android_kernel_samsung_on5x.../drivers/misc/samsung/scsc/pcie_mif.c
2018-06-19 23:16:04 +02:00

623 lines
20 KiB
C

/****************************************************************************
*
* Copyright (c) 2014 - 2016 Samsung Electronics Co., Ltd. All rights reserved
*
****************************************************************************/
/* Implements */
#include "pcie_mif.h"
/* Uses */
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/moduleparam.h>
#include <scsc/scsc_logring.h>
#include "pcie_mif_module.h"
#include "peterson_mutex.h"
#include "pcie_proc.h"
static bool enable_pcie_mif_arm_reset = true;
module_param(enable_pcie_mif_arm_reset, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(enable_pcie_mif_arm_reset, "Enables ARM cores reset");
struct pcie_mif {
struct scsc_mif_abs interface;
struct scsc_mbox_s *mbox;
struct peterson_mutex *p_mutex_r4; /* AP will READ - CR4 will WRITE */
struct peterson_mutex *p_mutex_ap; /* AP will WRITE - CR4 will READ */
struct pci_dev *pdev;
int dma_using_dac; /* =1 if 64-bit DMA is used, =0 otherwise. */
__iomem void *registers;
struct device *dev;
void *mem;
size_t mem_allocated;
dma_addr_t dma_addr;
/* Callback function and dev pointer mif_intr manager handler */
void (*r4_handler)(int irq, void *data);
void *irq_dev;
#ifdef SUPPORTED_M4
void (*m4_handler)(int irq, void *data);
#endif
};
#define pcie_mif_from_mif_abs(MIF_ABS_PTR) container_of(MIF_ABS_PTR, struct pcie_mif, interface)
static void pcie_mif_irq_default_handler(int irq, void *data)
{
/* Avoid unused parameter error */
(void)irq;
(void)data;
}
irqreturn_t pcie_mif_isr(int irq, void *data)
{
struct pcie_mif *pcie = (struct pcie_mif *)data;
#ifdef SUPPORTED_M4
/* TODO */
#endif
if (pcie->r4_handler != pcie_mif_irq_default_handler)
pcie->r4_handler(irq, pcie->irq_dev);
else
SCSC_TAG_INFO(PCIE_MIF, "Any handler registered\n");
return IRQ_HANDLED;
}
static void pcie_mif_destroy(struct scsc_mif_abs *interface)
{
/* Avoid unused parameter error */
(void)interface;
}
static char *pcie_mif_get_uid(struct scsc_mif_abs *interface)
{
/* Avoid unused parameter error */
(void)interface;
/* TODO */
/* return "0" for the time being */
return "0";
}
static int pcie_mif_reset(struct scsc_mif_abs *interface, bool reset)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
int ret;
if (enable_pcie_mif_arm_reset || !reset) {
/* Sanity check */
iowrite32(0xdeadbeef, pcie->registers + SCSC_PCIE_SIGNATURE);
mmiowb();
ret = ioread32(pcie->registers + SCSC_PCIE_SIGNATURE);
if (ret != 0xdeadbeef) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev, "Can't acces BAR0 magic number. Readed: 0x%x Expected: 0x%x\n",
ret, 0xdeadbeef);
return -ENODEV;
}
iowrite32(reset ? 1 : 0,
pcie->registers + SCSC_PCIE_GRST_OFFSET);
mmiowb();
} else
SCSC_TAG_INFO(PCIE_MIF, "Not resetting ARM Cores enable_pcie_mif_arm_reset: %d\n",
enable_pcie_mif_arm_reset);
return 0;
}
static void *pcie_mif_map(struct scsc_mif_abs *interface, size_t *allocated)
{
int ret;
size_t map_len = PCIE_MIF_ALLOC_MEM;
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (allocated)
*allocated = 0;
if (map_len > (PCIE_MIF_PREALLOC_MEM - 1)) {
SCSC_TAG_ERR(PCIE_MIF, "Error allocating DMA memory, requested %zu, maximum %d, consider different size\n", map_len, PCIE_MIF_PREALLOC_MEM);
