android_kernel_samsung_on5x.../drivers/iommu/exynos-iommu.c
2018-06-19 23:16:04 +02:00

3594 lines
90 KiB
C

#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/err.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/memblock.h>
#include <linux/export.h>
#include <linux/string.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/device.h>
#include <linux/clk.h>
#include <linux/clk-private.h>
#include <linux/pm_domain.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/debugfs.h>
#include <linux/dma-mapping.h>
#include <linux/delay.h>
#include <linux/smc.h>
#include <linux/highmem.h>
#include <asm/cacheflush.h>
#include <asm/pgtable.h>
#include <dt-bindings/sysmmu/sysmmu.h>
#include "exynos-iommu.h"
#define CFG_MASK 0x01101FBC /* Selecting bit 24, 20, 12-7, 5-2 */
#define PB_INFO_NUM(reg) ((reg) & 0xFF)
#define PB_GRP_NUM(reg) ((reg) >> 20)
#define L1TLB_ATTR_IM (1 << 16)
#define REG_PT_BASE_PPN 0x00C
#define REG_MMU_FLUSH 0x010
#define REG_MMU_FLUSH_ENTRY 0x014
#define REG_MMU_FLUSH_RANGE 0x018
#define REG_FLUSH_RANGE_START 0x020
#define REG_FLUSH_RANGE_END 0x024
#define REG_MMU_CAPA 0x030
#define REG_MMU_CAPA_1 0x038
#define REG_INT_STATUS 0x060
#define REG_INT_CLEAR 0x064
#define REG_FAULT_AR_ADDR 0x070
#define REG_FAULT_AR_TRANS_INFO 0x078
#define REG_FAULT_AW_ADDR 0x080
#define REG_FAULT_AW_TRANS_INFO 0x088
#define REG_L1TLB_CFG 0x100 /* sysmmu v5.1 only */
#define REG_L1TLB_CTRL 0x108 /* sysmmu v5.1 only */
#define REG_L2TLB_CFG 0x200 /* sysmmu that has L2TLB only*/
#define REG_PB_LMM 0x300
#define REG_PB_GRP_STATE 0x304
#define REG_PB_INDICATE 0x308
#define REG_PB_CFG 0x310
#define REG_PB_START_ADDR 0x320
#define REG_PB_END_ADDR 0x328
#define REG_PB_AXI_ID 0x330
#define REG_PB_INFO 0x350
#define REG_SW_DF_VPN 0x400 /* sysmmu v5.1 only */
#define REG_SW_DF_VPN_CMD_NUM 0x408 /* sysmmu v5.1 only */
#define REG_L1TLB_READ_ENTRY 0x750
#define REG_L1TLB_ENTRY_VPN 0x754
#define REG_L1TLB_ENTRY_PPN 0x75C
#define REG_L1TLB_ENTRY_ATTR 0x764
#define REG_L2TLB_READ_ENTRY 0x770
#define REG_L2TLB_ENTRY_VPN 0x774
#define REG_L2TLB_ENTRY_PPN 0x77C
#define REG_L2TLB_ENTRY_ATTR 0x784
#define REG_PCI_SPB0_SVPN 0x7A0
#define REG_PCI_SPB0_EVPN 0x7A4
#define REG_PCI_SPB0_SLOT_VALID 0x7A8
#define REG_PCI_SPB1_SVPN 0x7B0
#define REG_PCI_SPB1_EVPN 0x7B4
#define REG_PCI_SPB1_SLOT_VALID 0x7B8
#define REG_MMU_CAPA_V7 0x870 /* sysmmu v7 only */
#define REG_PUBLIC_WAY_CFG 0x120 /* sysmmu v7 only */
#define REG_PRIVATE_WAY_CFG(n) (0x200 + ((n) * 0x10)) /* sysmmu v7 only */
#define REG_PRIVATE_ID(n) (0x20C + ((n) * 0x10)) /* sysmmu v7 only */
#define REG_FAULT_ADDR 0x070 /* sysmmu v7 only */
#define REG_FAULT_TRANS_INFO 0x078 /* sysmmu v7 only */
#define REG_SA_TLB_READ 0x1000 /* sysmmu v7 only */
#define REG_SA_TLB_VPN 0x1004 /* sysmmu v7 only */
#define REG_SA_TLB_PPN 0x1008 /* sysmmu v7 only */
#define REG_SA_TLB_ATTR 0x100C /* sysmmu v7 only */
#define REG_SBB_READ 0x1100 /* sysmmu v7 only */
#define REG_SBB_VPN 0x1104 /* sysmmu v7 only */
#define REG_SBB_LINK 0x1108 /* sysmmu v7 only */
#define REG_SBB_ATTR 0x110C /* sysmmu v7 only */
/* 'reg' argument must be the value of REG_MMU_CAPA register */
#define MMU_NUM_L1TLB_ENTRIES(reg) (reg & 0xFF)
#define MMU_HAVE_PB(reg) (!!((reg >> 20) & 0xF))
#define MMU_PB_GRP_NUM(reg) (((reg >> 20) & 0xF))
#define MMU_IS_TLB_FULL_ASSOCIATIVE(reg) (!!(reg & 0xFF))
#define MMU_IS_TLB_CONFIGURABLE(reg) (!!((reg >> 16) & 0xFF))
#define MMU_TLB_WAY(reg) ((reg >> 8) & 0xFF)
#define MMU_MIN_TLB_LINE(reg) ((reg >> 16) & 0xFF)
#define MMU_MAX_TLB_SET(reg) (reg & 0xFF)
#define MMU_SET_TLB_READ_ENTRY(set, way, line) ((set) | (way << 8) | (line << 16))
#define MMU_TLB_ENTRY_VALID(reg) (reg >> 28)
#define MMU_MAX_DF_CMD 8
#define MAX_NUM_PPC 4
#define SYSMMU_FAULTS_NUM (SYSMMU_FAULT_UNKNOWN + 1)
/* default burst length is BL4(16 page descriptor, 4set) */
#define MMU_MASK_LINE_SIZE 0x7
#define MMU_DEFAULT_LINE_SIZE (0x2 << 4)
#define MMU_CAPA_MAX_PTW_MO(reg) ((reg >> 26) & 0x3F)
#define MMU_CAPA_MAX_AT_MO(reg) ((reg >> 20) & 0x3F)
#define MMU_CAPA_NUM_CONTEXT(reg) ((reg >> 16) & 0xF)
#define MMU_CAPA_NUM_SBB_ENTRY(reg) ((reg >> 12) & 0xF)
#define MMU_CAPA_NUM_TLB_SET(reg) ((reg >> 8) & 0xF)
#define MMU_CAPA_NUM_TLB_WAY(reg) ((reg) & 0xFF)
#define MMU_WAY_CFG_MASK_PREFETCH (1 << 1)
#define MMU_WAY_CFG_MASK_FETCH_SIZE (7 << 5)
#define MMU_WAY_CFG_AXID_MATCHING (1 << 4)
#define MMU_WAY_CFG_MASK_PREFETCH_DIR (3 << 2)
#define MMU_WAY_CFG_PRIVATE_ENABLE (1 << 0)
#define MMU_WAY_CFG_MASK_TARGET_CH (3 << 8)
#define MMU_WAY_CFG_TARGET_CH_READ (1 << 8)
#define MMU_WAY_CFG_TARGET_CH_WRITE (2 << 8)
#define MMU_WAY_CFG_MASK_TARGET_ID (0xFFFF << 16)
#define MMU_AW_TRANS_INFO(reg) ((reg >> 20) & 0x1)
#define MMU_SBB_ENTRY_VALID(reg) ((reg >> 28) & 0x1)
#define MMU_DEFAULT_BURST_LENGTH SYSMMU_BL4
#define MMU_READ_CH 0x1
#define MMU_WRITE_CH 0x2
const char *ppc_event_name[] = {
"TOTAL",
"L1TLB MISS",
"L2TLB MISS",
"FLPD CACHE MISS",
"PB LOOK-UP",
"PB MISS",
"BLOCK NUM BY PREFETCHING",
"BLOCK CYCLE BY PREFETCHING",
"TLB MISS",
"FLPD MISS ON PREFETCHING",
};
static char *sysmmu_fault_name[SYSMMU_FAULTS_NUM] = {
"PTW ACCESS FAULT",
"PAGE FAULT",
"L1TLB MULTI-HIT FAULT",
"ACCESS FAULT",
"SECURITY FAULT",
"UNKNOWN FAULT"
};
static char *sysmmu_clock_names[SYSMMU_CLK_NUM] = {"aclk", "pclk"};
static const char * const sysmmu_prop_opts[] = {
[SYSMMU_PROP_RESERVED] = "Reserved",
[SYSMMU_PROP_READ] = "r",
[SYSMMU_PROP_WRITE] = "w",
[SYSMMU_PROP_READWRITE] = "rw", /* default */
};
static int iova_from_sent(sysmmu_pte_t *base, sysmmu_pte_t *sent)
{
return ((unsigned long)sent - (unsigned long)base) *
(SECT_SIZE / sizeof(sysmmu_pte_t));
}
struct sysmmu_list_data {
struct device *sysmmu;
struct list_head node; /* entry of exynos_iommu_owner.mmu_list */
};
#define has_sysmmu(dev) (dev->archdata.iommu != NULL)
#define for_each_sysmmu_list(dev, sysmmu_list) \
list_for_each_entry(sysmmu_list, \
&((struct exynos_iommu_owner *)dev->archdata.iommu)->mmu_list,\
node)
static struct exynos_iommu_owner *sysmmu_owner_list = NULL;
static struct sysmmu_drvdata *sysmmu_drvdata_list = NULL;
static struct kmem_cache *lv2table_kmem_cache;
static phys_addr_t fault_page;
static struct dentry *exynos_sysmmu_debugfs_root;
#ifdef CONFIG_ARM
static inline void pgtable_flush(void *vastart, void *vaend)
{
dmac_flush_range(vastart, vaend);
outer_flush_range(virt_to_phys(vastart),
virt_to_phys(vaend));
}
#else /* ARM64 */
static inline void pgtable_flush(void *vastart, void *vaend)
{
dma_sync_single_for_device(NULL,
virt_to_phys(vastart),
(size_t)(virt_to_phys(vaend) - virt_to_phys(vastart)),
DMA_TO_DEVICE);
}
#endif
#define is_secure_info_fail(x) ((((x) >> 16) & 0xffff) == 0xdead)
static u32 __secure_info_read(unsigned int addr)
{
u32 ret;
ret = exynos_smc(SMC_DRM_SEC_SMMU_INFO, (unsigned long)addr,
0, SEC_SMMU_SFR_READ);
if (is_secure_info_fail(ret))
pr_err("Invalid value returned, %#x\n", ret);
return ret;
}
static bool has_sysmmu_capable_pbuf(void __iomem *sfrbase)
{
unsigned long cfg = __raw_readl(sfrbase + REG_MMU_CAPA);
return MMU_HAVE_PB(cfg);
}
static bool has_sysmmu_set_associative_tlb(void __iomem *sfrbase)
{
u32 cfg = __raw_readl(sfrbase + REG_MMU_CAPA_1);
return MMU_IS_TLB_CONFIGURABLE(cfg);
}
static bool has_sysmmu_l1_tlb(void __iomem *sfrbase)
{
u32 cfg = __raw_readl(sfrbase + REG_MMU_CAPA);
return MMU_IS_TLB_FULL_ASSOCIATIVE(cfg);
}
void __sysmmu_tlb_invalidate_entry(void __iomem *sfrbase, dma_addr_t iova)
{
writel(iova | 0x1, sfrbase + REG_MMU_FLUSH_ENTRY);
}
static void __sysmmu_tlb_invalidate_all(void __iomem *sfrbase)
{
writel(0x1, sfrbase + REG_MMU_FLUSH);
}
void __sysmmu_tlb_invalidate(struct sysmmu_drvdata *drvdata,
dma_addr_t iova, size_t size)
{
void * __iomem sfrbase = drvdata->sfrbase;
if (__raw_sysmmu_version(sfrbase) >= MAKE_MMU_VER(5, 1)) {
__raw_writel(iova, sfrbase + REG_FLUSH_RANGE_START);
__raw_writel(size - 1 + iova, sfrbase + REG_FLUSH_RANGE_END);
writel(0x1, sfrbase + REG_MMU_FLUSH_RANGE);
SYSMMU_EVENT_LOG_TLB_INV_RANGE(SYSMMU_DRVDATA_TO_LOG(drvdata),
iova, iova + size);
} else {
if (sysmmu_block(sfrbase)) {
__sysmmu_tlb_invalidate_all(sfrbase);
SYSMMU_EVENT_LOG_TLB_INV_ALL(
SYSMMU_DRVDATA_TO_LOG(drvdata));
}
sysmmu_unblock(sfrbase);
}
}
void __sysmmu_set_ptbase(void __iomem *sfrbase, phys_addr_t pfn_pgtable)
{
__raw_writel(pfn_pgtable, sfrbase + REG_PT_BASE_PPN);
__sysmmu_tlb_invalidate_all(sfrbase);
}
static void __sysmmu_disable_pbuf(struct sysmmu_drvdata *drvdata,
int target_grp)
{
unsigned int i, num_pb;
void * __iomem sfrbase = drvdata->sfrbase;
if (target_grp >= 0)
__raw_writel(target_grp << 8, sfrbase + REG_PB_INDICATE);
__raw_writel(0, sfrbase + REG_PB_LMM);
SYSMMU_EVENT_LOG_PBLMM(SYSMMU_DRVDATA_TO_LOG(drvdata), 0, 0);
num_pb = PB_INFO_NUM(__raw_readl(sfrbase + REG_PB_INFO));
for (i = 0; i < num_pb; i++) {
__raw_writel((target_grp << 8) | i, sfrbase + REG_PB_INDICATE);
__raw_writel(0, sfrbase + REG_PB_CFG);
SYSMMU_EVENT_LOG_PBSET(SYSMMU_DRVDATA_TO_LOG(drvdata), 0, 0, 0);
}
}
static unsigned int find_lmm_preset(unsigned int num_pb, unsigned int num_bufs)
{
static char lmm_preset[4][6] = { /* [num of PB][num of buffers] */
/* 1, 2, 3, 4, 5, 6 */
{ 1, 1, 0, -1, -1, -1}, /* num of pb: 3 */
{ 3, 2, 1, 0, -1, -1}, /* num of pb: 4 */
{-1, -1, -1, -1, -1, -1},
{ 5, 5, 4, 2, 1, 0}, /* num of pb: 6 */
};
unsigned int lmm;
BUG_ON(num_bufs > 6);
lmm = lmm_preset[num_pb - 3][num_bufs - 1];
BUG_ON(lmm == -1);
return lmm;
}
static unsigned int find_num_pb(unsigned int num_pb, unsigned int lmm)
{
static char lmm_preset[6][6] = { /* [pb_num - 1][pb_lmm] */
{0, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 0},
{3, 2, 0, 0, 0, 0},
{4, 3, 2, 1, 0, 0},
{0, 0, 0, 0, 0, 0},
{6, 5, 4, 3, 3, 2},
};
num_pb = lmm_preset[num_pb - 1][lmm];
BUG_ON(num_pb == 0);
return num_pb;
}
static void __sysmmu_set_pbuf(struct sysmmu_drvdata *drvdata, int target_grp,
struct sysmmu_prefbuf prefbuf[], int num_bufs)
{
unsigned int i, num_pb, lmm;
__raw_writel(target_grp << 8, drvdata->sfrbase + REG_PB_INDICATE);
num_pb = PB_INFO_NUM(__raw_readl(drvdata->sfrbase + REG_PB_INFO));
