mirror of
				https://github.com/AetherDroid/android_kernel_samsung_on5xelte.git
				synced 2025-10-29 23:28:52 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			2172 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2172 lines
		
	
	
	
		
			49 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Performance events x86 architecture code
 | |
|  *
 | |
|  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
 | |
|  *  Copyright (C) 2009 Jaswinder Singh Rajput
 | |
|  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
 | |
|  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 | |
|  *  Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
 | |
|  *  Copyright (C) 2009 Google, Inc., Stephane Eranian
 | |
|  *
 | |
|  *  For licencing details see kernel-base/COPYING
 | |
|  */
 | |
| 
 | |
| #include <linux/perf_event.h>
 | |
| #include <linux/capability.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/device.h>
 | |
| 
 | |
| #include <asm/apic.h>
 | |
| #include <asm/stacktrace.h>
 | |
| #include <asm/nmi.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/alternative.h>
 | |
| #include <asm/timer.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/ldt.h>
 | |
| 
 | |
| #include "perf_event.h"
 | |
| 
 | |
| struct x86_pmu x86_pmu __read_mostly;
 | |
| 
 | |
| DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
 | |
| 	.enabled = 1,
 | |
| };
 | |
| 
 | |
| u64 __read_mostly hw_cache_event_ids
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 | |
| u64 __read_mostly hw_cache_extra_regs
 | |
| 				[PERF_COUNT_HW_CACHE_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_OP_MAX]
 | |
| 				[PERF_COUNT_HW_CACHE_RESULT_MAX];
 | |
| 
 | |
| /*
 | |
|  * Propagate event elapsed time into the generic event.
 | |
|  * Can only be executed on the CPU where the event is active.
 | |
|  * Returns the delta events processed.
 | |
|  */
 | |
| u64 x86_perf_event_update(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	int shift = 64 - x86_pmu.cntval_bits;
 | |
| 	u64 prev_raw_count, new_raw_count;
 | |
| 	int idx = hwc->idx;
 | |
| 	s64 delta;
 | |
| 
 | |
| 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Careful: an NMI might modify the previous event value.
 | |
| 	 *
 | |
| 	 * Our tactic to handle this is to first atomically read and
 | |
| 	 * exchange a new raw count - then add that new-prev delta
 | |
| 	 * count to the generic event atomically:
 | |
| 	 */
 | |
| again:
 | |
| 	prev_raw_count = local64_read(&hwc->prev_count);
 | |
| 	rdpmcl(hwc->event_base_rdpmc, new_raw_count);
 | |
| 
 | |
| 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
 | |
| 					new_raw_count) != prev_raw_count)
 | |
| 		goto again;
 | |
| 
 | |
| 	/*
 | |
| 	 * Now we have the new raw value and have updated the prev
 | |
| 	 * timestamp already. We can now calculate the elapsed delta
 | |
| 	 * (event-)time and add that to the generic event.
 | |
| 	 *
 | |
| 	 * Careful, not all hw sign-extends above the physical width
 | |
| 	 * of the count.
 | |
| 	 */
 | |
| 	delta = (new_raw_count << shift) - (prev_raw_count << shift);
 | |
| 	delta >>= shift;
 | |
| 
 | |
| 	local64_add(delta, &event->count);
 | |
| 	local64_sub(delta, &hwc->period_left);
 | |
| 
 | |
| 	return new_raw_count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find and validate any extra registers to set up.