return NULL;
}
/* should return PAGE_ALIGN Memory */
pcie->mem = dma_alloc_coherent(pcie->dev,
PCIE_MIF_PREALLOC_MEM, &pcie->dma_addr, GFP_KERNEL);
if (pcie->mem == NULL) {
SCSC_TAG_ERR(PCIE_MIF, "Error allocating %d DMA memory\n", PCIE_MIF_PREALLOC_MEM);
return NULL;
}
pcie->mem_allocated = map_len;
SCSC_TAG_INFO_DEV(PCIE_MIF, pcie->dev, "Allocated dma coherent mem: %p addr %p\n", pcie->mem, (void *)pcie->dma_addr);
iowrite32((unsigned int)pcie->dma_addr,
pcie->registers + SCSC_PCIE_OFFSET);
mmiowb();
ret = ioread32(pcie->registers + SCSC_PCIE_OFFSET);
SCSC_TAG_INFO(PCIE_MIF, "Read SHARED_BA 0x%0x\n", ret);
if (ret != (unsigned int)pcie->dma_addr) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev, "Can't acces BAR0 Shared BA. Readed: 0x%x Expected: 0x%x\n", ret, (unsigned int)pcie->dma_addr);
return NULL;
}
#ifdef OLD_REG
/* Allocate mbox struct at the end of the PCIE_MIF_PREALLOC_MEM */
pcie->mbox = (void *)pcie->mem + PCIE_MIF_PREALLOC_MEM - sizeof(struct scsc_mbox_s);
/* Allocate Peterson algo shared varialbles before mbox */
pcie->p_mutex_r4 = (void *)pcie->mem + PCIE_MIF_PREALLOC_MEM - sizeof(struct scsc_mbox_s) - sizeof(struct peterson_mutex);
pcie->p_mutex_ap = (void *)pcie->mem + PCIE_MIF_PREALLOC_MEM - sizeof(struct scsc_mbox_s) - 2 * (sizeof(struct peterson_mutex));
#else
/* Allocate mbox struct at the end of the PCIE_MIF_PREALLOC_MEM */
pcie->mbox = (void *)pcie->mem + MBOX_OFFSET;
memset(pcie->mbox, 0, sizeof(struct scsc_mbox_s));
/* Allocate Peterson algo shared varialbles before mbox */
pcie->p_mutex_r4 = (void *)pcie->mem + P_OFFSET_R4;
pcie->p_mutex_ap = (void *)pcie->mem + P_OFFSET_AP;
#endif
SCSC_TAG_INFO_DEV(PCIE_MIF, pcie->dev, "pcie->mbox is pointing at %p pcie->mem %p map_len %zu sizeof %zu\n",
pcie->mbox,
pcie->mem,
map_len,
sizeof(struct scsc_mbox_s));
#ifdef SUPPORTED_M4
/* TODO */
#endif
peterson_mutex_init(pcie->p_mutex_ap);
/* Return the max allocatable memory on this abs. implementation */
if (allocated)
*allocated = map_len;
return pcie->mem;
}
/* HERE: Not sure why mem is passed in - its stored in pcie - as it should be */
static void pcie_mif_unmap(struct scsc_mif_abs *interface, void *mem)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
/* Avoid unused parameter error */
(void)mem;
dma_free_coherent(pcie->dev, PCIE_MIF_PREALLOC_MEM, pcie->mem, pcie->dma_addr);
SCSC_TAG_INFO_DEV(PCIE_MIF, pcie->dev, "Freed dma coherent mem: %p addr %p\n", pcie->mem, (void *)pcie->dma_addr);
}
#ifdef MAILBOX_SETGET
static void pcie_mif_mailbox_set(struct scsc_mif_abs *interface, u32 mbox_num, u32 value)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (mbox_num >= NUM_MBOX) {
SCSC_TAG_ERR(PCIE_MIF, "MBOX not mapped\n");
return;
}
pcie->mbox->issr[mbox_num] = value;
}
static u32 pcie_mif_mailbox_get(struct scsc_mif_abs *interface, u32 mbox_num)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
u32 val;
if (mbox_num >= NUM_MBOX) {
SCSC_TAG_ERR(PCIE_MIF, "MBOX not mapped\n");
return -1;
}
val = pcie->mbox->issr[mbox_num];
return val;
}
#endif
static u32 pcie_mif_irq_bit_mask_status_get(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
u32 val;
val = (pcie->mbox->intmr0) >> 16;
return val;
}
static u32 pcie_mif_irq_get(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
u32 val;