lmm = find_lmm_preset(num_pb, (unsigned int)num_bufs);
num_pb = find_num_pb(num_pb, lmm);
__raw_writel(lmm, drvdata->sfrbase + REG_PB_LMM);
SYSMMU_EVENT_LOG_PBLMM(SYSMMU_DRVDATA_TO_LOG(drvdata), lmm, num_bufs);
for (i = 0; i < num_pb; i++) {
__raw_writel(target_grp << 8 | i,
drvdata->sfrbase + REG_PB_INDICATE);
__raw_writel(0, drvdata->sfrbase + REG_PB_CFG);
if ((prefbuf[i].size > 0) && (i < num_bufs)) {
__raw_writel(prefbuf[i].base,
drvdata->sfrbase + REG_PB_START_ADDR);
__raw_writel(prefbuf[i].size - 1 + prefbuf[i].base,
drvdata->sfrbase + REG_PB_END_ADDR);
__raw_writel(prefbuf[i].config | 1,
drvdata->sfrbase + REG_PB_CFG);
SYSMMU_EVENT_LOG_PBSET(SYSMMU_DRVDATA_TO_LOG(drvdata),
prefbuf[i].config | 1, prefbuf[i].base,
prefbuf[i].size - 1 + prefbuf[i].base);
} else {
if (i < num_bufs)
dev_err(drvdata->sysmmu,
"%s: Trying to init PB[%d/%d]with zero-size\n",
__func__, i, num_bufs);
SYSMMU_EVENT_LOG_PBSET(SYSMMU_DRVDATA_TO_LOG(drvdata),
0, 0, 0);
}
}
}
static void __sysmmu_set_pbuf_axi_id(struct sysmmu_drvdata *drvdata,
struct pb_info *pb, unsigned int ipoption[],
unsigned int opoption[])
{
int i, j, num_pb, lmm;
int ret_num_pb = 0;
int total_plane_num = pb->ar_id_num + pb->aw_id_num;
u32 opt;
if (total_plane_num <= 0)
return;
if (pb->grp_num < 0) {
pr_err("The group number(%d) is invalid\n", pb->grp_num);
return;
}
__raw_writel(pb->grp_num << 8, drvdata->sfrbase + REG_PB_INDICATE);
num_pb = PB_INFO_NUM(__raw_readl(drvdata->sfrbase + REG_PB_INFO));
lmm = find_lmm_preset(num_pb, total_plane_num);
num_pb = find_num_pb(num_pb, lmm);
__raw_writel(lmm, drvdata->sfrbase + REG_PB_LMM);
ret_num_pb = min(pb->ar_id_num, num_pb);
for (i = 0; i < ret_num_pb; i++) {
__raw_writel((pb->grp_num << 8) | i,
drvdata->sfrbase + REG_PB_INDICATE);
__raw_writel(0, drvdata->sfrbase + REG_PB_CFG);
__raw_writel((0xFFFF << 16) | pb->ar_axi_id[i],
drvdata->sfrbase + REG_PB_AXI_ID);
opt = ipoption ? ipoption[i] : SYSMMU_PBUFCFG_DEFAULT_INPUT;
__raw_writel(opt | 0x100001,
drvdata->sfrbase + REG_PB_CFG);
}
if ((num_pb > ret_num_pb)) {
for (i = ret_num_pb, j = 0; i < num_pb; i++, j++) {
__raw_writel((pb->grp_num << 8) | i,
drvdata->sfrbase + REG_PB_INDICATE);
__raw_writel(0, drvdata->sfrbase + REG_PB_CFG);
__raw_writel((0xFFFF << 16) | pb->aw_axi_id[j],
drvdata->sfrbase + REG_PB_AXI_ID);
opt = opoption ? opoption[i] : SYSMMU_PBUFCFG_DEFAULT_OUTPUT;
__raw_writel(opt | 0x100001,
drvdata->sfrbase + REG_PB_CFG);
}
}
}
static void __sysmmu_set_pbuf_property(struct sysmmu_drvdata *drvdata,
struct pb_info *pb, unsigned int ipoption[],
unsigned int opoption[])
{
int i, num_pb, lmm;
int ret_num_pb = 0;
int total_plane_num = pb->ar_id_num + pb->aw_id_num;
u32 opt;
if (total_plane_num <= 0)
return;
if (pb->grp_num < 0) {
pr_err("The group number(%d) is invalid\n", pb->grp_num);
return;
}
num_pb = PB_INFO_NUM(__raw_readl(drvdata->sfrbase + REG_PB_INFO));
lmm = find_lmm_preset(num_pb, total_plane_num);
num_pb = find_num_pb(num_pb, lmm);
ret_num_pb = min(pb->ar_id_num, num_pb);
for (i = 0; i < ret_num_pb; i++) {
__raw_writel((pb->grp_num << 8) | i,
drvdata->sfrbase + REG_PB_INDICATE);
opt = ipoption ? ipoption[i] : SYSMMU_PBUFCFG_DEFAULT_INPUT;
__raw_writel(opt | 0x100001,
drvdata->sfrbase + REG_PB_CFG);
}
if ((num_pb > ret_num_pb)) {
for (i = ret_num_pb; i < num_pb; i++) {
__raw_writel((pb->grp_num << 8) | i,
drvdata->sfrbase + REG_PB_INDICATE);
opt = opoption ? opoption[i] : SYSMMU_PBUFCFG_DEFAULT_OUTPUT;
__raw_writel(opt | 0x100001,
drvdata->sfrbase + REG_PB_CFG);
}
}
}
static void __exynos_sysmmu_set_prefbuf_by_region(
struct sysmmu_drvdata *drvdata, struct device *dev,
struct sysmmu_prefbuf pb_reg[], unsigned int num_reg)
{
struct pb_info *pb;
unsigned int i;
int orig_num_reg, num_bufs = 0;
struct sysmmu_prefbuf prefbuf[6];
if (!has_sysmmu_capable_pbuf(drvdata->sfrbase))
return;
if ((num_reg == 0) || (pb_reg == NULL)) {
/* Disabling prefetch buffers */
__sysmmu_disable_pbuf(drvdata, -1);
return;
}
orig_num_reg = num_reg;
list_for_each_entry(pb, &drvdata->pb_grp_list, node) {
if (pb->master == dev) {
for (i = 0; i < orig_num_reg; i++) {
if (((pb_reg[i].config & SYSMMU_PBUFCFG_WRITE) &&
(pb->prop & SYSMMU_PROP_WRITE)) ||
(!(pb_reg[i].config & SYSMMU_PBUFCFG_WRITE) &&
(pb->prop & SYSMMU_PROP_READ))) {
if (num_reg > 0)
num_reg--;
else if (num_reg == 0)
break;
prefbuf[num_bufs++] = pb_reg[i];
}
}
if (num_bufs)
__sysmmu_set_pbuf(drvdata, pb->grp_num, prefbuf,
num_bufs);
num_bufs = 0;
}
}
}
static void __exynos_sysmmu_set_prefbuf_axi_id(struct sysmmu_drvdata *drvdata,
struct device *master, unsigned int inplanes,
unsigned int onplanes, unsigned int ipoption[],
unsigned int opoption[])
{
struct pb_info *pb;
if (!has_sysmmu_capable_pbuf(drvdata->sfrbase))
return;
list_for_each_entry(pb, &drvdata->pb_grp_list, node) {
if (master) {
if (pb->master == master) {
struct pb_info tpb;
memcpy(&tpb, pb, sizeof(tpb));
tpb.ar_id_num = inplanes;
tpb.aw_id_num = onplanes;
__sysmmu_set_pbuf_axi_id(drvdata, &tpb,
ipoption, opoption);
}
continue;
}
__sysmmu_set_pbuf_axi_id(drvdata, pb,
ipoption, opoption);
}
}
static void __exynos_sysmmu_set_prefbuf_property(struct sysmmu_drvdata *drvdata,
struct device *master, unsigned int inplanes,
unsigned int onplanes, unsigned int ipoption[],
unsigned int opoption[])
{
struct pb_info *pb;
if (!has_sysmmu_capable_pbuf(drvdata->sfrbase))
return;
if (!master)
return;
list_for_each_entry(pb, &drvdata->pb_grp_list, node) {
if (pb->master == master) {
struct pb_info tpb;
memcpy(&tpb, pb, sizeof(tpb));
tpb.ar_id_num = inplanes;
tpb.aw_id_num = onplanes;
__sysmmu_set_pbuf_property(drvdata, &tpb,
ipoption, opoption);
}
}
}
static void dump_l2_tlb(void __iomem *sfrbase, u32 tlb_entry_count)
{
if (MMU_TLB_ENTRY_VALID(__raw_readl(sfrbase + REG_L2TLB_ENTRY_ATTR))) {
pr_crit("[%03d] VPN: %#010x, PPN: %#010x, ATTR: %#010x\n",
tlb_entry_count,
__raw_readl(sfrbase + REG_L2TLB_ENTRY_VPN),
__raw_readl(sfrbase + REG_L2TLB_ENTRY_PPN),
__raw_readl(sfrbase + REG_L2TLB_ENTRY_ATTR));
}
}
static phys_addr_t __get_sfrbase_to_phys(void __iomem *sfrbase)
{
pgd_t *pgd;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
pgd = pgd_offset_k((unsigned long)sfrbase);
if (!pgd)
goto err;
pud = pud_offset(pgd, (unsigned long)sfrbase);
if (!pud)
goto err;
pmd = pmd_offset(pud, (unsigned long)sfrbase);
if (!pmd)
goto err;
pte = pte_offset_kernel(pmd, (unsigned long)sfrbase);
if (!pte)
goto err;
return pte_pfn(*pte) << PAGE_SHIFT;
err:
pr_crit("Invalid virtual address %p\n", sfrbase);
return 0;
}
void dump_sysmmu_tlb_pb(void __iomem *sfrbase)
{
int i, j, k, capa, num_pb, lmm;
capa = __raw_readl(sfrbase + REG_MMU_CAPA);
pr_crit("---------- TLB -----------------------------------\n");
for (i = 0; i < MMU_NUM_L1TLB_ENTRIES(capa); i++) {
__raw_writel(i, sfrbase + REG_L1TLB_READ_ENTRY);
pr_crit("[%02d] VPN: %#010x, PPN: %#010x, ATTR: %#010x\n",
i, __raw_readl(sfrbase + REG_L1TLB_ENTRY_VPN),
__raw_readl(sfrbase + REG_L1TLB_ENTRY_PPN),
__raw_readl(sfrbase + REG_L1TLB_ENTRY_ATTR));
}
/*
* 6.0.2 sysmmu has only 1 TLB, the number of entry is 512
*/
if (!has_sysmmu_l1_tlb(sfrbase)) {
u32 capa_1 = __raw_readl(sfrbase + REG_MMU_CAPA_1);
u32 line_size =
(__raw_readl(sfrbase + REG_L2TLB_CFG) >> 4) &
MMU_MASK_LINE_SIZE;
u32 tlb_set_num = MMU_MAX_TLB_SET(capa_1) >> line_size;
u32 tlb_line_num = MMU_MIN_TLB_LINE(capa_1) * tlb_set_num;
u32 tlb_read_entry = 0;
u32 count = 0;
for (i = 0; i < tlb_set_num; i++) {
for (j = 0; j < MMU_TLB_WAY(capa_1); j++) {
for (k = 0; k < tlb_line_num; k++) {
tlb_read_entry =
MMU_SET_TLB_READ_ENTRY(i, j, k);
__raw_writel(tlb_read_entry,
sfrbase + REG_L2TLB_READ_ENTRY);
dump_l2_tlb(sfrbase, count++);
}
}
}
}
if (!has_sysmmu_capable_pbuf(sfrbase))
return;
pr_crit("---------- Prefetch Buffers ------------------------------\n");
for (i = 0; i < MMU_PB_GRP_NUM(capa); i++) {
__raw_writel(i << 8, sfrbase + REG_PB_INDICATE);
num_pb = PB_INFO_NUM(__raw_readl(sfrbase + REG_PB_INFO));
lmm = __raw_readl(sfrbase + REG_PB_LMM);
pr_crit("PB_INFO[%d]: %#010x, PB_LMM: %#010x\n",
i, num_pb, lmm);
num_pb = find_num_pb(num_pb, lmm);
for (j = 0; j < num_pb; j++) {
__raw_writel((i << 8) | j, sfrbase + REG_PB_INDICATE);
pr_crit("PB[%d][%d] = CFG: %#010x, AXI ID: %#010x, ", i,
j, __raw_readl(sfrbase + REG_PB_CFG),
__raw_readl(sfrbase + REG_PB_AXI_ID));
pr_crit("PB[%d][%d] START: %#010x, END: %#010x\n", i, j,
__raw_readl(sfrbase + REG_PB_START_ADDR),
__raw_readl(sfrbase + REG_PB_END_ADDR));
pr_crit("SPB0 START: %#010x, END: %#010x, VALID: %#010x\n",
__raw_readl(sfrbase + REG_PCI_SPB0_SVPN),
__raw_readl(sfrbase + REG_PCI_SPB0_EVPN),
__raw_readl(sfrbase + REG_PCI_SPB0_SLOT_VALID));
pr_crit("SPB1 START: %#010x, END: %#010x, VALID: %#010x\n",
__raw_readl(sfrbase + REG_PCI_SPB1_SVPN),
__raw_readl(sfrbase + REG_PCI_SPB1_EVPN),
__raw_readl(sfrbase + REG_PCI_SPB1_SLOT_VALID));
}
}
}
static void dump_set_associative_tlb(void __iomem *sfrbase, int i, int j)
{
if (MMU_TLB_ENTRY_VALID(__raw_readl(sfrbase + REG_SA_TLB_ATTR))) {
pr_crit("[%01d][%01d] VPN: %#010x, PPN: %#010x, ATTR: %#010x\n",
i, j, __raw_readl(sfrbase + REG_SA_TLB_VPN),
__raw_readl(sfrbase + REG_SA_TLB_PPN),
__raw_readl(sfrbase + REG_SA_TLB_ATTR));
}
}
#define MMU_NUM_TLB_SUBLINE 4
static void dump_sysmmu_tlb_v7(void __iomem *sfrbase)
{
int i, j, k;
u32 capa = __raw_readl(sfrbase + REG_MMU_CAPA_V7);
pr_crit("------------- TLB[WAY][SET][ENTRY] -------------\n");
for (i = 0; i < MMU_CAPA_NUM_TLB_WAY(capa); i++) {
for (j = 0; j < (1 << MMU_CAPA_NUM_TLB_SET(capa)); j++) {
for (k = 0; k < MMU_NUM_TLB_SUBLINE; k++) {
__raw_writel(MMU_SET_TLB_READ_ENTRY(j, i, k),
sfrbase + REG_SA_TLB_READ);
dump_set_associative_tlb(sfrbase, i, j);
}
}
}
pr_crit("--- SBB(Second-Level Page Table Base Address Buffer ---\n");
for (i = 0; i < (1 << MMU_CAPA_NUM_SBB_ENTRY(capa)); i++) {
__raw_writel(i, sfrbase + REG_SBB_READ);
pr_crit("[%02d] VPN: %#010x, PPN: %#010x, ATTR: %#010x\n",
i, __raw_readl(sfrbase + REG_SBB_VPN),
__raw_readl(sfrbase + REG_SBB_LINK),
__raw_readl(sfrbase + REG_SBB_ATTR));
}
}
static void show_secure_fault_information(struct sysmmu_drvdata *drvdata,