 | |
|  */
 | |
| static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event_extra *reg;
 | |
| 	struct extra_reg *er;
 | |
| 
 | |
| 	reg = &event->hw.extra_reg;
 | |
| 
 | |
| 	if (!x86_pmu.extra_regs)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (er = x86_pmu.extra_regs; er->msr; er++) {
 | |
| 		if (er->event != (config & er->config_mask))
 | |
| 			continue;
 | |
| 		if (event->attr.config1 & ~er->valid_mask)
 | |
| 			return -EINVAL;
 | |
| 		/* Check if the extra msrs can be safely accessed*/
 | |
| 		if (!er->extra_msr_access)
 | |
| 			return -ENXIO;
 | |
| 
 | |
| 		reg->idx = er->idx;
 | |
| 		reg->config = event->attr.config1;
 | |
| 		reg->reg = er->msr;
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static atomic_t active_events;
 | |
| static DEFINE_MUTEX(pmc_reserve_mutex);
 | |
| 
 | |
| #ifdef CONFIG_X86_LOCAL_APIC
 | |
| 
 | |
| static bool reserve_pmc_hardware(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < x86_pmu.num_counters; i++) {
 | |
| 		if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
 | |
| 			goto perfctr_fail;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < x86_pmu.num_counters; i++) {
 | |
| 		if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
 | |
| 			goto eventsel_fail;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| eventsel_fail:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		release_evntsel_nmi(x86_pmu_config_addr(i));
 | |
| 
 | |
| 	i = x86_pmu.num_counters;
 | |
| 
 | |
| perfctr_fail:
 | |
| 	for (i--; i >= 0; i--)
 | |
| 		release_perfctr_nmi(x86_pmu_event_addr(i));
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void release_pmc_hardware(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < x86_pmu.num_counters; i++) {
 | |
| 		release_perfctr_nmi(x86_pmu_event_addr(i));
 | |
| 		release_evntsel_nmi(x86_pmu_config_addr(i));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| static bool reserve_pmc_hardware(void) { return true; }
 | |
| static void release_pmc_hardware(void) {}
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static bool check_hw_exists(void)
 | |
| {
 | |
| 	u64 val, val_fail, val_new= ~0;
 | |
| 	int i, reg, reg_fail, ret = 0;
 | |
| 	int bios_fail = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Check to see if the BIOS enabled any of the counters, if so
 | |
| 	 * complain and bail.
 | |
| 	 */
 | |
| 	for (i = 0; i < x86_pmu.num_counters; i++) {
 | |
| 		reg = x86_pmu_config_addr(i);
 | |
| 		ret = rdmsrl_safe(reg, &val);
 | |
| 		if (ret)
 | |
| 			goto msr_fail;
 | |
| 		if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
 | |
| 			bios_fail = 1;
 | |
| 			val_fail = val;
 | |
| 			reg_fail = reg;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (x86_pmu.num_counters_fixed) {
 | |
| 		reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 | |
| 		ret = rdmsrl_safe(reg, &val);
 | |
| 		if (ret)
 | |
| 			goto msr_fail;
 | |
| 		for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
 | |
| 			if (val & (0x03 << i*4)) {
 | |
| 				bios_fail = 1;
 | |
| 				val_fail = val;
 | |
| 				reg_fail = reg;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the current value, change it and read it back to see if it
 | |
| 	 * matches, this is needed to detect certain hardware emulators
 | |
| 	 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
 | |
| 	 */
 | |
| 	reg = x86_pmu_event_addr(0);
 | |
| 	if (rdmsrl_safe(reg, &val))
 | |
| 		goto msr_fail;
 | |
| 	val ^= 0xffffUL;
 | |
| 	ret = wrmsrl_safe(reg, val);
 | |
| 	ret |= rdmsrl_safe(reg, &val_new);
 | |
| 	if (ret || val != val_new)
 | |
| 		goto msr_fail;
 | |
| 
 | |
| 	/*
 | |
| 	 * We still allow the PMU driver to operate:
 | |
| 	 */
 | |
| 	if (bios_fail) {
 | |
| 		printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
 | |
| 		printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg_fail, val_fail);
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| 
 | |
| msr_fail:
 | |
| 	printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
 | |
| 	printk("%sFailed to access perfctr msr (MSR %x is %Lx)\n",
 | |
| 		boot_cpu_has(X86_FEATURE_HYPERVISOR) ? KERN_INFO : KERN_ERR,
 | |
| 		reg, val_new);
 | |
| 
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static void hw_perf_event_destroy(struct perf_event *event)
 | |
| {
 | |
| 	if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
 | |
| 		release_pmc_hardware();
 | |
| 		release_ds_buffers();