val = pcie->mbox->intsr1 >> 16;
return val;
}
static void pcie_mif_irq_bit_set(struct scsc_mif_abs *interface, int bit_num, enum scsc_mif_abs_target target)
{
volatile u32 *set_reg;
volatile u32 *mask_reg;
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (bit_num >= 16) {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect INT\n");
return;
}
peterson_mutex_lock(pcie->p_mutex_r4, AP_PROCESS);
/* Set Status Register */
if (target == SCSC_MIF_ABS_TARGET_R4) {
set_reg = &pcie->mbox->intsr0;
mask_reg = &pcie->mbox->intmr0;
} else if (target == SCSC_MIF_ABS_TARGET_M4) {
set_reg = &pcie->mbox->intsr2;
mask_reg = &pcie->mbox->intmr2;
} else {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect Target %d\n", target);
return;
}
*set_reg |= (1 << bit_num) << 16;
/* Check whether int is masked */
if (*mask_reg & ((1 << bit_num) << 16)) {
SCSC_TAG_ERR(PCIE_MIF, "Interrupt is masked - do not generate interrupt\n");
peterson_mutex_unlock(pcie->p_mutex_r4, AP_PROCESS);
return;
}
iowrite32(0xffffff, pcie->registers + SCSC_PCIE_NEWMSG);
mmiowb();
peterson_mutex_unlock(pcie->p_mutex_r4, AP_PROCESS);
}
static void pcie_mif_irq_bit_clear(struct scsc_mif_abs *interface, int bit_num)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (bit_num >= 16) {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect INT\n");
return;
}
peterson_mutex_lock(pcie->p_mutex_ap, AP_PROCESS);
pcie->mbox->intsr1 &= ~((1 << bit_num) << 16);
peterson_mutex_unlock(pcie->p_mutex_ap, AP_PROCESS);
}
static void pcie_mif_irq_bit_mask(struct scsc_mif_abs *interface, int bit_num)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (bit_num >= 16) {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect INT\n");
return;
}
peterson_mutex_lock(pcie->p_mutex_ap, AP_PROCESS);
pcie->mbox->intmr1 |= ((1 << bit_num) << 16);
peterson_mutex_unlock(pcie->p_mutex_ap, AP_PROCESS);
}
static void pcie_mif_irq_bit_unmask(struct scsc_mif_abs *interface, int bit_num)
{
int irq_unmasked;
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (bit_num >= 16) {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect INT\n");
return;
}
peterson_mutex_lock(pcie->p_mutex_ap, AP_PROCESS);
pcie->mbox->intmr1 &= ~((1 << bit_num) << 16);
irq_unmasked = pcie_mif_irq_get(interface) & (1 << bit_num);
peterson_mutex_unlock(pcie->p_mutex_ap, AP_PROCESS);
/* Check whether the interrupt has been triggered */
if (irq_unmasked)
if (pcie->r4_handler != pcie_mif_irq_default_handler)
pcie->r4_handler(bit_num, pcie->irq_dev);
}
static void pcie_mif_irq_reg_handler(struct scsc_mif_abs *interface, void (*handler)(int irq, void *data), void *dev)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
pcie->r4_handler = handler;
pcie->irq_dev = dev;
}
static void pcie_mif_irq_unreg_handler(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
pcie->r4_handler = pcie_mif_irq_default_handler;
pcie->irq_dev = NULL;
}
static void pcie_mif_irq_reg_reset_request_handler(struct scsc_mif_abs *interface, void (*handler)(int irq, void *data), void *dev)
{
(void)interface;
(void)handler;
(void)dev;
}
static void pcie_mif_irq_unreg_reset_request_handler(struct scsc_mif_abs *interface)
{
(void)interface;
}
static u32 *pcie_mif_get_mbox_ptr(struct scsc_mif_abs *interface, u32 mbox_index)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