int flags, unsigned long fault_addr)
{
unsigned int info;
phys_addr_t pgtable;
int fault_id = SYSMMU_FAULT_ID(flags);
bool is_write_fault = false;
unsigned int sfrbase = drvdata->securebase;
pgtable = __secure_info_read(sfrbase + REG_PT_BASE_PPN);
pgtable <<= PAGE_SHIFT;
info = __secure_info_read(sfrbase + REG_FAULT_TRANS_INFO);
is_write_fault = MMU_AW_TRANS_INFO(info);
pr_crit("----------------------------------------------------------\n");
pr_crit("%s %s %s at %#010lx (page table @ %pa)\n",
dev_name(drvdata->sysmmu), (is_write_fault) ? "WRITE" : "READ",
sysmmu_fault_name[fault_id], fault_addr, &pgtable);
if (fault_id == SYSMMU_FAULT_UNKNOWN) {
pr_crit("The fault is not caused by this System MMU.\n");
pr_crit("Please check IRQ and SFR base address.\n");
goto finish;
}
pr_crit("AxID: %#x, AxLEN: %#x\n", info & 0xFFFF, (info >> 16) & 0xF);
if (fault_id == SYSMMU_FAULT_PTW_ACCESS)
pr_crit("System MMU has failed to access page table\n");
if (!pfn_valid(pgtable >> PAGE_SHIFT)) {
pr_crit("Page table base is not in a valid memory region\n");
} else {
sysmmu_pte_t *ent;
ent = section_entry(phys_to_virt(pgtable), fault_addr);
pr_crit("Lv1 entry: %#010x\n", *ent);
if (lv1ent_page(ent)) {
ent = page_entry(ent, fault_addr);
pr_crit("Lv2 entry: %#010x\n", *ent);
}
}
info = MMU_RAW_VER(__secure_info_read(sfrbase + REG_MMU_VERSION));
pr_crit("ADDR: %#x, MMU_CTRL: %#010x, PT_BASE: %#010x\n",
sfrbase,
__secure_info_read(sfrbase + REG_MMU_CTRL),
__secure_info_read(sfrbase + REG_PT_BASE_PPN));
pr_crit("VERSION %d.%d.%d, MMU_CFG: %#010x, MMU_STATUS: %#010x\n",
MMU_MAJ_VER(info), MMU_MIN_VER(info), MMU_REV_VER(info),
__secure_info_read(sfrbase + REG_MMU_CFG),
__secure_info_read(sfrbase + REG_MMU_STATUS));
finish:
pr_crit("----------------------------------------------------------\n");
}
static void show_fault_information(struct sysmmu_drvdata *drvdata,
int flags, unsigned long fault_addr)
{
unsigned int info;
phys_addr_t pgtable, phys;
int fault_id = SYSMMU_FAULT_ID(flags);
bool is_write_fault = false;
void __iomem *sfrbase = drvdata->sfrbase;
pgtable = __raw_readl(drvdata->sfrbase + REG_PT_BASE_PPN);
pgtable <<= PAGE_SHIFT;
if (MMU_MAJ_VER(drvdata->hw_ver) >= 7) {
info = __raw_readl(sfrbase + REG_FAULT_TRANS_INFO);
is_write_fault = MMU_AW_TRANS_INFO(info);
} else {
is_write_fault = (flags & IOMMU_FAULT_WRITE);
info = __raw_readl(sfrbase + (is_write_fault ?
REG_FAULT_AW_TRANS_INFO : REG_FAULT_AR_TRANS_INFO));
}
pr_crit("----------------------------------------------------------\n");
pr_crit("%s %s %s at %#010lx (page table @ %pa)\n",
dev_name(drvdata->sysmmu), (is_write_fault) ? "WRITE" : "READ",
sysmmu_fault_name[fault_id], fault_addr, &pgtable);
if (fault_id == SYSMMU_FAULT_UNKNOWN) {
pr_crit("The fault is not caused by this System MMU.\n");
pr_crit("Please check IRQ and SFR base address.\n");
goto finish;
}
pr_crit("AxID: %#x, AxLEN: %#x\n", info & 0xFFFF, (info >> 16) & 0xF);
if (pgtable != drvdata->pgtable)
pr_crit("Page table base of driver: %pa\n",
&drvdata->pgtable);
if (fault_id == SYSMMU_FAULT_PTW_ACCESS)
pr_crit("System MMU has failed to access page table\n");
if (!pfn_valid(pgtable >> PAGE_SHIFT)) {
pr_crit("Page table base is not in a valid memory region\n");
} else {
sysmmu_pte_t *ent;
ent = section_entry(phys_to_virt(pgtable), fault_addr);
pr_crit("Lv1 entry: %#010x\n", *ent);
if (lv1ent_page(ent)) {
ent = page_entry(ent, fault_addr);
pr_crit("Lv2 entry: %#010x\n", *ent);
}
}
phys = __get_sfrbase_to_phys(sfrbase);
if (!phys)
return;
info = MMU_RAW_VER(__raw_readl(sfrbase + REG_MMU_VERSION));
pr_crit("ADDR: %pa(VA: %p), MMU_CTRL: %#010x, PT_BASE: %#010x\n",
&phys, sfrbase,
__raw_readl(sfrbase + REG_MMU_CTRL),
__raw_readl(sfrbase + REG_PT_BASE_PPN));
pr_crit("VERSION %d.%d.%d, MMU_CFG: %#010x, MMU_STATUS: %#010x\n",
MMU_MAJ_VER(info), MMU_MIN_VER(info), MMU_REV_VER(info),
__raw_readl(sfrbase + REG_MMU_CFG),
__raw_readl(sfrbase + REG_MMU_STATUS));
if (MMU_MAJ_VER(drvdata->hw_ver) >= 7)
dump_sysmmu_tlb_v7(sfrbase);
else
dump_sysmmu_tlb_pb(sfrbase);
finish:
pr_crit("----------------------------------------------------------\n");
}
#define REG_INT_STATUS_WRITE_BIT 16
irqreturn_t exynos_sysmmu_irq_secure(int irq, void *dev_id)
{
struct sysmmu_drvdata *drvdata = dev_id;
unsigned int itype = 0;
unsigned long addr = -1;
int flags = 0;
dev_err(drvdata->sysmmu, "Secure irq occured!\n");
if (!drvdata->securebase) {
dev_err(drvdata->sysmmu, "Unknown interrupt occurred\n");
BUG();
} else {
dev_err(drvdata->sysmmu, "Secure reg value = %#lx\n",
(unsigned long)drvdata->securebase);
}
itype = __ffs(__secure_info_read(drvdata->securebase + REG_INT_STATUS));
if (itype >= REG_INT_STATUS_WRITE_BIT) {
itype -= REG_INT_STATUS_WRITE_BIT;
flags = IOMMU_FAULT_WRITE;
}
addr = __secure_info_read(drvdata->securebase + REG_FAULT_ADDR);
flags |= SYSMMU_FAULT_FLAG(itype);
show_secure_fault_information(drvdata, flags, addr);
atomic_notifier_call_chain(&drvdata->fault_notifiers, addr, &flags);
BUG();
return IRQ_HANDLED;
}
irqreturn_t exynos_sysmmu_irq(int irq, void *dev_id)
{
/* SYSMMU is in blocked when interrupt occurred. */
struct sysmmu_drvdata *drvdata = dev_id;
unsigned int itype;
unsigned long addr = -1;
int flags = 0;
WARN(!is_sysmmu_active(drvdata),
"Fault occurred while System MMU %s is not enabled!\n",
dev_name(drvdata->sysmmu));
itype = __ffs(__raw_readl(drvdata->sfrbase + REG_INT_STATUS));
if (itype >= REG_INT_STATUS_WRITE_BIT) {
itype -= REG_INT_STATUS_WRITE_BIT;
flags = IOMMU_FAULT_WRITE;
}
if (MMU_MAJ_VER(drvdata->hw_ver) >= 7)
addr = __raw_readl(drvdata->sfrbase + REG_FAULT_ADDR);
else
addr = __raw_readl(drvdata->sfrbase +
((flags & IOMMU_FAULT_WRITE) ?
REG_FAULT_AW_ADDR : REG_FAULT_AR_ADDR));
flags |= SYSMMU_FAULT_FLAG(itype);
show_fault_information(drvdata, flags, addr);
atomic_notifier_call_chain(&drvdata->fault_notifiers, addr, &flags);
panic("Unrecoverable System MMU Fault!!");
return IRQ_HANDLED;
}
static void __sysmmu_set_tlb_line_size(void __iomem *sfrbase)
{
u32 cfg = __raw_readl(sfrbase + REG_L2TLB_CFG);
cfg &= ~MMU_MASK_LINE_SIZE;
cfg |= MMU_DEFAULT_LINE_SIZE;
__raw_writel(cfg, sfrbase + REG_L2TLB_CFG);
}
static void __sysmmu_set_public_way(struct sysmmu_drvdata *data)
{
u32 cfg = __raw_readl(data->sfrbase + REG_PUBLIC_WAY_CFG);
cfg &= ~(MMU_WAY_CFG_MASK_FETCH_SIZE | MMU_WAY_CFG_MASK_PREFETCH);
cfg |= MMU_DEFAULT_BURST_LENGTH;
__raw_writel(cfg, data->sfrbase + REG_PUBLIC_WAY_CFG);
}
static void __sysmmu_set_private_way(struct sysmmu_drvdata *data, unsigned way_idx)
{
u32 cfg = __raw_readl(data->sfrbase + REG_PRIVATE_WAY_CFG(way_idx));
cfg &= ~(MMU_WAY_CFG_MASK_FETCH_SIZE | MMU_WAY_CFG_MASK_PREFETCH_DIR |
MMU_WAY_CFG_MASK_TARGET_CH | MMU_WAY_CFG_MASK_PREFETCH);
/*
* In sysmmu v7, all sysmmu use ID matching
*/
cfg |= (MMU_WAY_CFG_AXID_MATCHING | MMU_WAY_CFG_PRIVATE_ENABLE |
data->tlbprops[way_idx].attr);
cfg |= (is_ar_axi_id(data->tlbprops[way_idx].axid)) ?
MMU_WAY_CFG_TARGET_CH_READ : MMU_WAY_CFG_TARGET_CH_WRITE;
__raw_writel(cfg, data->sfrbase + REG_PRIVATE_WAY_CFG(way_idx));
__raw_writel(MMU_WAY_CFG_MASK_TARGET_ID | (data->tlbprops[way_idx].axid & 0xFF),
data->sfrbase + REG_PRIVATE_ID(way_idx));
dev_dbg(data->sysmmu, "way_cfg[%d] : %#x, id[%d] : %#x\n",
way_idx, __raw_readl(data->sfrbase + REG_PRIVATE_WAY_CFG(way_idx)),
way_idx, __raw_readl(data->sfrbase + REG_PRIVATE_ID(way_idx)));
}
void __sysmmu_init_config(struct sysmmu_drvdata *drvdata)
{
unsigned long cfg;
__raw_writel(CTRL_BLOCK, drvdata->sfrbase + REG_MMU_CTRL);
cfg = CFG_FLPDCACHE;
if (!(drvdata->prop & SYSMMU_PROP_DISABLE_ACG))
cfg |= CFG_ACGEN;
if (!(drvdata->qos < 0))
cfg |= CFG_QOS_OVRRIDE | CFG_QOS(drvdata->qos);
if (MMU_MAJ_VER(drvdata->hw_ver) >= 7) {
u32 cfg = __raw_readl(drvdata->sfrbase + REG_MMU_CAPA_V7);
u32 tlb_way_num = MMU_CAPA_NUM_TLB_WAY(cfg);
unsigned i;
WARN_ON(tlb_way_num < drvdata->props_num);
if (tlb_way_num > drvdata->props_num)
__sysmmu_set_public_way(drvdata);
for (i = 0; i < min(drvdata->props_num, tlb_way_num); i++)
__sysmmu_set_private_way(drvdata, i);
} else {
if (has_sysmmu_capable_pbuf(drvdata->sfrbase))
__exynos_sysmmu_set_prefbuf_axi_id(drvdata, NULL,
0, 0, NULL, NULL);
if (has_sysmmu_set_associative_tlb(drvdata->sfrbase))
__sysmmu_set_tlb_line_size(drvdata->sfrbase);
}
cfg |= __raw_readl(drvdata->sfrbase + REG_MMU_CFG) & ~CFG_MASK;
__raw_writel(cfg, drvdata->sfrbase + REG_MMU_CFG);
}
static void sysmmu_tlb_invalidate_entry(struct device *dev, dma_addr_t iova,
bool force)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
unsigned long flags;
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
if (!force && !(drvdata->prop & SYSMMU_PROP_NONBLOCK_TLBINV))
continue;
spin_lock_irqsave(&drvdata->lock, flags);
if (is_sysmmu_active(drvdata) &&
is_sysmmu_runtime_active(drvdata)) {
TRACE_LOG_DEV(drvdata->sysmmu,
"TLB invalidation @ %#x\n", iova);
__sysmmu_tlb_invalidate_entry(drvdata->sfrbase, iova);
SYSMMU_EVENT_LOG_TLB_INV_VPN(
SYSMMU_DRVDATA_TO_LOG(drvdata), iova);
} else {
TRACE_LOG_DEV(drvdata->sysmmu,
"Skip TLB invalidation @ %#x\n", iova);
}
spin_unlock_irqrestore(&drvdata->lock, flags);
}
}
void exynos_sysmmu_tlb_invalidate(struct iommu_domain *domain, dma_addr_t start,
size_t size)
{
struct exynos_iommu_domain *priv = domain->priv;
struct exynos_iommu_owner *owner;
struct sysmmu_list_data *list;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client) {
for_each_sysmmu_list(owner->dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
if (!!(drvdata->prop & SYSMMU_PROP_NONBLOCK_TLBINV))
continue;
spin_lock(&drvdata->lock);
if (!is_sysmmu_active(drvdata) ||
!is_sysmmu_runtime_active(drvdata)) {
spin_unlock(&drvdata->lock);
TRACE_LOG_DEV(drvdata->sysmmu,
"Skip TLB invalidation %#x@%#x\n", size, start);
continue;
}
TRACE_LOG_DEV(drvdata->sysmmu,
"TLB invalidation %#x@%#x\n", size, start);
__sysmmu_tlb_invalidate(drvdata, start, size);
spin_unlock(&drvdata->lock);
}
}
spin_unlock_irqrestore(&priv->lock, flags);
}
static inline void __sysmmu_disable_nocount(struct sysmmu_drvdata *drvdata)
{
int disable = (drvdata->prop & SYSMMU_PROP_STOP_BLOCK) ?