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int x86_pmu_initialized(void)
 | |
| {
 | |
| 	return x86_pmu.handle_irq != NULL;
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 	unsigned int cache_type, cache_op, cache_result;
 | |
| 	u64 config, val;
 | |
| 
 | |
| 	config = attr->config;
 | |
| 
 | |
| 	cache_type = (config >>  0) & 0xff;
 | |
| 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache_op = (config >>  8) & 0xff;
 | |
| 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	cache_result = (config >> 16) & 0xff;
 | |
| 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	val = hw_cache_event_ids[cache_type][cache_op][cache_result];
 | |
| 
 | |
| 	if (val == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (val == -1)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	hwc->config |= val;
 | |
| 	attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
 | |
| 	return x86_pmu_extra_regs(val, event);
 | |
| }
 | |
| 
 | |
| int x86_setup_perfctr(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event_attr *attr = &event->attr;
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	u64 config;
 | |
| 
 | |
| 	if (!is_sampling_event(event)) {
 | |
| 		hwc->sample_period = x86_pmu.max_period;
 | |
| 		hwc->last_period = hwc->sample_period;
 | |
| 		local64_set(&hwc->period_left, hwc->sample_period);
 | |
| 	}
 | |
| 
 | |
| 	if (attr->type == PERF_TYPE_RAW)
 | |
| 		return x86_pmu_extra_regs(event->attr.config, event);
 | |
| 
 | |
| 	if (attr->type == PERF_TYPE_HW_CACHE)
 | |
| 		return set_ext_hw_attr(hwc, event);
 | |
| 
 | |
| 	if (attr->config >= x86_pmu.max_events)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * The generic map:
 | |
| 	 */
 | |
| 	config = x86_pmu.event_map(attr->config);
 | |
| 
 | |
| 	if (config == 0)
 | |
| 		return -ENOENT;
 | |
| 
 | |
| 	if (config == -1LL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	/*
 | |
| 	 * Branch tracing:
 | |
| 	 */
 | |
| 	if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
 | |
| 	    !attr->freq && hwc->sample_period == 1) {
 | |
| 		/* BTS is not supported by this architecture. */
 | |
| 		if (!x86_pmu.bts_active)
 | |
| 			return -EOPNOTSUPP;
 | |
| 
 | |
| 		/* BTS is currently only allowed for user-mode. */
 | |
| 		if (!attr->exclude_kernel)
 | |
| 			return -EOPNOTSUPP;
 | |
| 	}
 | |
| 
 | |
| 	hwc->config |= config;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * check that branch_sample_type is compatible with
 | |
|  * settings needed for precise_ip > 1 which implies
 | |
|  * using the LBR to capture ALL taken branches at the
 | |
|  * priv levels of the measurement
 | |
|  */
 | |
| static inline int precise_br_compat(struct perf_event *event)
 | |
| {
 | |
| 	u64 m = event->attr.branch_sample_type;
 | |
| 	u64 b = 0;
 | |
| 
 | |
| 	/* must capture all branches */
 | |
| 	if (!(m & PERF_SAMPLE_BRANCH_ANY))
 | |
| 		return 0;
 | |
| 
 | |
| 	m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
 | |
| 
 | |
| 	if (!event->attr.exclude_user)
 | |
| 		b |= PERF_SAMPLE_BRANCH_USER;
 | |
| 
 | |
| 	if (!event->attr.exclude_kernel)
 | |
| 		b |= PERF_SAMPLE_BRANCH_KERNEL;
 | |
| 
 | |
| 	/*
 | |
| 	 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
 | |
| 	 */
 | |
| 
 | |
| 	return m == b;
 | |
| }
 | |
| 
 | |
| int x86_pmu_hw_config(struct perf_event *event)
 | |
| {
 | |
| 	if (event->attr.precise_ip) {
 | |
| 		int precise = 0;
 | |
| 
 | |
| 		/* Support for constant skid */
 | |
| 		if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
 | |
| 			precise++;
 | |
| 
 | |
| 			/* Support for IP fixup */
 | |
| 			if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
 | |
| 				precise++;
 | |
| 		}
 | |
| 
 | |
| 		if (event->attr.precise_ip > precise)
 | |
| 			return -EOPNOTSUPP;
 | |
| 		/*
 | |
| 		 * check that PEBS LBR correction does not conflict with
 | |
| 		 * whatever the user is asking with attr->branch_sample_type
 | |
| 		 */
 | |
| 		if (event->attr.precise_ip > 1 &&
 | |
| 		    x86_pmu.intel_cap.pebs_format < 2) {
 | |
| 			u64 *br_type = &event->attr.branch_sample_type;
 | |
| 
 | |
| 			if (has_branch_stack(event)) {
 | |
| 				if (!precise_br_compat(event))
 | |
| 					return -EOPNOTSUPP;
 | |
| 
 | |
| 				/* branch_sample_type is compatible */
 | |
| 
 | |
| 			} else {
 | |
| 				/*
 | |
| 				 * user did not specify  branch_sample_type
 | |
| 				 *
 | |
| 				 * For PEBS fixups, we capture all
 | |
| 				 * the branches at the priv level of the
 | |
| 				 * event.