u32 *addr;
addr = (u32 *)(&pcie->mbox->issr[mbox_index]);
return addr;
}
static int pcie_mif_get_mifram_ref(struct scsc_mif_abs *interface, void *ptr, scsc_mifram_ref *ref)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
if (ptr > (pcie->mem + 4 * 1024 * 1024)) {
SCSC_TAG_ERR(PCIE_MIF, "ooops limits reached\n");
return -ENOMEM;
}
*ref = (scsc_mifram_ref)((uintptr_t)ptr - (uintptr_t)pcie->mem);
return 0;
}
static void *pcie_mif_get_mifram_ptr(struct scsc_mif_abs *interface, scsc_mifram_ref ref)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
return (void *)((uintptr_t)pcie->mem + (uintptr_t)ref);
}
static uintptr_t pcie_mif_get_mif_pfn(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
return virt_to_phys(pcie->mem) >> PAGE_SHIFT;
}
static struct device *pcie_mif_get_mif_device(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
return pcie->dev;
}
static void pcie_mif_irq_clear(void)
{
}
static void pcie_mif_dump_register(struct scsc_mif_abs *interface)
{
}
struct scsc_mif_abs *pcie_mif_create(struct pci_dev *pdev, const struct pci_device_id *id)
{
int rc = 0;
struct scsc_mif_abs *pcie_if;
struct pcie_mif *pcie = (struct pcie_mif *)devm_kzalloc(&pdev->dev, sizeof(struct pcie_mif), GFP_KERNEL);
u16 cmd;
/* Avoid unused parameter error */
(void)id;
if (!pcie)
return NULL;
pcie_if = &pcie->interface;
/* initialise interface structure */
pcie_if->destroy = pcie_mif_destroy;
pcie_if->get_uid = pcie_mif_get_uid;
pcie_if->reset = pcie_mif_reset;
pcie_if->map = pcie_mif_map;
pcie_if->unmap = pcie_mif_unmap;
#ifdef MAILBOX_SETGET
pcie_if->mailbox_set = pcie_mif_mailbox_set;
pcie_if->mailbox_get = pcie_mif_mailbox_get;
#endif
pcie_if->irq_bit_set = pcie_mif_irq_bit_set;
pcie_if->irq_get = pcie_mif_irq_get;
pcie_if->irq_bit_mask_status_get = pcie_mif_irq_bit_mask_status_get;
pcie_if->irq_bit_clear = pcie_mif_irq_bit_clear;
pcie_if->irq_bit_mask = pcie_mif_irq_bit_mask;
pcie_if->irq_bit_unmask = pcie_mif_irq_bit_unmask;
pcie_if->irq_reg_handler = pcie_mif_irq_reg_handler;
pcie_if->irq_unreg_handler = pcie_mif_irq_unreg_handler;
pcie_if->irq_reg_reset_request_handler = pcie_mif_irq_reg_reset_request_handler;
pcie_if->irq_unreg_reset_request_handler = pcie_mif_irq_unreg_reset_request_handler;
pcie_if->get_mbox_ptr = pcie_mif_get_mbox_ptr;
pcie_if->get_mifram_ptr = pcie_mif_get_mifram_ptr;
pcie_if->get_mifram_ref = pcie_mif_get_mifram_ref;
pcie_if->get_mifram_pfn = pcie_mif_get_mif_pfn;
pcie_if->get_mif_device = pcie_mif_get_mif_device;
pcie_if->irq_clear = pcie_mif_irq_clear;
pcie_if->mif_dump_registers = pcie_mif_dump_register;
/* Suspend/resume not supported in PCIe MIF */
pcie_if->suspend_reg_handler = NULL;
pcie_if->suspend_unreg_handler = NULL;
/* Update state */
pcie->pdev = pdev;
pcie->dev = &pdev->dev;
pcie->r4_handler = pcie_mif_irq_default_handler;
pcie->irq_dev = NULL;
/* Just do whats is necessary to meet the pci probe
* -BAR0 stuff
* -Interrupt (will be able to handle interrupts?)
*/
/* My stuff */
pci_set_drvdata(pdev, pcie);
rc = pcim_enable_device(pdev);
if (rc) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev,
"Error enabling device.\n");
return NULL;
}
/* This function returns the flags associated with this resource.*/
/* esource flags are used to define some features of the individual resource.