CTRL_BLOCK_DISABLE : CTRL_DISABLE;
__raw_sysmmu_disable(drvdata->sfrbase, disable);
__sysmmu_clk_disable(drvdata);
SYSMMU_EVENT_LOG_DISABLE(SYSMMU_DRVDATA_TO_LOG(drvdata));
TRACE_LOG("%s(%s)\n", __func__, dev_name(drvdata->sysmmu));
}
static bool __sysmmu_disable(struct sysmmu_drvdata *drvdata)
{
bool disabled;
unsigned long flags;
spin_lock_irqsave(&drvdata->lock, flags);
disabled = set_sysmmu_inactive(drvdata);
if (disabled) {
drvdata->pgtable = 0;
drvdata->domain = NULL;
if (is_sysmmu_runtime_active(drvdata))
__sysmmu_disable_nocount(drvdata);
TRACE_LOG_DEV(drvdata->sysmmu, "Disabled\n");
} else {
TRACE_LOG_DEV(drvdata->sysmmu, "%d times left to disable\n",
drvdata->activations);
}
spin_unlock_irqrestore(&drvdata->lock, flags);
return disabled;
}
static void __sysmmu_enable_nocount(struct sysmmu_drvdata *drvdata)
{
__sysmmu_clk_enable(drvdata);
__sysmmu_init_config(drvdata);
__sysmmu_set_ptbase(drvdata->sfrbase, drvdata->pgtable / PAGE_SIZE);
__raw_sysmmu_enable(drvdata->sfrbase);
SYSMMU_EVENT_LOG_ENABLE(SYSMMU_DRVDATA_TO_LOG(drvdata));
TRACE_LOG_DEV(drvdata->sysmmu, "Really enabled\n");
}
static int __sysmmu_enable(struct sysmmu_drvdata *drvdata,
phys_addr_t pgtable, struct iommu_domain *domain)
{
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&drvdata->lock, flags);
if (set_sysmmu_active(drvdata)) {
drvdata->pgtable = pgtable;
drvdata->domain = domain;
if (is_sysmmu_runtime_active(drvdata))
__sysmmu_enable_nocount(drvdata);
TRACE_LOG_DEV(drvdata->sysmmu, "Enabled\n");
} else {
ret = (pgtable == drvdata->pgtable) ? 1 : -EBUSY;
TRACE_LOG_DEV(drvdata->sysmmu, "Already enabled (%d)\n", ret);
}
if (WARN_ON(ret < 0))
set_sysmmu_inactive(drvdata); /* decrement count */
spin_unlock_irqrestore(&drvdata->lock, flags);
return ret;
}
/* __exynos_sysmmu_enable: Enables System MMU
*
* returns -error if an error occurred and System MMU is not enabled,
* 0 if the System MMU has been just enabled and 1 if System MMU was already
* enabled before.
*/
static int __exynos_sysmmu_enable(struct device *dev, phys_addr_t pgtable,
struct iommu_domain *domain)
{
int ret = 0;
unsigned long flags;
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
BUG_ON(!has_sysmmu(dev));
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
ret = __sysmmu_enable(drvdata, pgtable, domain);
if (ret < 0) {
struct sysmmu_list_data *iter;
for_each_sysmmu_list(dev, iter) {
if (iter == list)
break;
__sysmmu_disable(dev_get_drvdata(iter->sysmmu));
}
break;
}
}
spin_unlock_irqrestore(&owner->lock, flags);
return ret;
}
int exynos_sysmmu_enable(struct device *dev, unsigned long pgtable)
{
int ret;
BUG_ON(!memblock_is_memory(pgtable));
ret = __exynos_sysmmu_enable(dev, pgtable, NULL);
return ret;
}
bool exynos_sysmmu_disable(struct device *dev)
{
unsigned long flags;
bool disabled = true;
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
BUG_ON(!has_sysmmu(dev));
spin_lock_irqsave(&owner->lock, flags);
/* Every call to __sysmmu_disable() must return same result */
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
disabled = __sysmmu_disable(drvdata);
}
spin_unlock_irqrestore(&owner->lock, flags);
return disabled;
}
void sysmmu_set_prefetch_buffer_by_region(struct device *dev,
struct sysmmu_prefbuf pb_reg[], unsigned int num_reg)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
unsigned long flags;
if (!dev->archdata.iommu) {
dev_err(dev, "%s: No System MMU is configured\n", __func__);
return;
}
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
spin_lock(&drvdata->lock);
if (!is_sysmmu_active(drvdata) ||
!is_sysmmu_runtime_active(drvdata)) {
spin_unlock(&drvdata->lock);
continue;
}
if (sysmmu_block(drvdata->sfrbase)) {
__exynos_sysmmu_set_prefbuf_by_region(
drvdata, dev, pb_reg, num_reg);
sysmmu_unblock(drvdata->sfrbase);
}
spin_unlock(&drvdata->lock);
}
spin_unlock_irqrestore(&owner->lock, flags);
}
int sysmmu_set_prefetch_buffer_property(struct device *dev,
unsigned int inplanes, unsigned int onplanes,
unsigned int ipoption[], unsigned int opoption[])
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
unsigned long flags;
if (!dev->archdata.iommu) {
dev_err(dev, "%s: No System MMU is configured\n", __func__);
return -EINVAL;
}
spin_lock_irqsave(&owner->lock, flags);
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
spin_lock(&drvdata->lock);
if (!is_sysmmu_active(drvdata) ||
!is_sysmmu_runtime_active(drvdata)) {
spin_unlock(&drvdata->lock);
continue;
}
__exynos_sysmmu_set_prefbuf_property(drvdata, dev,
inplanes, onplanes, ipoption, opoption);
spin_unlock(&drvdata->lock);
}
spin_unlock_irqrestore(&owner->lock, flags);
return 0;
}
static int __init __sysmmu_init_clock(struct device *sysmmu,
struct sysmmu_drvdata *drvdata)
{
int i, ret;
/* Initialize SYSMMU clocks */
for (i = 0; i < SYSMMU_CLK_NUM; i++)
drvdata->clocks[i] = ERR_PTR(-ENOENT);
for (i = 0; i < SYSMMU_CLK_NUM; i++) {
drvdata->clocks[i] =
devm_clk_get(sysmmu, sysmmu_clock_names[i]);
if (IS_ERR(drvdata->clocks[i]) &&
!(drvdata->clocks[i] == ERR_PTR(-ENOENT))) {
dev_err(sysmmu, "Failed to get sysmmu %s clock\n",
sysmmu_clock_names[i]);
return PTR_ERR(drvdata->clocks[i]);
} else if (drvdata->clocks[i] == ERR_PTR(-ENOENT)) {
continue;
}
ret = clk_prepare(drvdata->clocks[i]);
if (ret) {
dev_err(sysmmu, "Failed to prepare sysmmu %s clock\n",
sysmmu_clock_names[i]);
while (i-- > 0) {
if (!IS_ERR(drvdata->clocks[i]))
clk_unprepare(drvdata->clocks[i]);
}
return ret;
}
}
return 0;
}
static int __sysmmu_init_pb_info(struct device *sysmmu, struct device *master,
struct sysmmu_drvdata *data, struct device_node *pb_node,
struct of_phandle_args *pb_args, int grp_num)
{
struct pb_info *pb;
const char *s;
int i, ret;
pb = devm_kzalloc(sysmmu, sizeof(*pb), GFP_KERNEL);
if (!pb) {
dev_err(sysmmu, "%s: failed to allocate pb_info[%d]\n",
__func__, grp_num);
return -ENOMEM;
}
pb->master = master;
pb->grp_num = grp_num;
for (i = 0; i < MAX_NUM_PBUF; i++) {
pb->ar_axi_id[i] = -1;
pb->aw_axi_id[i] = -1;
}
INIT_LIST_HEAD(&pb->node);
for (i = 0; i < pb_args->args_count; i++) {
if (is_axi_id(pb_args->args[i])) {
if (is_ar_axi_id(pb_args->args[i])) {
pb->ar_axi_id[pb->ar_id_num] = pb_args->args[i];
pb->ar_id_num++;
} else {
pb->aw_axi_id[pb->aw_id_num] =
pb_args->args[i] & AXIID_MASK;
pb->aw_id_num++;
}
}
}
ret = of_property_read_string(pb_node, "dir", &s);
if (!ret) {
int val;
for (val = 1; val < ARRAY_SIZE(sysmmu_prop_opts); val++) {
if (!strcasecmp(s, sysmmu_prop_opts[val])) {
pb->prop &= ~SYSMMU_PROP_RW_MASK;
pb->prop |= val;
break;
}
}
} else if (ret && ret == -EINVAL) {
pb->prop = SYSMMU_PROP_READWRITE;
} else {
dev_err(sysmmu, "%s: failed to get PB Direction of %s\n",
__func__, pb_args->np->full_name);
devm_kfree(sysmmu, pb);
return ret;
}
list_add_tail(&pb->node, &data->pb_grp_list);
dev_info(sysmmu, "device node[%d] : %s\n",
pb->grp_num, pb_args->np->name);
dev_info(sysmmu, "ar[%d] = {%d, %d, %d, %d, %d, %d}\n",
pb->ar_id_num,
pb->ar_axi_id[0], pb->ar_axi_id[1],
pb->ar_axi_id[2], pb->ar_axi_id[3],
pb->ar_axi_id[4], pb->ar_axi_id[5]);
dev_info(sysmmu, "aw[%d]= {%d, %d, %d, %d, %d, %d}\n",
pb->aw_id_num,
pb->aw_axi_id[0], pb->aw_axi_id[1],
pb->aw_axi_id[2], pb->aw_axi_id[3],
pb->aw_axi_id[4], pb->aw_axi_id[5]);
return 0;
}
static int __sysmmu_update_owner(struct device *master, struct device *sysmmu)
{
struct exynos_iommu_owner *owner;
struct sysmmu_list_data *list_data;
owner = master->archdata.iommu;
if (!owner) {
owner = kzalloc(sizeof(*owner), GFP_KERNEL);
if (!owner) {
dev_err(master, "%s: Failed to allocate owner structure\n",
__func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&owner->mmu_list);
INIT_LIST_HEAD(&owner->client);
owner->dev = master;
spin_lock_init(&owner->lock);
master->archdata.iommu = owner;
if (!sysmmu_owner_list) {
sysmmu_owner_list = owner;
} else {
owner->next = sysmmu_owner_list->next;
sysmmu_owner_list->next = owner;
}
}
list_for_each_entry(list_data, &owner->mmu_list, node)
if (list_data->sysmmu == sysmmu)
return 0;
list_data = devm_kzalloc(sysmmu, sizeof(*list_data), GFP_KERNEL);
if (!list_data) {
dev_err(sysmmu, "%s: Failed to allocate sysmmu_list_data\n",
__func__);
return -ENOMEM;
}
INIT_LIST_HEAD(&list_data->node);
list_data->sysmmu = sysmmu;
/*
* System MMUs are attached in the order of the presence
* in device tree
*/
list_add_tail(&list_data->node, &owner->mmu_list);
dev_info(master, "--> %s\n", dev_name(sysmmu));
return 0;
}
static struct platform_device * __init __sysmmu_init_owner(struct device *sysmmu,
struct sysmmu_drvdata *data,
struct of_phandle_args *pb_args)
{
struct device_node *master_node = pb_args->np;
struct platform_device *master;
int ret;
master = of_find_device_by_node(master_node);
if (!master) {
pr_err("%s: failed to get master device in '%s'\n",
__func__, master_node->full_name);
return ERR_PTR(-EINVAL);
}
ret = __sysmmu_update_owner(&master->dev, sysmmu);
if (ret) {
pr_err("%s: failed to update iommu owner '%s'\n",
__func__, dev_name(&master->dev));
of_node_put(master_node);
return ERR_PTR(-EINVAL);
}
of_node_put(master_node);
return master;
}
static int __init __sysmmu_init_master_info_v7(struct device *sysmmu,
struct sysmmu_drvdata *data)
{
int props_num, ret, i = 0;
struct device_node *np;
struct _tlbprops *props;
const char *props_name = "sysmmu,v7tlb_property";
props_num = of_property_count_u32_elems(sysmmu->of_node, props_name);
if (props_num < 0) {
dev_err(sysmmu, "failed to count the number of properties\n");
return props_num;
}
props_num /= 2;
data->props_num = props_num;
props = kzalloc(sizeof(struct _tlbprops) * props_num, GFP_KERNEL);
if (!props) {
dev_err(sysmmu, "failed to allocate memory for properties\n");
return -ENOMEM;
}
data->tlbprops = props;
for (i = 0; i < props_num; i++) {
ret = of_property_read_u32_index(sysmmu->of_node,
props_name, i * 2, &data->tlbprops[i].axid);
if (ret)
goto err_prop;
ret = of_property_read_u32_index(sysmmu->of_node,
props_name, (i * 2) + 1, &data->tlbprops[i].attr);
if (ret)
goto err_prop;
}
i = 0;
while ((np = of_parse_phandle(sysmmu->of_node, "master_ip_list", i++))) {
struct platform_device *master;
master = of_find_device_by_node(np);
if (!master) {
dev_err(sysmmu, "master IP in '%s' not found\n",
np->name);
of_node_put(np);
goto err_prop;
}
of_node_put(np);
ret = __sysmmu_update_owner(&master->dev, sysmmu);
if (ret) {
dev_err(sysmmu, "failed to update iommu owner '%s'\n",
dev_name(&master->dev));
goto err_prop;
}
}
return 0;
err_prop:
kfree(props);
return ret;
}
static int __init __sysmmu_init_master_info_v6(struct device *sysmmu,
struct sysmmu_drvdata *data)
{
struct device_node *node;
struct device_node *pb_info;
int grp_num = 0;
int ret = 0;
pb_info = of_get_child_by_name(sysmmu->of_node, "pb-info");
if (!pb_info) {
pr_info("%s: 'master-info' node not found from '%s' node\n",
__func__, dev_name(sysmmu));
return 0;
}
INIT_LIST_HEAD(&data->pb_grp_list);
for_each_child_of_node(pb_info, node) {
struct of_phandle_args pb_args;
struct platform_device *master;
int i, master_cnt = 0;
master_cnt = of_count_phandle_with_args(node,
"master_axi_id_list",
"#pb-id-cells");
for (i = 0; i < master_cnt; i++) {
memset(&pb_args, 0x0, sizeof(pb_args));
ret = of_parse_phandle_with_args(node,
"master_axi_id_list",
"#pb-id-cells", i, &pb_args);
if (ret) {
of_node_put(node);
pr_err("%s: failed to get PB info of %s\n",
__func__, dev_name(data->sysmmu));
return ret;
}
master = __sysmmu_init_owner(sysmmu, data, &pb_args);
if (IS_ERR(master)) {
of_node_put(node);
of_node_put(pb_args.np);
pr_err("%s: failed to initialize sysmmu(%s)"
"owner info\n", __func__,
dev_name(data->sysmmu));
return PTR_ERR(master);
}
ret = __sysmmu_init_pb_info(sysmmu, &master->dev, data,
node, &pb_args, grp_num);
if (ret) {
of_node_put(node);
of_node_put(pb_args.np);
pr_err("%s: failed to update pb axi id '%s'\n",
__func__, dev_name(sysmmu));
break;
}
of_node_put(pb_args.np);
}
if (ret) {
struct pb_info *pb;
while (!list_empty(&data->pb_grp_list)) {
pb = list_entry(data->pb_grp_list.next,
struct pb_info, node);
list_del(&pb->node);
kfree(pb);
}
}
of_node_put(node);
grp_num++;
}
return ret;
}
static int __init __sysmmu_secure_irq_init(struct device *sysmmu,
struct sysmmu_drvdata *drvdata)
{
struct platform_device *pdev = to_platform_device(sysmmu);
u32 secure_reg;
int ret;
ret = platform_get_irq(pdev, 1);
if (ret <= 0) {
dev_err(sysmmu, "Unable to find secure IRQ resource\n");
return -EINVAL;
}
dev_info(sysmmu, "Registering secure irq %d\n", ret);
ret = devm_request_irq(sysmmu, ret, exynos_sysmmu_irq_secure, 0,
dev_name(sysmmu), drvdata);
if (ret) {
dev_err(sysmmu, "Failed to register secure irq handler\n");
return ret;
}
ret = of_property_read_u32(sysmmu->of_node,
"sysmmu,secure_reg", &secure_reg);
if (!ret) {
drvdata->securebase = secure_reg;
dev_info(sysmmu, "Secure reg = %#x\n", drvdata->securebase);
} else {
dev_err(sysmmu, "Failed to get secure register\n");
return ret;
}
return ret;
}
static int __init __sysmmu_init_prop(struct device *sysmmu,
struct sysmmu_drvdata *drvdata)
{
struct device_node *prop_node;
const char *s;
unsigned int qos = DEFAULT_QOS_VALUE;
int ret;
ret = of_property_read_u32_index(sysmmu->of_node, "qos", 0, &qos);
if ((ret == 0) && (qos > 15)) {
dev_err(sysmmu, "%s: Invalid QoS value %d specified\n",
__func__, qos);
qos = DEFAULT_QOS_VALUE;
}
drvdata->qos = (short)qos;
/**
* Deprecate 'prop-map' child node of System MMU device nodes in FDT.