 | |
| 				 */
 | |
| 				*br_type = PERF_SAMPLE_BRANCH_ANY;
 | |
| 
 | |
| 				if (!event->attr.exclude_user)
 | |
| 					*br_type |= PERF_SAMPLE_BRANCH_USER;
 | |
| 
 | |
| 				if (!event->attr.exclude_kernel)
 | |
| 					*br_type |= PERF_SAMPLE_BRANCH_KERNEL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Generate PMC IRQs:
 | |
| 	 * (keep 'enabled' bit clear for now)
 | |
| 	 */
 | |
| 	event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
 | |
| 
 | |
| 	/*
 | |
| 	 * Count user and OS events unless requested not to
 | |
| 	 */
 | |
| 	if (!event->attr.exclude_user)
 | |
| 		event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
 | |
| 	if (!event->attr.exclude_kernel)
 | |
| 		event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
 | |
| 
 | |
| 	if (event->attr.type == PERF_TYPE_RAW)
 | |
| 		event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
 | |
| 
 | |
| 	return x86_setup_perfctr(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Setup the hardware configuration for a given attr_type
 | |
|  */
 | |
| static int __x86_pmu_event_init(struct perf_event *event)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!x86_pmu_initialized())
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	err = 0;
 | |
| 	if (!atomic_inc_not_zero(&active_events)) {
 | |
| 		mutex_lock(&pmc_reserve_mutex);
 | |
| 		if (atomic_read(&active_events) == 0) {
 | |
| 			if (!reserve_pmc_hardware())
 | |
| 				err = -EBUSY;
 | |
| 			else
 | |
| 				reserve_ds_buffers();
 | |
| 		}
 | |
| 		if (!err)
 | |
| 			atomic_inc(&active_events);
 | |
| 		mutex_unlock(&pmc_reserve_mutex);
 | |
| 	}
 | |
| 	if (err)
 | |
| 		return err;
 | |
| 
 | |
| 	event->destroy = hw_perf_event_destroy;
 | |
| 
 | |
| 	event->hw.idx = -1;
 | |
| 	event->hw.last_cpu = -1;
 | |
| 	event->hw.last_tag = ~0ULL;
 | |
| 
 | |
| 	/* mark unused */
 | |
| 	event->hw.extra_reg.idx = EXTRA_REG_NONE;
 | |
| 	event->hw.branch_reg.idx = EXTRA_REG_NONE;
 | |
| 
 | |
| 	return x86_pmu.hw_config(event);
 | |
| }
 | |
| 
 | |
| void x86_pmu_disable_all(void)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 | |
| 		u64 val;
 | |
| 
 | |
| 		if (!test_bit(idx, cpuc->active_mask))
 | |
| 			continue;
 | |
| 		rdmsrl(x86_pmu_config_addr(idx), val);
 | |
| 		if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
 | |
| 			continue;
 | |
| 		val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
 | |
| 		wrmsrl(x86_pmu_config_addr(idx), val);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void x86_pmu_disable(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	if (!x86_pmu_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	if (!cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	cpuc->n_added = 0;
 | |
| 	cpuc->enabled = 0;
 | |
| 	barrier();
 | |
| 
 | |
| 	x86_pmu.disable_all();
 | |
| }
 | |
| 
 | |
| void x86_pmu_enable_all(int added)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int idx;
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 | |
| 		struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
 | |
| 
 | |
| 		if (!test_bit(idx, cpuc->active_mask))
 | |
| 			continue;
 | |
| 
 | |
| 		__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct pmu pmu;
 | |
| 
 | |
| static inline int is_x86_event(struct perf_event *event)
 | |
| {
 | |
| 	return event->pmu == &pmu;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Event scheduler state:
 | |
|  *
 | |
|  * Assign events iterating over all events and counters, beginning
 | |
|  * with events with least weights first. Keep the current iterator
 | |
|  * state in struct sched_state.
