fg_periodic_read(fuelgauge); } void fg_check_vf_fullcap_range(struct max77823_fuelgauge_data *fuelgauge) { static int new_vffullcap; bool is_vffullcap_changed = true; if (fuelgauge->pdata->check_jig_status && fuelgauge->pdata->check_jig_status()) fg_reset_capacity_by_jig_connection(fuelgauge); new_vffullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG); if (new_vffullcap < 0) new_vffullcap = fuelgauge->battery_data->Capacity; pr_info("[%s]vffullcap = %d\n", __func__, new_vffullcap); /* compare with initial capacity */ if (new_vffullcap > (fuelgauge->battery_data->Capacity * 110 / 100)) { pr_info("%s: [Case 1] capacity = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->battery_data->Capacity, new_vffullcap); new_vffullcap = (fuelgauge->battery_data->Capacity * 110) / 100; max77823_write_word(fuelgauge->i2c, DQACC_REG, (u16)(new_vffullcap / 4)); max77823_write_word(fuelgauge->i2c, DPACC_REG, (u16)0x3200); } else if (new_vffullcap < (fuelgauge->battery_data->Capacity * 50 / 100)) { pr_info("%s: [Case 5] capacity = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->battery_data->Capacity, new_vffullcap); new_vffullcap = (fuelgauge->battery_data->Capacity * 50) / 100; max77823_write_word(fuelgauge->i2c, DQACC_REG, (u16)(new_vffullcap / 4)); max77823_write_word(fuelgauge->i2c, DPACC_REG, (u16)0x3200); } else { /* compare with previous capacity */ if (new_vffullcap > (fuelgauge->info.previous_vffullcap * 110 / 100)) { pr_info("%s: [Case 2] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.previous_vffullcap * 110) / 100; max77823_write_word(fuelgauge->i2c, DQACC_REG, (u16)(new_vffullcap / 4)); max77823_write_word(fuelgauge->i2c, DPACC_REG, (u16)0x3200); } else if (new_vffullcap < (fuelgauge->info.previous_vffullcap * 90 / 100)) { pr_info("%s: [Case 3] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); new_vffullcap = (fuelgauge->info.previous_vffullcap * 90) / 100; max77823_write_word(fuelgauge->i2c, DQACC_REG, (u16)(new_vffullcap / 4)); max77823_write_word(fuelgauge->i2c, DPACC_REG, (u16)0x3200); } else { pr_info("%s: [Case 4] previous_vffullcap = 0x%04x, NewVfFullCap = 0x%04x\n", __func__, fuelgauge->info.previous_vffullcap, new_vffullcap); is_vffullcap_changed = false; } } /* delay for register setting (dQacc, dPacc) */ if (is_vffullcap_changed) msleep(300); fuelgauge->info.previous_vffullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG); if (is_vffullcap_changed) pr_info("%s : VfFullCap(0x%04x), dQacc(0x%04x), dPacc(0x%04x)\n", __func__, max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG), max77823_read_word(fuelgauge->i2c, DQACC_REG), max77823_read_word(fuelgauge->i2c, DPACC_REG)); } void fg_set_full_charged(struct max77823_fuelgauge_data *fuelgauge) { pr_info("[FG_Set_Full] (B) FullCAP(%d), RemCAP(%d)\n", (max77823_read_word(fuelgauge->i2c, FULLCAP_REG)/2), (max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)/2)); max77823_write_word(fuelgauge->i2c, FULLCAP_REG, (u16)max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)); pr_info("[FG_Set_Full] (A) FullCAP(%d), RemCAP(%d)\n", (max77823_read_word(fuelgauge->i2c, FULLCAP_REG)/2), (max77823_read_word(fuelgauge->i2c, REMCAP_REP_REG)/2)); } static void display_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge) { pr_info("[%d, %d], [%d, %d], ", fuelgauge->info.low_batt_comp_cnt[0][0], fuelgauge->info.low_batt_comp_cnt[0][1], fuelgauge->info.low_batt_comp_cnt[1][0], fuelgauge->info.low_batt_comp_cnt[1][1]); pr_info("[%d, %d], [%d, %d], [%d, %d]\n", fuelgauge->info.low_batt_comp_cnt[2][0], fuelgauge->info.low_batt_comp_cnt[2][1], fuelgauge->info.low_batt_comp_cnt[3][0], fuelgauge->info.low_batt_comp_cnt[3][1], fuelgauge->info.low_batt_comp_cnt[4][0], fuelgauge->info.low_batt_comp_cnt[4][1]); } static void add_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge, int range, int level) { int i; int j; /* Increase the requested count value, and reset others. */ fuelgauge->info.low_batt_comp_cnt[range-1][level/2]++; for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) { for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) { if (i == range-1 && j == level/2) continue; else fuelgauge->info.low_batt_comp_cnt[i][j] = 0; } } } void prevent_early_poweroff(struct max77823_fuelgauge_data *fuelgauge, int vcell, int *fg_soc) { int soc = 0; int read_val; soc = fg_read_soc(fuelgauge); /* No need to write REMCAP_REP in below normal cases */ if (soc > POWER_OFF_SOC_HIGH_MARGIN || vcell > fuelgauge->battery_data->low_battery_comp_voltage) return; pr_info("%s: soc=%d, vcell=%d\n", __func__, soc, vcell); if (vcell > POWER_OFF_VOLTAGE_HIGH_MARGIN) { read_val = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); /* FullCAP * 0.013 */ max77823_write_word(fuelgauge->i2c, REMCAP_REP_REG, (u16)(read_val * 13 / 1000)); msleep(200); *fg_soc = fg_read_soc(fuelgauge); pr_info("%s: new soc=%d, vcell=%d\n", __func__, *fg_soc, vcell); } } void reset_low_batt_comp_cnt(struct max77823_fuelgauge_data *fuelgauge) { memset(fuelgauge->info.low_batt_comp_cnt, 0, sizeof(fuelgauge->info.low_batt_comp_cnt)); } static int check_low_batt_comp_condition( struct max77823_fuelgauge_data *fuelgauge, int *nLevel) { int i; int j; int ret = 0; for (i = 0; i < LOW_BATT_COMP_RANGE_NUM; i++) { for (j = 0; j < LOW_BATT_COMP_LEVEL_NUM; j++) { if (fuelgauge->info.low_batt_comp_cnt[i][j] >= MAX_LOW_BATT_CHECK_CNT) { display_low_batt_comp_cnt(fuelgauge); ret = 1; *nLevel = j*2 + 1; break; } } } return ret; } static int get_low_batt_threshold(struct max77823_fuelgauge_data *fuelgauge, int range, int nCurrent, int level) { int ret = 0; ret = fuelgauge->battery_data->low_battery_table[range][OFFSET] + ((nCurrent * fuelgauge->battery_data->low_battery_table[range][SLOPE]) / 1000); return ret; } int low_batt_compensation(struct max77823_fuelgauge_data *fuelgauge, int fg_soc, int fg_vcell, int fg_current) { int fg_avg_current = 0; int fg_min_current = 0; int new_level = 0; int i, table_size; /* Not charging, Under low battery comp voltage */ if (fg_vcell <= fuelgauge->battery_data->low_battery_comp_voltage) { fg_avg_current = fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_MA); fg_min_current = min(fg_avg_current, fg_current); table_size = sizeof(fuelgauge->battery_data->low_battery_table) / (sizeof(s16)*TABLE_MAX); for (i = 1; i < CURRENT_RANGE_MAX_NUM; i++) { if ((fg_min_current >= fuelgauge->battery_data-> low_battery_table[i-1][RANGE]) && (fg_min_current < fuelgauge->battery_data-> low_battery_table[i][RANGE])) { if (fg_soc >= 10 && fg_vcell < get_low_batt_threshold(fuelgauge, i, fg_min_current, 1)) { add_low_batt_comp_cnt( fuelgauge, i, 1); } else { reset_low_batt_comp_cnt(fuelgauge); } } } if (check_low_batt_comp_condition(fuelgauge, &new_level)) { fg_low_batt_compensation(fuelgauge, new_level); reset_low_batt_comp_cnt(fuelgauge); /* Do not update soc right after * low battery compensation * to prevent from powering-off suddenly */ pr_info("%s: SOC is set to %d by low compensation!!\n", __func__, fg_read_soc(fuelgauge)); } } /* Prevent power off over 3500mV */ prevent_early_poweroff(fuelgauge, fg_vcell, &fg_soc); return fg_soc; } static bool is_booted_in_low_battery(struct max77823_fuelgauge_data *fuelgauge) { int fg_vcell = get_fuelgauge_value(fuelgauge, FG_VOLTAGE); int fg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT); int threshold = 0; threshold = 3300 + ((fg_current * 17) / 100); if (fg_vcell <= threshold) return true; else return false; } static bool fuelgauge_recovery_handler(struct max77823_fuelgauge_data *fuelgauge) { int current_soc; int avsoc; int temperature; if (fuelgauge->info.soc >= LOW_BATTERY_SOC_REDUCE_UNIT) { pr_err("%s: Reduce the Reported SOC by 1%%\n", __func__); current_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL) / 10; if (current_soc) { pr_info("%s: Returning to Normal discharge path\n", __func__); pr_info("%s: Actual SOC(%d) non-zero\n", __func__, current_soc); fuelgauge->info.is_low_batt_alarm = false; } else { temperature = get_fuelgauge_value(fuelgauge, FG_TEMPERATURE); avsoc = get_fuelgauge_value(fuelgauge, FG_AV_SOC); if ((fuelgauge->info.soc > avsoc) || (temperature < 0)) { fuelgauge->info.soc -= LOW_BATTERY_SOC_REDUCE_UNIT; pr_err("%s: New Reduced RepSOC (%d)\n", __func__, fuelgauge->info.soc); } else pr_info("%s: Waiting for recovery (AvSOC:%d)\n", __func__, avsoc); } } return fuelgauge->info.is_low_batt_alarm; } static int get_fuelgauge_soc(struct max77823_fuelgauge_data *fuelgauge) { union power_supply_propval value; int fg_soc = 0; int fg_vfsoc; int fg_vcell; int fg_current; int avg_current; ktime_t current_time; struct timespec ts; int fullcap_check_interval; if (fuelgauge->info.is_low_batt_alarm) if (fuelgauge_recovery_handler(fuelgauge)) { fg_soc = fuelgauge->info.soc; goto return_soc; } #if defined(ANDROID_ALARM_ACTIVATED) current_time = alarm_get_elapsed_realtime(); ts = ktime_to_timespec(current_time); #else current_time = ktime_get_boottime(); ts = ktime_to_timespec(current_time); #endif /* check fullcap range */ fullcap_check_interval = (ts.tv_sec - fuelgauge->info.fullcap_check_interval); if (fullcap_check_interval > VFFULLCAP_CHECK_INTERVAL) { pr_info("%s: check fullcap range (interval:%d)\n", __func__, fullcap_check_interval); fg_check_vf_fullcap_range(fuelgauge); fuelgauge->info.fullcap_check_interval = ts.tv_sec; } fg_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL); if (fg_soc < 0) { pr_info("Can't read soc!!!"); fg_soc = fuelgauge->info.soc; } if (fuelgauge->info.low_batt_boot_flag) { fg_soc = 0; if (fuelgauge->pdata->check_cable_callback && fuelgauge->pdata->check_cable_callback() != POWER_SUPPLY_TYPE_BATTERY && !is_booted_in_low_battery(fuelgauge)) { fg_adjust_capacity(fuelgauge); fuelgauge->info.low_batt_boot_flag = 0; } if (fuelgauge->pdata->check_cable_callback && fuelgauge->pdata->check_cable_callback() == POWER_SUPPLY_TYPE_BATTERY) fuelgauge->info.low_batt_boot_flag = 0; } fg_vcell = get_fuelgauge_value(fuelgauge, FG_VOLTAGE); fg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT); avg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT_AVG); fg_vfsoc = get_fuelgauge_value(fuelgauge, FG_VF_SOC); psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value); /* Algorithm for reducing time to fully charged (from MAXIM) */ if (value.intval != POWER_SUPPLY_STATUS_DISCHARGING && value.intval != POWER_SUPPLY_STATUS_FULL && fuelgauge->cable_type != POWER_SUPPLY_TYPE_USB && /* Skip when first check after boot up */ !fuelgauge->info.is_first_check && (fg_vfsoc > VFSOC_FOR_FULLCAP_LEARNING && (fg_current > LOW_CURRENT_FOR_FULLCAP_LEARNING && fg_current < HIGH_CURRENT_FOR_FULLCAP_LEARNING) && (avg_current > LOW_AVGCURRENT_FOR_FULLCAP_LEARNING && avg_current < HIGH_AVGCURRENT_FOR_FULLCAP_LEARNING))) { if (fuelgauge->info.full_check_flag == 2) { pr_info("%s: force fully charged SOC !! (%d)", __func__, fuelgauge->info.full_check_flag); fg_set_full_charged(fuelgauge); fg_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL); } else if (fuelgauge->info.full_check_flag < 2) pr_info("%s: full_check_flag (%d)", __func__, fuelgauge->info.full_check_flag); /* prevent overflow */ if (fuelgauge->info.full_check_flag++ > 10000) fuelgauge->info.full_check_flag = 3; } else fuelgauge->info.full_check_flag = 0; /* Checks vcell level and tries to compensate SOC if needed.*/ /* If jig cable is connected, then skip low batt compensation check. */ if (fuelgauge->pdata->check_jig_status && !fuelgauge->pdata->check_jig_status() && value.intval == POWER_SUPPLY_STATUS_DISCHARGING) fg_soc = low_batt_compensation( fuelgauge, fg_soc, fg_vcell, fg_current); if (fuelgauge->info.is_first_check) fuelgauge->info.is_first_check = false; fuelgauge->info.soc = fg_soc; return_soc: pr_debug("%s: soc(%d), low_batt_alarm(%d)\n", __func__, fuelgauge->info.soc, fuelgauge->info.is_low_batt_alarm); return fg_soc; } static void full_comp_work_handler(struct work_struct *work) { struct sec_fg_info *fg_info = container_of(work, struct sec_fg_info, full_comp_work.work); struct max77823_fuelgauge_data *fuelgauge = container_of(fg_info, struct max77823_fuelgauge_data, info); int avg_current; union power_supply_propval value; avg_current = get_fuelgauge_value(fuelgauge, FG_CURRENT_AVG); psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value); if (avg_current >= 25) { cancel_delayed_work(&fuelgauge->info.full_comp_work); schedule_delayed_work(&fuelgauge->info.full_comp_work, 100); } else { pr_info("%s: full charge compensation start (avg_current %d)\n", __func__, avg_current); fg_fullcharged_compensation(fuelgauge, (int)(value.intval == POWER_SUPPLY_STATUS_FULL), false); } } static irqreturn_t max77823_jig_irq_thread(int irq, void *irq_data) { struct max77823_fuelgauge_data *fuelgauge = irq_data; if (fuelgauge->pdata->check_jig_status && fuelgauge->pdata->check_jig_status()) fg_reset_capacity_by_jig_connection(fuelgauge); else pr_info("%s: jig removed\n", __func__); return IRQ_HANDLED; } bool max77823_fg_init(struct max77823_fuelgauge_data *fuelgauge) { ktime_t current_time; struct timespec ts; u8 data[2] = {0, 0}; #if defined(ANDROID_ALARM_ACTIVATED) current_time = alarm_get_elapsed_realtime(); ts = ktime_to_timespec(current_time); #else current_time = ktime_get_boottime(); ts = ktime_to_timespec(current_time); #endif fuelgauge->info.fullcap_check_interval = ts.tv_sec; fuelgauge->info.is_low_batt_alarm = false; fuelgauge->info.is_first_check = true; /* Init parameters to prevent wrong compensation. */ fuelgauge->info.previous_fullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_REG); fuelgauge->info.previous_vffullcap = max77823_read_word(fuelgauge->i2c, FULLCAP_NOM_REG); if (fuelgauge->pdata->check_cable_callback && (fuelgauge->pdata->check_cable_callback() != POWER_SUPPLY_TYPE_BATTERY) && is_booted_in_low_battery(fuelgauge)) fuelgauge->info.low_batt_boot_flag = 1; if (fuelgauge->pdata->check_jig_status && fuelgauge->pdata->check_jig_status()) fg_reset_capacity_by_jig_connection(fuelgauge); else { if (fuelgauge->pdata->jig_irq) { int ret; ret = request_threaded_irq(fuelgauge->pdata->jig_irq, NULL, max77823_jig_irq_thread, fuelgauge->pdata->jig_irq_attr, "jig-irq", fuelgauge); if (ret) { pr_info("%s: Failed to Reqeust IRQ\n", __func__); } } } INIT_DELAYED_WORK(&fuelgauge->info.full_comp_work, full_comp_work_handler); /* NOT using FG for temperature */ if (fuelgauge->pdata->thermal_source != SEC_BATTERY_THERMAL_SOURCE_FG) { data[0] = 0x00; data[1] = 0x21; max77823_bulk_write(fuelgauge->i2c, CONFIG_REG, 2, data); } return true; } bool max77823_fg_fuelalert_init(struct max77823_fuelgauge_data *fuelgauge, int soc) { /* 1. Set max77823 alert configuration. */ if (max77823_alert_init(fuelgauge, soc) > 0) return true; else return false; } bool max77823_fg_is_fuelalerted(struct max77823_fuelgauge_data *fuelgauge) { if (get_fuelgauge_value(fuelgauge, FG_CHECK_STATUS) > 0) return true; else return false; } bool max77823_fg_fuelalert_process(void *irq_data, bool is_fuel_alerted) { struct max77823_fuelgauge_data *fuelgauge = (struct max77823_fuelgauge_data *)irq_data; union power_supply_propval value; int overcurrent_limit_in_soc; int current_soc = get_fuelgauge_value(fuelgauge, FG_LEVEL); psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value); if (value.intval == POWER_SUPPLY_STATUS_CHARGING) return true; if (fuelgauge->info.soc <= STABLE_LOW_BATTERY_DIFF) overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF_LOWBATT; else overcurrent_limit_in_soc = STABLE_LOW_BATTERY_DIFF; if (((int)fuelgauge->info.soc - current_soc) > overcurrent_limit_in_soc) { pr_info("%s: Abnormal Current Consumption jump by %d units\n", __func__, (((int)fuelgauge->info.soc - current_soc))); pr_info("%s: Last Reported SOC (%d).\n", __func__, fuelgauge->info.soc); fuelgauge->info.is_low_batt_alarm = true; if (fuelgauge->info.soc >= LOW_BATTERY_SOC_REDUCE_UNIT) return true; } if (value.intval == POWER_SUPPLY_STATUS_DISCHARGING) { pr_err("Set battery level as 0, power off.\n"); fuelgauge->info.soc = 0; value.intval = 0; psy_do_property("battery", set, POWER_SUPPLY_PROP_CAPACITY, value); } return true; } bool max77823_fg_full_charged(struct max77823_fuelgauge_data *fuelgauge) { union power_supply_propval value; psy_do_property("battery", get, POWER_SUPPLY_PROP_STATUS, value); /* full charge compensation algorithm by MAXIM */ fg_fullcharged_compensation(fuelgauge, (int)(value.intval == POWER_SUPPLY_STATUS_FULL), true); cancel_delayed_work(&fuelgauge->info.full_comp_work); schedule_delayed_work(&fuelgauge->info.full_comp_work, 100); return false; } bool max77823_fg_reset(struct max77823_fuelgauge_data *fuelgauge) { if (!fg_reset_soc(fuelgauge)) return true; else return false; } #endif static void max77823_fg_get_scaled_capacity( struct max77823_fuelgauge_data *fuelgauge, union power_supply_propval *val) { val->intval = (val->intval < fuelgauge->pdata->capacity_min) ? 0 : ((val->intval - fuelgauge->pdata->capacity_min) * 1000 / (fuelgauge->capacity_max - fuelgauge->pdata->capacity_min)); pr_debug("%s: scaled capacity (%d.%d)\n", __func__, val->intval/10, val->intval%10); } /* capacity is integer */ static void max77823_fg_get_atomic_capacity( struct max77823_fuelgauge_data *fuelgauge, union power_supply_propval *val) { if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC) { if (fuelgauge->capacity_old < val->intval) val->intval = fuelgauge->capacity_old + 1; else if (fuelgauge->capacity_old > val->intval) val->intval = fuelgauge->capacity_old - 1; } /* keep SOC stable in abnormal status */ if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL) { if (!fuelgauge->is_charging && fuelgauge->capacity_old < val->intval) { pr_err("%s: capacity (old %d : new %d)\n", __func__, fuelgauge->capacity_old, val->intval); val->intval = fuelgauge->capacity_old; } } /* updated old capacity */ fuelgauge->capacity_old = val->intval; } static int max77823_fg_calculate_dynamic_scale( struct max77823_fuelgauge_data *fuelgauge) { union power_supply_propval raw_soc_val; #ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING raw_soc_val.intval = max77823_get_soc(fuelgauge) / 10; #else raw_soc_val.intval = get_fuelgauge_value(fuelgauge, FG_RAW_SOC); #endif