* It is not required to introduce new child node for boolean
* properties like 'block-stop' and 'tlbinv-nonblock'.
* 'tlbinv-nonblock' is H/W W/A to accellerates master H/W performance
* for 5.x and the earlier versions of System MMU.x.
* 'sysmmu,tlbinv-nonblock' is introduced, instead for those earlier
* versions.
* Instead of 'block-stop' in 'prop-map' childe node,
* 'sysmmu,block-when-stop' without a value is introduced to simplify
* the FDT node definitions.
* For the compatibility with the existing FDT files, the 'prop-map'
* child node parsing is still kept.
*/
prop_node = of_get_child_by_name(sysmmu->of_node, "prop-map");
if (prop_node) {
if (!of_property_read_string(prop_node, "tlbinv-nonblock", &s))
if (strnicmp(s, "yes", 3) == 0)
drvdata->prop |= SYSMMU_PROP_NONBLOCK_TLBINV;
if (!of_property_read_string(prop_node, "block-stop", &s))
if (strnicmp(s, "yes", 3) == 0)
drvdata->prop |= SYSMMU_PROP_STOP_BLOCK;
of_node_put(prop_node);
}
if (of_find_property(sysmmu->of_node, "sysmmu,block-when-stop", NULL))
drvdata->prop |= SYSMMU_PROP_STOP_BLOCK;
if (of_find_property(sysmmu->of_node, "sysmmu,tlbinv-nonblock", NULL))
drvdata->prop |= SYSMMU_PROP_NONBLOCK_TLBINV;
if (of_find_property(sysmmu->of_node, "sysmmu,acg_disable", NULL))
drvdata->prop |= SYSMMU_PROP_DISABLE_ACG;
if (of_find_property(sysmmu->of_node, "sysmmu,handle_secure-irq", NULL)) {
ret = __sysmmu_secure_irq_init(sysmmu, drvdata);
if (ret) {
dev_err(sysmmu, "Failed to init secure irq\n");
return ret;
}
}
return 0;
}
static int __init __sysmmu_setup(struct device *sysmmu,
struct sysmmu_drvdata *drvdata)
{
int ret;
ret = __sysmmu_init_prop(sysmmu, drvdata);
if (ret) {
dev_err(sysmmu, "Failed to initialize sysmmu properties\n");
return ret;
}
ret = __sysmmu_init_clock(sysmmu, drvdata);
if (ret) {
dev_err(sysmmu, "Failed to initialize gating clocks\n");
return ret;
}
if (MMU_MAJ_VER(drvdata->hw_ver) >= 7)
ret = __sysmmu_init_master_info_v7(sysmmu, drvdata);
else
ret = __sysmmu_init_master_info_v6(sysmmu, drvdata);
if (ret) {
int i;
for (i = 0; i < SYSMMU_CLK_NUM; i++) {
if (!IS_ERR(drvdata->clocks[i]))
clk_unprepare(drvdata->clocks[i]);
}
dev_err(sysmmu, "Failed to initialize master device.\n");
}
return ret;
}
static int __init exynos_sysmmu_probe(struct platform_device *pdev)
{
int ret;
struct device *dev = &pdev->dev;
struct sysmmu_drvdata *data;
struct resource *res;
data = devm_kzalloc(dev, sizeof(*data) , GFP_KERNEL);
if (!data) {
dev_err(dev, "Not enough memory\n");
return -ENOMEM;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "Unable to find IOMEM region\n");
return -ENOENT;
}
data->sfrbase = devm_ioremap_resource(dev, res);
if (!data->sfrbase) {
dev_err(dev, "Unable to map IOMEM @ PA:%pa\n", &res->start);
return -EBUSY;
}
ret = platform_get_irq(pdev, 0);
if (ret <= 0) {
dev_err(dev, "Unable to find IRQ resource\n");
return ret;
}
ret = devm_request_irq(dev, ret, exynos_sysmmu_irq, 0,
dev_name(dev), data);
if (ret) {
dev_err(dev, "Unabled to register interrupt handler\n");
return ret;
}
pm_runtime_enable(dev);
ret = exynos_iommu_init_event_log(SYSMMU_DRVDATA_TO_LOG(data),
SYSMMU_LOG_LEN);
if (!ret)
sysmmu_add_log_to_debugfs(exynos_sysmmu_debugfs_root,
SYSMMU_DRVDATA_TO_LOG(data), dev_name(dev));
else
return ret;
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
dev_err(dev, "failed to enable local power(%d)\n", ret);
return ret;
}
data->hw_ver = MMU_RAW_VER(__raw_readl(data->sfrbase +
REG_MMU_VERSION));
pm_runtime_put(dev);
ret = __sysmmu_setup(dev, data);
if (!ret) {
if (!pm_runtime_enabled(dev))
get_sysmmu_runtime_active(data);
data->sysmmu = dev;
ATOMIC_INIT_NOTIFIER_HEAD(&data->fault_notifiers);
spin_lock_init(&data->lock);
if (!sysmmu_drvdata_list) {
sysmmu_drvdata_list = data;
} else {
data->next = sysmmu_drvdata_list->next;
sysmmu_drvdata_list->next = data;
}
platform_set_drvdata(pdev, data);
dev_info(dev, "[OK]\n");
}
return ret;
}
#ifdef CONFIG_OF
static struct of_device_id sysmmu_of_match[] __initconst = {
{ .compatible = "samsung,exynos7420-sysmmu", },
{ },
};
#endif
static int exynos_iommu_domain_init(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv;
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->pgtable = (sysmmu_pte_t *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO, 2);
if (!priv->pgtable)
goto err_pgtable;
priv->lv2entcnt = (atomic_t *)__get_free_pages(
GFP_KERNEL | __GFP_ZERO, 2);
if (!priv->lv2entcnt)
goto err_counter;
if (exynos_iommu_init_event_log(IOMMU_PRIV_TO_LOG(priv), IOMMU_LOG_LEN))
goto err_init_event_log;
pgtable_flush(priv->pgtable, priv->pgtable + NUM_LV1ENTRIES);
spin_lock_init(&priv->lock);
spin_lock_init(&priv->pgtablelock);
INIT_LIST_HEAD(&priv->clients);
domain->priv = priv;
return 0;
err_init_event_log:
free_pages((unsigned long)priv->lv2entcnt, 2);
err_counter:
free_pages((unsigned long)priv->pgtable, 2);
err_pgtable:
kfree(priv);
return -ENOMEM;
}
static void exynos_iommu_domain_destroy(struct iommu_domain *domain)
{
struct exynos_iommu_domain *priv = domain->priv;
struct exynos_iommu_owner *owner;
unsigned long flags;
int i;
WARN_ON(!list_empty(&priv->clients));
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client)
while (!exynos_sysmmu_disable(owner->dev))
; /* until System MMU is actually disabled */
while (!list_empty(&priv->clients))
list_del_init(priv->clients.next);
spin_unlock_irqrestore(&priv->lock, flags);
for (i = 0; i < NUM_LV1ENTRIES; i++)
if (lv1ent_page(priv->pgtable + i))
kmem_cache_free(lv2table_kmem_cache,
__va(lv2table_base(priv->pgtable + i)));
free_pages((unsigned long)priv->pgtable, 2);
free_pages((unsigned long)priv->lv2entcnt, 2);
kfree(domain->priv);
domain->priv = NULL;
}
static int exynos_iommu_attach_device(struct iommu_domain *domain,
struct device *dev)
{
struct exynos_iommu_domain *priv = domain->priv;
phys_addr_t pgtable = virt_to_phys(priv->pgtable);
unsigned long flags;
int ret;
spin_lock_irqsave(&priv->lock, flags);
ret = __exynos_sysmmu_enable(dev, __pa(priv->pgtable), domain);
spin_unlock_irqrestore(&priv->lock, flags);
if (ret < 0) {
dev_err(dev, "%s: Failed to attach IOMMU with pgtable %pa\n",
__func__, &pgtable);
} else {
SYSMMU_EVENT_LOG_IOMMU_ATTACH(IOMMU_PRIV_TO_LOG(priv), dev);
TRACE_LOG_DEV(dev,
"%s: Attached new IOMMU with pgtable %pa %s\n",
__func__, &pgtable, (ret == 0) ? "" : ", again");
ret = 0;
}
return ret;
}
static void exynos_iommu_detach_device(struct iommu_domain *domain,
struct device *dev)
{
struct exynos_iommu_owner *owner;
struct exynos_iommu_domain *priv = domain->priv;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client) {
if (owner == dev->archdata.iommu) {
exynos_sysmmu_disable(owner->dev);
break;
}
}
spin_unlock_irqrestore(&priv->lock, flags);
if (owner == dev->archdata.iommu) {
SYSMMU_EVENT_LOG_IOMMU_DETACH(IOMMU_PRIV_TO_LOG(priv), dev);
TRACE_LOG_DEV(dev, "%s: Detached IOMMU with pgtable %#lx\n",
__func__, __pa(priv->pgtable));
} else {
dev_err(dev, "%s: No IOMMU is attached\n", __func__);
}
}
static sysmmu_pte_t *alloc_lv2entry(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, unsigned long iova, atomic_t *pgcounter)
{
if (lv1ent_fault(sent)) {
unsigned long flags;
spin_lock_irqsave(&priv->pgtablelock, flags);
if (lv1ent_fault(sent)) {
sysmmu_pte_t *pent;
pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
BUG_ON((unsigned long)pent & (LV2TABLE_SIZE - 1));
if (!pent) {
spin_unlock_irqrestore(&priv->pgtablelock, flags);
return ERR_PTR(-ENOMEM);
}
*sent = mk_lv1ent_page(__pa(pent));
kmemleak_ignore(pent);
atomic_set(pgcounter, NUM_LV2ENTRIES);
pgtable_flush(pent, pent + NUM_LV2ENTRIES);
pgtable_flush(sent, sent + 1);
SYSMMU_EVENT_LOG_IOMMU_ALLOCSLPD(IOMMU_PRIV_TO_LOG(priv),
iova & SECT_MASK);
}
spin_unlock_irqrestore(&priv->pgtablelock, flags);
} else if (!lv1ent_page(sent)) {
BUG();
return ERR_PTR(-EADDRINUSE);
}
return page_entry(sent, iova);
}
static int lv1ent_check_page(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, atomic_t *pgcnt)
{
if (lv1ent_page(sent)) {
if (WARN_ON(atomic_read(pgcnt) != NUM_LV2ENTRIES))
return -EADDRINUSE;
}
return 0;
}
static void clear_lv1_page_table(sysmmu_pte_t *ent, int n)
{
if (n > 0)
memset(ent, 0, sizeof(*ent) * n);
}
static void clear_lv2_page_table(sysmmu_pte_t *ent, int n)
{
if (n > 0)
memset(ent, 0, sizeof(*ent) * n);
}
static int lv1set_section(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, phys_addr_t paddr,
size_t size, atomic_t *pgcnt)
{
int ret;
if (WARN_ON(!lv1ent_fault(sent) && !lv1ent_page(sent)))
return -EADDRINUSE;
if (size == SECT_SIZE) {
ret = lv1ent_check_page(priv, sent, pgcnt);
if (ret)
return ret;
*sent = mk_lv1ent_sect(paddr);
pgtable_flush(sent, sent + 1);
} else if (size == DSECT_SIZE) {
int i;
for (i = 0; i < SECT_PER_DSECT; i++, sent++, pgcnt++) {
ret = lv1ent_check_page(priv, sent, pgcnt);
if (ret) {
clear_lv1_page_table(sent - i, i);
return ret;
}
*sent = mk_lv1ent_dsect(paddr);
}
pgtable_flush(sent - SECT_PER_DSECT, sent);