 | |
|  */
 | |
| struct sched_state {
 | |
| 	int	weight;
 | |
| 	int	event;		/* event index */
 | |
| 	int	counter;	/* counter index */
 | |
| 	int	unassigned;	/* number of events to be assigned left */
 | |
| 	unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 | |
| };
 | |
| 
 | |
| /* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
 | |
| #define	SCHED_STATES_MAX	2
 | |
| 
 | |
| struct perf_sched {
 | |
| 	int			max_weight;
 | |
| 	int			max_events;
 | |
| 	struct perf_event	**events;
 | |
| 	struct sched_state	state;
 | |
| 	int			saved_states;
 | |
| 	struct sched_state	saved[SCHED_STATES_MAX];
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Initialize interator that runs through all events and counters.
 | |
|  */
 | |
| static void perf_sched_init(struct perf_sched *sched, struct perf_event **events,
 | |
| 			    int num, int wmin, int wmax)
 | |
| {
 | |
| 	int idx;
 | |
| 
 | |
| 	memset(sched, 0, sizeof(*sched));
 | |
| 	sched->max_events	= num;
 | |
| 	sched->max_weight	= wmax;
 | |
| 	sched->events		= events;
 | |
| 
 | |
| 	for (idx = 0; idx < num; idx++) {
 | |
| 		if (events[idx]->hw.constraint->weight == wmin)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	sched->state.event	= idx;		/* start with min weight */
 | |
| 	sched->state.weight	= wmin;
 | |
| 	sched->state.unassigned	= num;
 | |
| }
 | |
| 
 | |
| static void perf_sched_save_state(struct perf_sched *sched)
 | |
| {
 | |
| 	if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
 | |
| 		return;
 | |
| 
 | |
| 	sched->saved[sched->saved_states] = sched->state;
 | |
| 	sched->saved_states++;
 | |
| }
 | |
| 
 | |
| static bool perf_sched_restore_state(struct perf_sched *sched)
 | |
| {
 | |
| 	if (!sched->saved_states)
 | |
| 		return false;
 | |
| 
 | |
| 	sched->saved_states--;
 | |
| 	sched->state = sched->saved[sched->saved_states];
 | |
| 
 | |
| 	/* continue with next counter: */
 | |
| 	clear_bit(sched->state.counter++, sched->state.used);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Select a counter for the current event to schedule. Return true on
 | |
|  * success.
 | |
|  */
 | |
| static bool __perf_sched_find_counter(struct perf_sched *sched)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 	int idx;
 | |
| 
 | |
| 	if (!sched->state.unassigned)
 | |
| 		return false;
 | |
| 
 | |
| 	if (sched->state.event >= sched->max_events)
 | |
| 		return false;
 | |
| 
 | |
| 	c = sched->events[sched->state.event]->hw.constraint;
 | |
| 	/* Prefer fixed purpose counters */
 | |
| 	if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
 | |
| 		idx = INTEL_PMC_IDX_FIXED;
 | |
| 		for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
 | |
| 			if (!__test_and_set_bit(idx, sched->state.used))
 | |
| 				goto done;
 | |
| 		}
 | |
| 	}
 | |
| 	/* Grab the first unused counter starting with idx */
 | |
| 	idx = sched->state.counter;
 | |
| 	for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
 | |
| 		if (!__test_and_set_bit(idx, sched->state.used))
 | |
| 			goto done;
 | |
| 	}
 | |
| 
 | |
| 	return false;
 | |
| 
 | |
| done:
 | |
| 	sched->state.counter = idx;
 | |
| 
 | |
| 	if (c->overlap)
 | |
| 		perf_sched_save_state(sched);
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static bool perf_sched_find_counter(struct perf_sched *sched)
 | |
| {
 | |
| 	while (!__perf_sched_find_counter(sched)) {
 | |
| 		if (!perf_sched_restore_state(sched))
 | |
| 			return false;
 | |
| 	}
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Go through all unassigned events and find the next one to schedule.
 | |
|  * Take events with the least weight first. Return true on success.
 | |
|  */
 | |
| static bool perf_sched_next_event(struct perf_sched *sched)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 
 | |
| 	if (!sched->state.unassigned || !--sched->state.unassigned)
 | |
| 		return false;
 | |
| 
 | |
| 	do {
 | |
| 		/* next event */
 | |
| 		sched->state.event++;
 | |
| 		if (sched->state.event >= sched->max_events) {
 | |
| 			/* next weight */
 | |
| 			sched->state.event = 0;
 | |
| 			sched->state.weight++;
 | |
| 			if (sched->state.weight > sched->max_weight)
 | |
| 				return false;
 | |
| 		}
 | |
| 		c = sched->events[sched->state.event]->hw.constraint;
 | |
| 	} while (c->weight != sched->state.weight);
 | |
| 
 | |
| 	sched->state.counter = 0;	/* start with first counter */
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Assign a counter for each event.