* For PCI resources associated with PCI I/O regions, the information is extracted from the base address registers */
/* IORESOURCE_MEM = If the associated I/O region exists, one and only one of these flags is set */
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
SCSC_TAG_ERR(PCIE_MIF, "Incorrect BAR configuration\n");
return NULL;
}
/* old --- rc = pci_request_regions(pdev, "foo"); */
/* Request and iomap regions specified by @mask (0x01 ---> BAR0)*/
rc = pcim_iomap_regions(pdev, BIT(0), DRV_NAME);
if (rc) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev,
"pcim_iomap_regions() failed. Aborting.\n");
return NULL;
}
pci_set_master(pdev);
/* Access iomap allocation table */
/* return __iomem * const * */
pcie->registers = pcim_iomap_table(pdev)[0];
/* Set up a single MSI interrupt */
if (pci_enable_msi(pdev)) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev,
"Failed to enable MSI interrupts. Aborting.\n");
return NULL;
}
rc = devm_request_irq(&pdev->dev, pdev->irq, pcie_mif_isr, 0,
DRV_NAME, pcie);
if (rc) {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev,
"Failed to register MSI handler. Aborting.\n");
return NULL;
}
/* if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
* SCSC_TAG_INFO_DEV(PCIE_MIF, pcie->dev, "DMA mask 64bits.\n");
* pcie->dma_using_dac = 1; */
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
SCSC_TAG_INFO_DEV(PCIE_MIF, pcie->dev, "DMA mask 32bits.\n");
pcie->dma_using_dac = 0;
} else {
SCSC_TAG_ERR_DEV(PCIE_MIF, pcie->dev, "Failed to set DMA mask. Aborting.\n");
return NULL;
}
pci_read_config_word(pdev, PCI_COMMAND, &cmd);
/* Make sure Mx is in the reset state */
pcie_mif_reset(pcie_if, true);
/* Create debug proc entry */
pcie_create_proc_dir(pcie);
return pcie_if;
}
void pcie_mif_destroy_pcie(struct pci_dev *pdev, struct scsc_mif_abs *interface)
{
/* Create debug proc entry */
pcie_remove_proc_dir();
pci_disable_device(pdev);
}
struct pci_dev *pcie_mif_get_pci_dev(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
BUG_ON(!interface || !pcie);
return pcie->pdev;
}
struct device *pcie_mif_get_dev(struct scsc_mif_abs *interface)
{
struct pcie_mif *pcie = pcie_mif_from_mif_abs(interface);
BUG_ON(!interface || !pcie);
return pcie->dev;
}
/* Funtions for proc entry */
int pcie_mif_set_bar0_register(struct pcie_mif *pcie, unsigned int value, unsigned int offset)
{
iowrite32(value, pcie->registers + offset);
mmiowb();
return 0;
}
void pcie_mif_get_bar0(struct pcie_mif *pcie, struct scsc_bar0_reg *bar0)
{
bar0->NEWMSG = ioread32(pcie->registers + SCSC_PCIE_NEWMSG);
bar0->SIGNATURE = ioread32(pcie->registers + SCSC_PCIE_SIGNATURE);
bar0->OFFSET = ioread32(pcie->registers + SCSC_PCIE_OFFSET);
bar0->RUNEN = ioread32(pcie->registers + SCSC_PCIE_RUNEN);
bar0->DEBUG = ioread32(pcie->registers + SCSC_PCIE_DEBUG);
bar0->AXIWCNT = ioread32(pcie->registers + SCSC_PCIE_AXIWCNT);
bar0->AXIRCNT = ioread32(pcie->registers + SCSC_PCIE_AXIRCNT);
bar0->AXIWADDR = ioread32(pcie->registers + SCSC_PCIE_AXIWADDR);
bar0->AXIRADDR = ioread32(pcie->registers + SCSC_PCIE_AXIRADDR);