} else {
int i;
for (i = 0; i < SECT_PER_SPSECT; i++, sent++, pgcnt++) {
ret = lv1ent_check_page(priv, sent, pgcnt);
if (ret) {
clear_lv1_page_table(sent - i, i);
return ret;
}
*sent = mk_lv1ent_spsect(paddr);
}
pgtable_flush(sent - SECT_PER_SPSECT, sent);
}
return 0;
}
static int lv2set_page(sysmmu_pte_t *pent, phys_addr_t paddr,
size_t size, atomic_t *pgcnt)
{
if (size == SPAGE_SIZE) {
if (WARN_ON(!lv2ent_fault(pent)))
return -EADDRINUSE;
*pent = mk_lv2ent_spage(paddr);
pgtable_flush(pent, pent + 1);
atomic_dec(pgcnt);
} else { /* size == LPAGE_SIZE */
int i;
for (i = 0; i < SPAGES_PER_LPAGE; i++, pent++) {
if (WARN_ON(!lv2ent_fault(pent))) {
clear_lv2_page_table(pent - i, i);
return -EADDRINUSE;
}
*pent = mk_lv2ent_lpage(paddr);
}
pgtable_flush(pent - SPAGES_PER_LPAGE, pent);
atomic_sub(SPAGES_PER_LPAGE, pgcnt);
}
return 0;
}
static int exynos_iommu_map(struct iommu_domain *domain, unsigned long iova,
phys_addr_t paddr, size_t size, int prot)
{
struct exynos_iommu_domain *priv = domain->priv;
sysmmu_pte_t *entry;
int ret = -ENOMEM;
BUG_ON(priv->pgtable == NULL);
entry = section_entry(priv->pgtable, iova);
if (size >= SECT_SIZE) {
ret = lv1set_section(priv, entry, paddr, size,
&priv->lv2entcnt[lv1ent_offset(iova)]);
} else {
sysmmu_pte_t *pent;
pent = alloc_lv2entry(priv, entry, iova,
&priv->lv2entcnt[lv1ent_offset(iova)]);
if (IS_ERR(pent)) {
ret = PTR_ERR(pent);
} else {
ret = lv2set_page(pent, paddr, size,
&priv->lv2entcnt[lv1ent_offset(iova)]);
}
}
if (ret)
pr_err("%s: Failed(%d) to map %#zx bytes @ %pa\n",
__func__, ret, size, &iova);
return ret;
}
static void exynos_iommu_tlb_invalidate_entry(struct exynos_iommu_domain *priv,
unsigned long iova)
{
struct exynos_iommu_owner *owner;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(owner, &priv->clients, client)
sysmmu_tlb_invalidate_entry(owner->dev, iova, false);
spin_unlock_irqrestore(&priv->lock, flags);
}
static size_t exynos_iommu_unmap(struct iommu_domain *domain,
unsigned long iova, size_t size)
{
struct exynos_iommu_domain *priv = domain->priv;
size_t err_pgsize;
sysmmu_pte_t *sent, *pent;
atomic_t *lv2entcnt = &priv->lv2entcnt[lv1ent_offset(iova)];
BUG_ON(priv->pgtable == NULL);
sent = section_entry(priv->pgtable, iova);
if (lv1ent_spsection(sent)) {
if (WARN_ON(size < SPSECT_SIZE)) {
err_pgsize = SPSECT_SIZE;
goto err;
}
clear_lv1_page_table(sent, SECT_PER_SPSECT);
pgtable_flush(sent, sent + SECT_PER_SPSECT);
size = SPSECT_SIZE;
goto done;
}
if (lv1ent_dsection(sent)) {
if (WARN_ON(size < DSECT_SIZE)) {
err_pgsize = DSECT_SIZE;
goto err;
}
*sent = 0;
*(++sent) = 0;
pgtable_flush(sent, sent + 2);
size = DSECT_SIZE;
goto done;
}
if (lv1ent_section(sent)) {
if (WARN_ON(size < SECT_SIZE)) {
err_pgsize = SECT_SIZE;
goto err;
}
*sent = 0;
pgtable_flush(sent, sent + 1);
size = SECT_SIZE;
goto done;
}
if (unlikely(lv1ent_fault(sent))) {
if (size > SECT_SIZE)
size = SECT_SIZE;
goto done;
}
/* lv1ent_page(sent) == true here */
pent = page_entry(sent, iova);
if (unlikely(lv2ent_fault(pent))) {
size = SPAGE_SIZE;
goto done;
}
if (lv2ent_small(pent)) {
*pent = 0;
size = SPAGE_SIZE;
pgtable_flush(pent, pent + 1);
atomic_inc(lv2entcnt);
goto unmap_flpd;
}
/* lv1ent_large(ent) == true here */
if (WARN_ON(size < LPAGE_SIZE)) {
err_pgsize = LPAGE_SIZE;
goto err;
}
clear_lv2_page_table(pent, SPAGES_PER_LPAGE);
pgtable_flush(pent, pent + SPAGES_PER_LPAGE);
size = LPAGE_SIZE;
atomic_add(SPAGES_PER_LPAGE, lv2entcnt);
unmap_flpd:
if (atomic_read(lv2entcnt) == NUM_LV2ENTRIES) {
unsigned long flags;
spin_lock_irqsave(&priv->pgtablelock, flags);
if (atomic_read(lv2entcnt) == NUM_LV2ENTRIES) {
kmem_cache_free(lv2table_kmem_cache,
page_entry(sent, 0));
atomic_set(lv2entcnt, 0);
*sent = 0;
SYSMMU_EVENT_LOG_IOMMU_FREESLPD(IOMMU_PRIV_TO_LOG(priv), iova_from_sent(priv->pgtable, sent));
}
spin_unlock_irqrestore(&priv->pgtablelock, flags);
}
done:
exynos_iommu_tlb_invalidate_entry(priv, iova);
/* TLB invalidation is performed by IOVMM */
return size;
err:
pr_err("%s: Failed: size(%#zx) @ %pa is smaller than page size %#zx\n",
__func__, size, &iova, err_pgsize);
return 0;
}
static phys_addr_t exynos_iommu_iova_to_phys(struct iommu_domain *domain,
dma_addr_t iova)
{
struct exynos_iommu_domain *priv = domain->priv;
sysmmu_pte_t *entry;
phys_addr_t phys = 0;
entry = section_entry(priv->pgtable, iova);
if (lv1ent_spsection(entry)) {
phys = spsection_phys(entry) + spsection_offs(iova);
} else if (lv1ent_dsection(entry)) {
phys = dsection_phys(entry) + dsection_offs(iova);
} else if (lv1ent_section(entry)) {
phys = section_phys(entry) + section_offs(iova);
} else if (lv1ent_page(entry)) {
entry = page_entry(entry, iova);
if (lv2ent_large(entry))
phys = lpage_phys(entry) + lpage_offs(iova);
else if (lv2ent_small(entry))
phys = spage_phys(entry) + spage_offs(iova);
}
return phys;
}
static int exynos_iommu_add_device(struct device *dev)
{
/*
* implement not yet
*/
return 0;
}
static struct iommu_ops exynos_iommu_ops = {
.domain_init = &exynos_iommu_domain_init,
.domain_destroy = &exynos_iommu_domain_destroy,
.attach_dev = &exynos_iommu_attach_device,
.detach_dev = &exynos_iommu_detach_device,
.map = &exynos_iommu_map,
.unmap = &exynos_iommu_unmap,
.iova_to_phys = &exynos_iommu_iova_to_phys,
.pgsize_bitmap = PGSIZE_BITMAP,
.add_device = &exynos_iommu_add_device,
};
static int __sysmmu_unmap_user_pages(struct device *dev,
struct mm_struct *mm,
unsigned long vaddr,
exynos_iova_t iova,
size_t size)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct exynos_iovmm *vmm = owner->vmm_data;
struct iommu_domain *domain = vmm->domain;
struct exynos_iommu_domain *priv = domain->priv;
struct vm_area_struct *vma;
unsigned long start = vaddr & PAGE_MASK;
unsigned long end = PAGE_ALIGN(vaddr + size);
bool is_pfnmap;
sysmmu_pte_t *sent, *pent;
int ret = 0;
down_read(&mm->mmap_sem);
BUG_ON((vaddr + size) < vaddr);
/*
* Assumes that the VMA is safe.
* The caller must check the range of address space before calling this.
*/
vma = find_vma(mm, vaddr);
if (!vma) {
pr_err("%s: vma is null\n", __func__);
ret = -EINVAL;
goto out_unmap;
}
if (vma->vm_end < (vaddr + size)) {
pr_err("%s: vma overflow: %#lx--%#lx, vaddr: %#lx, size: %zd\n",
__func__, vma->vm_start, vma->vm_end, vaddr, size);
ret = -EINVAL;
goto out_unmap;
}
is_pfnmap = vma->vm_flags & VM_PFNMAP;
TRACE_LOG_DEV(dev, "%s: unmap starts @ %#zx@%#lx\n",
__func__, size, start);
do {
sysmmu_pte_t *pent_first;
sent = section_entry(priv->pgtable, iova);
if (lv1ent_fault(sent)) {
ret = -EFAULT;
goto out_unmap;
}
pent = page_entry(sent, iova);
if (lv2ent_fault(pent)) {
ret = -EFAULT;
goto out_unmap;
}
pent_first = pent;
do {
if (!lv2ent_fault(pent) && !is_pfnmap)
put_page(phys_to_page(spage_phys(pent)));
*pent = 0;
if (lv2ent_offset(iova) == NUM_LV2ENTRIES - 1) {
pgtable_flush(pent_first, pent);
iova += PAGE_SIZE;
sent = section_entry(priv->pgtable, iova);
if (lv1ent_fault(sent)) {
ret = -EFAULT;
goto out_unmap;
}
pent = page_entry(sent, iova);
if (lv2ent_fault(pent)) {
ret = -EFAULT;
goto out_unmap;
}
pent_first = pent;
} else {
iova += PAGE_SIZE;
pent++;
}
} while (start += PAGE_SIZE, start != end);
if (pent_first != pent)
pgtable_flush(pent_first, pent);
} while (start != end);
TRACE_LOG_DEV(dev, "%s: unmap done @ %#lx\n", __func__, start);
out_unmap:
up_read(&mm->mmap_sem);
if (ret) {
pr_debug("%s: Ignoring unmapping for %#lx ~ %#lx\n",
__func__, start, end);
}
return ret;
}
static sysmmu_pte_t *alloc_lv2entry_fast(struct exynos_iommu_domain *priv,
sysmmu_pte_t *sent, unsigned long iova)
{
if (lv1ent_fault(sent)) {
sysmmu_pte_t *pent;
pent = kmem_cache_zalloc(lv2table_kmem_cache, GFP_ATOMIC);
BUG_ON((unsigned long)pent & (LV2TABLE_SIZE - 1));
if (!pent)
return ERR_PTR(-ENOMEM);
*sent = mk_lv1ent_page(virt_to_phys(pent));
kmemleak_ignore(pent);
pgtable_flush(sent, sent + 1);
} else if (WARN_ON(!lv1ent_page(sent))) {
return ERR_PTR(-EADDRINUSE);
}
return page_entry(sent, iova);
}
static int mm_fault_translate(int fault)
{
if (fault & VM_FAULT_OOM)
return -ENOMEM;
else if (fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
return -EBUSY;
else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
return -EFAULT;
else if (fault & VM_FAULT_FALLBACK)
return -EAGAIN;
return -EFAULT;
}
int exynos_sysmmu_map_user_pages(struct device *dev,
struct mm_struct *mm,
unsigned long vaddr,
exynos_iova_t iova,
size_t size, bool write,
bool shareable)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct exynos_iovmm *vmm = owner->vmm_data;
struct iommu_domain *domain = vmm->domain;
struct exynos_iommu_domain *priv = domain->priv;
exynos_iova_t iova_start = iova;
struct vm_area_struct *vma;
unsigned long start, end;
unsigned long pgd_next;
int ret = -EINVAL;
bool is_pfnmap;
pgd_t *pgd;
if (WARN_ON(size == 0))
return 0;
down_read(&mm->mmap_sem);
/*
* Assumes that the VMA is safe.
* The caller must check the range of address space before calling this.