 | |
|  */
 | |
| int perf_assign_events(struct perf_event **events, int n,
 | |
| 			int wmin, int wmax, int *assign)
 | |
| {
 | |
| 	struct perf_sched sched;
 | |
| 
 | |
| 	perf_sched_init(&sched, events, n, wmin, wmax);
 | |
| 
 | |
| 	do {
 | |
| 		if (!perf_sched_find_counter(&sched))
 | |
| 			break;	/* failed */
 | |
| 		if (assign)
 | |
| 			assign[sched.state.event] = sched.state.counter;
 | |
| 	} while (perf_sched_next_event(&sched));
 | |
| 
 | |
| 	return sched.state.unassigned;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_assign_events);
 | |
| 
 | |
| int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
 | |
| {
 | |
| 	struct event_constraint *c;
 | |
| 	unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
 | |
| 	struct perf_event *e;
 | |
| 	int i, wmin, wmax, num = 0;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 
 | |
| 	bitmap_zero(used_mask, X86_PMC_IDX_MAX);
 | |
| 
 | |
| 	for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
 | |
| 		hwc = &cpuc->event_list[i]->hw;
 | |
| 		c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
 | |
| 		hwc->constraint = c;
 | |
| 
 | |
| 		wmin = min(wmin, c->weight);
 | |
| 		wmax = max(wmax, c->weight);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * fastpath, try to reuse previous register
 | |
| 	 */
 | |
| 	for (i = 0; i < n; i++) {
 | |
| 		hwc = &cpuc->event_list[i]->hw;
 | |
| 		c = hwc->constraint;
 | |
| 
 | |
| 		/* never assigned */
 | |
| 		if (hwc->idx == -1)
 | |
| 			break;
 | |
| 
 | |
| 		/* constraint still honored */
 | |
| 		if (!test_bit(hwc->idx, c->idxmsk))
 | |
| 			break;
 | |
| 
 | |
| 		/* not already used */
 | |
| 		if (test_bit(hwc->idx, used_mask))
 | |
| 			break;
 | |
| 
 | |
| 		__set_bit(hwc->idx, used_mask);
 | |
| 		if (assign)
 | |
| 			assign[i] = hwc->idx;
 | |
| 	}
 | |
| 
 | |
| 	/* slow path */
 | |
| 	if (i != n)
 | |
| 		num = perf_assign_events(cpuc->event_list, n, wmin,
 | |
| 					 wmax, assign);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mark the event as committed, so we do not put_constraint()
 | |
| 	 * in case new events are added and fail scheduling.
 | |
| 	 */
 | |
| 	if (!num && assign) {
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			e = cpuc->event_list[i];
 | |
| 			e->hw.flags |= PERF_X86_EVENT_COMMITTED;
 | |
| 		}
 | |
| 	}
 | |
| 	/*
 | |
| 	 * scheduling failed or is just a simulation,
 | |
| 	 * free resources if necessary
 | |
| 	 */
 | |
| 	if (!assign || num) {
 | |
| 		for (i = 0; i < n; i++) {
 | |
| 			e = cpuc->event_list[i];
 | |
| 			/*
 | |
| 			 * do not put_constraint() on comitted events,
 | |
| 			 * because they are good to go
 | |
| 			 */
 | |
| 			if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
 | |
| 				continue;
 | |
| 
 | |
| 			if (x86_pmu.put_event_constraints)
 | |
| 				x86_pmu.put_event_constraints(cpuc, e);
 | |
| 		}
 | |
| 	}
 | |
| 	return num ? -EINVAL : 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dogrp: true if must collect siblings events (group)
 | |
|  * returns total number of events and error code
 | |
|  */
 | |
| static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
 | |
| {
 | |
| 	struct perf_event *event;
 | |
| 	int n, max_count;
 | |
| 
 | |
| 	max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
 | |
| 
 | |
| 	/* current number of events already accepted */
 | |
| 	n = cpuc->n_events;
 | |
| 
 | |
| 	if (is_x86_event(leader)) {
 | |
| 		if (n >= max_count)
 | |
| 			return -EINVAL;
 | |
| 		cpuc->event_list[n] = leader;
 | |
| 		n++;
 | |
| 	}
 | |
| 	if (!dogrp)
 | |
| 		return n;
 | |
| 
 | |
| 	list_for_each_entry(event, &leader->sibling_list, group_entry) {
 | |