if (raw_soc_val.intval < fuelgauge->pdata->capacity_max - fuelgauge->pdata->capacity_max_margin) { fuelgauge->capacity_max = fuelgauge->pdata->capacity_max - fuelgauge->pdata->capacity_max_margin; pr_debug("%s: capacity_max (%d)", __func__, fuelgauge->capacity_max); } else { fuelgauge->capacity_max = (raw_soc_val.intval > fuelgauge->pdata->capacity_max + fuelgauge->pdata->capacity_max_margin) ? (fuelgauge->pdata->capacity_max + fuelgauge->pdata->capacity_max_margin) : raw_soc_val.intval; pr_debug("%s: raw soc (%d)", __func__, fuelgauge->capacity_max); } fuelgauge->capacity_max = (fuelgauge->capacity_max * 99 / 100); /* update capacity_old for sec_fg_get_atomic_capacity algorithm */ fuelgauge->capacity_old = 100; pr_info("%s: %d is used for capacity_max\n", __func__, fuelgauge->capacity_max); return fuelgauge->capacity_max; } #ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING static int max77823_fg_get_property(strcut power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max77823_fuelgauge_data *fuelgauge = container_of(psy, struct max77823_fuelgauge_data, psy_fg); switch (psp) { /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = max77823_get_vcell(fuelgauge); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case SEC_BATTEY_VOLTAGE_AVERAGE: val->intval = max77823_get_avgvcell(fuelgauge); break; case SEC_BATTEY_VOLTAGE_OCV: val->intval = max77823_get_vfocv(fuelgauge); break; } break; /* Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_NOW: val->intval = 0; break; /* Average Current (mA) */ case POWER_SUPPLY_PROP_CURRENT_AVG: val->intval = 0; break; /* SOC (%) */ case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) { val->intval = max77823_get_soc(fuelgauge); } else { val->intval = max77823_get_soc(fuelgauge) / 10; if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_SCALE | SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)) max77823_fg_get_scaled_capacity(fuelgauge, val); /* capacity should be between 0% and 100% * (0.1% degree) */ if (val->intval > 1000) val->intval = 1000; if (val->intval < 0) val->intval = 0; /* get only integer part */ val->intval /= 10; /* check whether doing the wake_unlock */ if ((val->intval > fuelgauge->pdata->fuel_alert_soc) && fuelgauge->is_fuel_alerted) { wake_unlock(&fuelgauge->fuel_alert_wake_lock); max77823_fg_fuelalert_init(fuelgauge, fuelgauge->pdata->fuel_alert_soc); } /* (Only for atomic capacity) * In initial time, capacity_old is 0. * and in resume from sleep, * capacity_old is too different from actual soc. * should update capacity_old * by val->intval in booting or resume. */ if (fuelgauge->initial_update_of_soc) { /* updated old capacity */ fuelgauge->capacity_old = val->intval; fuelgauge->initial_update_of_soc = false; break; } if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC | SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL)) max77823_fg_get_atomic_capacity(fuelgauge, val); } break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = max77823_get_temperature(fuelgauge); break; default: return false; } return true; } static int max77823_fg_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct max77823_fuelgauge_data *fuelgauge = container_of(psy, struct max77823_fuelgauge_data, psy_fg); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (val->intval == POWER_SUPPLY_STATUS_FULL) max77823_fg_full_charged(fuelgauge); break; case POWER_SUPPLY_PROP_CHARGE_FULL: if (val->intval == POWER_SUPPLY_TYPE_BATTERY) { if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) max77823_fg_calculate_dynamic_scale(fuelgauge); } break; case POWER_SUPPLY_PROP_ONLINE: fuelgauge->cable_type = val->intval; if (val->intval == POWER_SUPPLY_TYPE_BATTERY) fuelgauge->is_charging = false; else fuelgauge->is_charging = true; break; /* Battery Temperature */ case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) { fuelgauge->initial_update_of_soc = true; if (!max77823_fg_reset(fuelgauge)) return -EINVAL; else break; } /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: max77823_set_temperature(fuelgauge, val->intval); break; default: return false; } return true; } #endif #ifdef CONFIG_FUELGAUGE_MAX77823_COULOMB_COUNTING static int max77823_fg_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { struct max77823_fuelgauge_data *fuelgauge = container_of(psy, struct max77823_fuelgauge_data, psy_fg); switch (psp) { /* Cell voltage (VCELL, mV) */ case POWER_SUPPLY_PROP_VOLTAGE_NOW: val->intval = get_fuelgauge_value(fuelgauge, FG_VOLTAGE); break; /* Additional Voltage Information (mV) */ case POWER_SUPPLY_PROP_VOLTAGE_AVG: switch (val->intval) { case SEC_BATTEY_VOLTAGE_OCV: val->intval = fg_read_vfocv(fuelgauge); break; case SEC_BATTEY_VOLTAGE_AVERAGE: default: val->intval = fg_read_avg_vcell(fuelgauge); break; } break; /* Current */ case POWER_SUPPLY_PROP_CURRENT_NOW: switch (val->intval) { case SEC_BATTEY_CURRENT_UA: val->intval = fg_read_current(fuelgauge, SEC_BATTEY_CURRENT_UA); break; case SEC_BATTEY_CURRENT_MA: default: val->intval = get_fuelgauge_value(fuelgauge, FG_CURRENT); break; } break; /* Average Current */ case POWER_SUPPLY_PROP_CURRENT_AVG: switch (val->intval) { case SEC_BATTEY_CURRENT_UA: val->intval = fg_read_avg_current(fuelgauge, SEC_BATTEY_CURRENT_UA); break; case SEC_BATTEY_CURRENT_MA: default: val->intval = get_fuelgauge_value(fuelgauge, FG_CURRENT_AVG); break; } break; /* Full Capacity */ case POWER_SUPPLY_PROP_ENERGY_NOW: switch (val->intval) { case SEC_BATTEY_CAPACITY_DESIGNED: val->intval = get_fuelgauge_value(fuelgauge, FG_FULLCAP); break; case SEC_BATTEY_CAPACITY_ABSOLUTE: val->intval = get_fuelgauge_value(fuelgauge, FG_MIXCAP); break; case SEC_BATTEY_CAPACITY_TEMPERARY: val->intval = get_fuelgauge_value(fuelgauge, FG_AVCAP); break; case SEC_BATTEY_CAPACITY_CURRENT: val->intval = get_fuelgauge_value(fuelgauge, FG_REPCAP); break; } break; /* SOC (%) */ case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RAW) { val->intval = get_fuelgauge_value(fuelgauge, FG_RAW_SOC); } else { val->intval = get_fuelgauge_soc(fuelgauge); if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_SCALE | SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE)) max77823_fg_get_scaled_capacity(fuelgauge, val); /* capacity should be between 0% and 100% * (0.1% degree) */ if (val->intval > 1000) val->intval = 1000; if (val->intval < 0) val->intval = 0; /* get only integer part */ val->intval /= 10; /* check whether doing the wake_unlock */ if ((val->intval > fuelgauge->pdata->fuel_alert_soc) && fuelgauge->is_fuel_alerted) { wake_unlock(&fuelgauge->fuel_alert_wake_lock); max77823_fg_fuelalert_init(fuelgauge, fuelgauge->pdata->fuel_alert_soc); } /* (Only for atomic capacity) * In initial time, capacity_old is 0. * and in resume from sleep, * capacity_old is too different from actual soc. * should update capacity_old * by val->intval in booting or resume. */ if (fuelgauge->initial_update_of_soc) { /* updated old capacity */ fuelgauge->capacity_old = val->intval; fuelgauge->initial_update_of_soc = false; break; } if (fuelgauge->pdata->capacity_calculation_type & (SEC_FUELGAUGE_CAPACITY_TYPE_ATOMIC | SEC_FUELGAUGE_CAPACITY_TYPE_SKIP_ABNORMAL)) max77823_fg_get_atomic_capacity(fuelgauge, val); } break; /* Battery Temperature */ case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: val->intval = get_fuelgauge_value(fuelgauge, FG_TEMPERATURE); break; default: return -EINVAL; } return 0; } static int max77823_fg_set_property(struct power_supply *psy, enum power_supply_property psp, const union power_supply_propval *val) { struct max77823_fuelgauge_data *fuelgauge = container_of(psy, struct max77823_fuelgauge_data, psy_fg); switch (psp) { case POWER_SUPPLY_PROP_STATUS: if (val->intval == POWER_SUPPLY_STATUS_FULL) max77823_fg_full_charged(fuelgauge); break; case POWER_SUPPLY_PROP_CHARGE_FULL: if (val->intval == POWER_SUPPLY_TYPE_BATTERY) { if (fuelgauge->pdata->capacity_calculation_type & SEC_FUELGAUGE_CAPACITY_TYPE_DYNAMIC_SCALE) max77823_fg_calculate_dynamic_scale(fuelgauge); } break; case POWER_SUPPLY_PROP_ONLINE: fuelgauge->cable_type = val->intval; if (val->intval == POWER_SUPPLY_TYPE_BATTERY) { fuelgauge->is_charging = false; } else { fuelgauge->is_charging = true; if (fuelgauge->info.is_low_batt_alarm) { pr_info("%s: Reset low_batt_alarm\n", __func__); fuelgauge->info.is_low_batt_alarm = false; } reset_low_batt_comp_cnt(fuelgauge); } break; /* Battery Temperature */ case POWER_SUPPLY_PROP_CAPACITY: if (val->intval == SEC_FUELGAUGE_CAPACITY_TYPE_RESET) { fuelgauge->initial_update_of_soc = true; if (!max77823_fg_reset(fuelgauge)) return -EINVAL; else break; } case POWER_SUPPLY_PROP_TEMP: /* Target Temperature */ case POWER_SUPPLY_PROP_TEMP_AMBIENT: fg_write_temp(fuelgauge, val->intval); break; case POWER_SUPPLY_PROP_ENERGY_NOW: fg_reset_capacity_by_jig_connection(fuelgauge); break; default: return -EINVAL; } return 0; } #endif static void max77823_fg_isr_work(struct work_struct *work) { struct max77823_fuelgauge_data *fuelgauge = container_of(work, struct max77823_fuelgauge_data, isr_work.work); /* process for fuel gauge chip */ max77823_fg_fuelalert_process(fuelgauge, fuelgauge->is_fuel_alerted); /* process for others */ if (fuelgauge->pdata->fuelalert_process != NULL) fuelgauge->pdata->fuelalert_process(fuelgauge->is_fuel_alerted); } static irqreturn_t max77823_fg_irq_thread(int irq, void *irq_data) { struct max77823_fuelgauge_data *fuelgauge = irq_data; bool fuel_alerted; if (fuelgauge->pdata->fuel_alert_soc >= 0) { fuel_alerted = max77823_fg_is_fuelalerted(fuelgauge); pr_info("%s: Fuel-alert %salerted!