*/
vma = find_vma(mm, vaddr);
if (!vma) {
pr_err("%s: vma is null\n", __func__);
up_read(&mm->mmap_sem);
return -EINVAL;
}
if (vma->vm_end < (vaddr + size)) {
pr_err("%s: vma overflow: %#lx--%#lx, vaddr: %#lx, size: %zd\n",
__func__, vma->vm_start, vma->vm_end, vaddr, size);
up_read(&mm->mmap_sem);
return -EINVAL;
}
is_pfnmap = vma->vm_flags & VM_PFNMAP;
start = vaddr & PAGE_MASK;
end = PAGE_ALIGN(vaddr + size);
TRACE_LOG_DEV(dev, "%s: map @ %#lx--%#lx, %zd bytes, vm_flags: %#lx\n",
__func__, start, end, size, vma->vm_flags);
pgd = pgd_offset(mm, start);
do {
unsigned long pmd_next;
pmd_t *pmd;
pud_t *pud;
pud = pud_offset(pgd, start);
if (pud_none(*pud)) {
ret = handle_mm_fault(mm, vma, start,
write ? FAULT_FLAG_WRITE : 0);
if (ret & VM_FAULT_ERROR) {
ret = mm_fault_translate(ret);
goto out_unmap;
}
} else if (pud_bad(*pud)) {
pud_clear_bad(pud);
ret = -EBADR;
goto out_unmap;
}
pgd_next = pgd_addr_end(start, end);
pmd = pmd_offset((pud_t *)pgd, start);
do {
pte_t *pte;
sysmmu_pte_t *pent, *pent_first;
sysmmu_pte_t *sent;
spinlock_t *ptl;
if (pmd_none(*pmd)) {
ret = handle_mm_fault(mm, vma, start,
write ? FAULT_FLAG_WRITE : 0);
if (ret & VM_FAULT_ERROR) {
ret = mm_fault_translate(ret);
goto out_unmap;
}
} else if (pmd_bad(*pmd)) {
pr_err("%s: bad pmd value %#lx\n", __func__,
(unsigned long)pmd_val(*pmd));
pmd_clear_bad(pmd);
ret = -EBADR;
goto out_unmap;
}
pmd_next = pmd_addr_end(start, pgd_next);
pte = pte_offset_map(pmd, start);
sent = section_entry(priv->pgtable, iova);
pent = alloc_lv2entry_fast(priv, sent, iova);
if (IS_ERR(pent)) {
ret = PTR_ERR(pent); /* ENOMEM or EADDRINUSE */
goto out_unmap;
}
pent_first = pent;
ptl = pte_lockptr(mm, pmd);
spin_lock(ptl);
do {
WARN_ON(!lv2ent_fault(pent));
if (!pte_present(*pte) ||
(write && !pte_write(*pte))) {
if (pte_present(*pte) || pte_none(*pte)) {
spin_unlock(ptl);
ret = handle_mm_fault(mm, vma, start,
write ? FAULT_FLAG_WRITE : 0);
if (ret & VM_FAULT_ERROR) {
ret = mm_fault_translate(ret);
goto out_unmap;
}
spin_lock(ptl);
}
}
if (!pte_present(*pte) ||
(write && !pte_write(*pte))) {
ret = -EACCES;
spin_unlock(ptl);
goto out_unmap;
}
if (!is_pfnmap)
get_page(pte_page(*pte));
*pent = mk_lv2ent_spage(__pfn_to_phys(
pte_pfn(*pte)));
if (shareable)
set_lv2ent_shareable(pent);
if (lv2ent_offset(iova) == (NUM_LV2ENTRIES - 1)) {
pgtable_flush(pent_first, pent);
iova += PAGE_SIZE;
sent = section_entry(priv->pgtable, iova);
pent = alloc_lv2entry_fast(priv, sent, iova);
if (IS_ERR(pent)) {
ret = PTR_ERR(pent);
spin_unlock(ptl);
goto out_unmap;
}
pent_first = pent;
} else {
iova += PAGE_SIZE;
pent++;
}
} while (pte++, start += PAGE_SIZE, start < pmd_next);
if (pent_first != pent)
pgtable_flush(pent_first, pent);
spin_unlock(ptl);
} while (pmd++, start = pmd_next, start != pgd_next);
} while (pgd++, start = pgd_next, start != end);
ret = 0;
out_unmap:
up_read(&mm->mmap_sem);
if (ret) {
pr_debug("%s: Ignoring mapping for %#lx ~ %#lx\n",
__func__, start, end);
__sysmmu_unmap_user_pages(dev, mm, vaddr, iova_start,
start - (vaddr & PAGE_MASK));
}
return ret;
}
int exynos_sysmmu_unmap_user_pages(struct device *dev,
struct mm_struct *mm,
unsigned long vaddr,
exynos_iova_t iova,
size_t size)
{
if (WARN_ON(size == 0))
return 0;
return __sysmmu_unmap_user_pages(dev, mm, vaddr, iova, size);
}
static int __init exynos_iommu_create_domain(void)
{
struct device_node *domain;
for_each_compatible_node(domain, NULL, "samsung,exynos-iommu-bus") {
struct device_node *np;
struct exynos_iovmm *vmm = NULL;
int i = 0;
while ((np = of_parse_phandle(domain, "domain-clients", i++))) {
struct platform_device *master =
of_find_device_by_node(np);
struct exynos_iommu_owner *owner;
struct exynos_iommu_domain *priv;
if (!master) {
pr_err("%s: master IP in '%s' not found\n",
__func__, np->name);
of_node_put(np);
of_node_put(domain);
return -ENOENT;
}
owner = (struct exynos_iommu_owner *)
master->dev.archdata.iommu;
if (!owner) {
pr_err("%s: No System MMU attached for %s\n",
__func__, np->name);
of_node_put(np);
continue;
}
if (!vmm) {
vmm = exynos_create_single_iovmm(np->name);
if (IS_ERR(vmm)) {
pr_err("%s: Failed to create IOVM space\
of %s\n",
__func__, np->name);
of_node_put(np);
of_node_put(domain);
return -ENOMEM;
}
}
priv = (struct exynos_iommu_domain *)vmm->domain->priv;
owner->vmm_data = vmm;
spin_lock(&priv->lock);
list_add_tail(&owner->client, &priv->clients);
spin_unlock(&priv->lock);
of_node_put(np);
dev_err(&master->dev,
"create IOVMM device node : %s\n", np->name);
}
of_node_put(domain);
}
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int sysmmu_resume(struct device *dev)
{
unsigned long flags;
struct sysmmu_drvdata *drvdata = dev_get_drvdata(dev);
TRACE_LOG("%s(%s) ----->\n", __func__, dev_name(dev));
spin_lock_irqsave(&drvdata->lock, flags);
if (drvdata->is_suspended) {
__sysmmu_enable_nocount(drvdata);
drvdata->is_suspended = false;
}
spin_unlock_irqrestore(&drvdata->lock, flags);
TRACE_LOG("<----- %s(%s)\n", __func__, dev_name(dev));
return 0;
}
static int sysmmu_suspend(struct device *dev)
{
unsigned long flags;
struct sysmmu_drvdata *drvdata = dev_get_drvdata(dev);
TRACE_LOG("%s(%s) ----->\n", __func__, dev_name(dev));
spin_lock_irqsave(&drvdata->lock, flags);
if (is_sysmmu_active(drvdata) &&
(!pm_runtime_enabled(dev) ||
is_sysmmu_runtime_active(drvdata))) {
__sysmmu_disable_nocount(drvdata);
drvdata->is_suspended = true;
}
spin_unlock_irqrestore(&drvdata->lock, flags);
TRACE_LOG("<----- %s(%s)\n", __func__, dev_name(dev));
return 0;
}
#endif
#ifdef CONFIG_PM_RUNTIME
static int sysmmu_runtime_resume(struct device *dev)
{
struct sysmmu_list_data *list;
int (*cb)(struct device *__dev);
TRACE_LOG("%s(%s) ----->\n", __func__, dev_name(dev));
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
TRACE_LOG("%s(%s)\n", __func__, dev_name(data->sysmmu));
SYSMMU_EVENT_LOG_POWERON(SYSMMU_DRVDATA_TO_LOG(data));
spin_lock_irqsave(&data->lock, flags);
if (get_sysmmu_runtime_active(data) && is_sysmmu_active(data))
__sysmmu_enable_nocount(data);
spin_unlock_irqrestore(&data->lock, flags);
}
if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_resume;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_resume;
TRACE_LOG("<----- %s(%s)\n", __func__, dev_name(dev));
return cb ? cb(dev) : 0;
}
static int sysmmu_runtime_suspend(struct device *dev)
{
struct sysmmu_list_data *list;
int (*cb)(struct device *__dev);
int ret = 0;
TRACE_LOG("%s(%s) ----->\n", __func__, dev_name(dev));
if (dev->bus && dev->bus->pm)
cb = dev->bus->pm->runtime_suspend;
else
cb = NULL;
if (!cb && dev->driver && dev->driver->pm)
cb = dev->driver->pm->runtime_suspend;
if (cb) {
ret = cb(dev);
if (ret) {
dev_err(dev, "failed runtime_suspend cb func\n");
return ret;
}
}
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data = dev_get_drvdata(list->sysmmu);
unsigned long flags;
TRACE_LOG("%s(%s)\n", __func__, dev_name(data->sysmmu));
SYSMMU_EVENT_LOG_POWEROFF(SYSMMU_DRVDATA_TO_LOG(data));
spin_lock_irqsave(&data->lock, flags);
if (put_sysmmu_runtime_active(data) && is_sysmmu_active(data))
__sysmmu_disable_nocount(data);
spin_unlock_irqrestore(&data->lock, flags);
}
TRACE_LOG("<----- %s(%s)\n", __func__, dev_name(dev));
return ret;
}
#endif
static const struct dev_pm_ops sysmmu_pm_ops_from_master = {
SET_RUNTIME_PM_OPS(sysmmu_runtime_suspend, sysmmu_runtime_resume,
NULL)
};
static const struct dev_pm_ops sysmmu_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(sysmmu_suspend, sysmmu_resume)
};
struct class exynos_iommu_class = {
.name = "exynos_iommu_class",
.pm = &sysmmu_pm_ops_from_master,
};
static struct platform_driver exynos_sysmmu_driver __refdata = {
.probe = exynos_sysmmu_probe,
.driver = {
.owner = THIS_MODULE,
.name = MODULE_NAME,
.of_match_table = of_match_ptr(sysmmu_of_match),
.pm = &sysmmu_pm_ops,
}
};
static int __init exynos_iommu_init(void)
{
struct page *page;
int ret = -ENOMEM;
lv2table_kmem_cache = kmem_cache_create("exynos-iommu-lv2table",
LV2TABLE_SIZE, LV2TABLE_SIZE, 0, NULL);
if (!lv2table_kmem_cache) {
pr_err("%s: failed to create kmem cache\n", __func__);
return -ENOMEM;
}
page = alloc_page(GFP_KERNEL | __GFP_ZERO);
if (!page) {
pr_err("%s: failed to allocate fault page\n", __func__);
goto err_fault_page;
}
fault_page = page_to_phys(page);
ret = bus_set_iommu(&platform_bus_type, &exynos_iommu_ops);
if (ret) {
pr_err("%s: Failed to register IOMMU ops\n", __func__);
goto err_set_iommu;
}
exynos_sysmmu_debugfs_root = debugfs_create_dir("sysmmu", NULL);
if (!exynos_sysmmu_debugfs_root)
pr_err("%s: Failed to create debugfs entry\n", __func__);
ret = platform_driver_register(&exynos_sysmmu_driver);
if (ret) {
pr_err("%s: Failed to register System MMU driver.\n", __func__);
goto err_driver_register;
}
ret = exynos_iommu_create_domain();
if (ret && (ret != -ENOENT)) {
pr_err("%s: Failed to create iommu domain\n", __func__);
platform_driver_unregister(&exynos_sysmmu_driver);
goto err_driver_register;
}
return 0;
err_driver_register:
bus_set_iommu(&platform_bus_type, NULL);
err_set_iommu:
__free_page(page);
err_fault_page:
kmem_cache_destroy(lv2table_kmem_cache);
return ret;
}
arch_initcall_sync(exynos_iommu_init);
static int sysmmu_hook_driver_register(struct notifier_block *nb,
unsigned long val,
void *p)
{
struct device *dev = p;
/*
* No System MMU assigned. See exynos_sysmmu_probe().
*/
if (dev->archdata.iommu == NULL)
return 0;
switch (val) {
case BUS_NOTIFY_BIND_DRIVER:
{
if (dev->class) {
dev_err(dev, "Already exist dev->class\n");
return -EBUSY;
}
dev->class = &exynos_iommu_class;
dev_info(dev, "exynos-iommu class is added\n");
break;
}
case BUS_NOTIFY_BOUND_DRIVER:
{
struct sysmmu_list_data *list;
if (pm_runtime_enabled(dev))
break;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *data =
dev_get_drvdata(list->sysmmu);
unsigned long flags;
spin_lock_irqsave(&data->lock, flags);
if (is_sysmmu_active(data) &&
get_sysmmu_runtime_active(data))
__sysmmu_enable_nocount(data);
pm_runtime_disable(data->sysmmu);
spin_unlock_irqrestore(&data->lock, flags);
}
break;
}
case BUS_NOTIFY_UNBOUND_DRIVER:
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
WARN_ON(!list_empty(&owner->client));
if (dev->class)
dev->class = NULL;
dev_info(dev, "exynos-iommu class is removed\n");
break;
}
} /* switch (val) */
return 0;
}
static struct notifier_block sysmmu_notifier = {
.notifier_call = &sysmmu_hook_driver_register,
};
static int __init exynos_iommu_prepare(void)
{
return bus_register_notifier(&platform_bus_type, &sysmmu_notifier);
}
subsys_initcall_sync(exynos_iommu_prepare);
static int __init exynos_iommu_dpm_move_to_first(void)
{
struct sysmmu_drvdata *data = sysmmu_drvdata_list;
struct device *sysmmu;
BUG_ON(!data);
for (; data != NULL; data = data->next) {
sysmmu = data->sysmmu;
device_move(sysmmu, NULL, DPM_ORDER_DEV_FIRST);
dev_info(sysmmu, "dpm order to first\n");
}
return 0;
}
late_initcall_sync(exynos_iommu_dpm_move_to_first);
static int sysmmu_fault_notifier(struct notifier_block *nb,
unsigned long fault_addr, void *data)
{
struct exynos_iommu_owner *owner = NULL;
struct exynos_iovmm *vmm;
owner = container_of(nb, struct exynos_iommu_owner, nb);
if (owner && owner->fault_handler) {
vmm = exynos_get_iovmm(owner->dev);
if (vmm && vmm->domain)
owner->fault_handler(vmm->domain, owner->dev,
fault_addr, (unsigned long)data,
owner->token);
}
return 0;
}
int exynos_sysmmu_add_fault_notifier(struct device *dev,
iommu_fault_handler_t handler, void *token)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list;
struct sysmmu_drvdata *drvdata;
unsigned long flags;
int ret;
if (!has_sysmmu(dev)) {
dev_info(dev, "%s doesn't have sysmmu\n", dev_name(dev));
return -EINVAL;
}
spin_lock_irqsave(&owner->lock, flags);
owner->fault_handler = handler;
owner->token = token;
owner->nb.notifier_call = sysmmu_fault_notifier;
for_each_sysmmu_list(dev, list) {
drvdata = dev_get_drvdata(list->sysmmu);
ret = atomic_notifier_chain_register(
&drvdata->fault_notifiers, &owner->nb);
if (ret) {
dev_err(dev,
"Failed to register %s's fault notifier\n",
dev_name(dev));
goto err;
}
}
spin_unlock_irqrestore(&owner->lock, flags);
return 0;
err:
for_each_sysmmu_list(dev, list) {
drvdata = dev_get_drvdata(list->sysmmu);
atomic_notifier_chain_unregister(
&drvdata->fault_notifiers, &owner->nb);
}
spin_unlock_irqrestore(&owner->lock, flags);
