/* * ALSA SoC dummy cpu & platform dai driver * * This driver provides one dummy dai. * * Copyright (c) 2014 Samsung Electronics * http://www.samsungsemi.com/ * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #define PERIOD_MIN 4 static DECLARE_WAIT_QUEUE_HEAD(compr_cap_wq); extern ssize_t esa_copy(unsigned long hwbuf, ssize_t size); extern int esa_compr_running(void); extern void esa_compr_ctrl_fxintr(bool fxon); static const struct snd_pcm_hardware dma_hardware = { .info = SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID, .formats = SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S8, .channels_min = 1, .channels_max = 8, .buffer_bytes_max = 256*1024, .period_bytes_min = 128, .period_bytes_max = 32*1024, .periods_min = 2, .periods_max = 128, .fifo_size = 32, }; struct runtime_data { spinlock_t lock; int state; unsigned int dma_loaded; unsigned int dma_period; unsigned long buf_start; unsigned long buf_pos; unsigned long buf_end; unsigned long period_bytes; struct snd_pcm_hardware hw; struct snd_pcm_substream *substream; struct task_struct *compr_cap_kthread; bool running; bool opened; bool dram_used; } rd; static int dummy_dma_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct snd_pcm_runtime *runtime = substream->runtime; struct runtime_data *prtd = runtime->private_data; unsigned long totbytes = params_buffer_bytes(params); pr_debug("Entered %s\n", __func__); snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer); runtime->dma_bytes = totbytes; spin_lock_irq(&prtd->lock); prtd->dma_loaded = 0; prtd->dma_period = params_period_bytes(params); prtd->buf_start = (unsigned long)runtime->dma_area; prtd->buf_pos = prtd->buf_start; prtd->buf_end = prtd->buf_start + totbytes; while ((totbytes / prtd->dma_period) < PERIOD_MIN) prtd->dma_period >>= 1; spin_unlock_irq(&prtd->lock); pr_info("Dummy DMA:%s:Addr=@0x%lx Total=%d PrdSz=%d(%d) #Prds=%d \n", (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ? "P" : "C", prtd->buf_start, (u32)runtime->dma_bytes, params_period_bytes(params),(u32) prtd->dma_period, params_periods(params)); return 0; } static int dummy_dma_hw_free(struct snd_pcm_substream *substream) { snd_pcm_set_runtime_buffer(substream, NULL); return 0; } static int dummy_dma_prepare(struct snd_pcm_substream *substream) { struct runtime_data *prtd = substream->runtime->private_data; int ret = 0; pr_debug("Entered %s +\n", __func__); prtd->dma_loaded = 0; prtd->buf_pos = prtd->buf_start; pr_debug("Entered %s -\n", __func__); return ret; } static snd_pcm_uframes_t dummy_dma_pointer(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; struct runtime_data *prtd = runtime->private_data; unsigned long res; pr_debug("Entered %s\n", __func__); res = prtd->buf_pos - prtd->buf_start; pr_debug("%s res = %lx\n", __func__, res); return bytes_to_frames(substream->runtime, res); } static int dummy_dma_open(struct snd_pcm_substream *substream) { struct snd_pcm_runtime *runtime = substream->runtime; pr_info("Entered %s\n", __func__); if (rd.opened) return -EBUSY; if (!esa_compr_running()) return -ENODEV; spin_lock_init(&rd.lock); memcpy(&rd.hw, &dma_hardware, sizeof(struct snd_pcm_hardware)); snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); runtime->private_data = &rd; snd_soc_set_runtime_hwparams(substream, &rd.hw); rd.opened = true; pr_info("%s: prtd = %p\n", __func__, &rd); return 0; } static int dummy_dma_close(struct snd_pcm_substream *substream) { pr_info("Entered %s\n", __func__); rd.opened = false; return 0; } static int dummy_dma_copy(struct snd_pcm_substream *substream, int channel, snd_pcm_uframes_t pos, void __user *buf, snd_pcm_uframes_t count) { struct snd_pcm_runtime *runtime = substream->runtime; char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, pos); if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) { if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, count))) return -EFAULT; } else { if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, count))) return -EFAULT; } return 0; } static int dummy_dma_trigger(struct snd_pcm_substream *substream, int cmd) { struct runtime_data *prtd = substream->runtime->private_data; int ret = 0; pr_info("Entered %s\n", __func__); spin_lock(&prtd->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: /* Enable seiren firmware effect Fx external interrupt to capture offload's PCM data from firmware */ esa_compr_ctrl_fxintr(true); rd.running = true; if (waitqueue_active(&compr_cap_wq)) wake_up_interruptible(&compr_cap_wq); break; case SNDRV_PCM_TRIGGER_STOP: rd.running = false; /* Disable seiren firmware effect Fx externalinterrupt */ esa_compr_ctrl_fxintr(false); break; default: ret = -EINVAL; break; } spin_unlock(&prtd->lock); return ret; } static struct snd_pcm_ops dummy_dma_ops = { .open = dummy_dma_open, .close = dummy_dma_close, .ioctl = snd_pcm_lib_ioctl, .hw_params = dummy_dma_hw_params, .hw_free = dummy_dma_hw_free, .prepare = dummy_dma_prepare, .trigger = dummy_dma_trigger, .pointer = dummy_dma_pointer, .copy = dummy_dma_copy, }; static int compr_cap_kthr(void *p) { struct runtime_data *prtd = (struct runtime_data *)p; int ret = 0; while (!kthread_should_stop()) { wait_event_interruptible(compr_cap_wq, rd.running); ret = esa_copy(prtd->buf_pos, prtd->dma_period); if (ret < 0) { pr_err("Failed to get f/w decoded pcm data\n"); rd.running = false; continue; } prtd->buf_pos = prtd->buf_pos + prtd->dma_period; if (prtd->buf_pos >= prtd->buf_end) prtd->buf_pos = prtd->buf_start; snd_pcm_period_elapsed(rd.substream); } return 0; } static int preallocate_dma_buffer_of(struct snd_pcm *pcm, int stream, struct device_node *np) { struct snd_pcm_substream *substream = pcm->streams[stream].substream; struct snd_dma_buffer *buf = &substream->dma_buffer; dma_addr_t dma_addr; size_t size = dma_hardware.buffer_bytes_max; pr_debug("Entered %s\n", __func__); buf->dev.type = SNDRV_DMA_TYPE_DEV; buf->dev.dev = pcm->card->dev; buf->private_data = NULL; buf->area = dma_alloc_coherent(pcm->card->dev, size, &dma_addr, GFP_KERNEL); if (!buf->area) return -ENOMEM; buf->addr = dma_addr; buf->bytes = size; rd.substream = substream; return 0; } static void dummy_dma_free_dma_buffers(struct snd_pcm *pcm) { struct snd_pcm_substream *substream; struct snd_dma_buffer *buf; pr_debug("Entered %s\n", __func__); substream = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; if (!substream) return; buf = &substream->dma_buffer; if (!buf->area) return; dma_free_coherent(pcm->card->dev, buf->bytes, buf->area, buf->addr); buf->area = NULL; } static u64 dma_mask = DMA_BIT_MASK(32); static int dummy_dma_new(struct snd_soc_pcm_runtime *rtd) { struct snd_card *card = rtd->card->snd_card; struct snd_pcm *pcm = rtd->pcm; struct device_node *np = rtd->cpu_dai->dev->of_node; struct sched_param param = { .sched_priority = 0 }; struct task_struct *ret_task; int ret = 0; pr_debug("Entered %s\n", __func__); if (!card->dev->dma_mask) card->dev->dma_mask = &dma_mask; if (!card->dev->coherent_dma_mask) card->dev->coherent_dma_mask = DMA_BIT_MASK(32); if (pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream) { ret = 0; if (np) ret = preallocate_dma_buffer_of(pcm, SNDRV_PCM_STREAM_CAPTURE, np); if (ret) goto out; } ret_task = kthread_run(compr_cap_kthr, &rd, "compr_cap_kthr"); if (IS_ERR(ret_task)) { pr_info("%s: failed to create compr_cap thread(%ld)\n", __func__, PTR_ERR(ret_task)); ret = PTR_ERR(ret_task); } else { sched_setscheduler(ret_task, SCHED_NORMAL, ¶m); } out: return ret; } static struct snd_soc_platform_driver dummy_asoc_platform = { .ops = &dummy_dma_ops, .pcm_new = dummy_dma_new, .pcm_free = dummy_dma_free_dma_buffers, }; #define SAMSUNG_I2S_RATES SNDRV_PCM_RATE_8000_192000 #define SAMSUNG_I2S_FMTS (SNDRV_PCM_FMTBIT_S8 | \ SNDRV_PCM_FMTBIT_S16_LE | \ SNDRV_PCM_FMTBIT_S24_LE) static struct snd_soc_dai_driver dummy_i2s_dai_drv = { .name = "dummy-i2s-dai-driver", }; static const struct snd_soc_component_driver dummy_i2s_component = { .name = "dummy-i2s", }; static int dummy_cpu_probe(struct platform_device *pdev) { dummy_i2s_dai_drv.symmetric_rates = 1; dummy_i2s_dai_drv.capture.channels_min = 1; dummy_i2s_dai_drv.capture.channels_max = 2; dummy_i2s_dai_drv.capture.rates = SAMSUNG_I2S_RATES; dummy_i2s_dai_drv.capture.formats = SAMSUNG_I2S_FMTS; snd_soc_register_component(&pdev->dev, &dummy_i2s_component, &dummy_i2s_dai_drv, 1); snd_soc_register_platform(&pdev->dev, &dummy_asoc_platform); return 0; } static int dummy_cpu_remove(struct platform_device *pdev) { snd_soc_unregister_component(&pdev->dev); snd_soc_unregister_platform(&pdev->dev); return 0; } static const struct of_device_id dummy_cpu_of_match[] = { { .compatible = "samsung,dummy-i2s", }, {}, }; MODULE_DEVICE_TABLE(of, dummy_cpu_of_match); static struct platform_driver dummy_cpu_driver = { .probe = dummy_cpu_probe, .remove = dummy_cpu_remove, .driver = { .name = "dummy-i2s", .owner = THIS_MODULE, .of_match_table = of_match_ptr(dummy_cpu_of_match), }, }; module_platform_driver(dummy_cpu_driver); MODULE_AUTHOR("Hyunwoong Kim "); MODULE_DESCRIPTION("Dummy dai driver"); MODULE_LICENSE("GPL");