| 		if (!is_x86_event(event) ||
 | |
| 		    event->state <= PERF_EVENT_STATE_OFF)
 | |
| 			continue;
 | |
| 
 | |
| 		if (n >= max_count)
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		cpuc->event_list[n] = event;
 | |
| 		n++;
 | |
| 	}
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static inline void x86_assign_hw_event(struct perf_event *event,
 | |
| 				struct cpu_hw_events *cpuc, int i)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	hwc->idx = cpuc->assign[i];
 | |
| 	hwc->last_cpu = smp_processor_id();
 | |
| 	hwc->last_tag = ++cpuc->tags[i];
 | |
| 
 | |
| 	if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
 | |
| 		hwc->config_base = 0;
 | |
| 		hwc->event_base	= 0;
 | |
| 	} else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
 | |
| 		hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
 | |
| 		hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
 | |
| 		hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
 | |
| 	} else {
 | |
| 		hwc->config_base = x86_pmu_config_addr(hwc->idx);
 | |
| 		hwc->event_base  = x86_pmu_event_addr(hwc->idx);
 | |
| 		hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int match_prev_assignment(struct hw_perf_event *hwc,
 | |
| 					struct cpu_hw_events *cpuc,
 | |
| 					int i)
 | |
| {
 | |
| 	return hwc->idx == cpuc->assign[i] &&
 | |
| 		hwc->last_cpu == smp_processor_id() &&
 | |
| 		hwc->last_tag == cpuc->tags[i];
 | |
| }
 | |
| 
 | |
| static void x86_pmu_start(struct perf_event *event, int flags);
 | |
| 
 | |
| static void x86_pmu_enable(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct perf_event *event;
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	int i, added = cpuc->n_added;
 | |
| 
 | |
| 	if (!x86_pmu_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	if (cpuc->enabled)
 | |
| 		return;
 | |
| 
 | |
| 	if (cpuc->n_added) {
 | |
| 		int n_running = cpuc->n_events - cpuc->n_added;
 | |
| 		/*
 | |
| 		 * apply assignment obtained either from
 | |
| 		 * hw_perf_group_sched_in() or x86_pmu_enable()
 | |
| 		 *
 | |
| 		 * step1: save events moving to new counters
 | |
| 		 */
 | |
| 		for (i = 0; i < n_running; i++) {
 | |
| 			event = cpuc->event_list[i];
 | |
| 			hwc = &event->hw;
 | |
| 
 | |
| 			/*
 | |
| 			 * we can avoid reprogramming counter if:
 | |
| 			 * - assigned same counter as last time
 | |
| 			 * - running on same CPU as last time
 | |
| 			 * - no other event has used the counter since
 | |
| 			 */
 | |
| 			if (hwc->idx == -1 ||
 | |
| 			    match_prev_assignment(hwc, cpuc, i))
 | |
| 				continue;
 | |
| 
 | |
| 			/*
 | |
| 			 * Ensure we don't accidentally enable a stopped
 | |
| 			 * counter simply because we rescheduled.
 | |
| 			 */
 | |
| 			if (hwc->state & PERF_HES_STOPPED)
 | |
| 				hwc->state |= PERF_HES_ARCH;
 | |
| 
 | |
| 			x86_pmu_stop(event, PERF_EF_UPDATE);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * step2: reprogram moved events into new counters
 | |
| 		 */
 | |
| 		for (i = 0; i < cpuc->n_events; i++) {
 | |
| 			event = cpuc->event_list[i];
 | |
| 			hwc = &event->hw;
 | |
| 
 | |
| 			if (!match_prev_assignment(hwc, cpuc, i))
 | |
| 				x86_assign_hw_event(event, cpuc, i);
 | |
| 			else if (i < n_running)
 | |
| 				continue;
 | |
| 
 | |
| 			if (hwc->state & PERF_HES_ARCH)
 | |
| 				continue;
 | |
| 
 | |
| 			x86_pmu_start(event, PERF_EF_RELOAD);
 | |
| 		}
 | |
| 		cpuc->n_added = 0;
 | |
| 		perf_events_lapic_init();
 | |
| 	}
 | |
| 
 | |
| 	cpuc->enabled = 1;
 | |
| 	barrier();
 | |
| 
 | |
| 	x86_pmu.enable_all(added);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
 | |
| 
 | |
| /*
 | |
|  * Set the next IRQ period, based on the hwc->period_left value.