return ret;
}
void iovmm_set_fault_handler(struct device *dev,
iommu_fault_handler_t handler, void *token)
{
int ret;
ret = exynos_sysmmu_add_fault_notifier(dev, handler, token);
if (ret)
dev_err(dev, "Failed to %s's fault notifier\n", dev_name(dev));
}
static void sysmmu_dump_lv2_page_table(unsigned int lv1idx, sysmmu_pte_t *base)
{
unsigned int i;
for (i = 0; i < NUM_LV2ENTRIES; i += 4) {
if (!base[i] && !base[i + 1] && !base[i + 2] && !base[i + 3])
continue;
pr_info(" LV2[%04d][%03d] %08x %08x %08x %08x\n",
lv1idx, i,
base[i], base[i + 1], base[i + 2], base[i + 3]);
}
}
static void sysmmu_dump_page_table(sysmmu_pte_t *base)
{
unsigned int i;
phys_addr_t phys_base = virt_to_phys(base);
pr_info("---- System MMU Page Table @ %pa ----\n", &phys_base);
for (i = 0; i < NUM_LV1ENTRIES; i += 4) {
unsigned int j;
if (!base[i])
continue;
pr_info("LV1[%04d] %08x %08x %08x %08x\n",
i, base[i], base[i + 1], base[i + 2], base[i + 3]);
for (j = 0; j < 4; j++)
if (lv1ent_page(&base[i + j]))
sysmmu_dump_lv2_page_table(i + j,
page_entry(&base[i + j], 0));
}
}
void exynos_sysmmu_show_status(struct device *dev)
{
struct sysmmu_list_data *list;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
if (!is_sysmmu_active(drvdata) ||
!is_sysmmu_runtime_active(drvdata)) {
dev_info(drvdata->sysmmu,
"%s: System MMU is not active\n", __func__);
continue;
}
pr_info("DUMPING SYSTEM MMU: %s\n", dev_name(drvdata->sysmmu));
if (sysmmu_block(drvdata->sfrbase))
dump_sysmmu_tlb_pb(drvdata->sfrbase);
else
pr_err("!!Failed to block Sytem MMU!\n");
sysmmu_unblock(drvdata->sfrbase);
}
}
void exynos_sysmmu_dump_pgtable(struct device *dev)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct sysmmu_list_data *list =
list_entry(&owner->mmu_list, struct sysmmu_list_data, node);
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
sysmmu_dump_page_table(phys_to_virt(drvdata->pgtable));
}
void dump_sysmmu_ppc_cnt(struct sysmmu_drvdata *drvdata)
{
unsigned int cfg;
int i;
pr_crit("------------- System MMU PPC Status --------------\n");
for (i = 0; i < drvdata->event_cnt; i++) {
cfg = __raw_readl(drvdata->sfrbase +
REG_PPC_EVENT_SEL(i));
pr_crit("%s %s %s CNT : %d", dev_name(drvdata->sysmmu),
cfg & 0x10 ? "WRITE" : "READ",
ppc_event_name[cfg & 0x7],
__raw_readl(drvdata->sfrbase + REG_PPC_PMCNT(i)));
}
pr_crit("--------------------------------------------------\n");
}
int sysmmu_set_ppc_event(struct sysmmu_drvdata *drvdata, int event)
{
unsigned int cfg;
if (event < 0 || event > TOTAL_ID_NUM ||
event == READ_TLB_MISS || event == WRITE_TLB_MISS ||
event == READ_FLPD_MISS_PREFETCH ||
event == WRITE_FLPD_MISS_PREFETCH)
return -EINVAL;
if (!drvdata->event_cnt)
__raw_writel(0x1, drvdata->sfrbase + REG_PPC_PMNC);
__raw_writel(event, drvdata->sfrbase +
REG_PPC_EVENT_SEL(drvdata->event_cnt));
cfg = __raw_readl(drvdata->sfrbase +
REG_PPC_CNTENS);
__raw_writel(cfg | 0x1 << drvdata->event_cnt,
drvdata->sfrbase + REG_PPC_CNTENS);
return 0;
}
void exynos_sysmmu_show_ppc_event(struct device *dev)
{
struct sysmmu_list_data *list;
unsigned long flags;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
spin_lock_irqsave(&drvdata->lock, flags);
if (!is_sysmmu_active(drvdata) || !drvdata->runtime_active) {
dev_info(drvdata->sysmmu,
"%s: System MMU is not active\n", __func__);
spin_unlock_irqrestore(&drvdata->lock, flags);
continue;
}
if (sysmmu_block(drvdata->sfrbase))
dump_sysmmu_ppc_cnt(drvdata);
else
pr_err("!!Failed to block Sytem MMU!\n");
sysmmu_unblock(drvdata->sfrbase);
spin_unlock_irqrestore(&drvdata->lock, flags);
}
}
void exynos_sysmmu_clear_ppc_event(struct device *dev)
{
struct sysmmu_list_data *list;
unsigned long flags;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
spin_lock_irqsave(&drvdata->lock, flags);
if (!is_sysmmu_active(drvdata) || !drvdata->runtime_active) {
dev_info(drvdata->sysmmu,
"%s: System MMU is not active\n", __func__);
spin_unlock_irqrestore(&drvdata->lock, flags);
continue;
}
if (sysmmu_block(drvdata->sfrbase)) {
dump_sysmmu_ppc_cnt(drvdata);
__raw_writel(0x2, drvdata->sfrbase + REG_PPC_PMNC);
__raw_writel(0, drvdata->sfrbase + REG_PPC_CNTENS);
__raw_writel(0, drvdata->sfrbase + REG_PPC_INTENS);
drvdata->event_cnt = 0;
} else
pr_err("!!Failed to block Sytem MMU!\n");
sysmmu_unblock(drvdata->sfrbase);
spin_unlock_irqrestore(&drvdata->lock, flags);
}
}
int exynos_sysmmu_set_ppc_event(struct device *dev, int event)
{
struct sysmmu_list_data *list;
unsigned long flags;
int ret = 0;
for_each_sysmmu_list(dev, list) {
struct sysmmu_drvdata *drvdata = dev_get_drvdata(list->sysmmu);
spin_lock_irqsave(&drvdata->lock, flags);
if (!is_sysmmu_active(drvdata) || !drvdata->runtime_active) {
dev_info(drvdata->sysmmu,
"%s: System MMU is not active\n", __func__);
spin_unlock_irqrestore(&drvdata->lock, flags);
continue;
}
if (sysmmu_block(drvdata->sfrbase)) {
if (drvdata->event_cnt < MAX_NUM_PPC) {
ret = sysmmu_set_ppc_event(drvdata, event);
if (ret)
pr_err("Not supported Event ID (%d)",
event);
else
drvdata->event_cnt++;
}
} else
pr_err("!!Failed to block Sytem MMU!\n");
sysmmu_unblock(drvdata->sfrbase);
spin_unlock_irqrestore(&drvdata->lock, flags);
}
return ret;
}
static sysmmu_pte_t *alloc_lv2entry_userptr(struct exynos_iommu_domain *domain,
unsigned long iova)
{
return alloc_lv2entry(domain, section_entry(domain->pgtable, iova),
iova, &domain->lv2entcnt[lv1ent_offset(iova)]);
}
static int sysmmu_map_pte(struct mm_struct *mm,
pmd_t *pmd, unsigned long addr, unsigned long end,
struct exynos_iommu_domain *domain, dma_addr_t iova, int prot)
{
pte_t *pte;
int ret = 0;
spinlock_t *ptl;
bool write = !!(prot & IOMMU_WRITE);
bool pfnmap = !!(prot & IOMMU_PFNMAP);
bool shareable = !!(prot & IOMMU_CACHE);
unsigned int fault_flag = write ? FAULT_FLAG_WRITE : 0;
sysmmu_pte_t *ent, *ent_beg;
pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
if (!pte)
return -ENOMEM;
ent = alloc_lv2entry_userptr(domain, iova);
if (IS_ERR(ent)) {
ret = PTR_ERR(ent);
goto err;
}
ent_beg = ent;
do {
if (pte_none(*pte) || !pte_present(*pte) ||
(write && !pte_write(*pte))) {
int cnt = 0;
int maxcnt = 1;
if (pfnmap) {
ret = -EFAULT;
goto err;
}
while (cnt++ < maxcnt) {
spin_unlock(ptl);
/* find_vma() always successes */
ret = handle_mm_fault(mm, find_vma(mm, addr),
addr, fault_flag);
spin_lock(ptl);
if (ret & VM_FAULT_ERROR) {
ret = mm_fault_translate(ret);
goto err;
} else {
ret = 0;
}
/*
* the racing between handle_mm_fault() and the
* page reclamation may cause handle_mm_fault()
* to return 0 even though it failed to page in.
* This behavior expect the process to access
* the paged out entry again then give
* handle_mm_fault() a chance again to page in
* the entry.
*/
if (is_swap_pte(*pte)) {
BUG_ON(maxcnt > 8);
maxcnt++;
}
}
}
BUG_ON(!lv2ent_fault(ent));
*ent = mk_lv2ent_spage(pte_pfn(*pte) << PAGE_SHIFT);
if (!pfnmap)
get_page(pte_page(*pte));
else
mk_lv2ent_pfnmap(ent);
if (shareable)
set_lv2ent_shareable(ent);
ent++;
iova += PAGE_SIZE;
if ((iova & SECT_MASK) != ((iova - 1) & SECT_MASK)) {
pgtable_flush(ent_beg, ent);
ent = alloc_lv2entry_userptr(domain, iova);
if (IS_ERR(ent)) {
ret = PTR_ERR(ent);
goto err;
}
ent_beg = ent;
}
} while (pte++, addr += PAGE_SIZE, addr != end);
pgtable_flush(ent_beg, ent);
err:
pte_unmap_unlock(pte - 1, ptl);
return ret;
}
static inline int sysmmu_map_pmd(struct mm_struct *mm,
pud_t *pud, unsigned long addr, unsigned long end,
struct exynos_iommu_domain *domain, dma_addr_t iova, int prot)
{
pmd_t *pmd;
unsigned long next;
pmd = pmd_alloc(mm, pud, addr);
if (!pmd)
return -ENOMEM;
do {
next = pmd_addr_end(addr, end);
if (sysmmu_map_pte(mm, pmd, addr, next, domain, iova, prot))
return -ENOMEM;
iova += (next - addr);
} while (pmd++, addr = next, addr != end);
return 0;
}
static inline int sysmmu_map_pud(struct mm_struct *mm,
pgd_t *pgd, unsigned long addr, unsigned long end,
struct exynos_iommu_domain *domain, dma_addr_t iova, int prot)
{
pud_t *pud;
unsigned long next;
pud = pud_alloc(mm, pgd, addr);
if (!pud)
return -ENOMEM;
do {
next = pud_addr_end(addr, end);
if (sysmmu_map_pmd(mm, pud, addr, next, domain, iova, prot))
return -ENOMEM;
iova += (next - addr);
} while (pud++, addr = next, addr != end);
return 0;
}
int exynos_iommu_map_userptr(struct iommu_domain *dom, unsigned long addr,
dma_addr_t iova, size_t size, int prot)
{
struct exynos_iommu_domain *domain = dom->priv;
struct mm_struct *mm = current->mm;
unsigned long end = addr + size;
dma_addr_t start = iova;
unsigned long next;
pgd_t *pgd;
int ret;
BUG_ON(!!((iova | addr | size) & ~PAGE_MASK));
pgd = pgd_offset(mm, addr);
do {
next = pgd_addr_end(addr, end);
ret = sysmmu_map_pud(mm, pgd, addr, next, domain, iova, prot);
if (ret)
goto err;
iova += (next - addr);
} while (pgd++, addr = next, addr != end);
return 0;
err:
/* unroll */
exynos_iommu_unmap_userptr(dom, start, size);
return ret;
}
#define sect_offset(iova) ((iova) & ~SECT_MASK)
#define lv2ents_within(iova) ((SECT_SIZE - sect_offset(iova)) >> SPAGE_ORDER)
void exynos_iommu_unmap_userptr(struct iommu_domain *dom,
dma_addr_t iova, size_t size)
{
struct exynos_iommu_domain *domain = dom->priv;
sysmmu_pte_t *sent = section_entry(domain->pgtable, iova);
unsigned int entries = size >> SPAGE_ORDER;
dma_addr_t start = iova;
while (entries > 0) {
unsigned int lv2ents, i;
sysmmu_pte_t *pent;
/* ignore fault entries */
if (lv1ent_fault(sent)) {
lv2ents = min_t(unsigned int, entries, NUM_LV1ENTRIES);
entries -= lv2ents;
iova += lv2ents << SPAGE_ORDER;
sent++;
continue;
}
BUG_ON(!lv1ent_page(sent));
lv2ents = min_t(unsigned int, lv2ents_within(iova), entries);
pent = page_entry(sent, iova);
for (i = 0; i < lv2ents; i++, pent++) {
/* ignore fault entries */
if (lv2ent_fault(pent))
continue;
BUG_ON(!lv2ent_small(pent));
if (!lv2ent_pfnmap(pent))
put_page(phys_to_page(spage_phys(pent)));
*pent = 0;
}
pgtable_flush(pent - lv2ents, pent);
entries -= lv2ents;
iova += lv2ents << SPAGE_ORDER;
sent++;
}
exynos_sysmmu_tlb_invalidate(dom, start, size);
}
typedef void (*syncop)(const void *, size_t, int);
static size_t sysmmu_dma_sync_page(phys_addr_t phys, off_t off,
size_t pgsize, size_t size,
syncop op, enum dma_data_direction dir)
{
size_t len;
size_t skip_pages = off >> PAGE_SHIFT;
struct page *page;
off = off & ~PAGE_MASK;
page = phys_to_page(phys) + skip_pages;
len = min(pgsize - off, size);
size = len;
while (len > 0) {
size_t sz;
sz = min(PAGE_SIZE, len + off) - off;
op(kmap(page) + off, sz, dir);
kunmap(page++);
len -= sz;
off = 0;
}
return size;
}
static void exynos_iommu_sync(sysmmu_pte_t *pgtable, dma_addr_t iova,
size_t len, syncop op, enum dma_data_direction dir)
{
while (len > 0) {
sysmmu_pte_t *entry;
size_t done;
entry = section_entry(pgtable, iova);
switch (*entry & FLPD_FLAG_MASK) {
case SPSECT_FLAG:
done = sysmmu_dma_sync_page(spsection_phys(entry),
spsection_offs(iova), SPSECT_SIZE,
len, op, dir);
break;
case DSECT_FLAG:
done = sysmmu_dma_sync_page(dsection_phys(entry),
dsection_offs(iova), DSECT_SIZE,
len, op, dir);
break;
case SECT_FLAG:
done = sysmmu_dma_sync_page(section_phys(entry),
section_offs(iova), SECT_SIZE,
len, op, dir);
break;
case SLPD_FLAG:
entry = page_entry(entry, iova);
switch (*entry & SLPD_FLAG_MASK) {
case LPAGE_FLAG:
done = sysmmu_dma_sync_page(lpage_phys(entry),
lpage_offs(iova), LPAGE_SIZE,
len, op, dir);
break;
case SPAGE_FLAG:
done = sysmmu_dma_sync_page(spage_phys(entry),
spage_offs(iova), SPAGE_SIZE,
len, op, dir);
break;
default: /* fault */
return;
}
break;
default: /* fault */
return;
}
iova += done;
len -= done;
}
}
static sysmmu_pte_t *sysmmu_get_pgtable(struct device *dev)
{
struct exynos_iommu_owner *owner = dev->archdata.iommu;
struct device *sysmmu = list_first_entry(&owner->mmu_list,
struct sysmmu_list_data, node)->sysmmu;
struct sysmmu_drvdata *data = dev_get_drvdata(sysmmu);
struct iommu_domain *dom = data->domain;
struct exynos_iommu_domain *domain = dom->priv;
return domain->pgtable;
}
void exynos_iommu_sync_for_device(struct device *dev, dma_addr_t iova,
size_t len, enum dma_data_direction dir)
{
exynos_iommu_sync(sysmmu_get_pgtable(dev),
iova, len, __dma_map_area, dir);
}
void exynos_iommu_sync_for_cpu(struct device *dev, dma_addr_t iova, size_t len,
enum dma_data_direction dir)
{
if (dir == DMA_TO_DEVICE)
return;
exynos_iommu_sync(sysmmu_get_pgtable(dev),
iova, len, __dma_unmap_area, dir);
}