bar0->TBD = ioread32(pcie->registers + SCSC_PCIE_TBD);
bar0->AXICTRL = ioread32(pcie->registers + SCSC_PCIE_AXICTRL);
bar0->AXIDATA = ioread32(pcie->registers + SCSC_PCIE_AXIDATA);
bar0->AXIRDBP = ioread32(pcie->registers + SCSC_PCIE_AXIRDBP);
bar0->IFAXIWCNT = ioread32(pcie->registers + SCSC_PCIE_IFAXIWCNT);
bar0->IFAXIRCNT = ioread32(pcie->registers + SCSC_PCIE_IFAXIRCNT);
bar0->IFAXIWADDR = ioread32(pcie->registers + SCSC_PCIE_IFAXIWADDR);
bar0->IFAXIRADDR = ioread32(pcie->registers + SCSC_PCIE_IFAXIRADDR);
bar0->IFAXICTRL = ioread32(pcie->registers + SCSC_PCIE_IFAXICTRL);
bar0->GRST = ioread32(pcie->registers + SCSC_PCIE_GRST);
bar0->AMBA2TRANSAXIWCNT = ioread32(pcie->registers + SCSC_PCIE_AMBA2TRANSAXIWCNT);
bar0->AMBA2TRANSAXIRCNT = ioread32(pcie->registers + SCSC_PCIE_AMBA2TRANSAXIRCNT);
bar0->AMBA2TRANSAXIWADDR = ioread32(pcie->registers + SCSC_PCIE_AMBA2TRANSAXIWADDR);
bar0->AMBA2TRANSAXIRADDR = ioread32(pcie->registers + SCSC_PCIE_AMBA2TRANSAXIRADDR);
bar0->AMBA2TRANSAXICTR = ioread32(pcie->registers + SCSC_PCIE_AMBA2TRANSAXICTR);
bar0->TRANS2PCIEREADALIGNAXIWCNT = ioread32(pcie->registers + SCSC_PCIE_TRANS2PCIEREADALIGNAXIWCNT);
bar0->TRANS2PCIEREADALIGNAXIRCNT = ioread32(pcie->registers + SCSC_PCIE_TRANS2PCIEREADALIGNAXIRCNT);
bar0->TRANS2PCIEREADALIGNAXIWADDR = ioread32(pcie->registers + SCSC_PCIE_TRANS2PCIEREADALIGNAXIWADDR);
bar0->TRANS2PCIEREADALIGNAXIRADDR = ioread32(pcie->registers + SCSC_PCIE_TRANS2PCIEREADALIGNAXIRADDR);
bar0->TRANS2PCIEREADALIGNAXICTRL = ioread32(pcie->registers + SCSC_PCIE_TRANS2PCIEREADALIGNAXICTRL);
bar0->READROUNDTRIPMIN = ioread32(pcie->registers + SCSC_PCIE_READROUNDTRIPMIN);
bar0->READROUNDTRIPMAX = ioread32(pcie->registers + SCSC_PCIE_READROUNDTRIPMAX);
bar0->READROUNDTRIPLAST = ioread32(pcie->registers + SCSC_PCIE_READROUNDTRIPLAST);
bar0->CPTAW0 = ioread32(pcie->registers + SCSC_PCIE_CPTAW0);
bar0->CPTAW1 = ioread32(pcie->registers + SCSC_PCIE_CPTAW1);
bar0->CPTAR0 = ioread32(pcie->registers + SCSC_PCIE_CPTAR0);
bar0->CPTAR1 = ioread32(pcie->registers + SCSC_PCIE_CPTAR1);
bar0->CPTB0 = ioread32(pcie->registers + SCSC_PCIE_CPTB0);
bar0->CPTW0 = ioread32(pcie->registers + SCSC_PCIE_CPTW0);
bar0->CPTW1 = ioread32(pcie->registers + SCSC_PCIE_CPTW1);
bar0->CPTW2 = ioread32(pcie->registers + SCSC_PCIE_CPTW2);
bar0->CPTR0 = ioread32(pcie->registers + SCSC_PCIE_CPTR0);
bar0->CPTR1 = ioread32(pcie->registers + SCSC_PCIE_CPTR1);
bar0->CPTR2 = ioread32(pcie->registers + SCSC_PCIE_CPTR2);
bar0->CPTRES = ioread32(pcie->registers + SCSC_PCIE_CPTRES);
bar0->CPTAWDELAY = ioread32(pcie->registers + SCSC_PCIE_CPTAWDELAY);
bar0->CPTARDELAY = ioread32(pcie->registers + SCSC_PCIE_CPTARDELAY);
bar0->CPTSRTADDR = ioread32(pcie->registers + SCSC_PCIE_CPTSRTADDR);
bar0->CPTENDADDR = ioread32(pcie->registers + SCSC_PCIE_CPTENDADDR);
bar0->CPTSZLTHID = ioread32(pcie->registers + SCSC_PCIE_CPTSZLTHID);
bar0->CPTPHSEL = ioread32(pcie->registers + SCSC_PCIE_CPTPHSEL);
bar0->CPTRUN = ioread32(pcie->registers + SCSC_PCIE_CPTRUN);
bar0->FPGAVER = ioread32(pcie->registers + SCSC_PCIE_FPGAVER);
}