\n", __func__, fuel_alerted ? "" : "NOT "); fg_test_print(fuelgauge); if (fuel_alerted == fuelgauge->is_fuel_alerted) { if (!fuelgauge->pdata->repeated_fuelalert) { pr_debug("%s: Fuel-alert Repeated (%d)\n", __func__, fuelgauge->is_fuel_alerted); return IRQ_HANDLED; } } if (fuel_alerted) wake_lock(&fuelgauge->fuel_alert_wake_lock); else wake_unlock(&fuelgauge->fuel_alert_wake_lock); schedule_delayed_work(&fuelgauge->isr_work, 0); fuelgauge->is_fuel_alerted = fuel_alerted; } return IRQ_HANDLED; } static int max77823_fuelgauge_debugfs_show(struct seq_file *s, void *data) { struct max77823_fuelgauge_data *fuelgauge = s->private; u8 reg; u8 reg_data; seq_printf(s, "MAX77823 FUELGAUGE IC :\n"); seq_printf(s, "===================\n"); for (reg = 0xB0; reg <= 0xC3; reg++) { max77823_read_reg(fuelgauge->i2c, reg, ®_data); seq_printf(s, "0x%02x:\t0x%02x\n", reg, reg_data); } seq_printf(s, "\n"); return 0; } static int max77823_fuelgauge_debugfs_open(struct inode *inode, struct file *file) { return single_open(file, max77823_fuelgauge_debugfs_show, inode->i_private); } static const struct file_operations max77823_fuelgauge_debugfs_fops = { .open = max77823_fuelgauge_debugfs_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; #ifdef CONFIG_OF static int max77823_fuelgauge_parse_dt(struct max77823_fuelgauge_data *fuelgauge) { struct device_node *np = of_find_node_by_name(NULL, "max77823-fuelgauge"); sec_battery_platform_data_t *pdata = fuelgauge->pdata; int ret; int i; /* reset, irq gpio info */ if (np == NULL) { pr_err("%s np NULL\n", __func__); } else { ret = of_property_read_u32(np, "fuelgauge,capacity_max", &pdata->capacity_max); if (ret < 0) pr_err("%s error reading capacity_max %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_max_margin", &pdata->capacity_max_margin); if (ret < 0) pr_err("%s error reading capacity_max_margin %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_min", &pdata->capacity_min); if (ret < 0) pr_err("%s error reading capacity_min %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,capacity_calculation_type", &pdata->capacity_calculation_type); if (ret < 0) pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,fuel_alert_soc", &pdata->fuel_alert_soc); if (ret < 0) pr_err("%s error reading pdata->fuel_alert_soc %d\n", __func__, ret); pdata->repeated_fuelalert = of_property_read_bool(np, "fuelgauge,repeated_fuelalert"); ret = of_property_read_u32(np, "fuelgauge,capacity", &fuelgauge->battery_data->Capacity); if (ret < 0) pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); ret = of_property_read_u32(np, "fuelgauge,low_battery_comp_voltage", &fuelgauge->battery_data->low_battery_comp_voltage); if (ret < 0) pr_err("%s error reading capacity_calculation_type %d\n", __func__, ret); for(i = 0; i < (CURRENT_RANGE_MAX_NUM * TABLE_MAX); i++) { ret = of_property_read_u32_index(np, "fuelgauge,low_battery_table", i, &fuelgauge->battery_data->low_battery_table[i/3][i%3]); pr_info("[%d]", fuelgauge->battery_data->low_battery_table[i/3][i%3]); if ((i%3) == 2) pr_info("\n"); } pr_info("%s fg_irq: %d, capacity_max: %d\n" "cpacity_max_margin: %d, capacity_min: %d\n" "calculation_type: 0x%x, fuel_alert_soc: %d,\n" "repeated_fuelalert: %d\n", __func__, pdata->fg_irq, pdata->capacity_max, pdata->capacity_max_margin, pdata->capacity_min, pdata->capacity_calculation_type, pdata->fuel_alert_soc, pdata->repeated_fuelalert); } pr_info("[%s][%d][%d]\n", __func__, fuelgauge->battery_data->Capacity, fuelgauge->battery_data->low_battery_comp_voltage); return 0; } #endif static int __devinit max77823_fuelgauge_probe(struct platform_device *pdev) { struct max77823_dev *max77823 = dev_get_drvdata(pdev->dev.parent); struct max77823_platform_data *pdata = dev_get_platdata(max77823->dev); struct max77823_fuelgauge_data *fuelgauge; int ret = 0; union power_supply_propval raw_soc_val; pr_info("%s: MAX77823 Fuelgauge Driver Loading\n", __func__); fuelgauge = kzalloc(sizeof(*fuelgauge), GFP_KERNEL); if (!fuelgauge) return -ENOMEM; pdata->fuelgauge_data = kzalloc(sizeof(sec_battery_platform_data_t), GFP_KERNEL); if (!pdata->fuelgauge_data) return -ENOMEM; mutex_init(&fuelgauge->fg_lock); fuelgauge->dev = &pdev->dev; fuelgauge->pdata = pdata->fuelgauge_data; fuelgauge->i2c = max77823->fuelgauge; fuelgauge->max77823_pdata = pdata; #if defined(CONFIG_OF) fuelgauge->battery_data = kzalloc(sizeof(struct battery_data_t), GFP_KERNEL); if(!fuelgauge->battery_data) { pr_err("Failed to allocate memory\n"); return -ENOMEM; } ret = max77823_fuelgauge_parse_dt(fuelgauge); if (ret < 0) { pr_err("%s not found charger dt! ret[%d]\n", __func__, ret); } #endif platform_set_drvdata(pdev, fuelgauge); fuelgauge->psy_fg.name = "max77823-fuelgauge"; fuelgauge->psy_fg.type = POWER_SUPPLY_TYPE_UNKNOWN; fuelgauge->psy_fg.get_property = max77823_fg_get_property; fuelgauge->psy_fg.set_property = max77823_fg_set_property; fuelgauge->psy_fg.properties = max77823_fuelgauge_props; fuelgauge->psy_fg.num_properties = ARRAY_SIZE(max77823_fuelgauge_props); fuelgauge->capacity_max = fuelgauge->pdata->capacity_max; #ifdef CONFIG_FUELGAUGE_MAX77823_VOLTAGE_TRACKING raw_soc_val.intval = max77823_get_soc(fuelgauge) / 10; #else raw_soc_val.intval = get_fuelgauge_value(fuelgauge, FG_RAW_SOC); #endif if(raw_soc_val.intval > fuelgauge->pdata->capacity_max) max77823_fg_calculate_dynamic_scale(fuelgauge); (void) debugfs_create_file("max77823-fuelgauge-regs", S_IRUGO, NULL, (void *)fuelgauge, &max77823_fuelgauge_debugfs_fops); if (!max77823_fg_init(fuelgauge)) { pr_err("%s: Failed to Initialize Fuelgauge\n", __func__); goto err_free; } ret = power_supply_register(&pdev->dev, &fuelgauge->psy_fg); if (ret) { pr_err("%s: Failed to Register psy_fg\n", __func__); goto err_free; } fuelgauge->fg_irq = pdata->irq_base + MAX77823_FG_IRQ_ALERT; pr_info("[%s]IRQ_BASE(%d) FG_IRQ(%d)\n", __func__, pdata->irq_base, fuelgauge->fg_irq); if (fuelgauge->fg_irq) { INIT_DELAYED_WORK(&fuelgauge->isr_work, max77823_fg_isr_work); ret = request_threaded_irq(fuelgauge->fg_irq, NULL, max77823_fg_irq_thread, IRQF_TRIGGER_FALLING | IRQF_ONESHOT, "fuelgauge-irq", fuelgauge); if (ret) { pr_err("%s: Failed to Reqeust IRQ\n", __func__); goto err_supply_unreg; } } fuelgauge->is_fuel_alerted = false; if (fuelgauge->pdata->fuel_alert_soc >= 0) { if (max77823_fg_fuelalert_init(fuelgauge, fuelgauge->pdata->fuel_alert_soc)) wake_lock_init(&fuelgauge->fuel_alert_wake_lock, WAKE_LOCK_SUSPEND, "fuel_alerted"); else { pr_err("%s: Failed to Initialize Fuel-alert\n", __func__); goto err_irq; } } fuelgauge->initial_update_of_soc = true; pr_info("%s: MAX77823 Fuelgauge Driver Loaded\n", __func__); return 0; err_irq: if (fuelgauge->fg_irq) free_irq(fuelgauge->fg_irq, fuelgauge); err_supply_unreg: power_supply_unregister(&fuelgauge->psy_fg); err_free: mutex_destroy(&fuelgauge->fg_lock); kfree(fuelgauge); return ret; } static int __devexit max77823_fuelgauge_remove(struct platform_device *pdev) { struct max77823_fuelgauge_data *fuelgauge = platform_get_drvdata(pdev); if (fuelgauge->pdata->fuel_alert_soc >= 0) wake_lock_destroy(&fuelgauge->fuel_alert_wake_lock); return 0; } static int max77823_fuelgauge_suspend(struct device *dev) { return 0; } static int max77823_fuelgauge_resume(struct device *dev) { struct max77823_fuelgauge_data *fuelgauge = dev_get_drvdata(dev); fuelgauge->initial_update_of_soc = true; return 0; } static void max77823_fuelgauge_shutdown(struct device *dev) { } #if defined(CONFIG_OF) static struct of_device_id max77823_fuelgauge_dt_ids[] = { { .compatible = "samsung,max77823-fuelgauge" }, { } }; MODULE_DEVICE_TABLE(of, max77823_fuelgauge_dt_ids); #endif /* CONFIG_OF */ static SIMPLE_DEV_PM_OPS(max77823_fuelgauge_pm_ops, max77823_fuelgauge_suspend, max77823_fuelgauge_resume); static struct platform_driver max77823_fuelgauge_driver = { .driver = { .name = "max77823-fuelgauge", .owner = THIS_MODULE, #ifdef CONFIG_PM .pm = &max77823_fuelgauge_pm_ops, #endif .shutdown = max77823_fuelgauge_shutdown, #if defined(CONFIG_OF) .of_match_table = max77823_fuelgauge_dt_ids, #endif /* CONFIG_OF */ }, .probe = max77823_fuelgauge_probe, .remove = __devexit_p(max77823_fuelgauge_remove), }; static int __init max77823_fuelgauge_init(void) { pr_info("%s: \n", __func__); return platform_driver_register(&max77823_fuelgauge_driver); } static void __exit max77823_fuelgauge_exit(void) { platform_driver_unregister(&max77823_fuelgauge_driver); } module_init(max77823_fuelgauge_init); module_exit(max77823_fuelgauge_exit); MODULE_DESCRIPTION("Samsung MAX778023 Fuel Gauge Driver"); MODULE_AUTHOR("Samsung Electronics"); MODULE_LICENSE("GPL");