 | |
|  * To be called with the event disabled in hw:
 | |
|  */
 | |
| int x86_perf_event_set_period(struct perf_event *event)
 | |
| {
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 	s64 left = local64_read(&hwc->period_left);
 | |
| 	s64 period = hwc->sample_period;
 | |
| 	int ret = 0, idx = hwc->idx;
 | |
| 
 | |
| 	if (idx == INTEL_PMC_IDX_FIXED_BTS)
 | |
| 		return 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we are way outside a reasonable range then just skip forward:
 | |
| 	 */
 | |
| 	if (unlikely(left <= -period)) {
 | |
| 		left = period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(left <= 0)) {
 | |
| 		left += period;
 | |
| 		local64_set(&hwc->period_left, left);
 | |
| 		hwc->last_period = period;
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
 | |
| 	 */
 | |
| 	if (unlikely(left < 2))
 | |
| 		left = 2;
 | |
| 
 | |
| 	if (left > x86_pmu.max_period)
 | |
| 		left = x86_pmu.max_period;
 | |
| 
 | |
| 	per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
 | |
| 
 | |
| 	/*
 | |
| 	 * The hw event starts counting from this event offset,
 | |
| 	 * mark it to be able to extra future deltas:
 | |
| 	 */
 | |
| 	local64_set(&hwc->prev_count, (u64)-left);
 | |
| 
 | |
| 	wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Due to erratum on certan cpu we need
 | |
| 	 * a second write to be sure the register
 | |
| 	 * is updated properly
 | |
| 	 */
 | |
| 	if (x86_pmu.perfctr_second_write) {
 | |
| 		wrmsrl(hwc->event_base,
 | |
| 			(u64)(-left) & x86_pmu.cntval_mask);
 | |
| 	}
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| void x86_pmu_enable_event(struct perf_event *event)
 | |
| {
 | |
| 	if (__this_cpu_read(cpu_hw_events.enabled))
 | |
| 		__x86_pmu_enable_event(&event->hw,
 | |
| 				       ARCH_PERFMON_EVENTSEL_ENABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Add a single event to the PMU.
 | |
|  *
 | |
|  * The event is added to the group of enabled events
 | |
|  * but only if it can be scehduled with existing events.
 | |
|  */
 | |
| static int x86_pmu_add(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct hw_perf_event *hwc;
 | |
| 	int assign[X86_PMC_IDX_MAX];
 | |
| 	int n, n0, ret;
 | |
| 
 | |
| 	hwc = &event->hw;
 | |
| 
 | |
| 	perf_pmu_disable(event->pmu);
 | |
| 	n0 = cpuc->n_events;
 | |
| 	ret = n = collect_events(cpuc, event, false);
 | |
| 	if (ret < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
 | |
| 	if (!(flags & PERF_EF_START))
 | |
| 		hwc->state |= PERF_HES_ARCH;
 | |
| 
 | |
| 	/*
 | |
| 	 * If group events scheduling transaction was started,
 | |
| 	 * skip the schedulability test here, it will be performed
 | |
| 	 * at commit time (->commit_txn) as a whole.
 | |
| 	 */
 | |
| 	if (cpuc->group_flag & PERF_EVENT_TXN)
 | |
| 		goto done_collect;
 | |
| 
 | |
| 	ret = x86_pmu.schedule_events(cpuc, n, assign);
 | |
| 	if (ret)
 | |
| 		goto out;
 | |
| 	/*
 | |
| 	 * copy new assignment, now we know it is possible
 | |
| 	 * will be used by hw_perf_enable()
 | |
| 	 */
 | |
| 	memcpy(cpuc->assign, assign, n*sizeof(int));
 | |
| 
 | |
| done_collect:
 | |
| 	/*
 | |
| 	 * Commit the collect_events() state. See x86_pmu_del() and
 | |
| 	 * x86_pmu_*_txn().
 | |
| 	 */
 | |
| 	cpuc->n_events = n;
 | |
| 	cpuc->n_added += n - n0;
 | |
| 	cpuc->n_txn += n - n0;
 | |
| 
 | |
| 	ret = 0;
 | |
| out:
 | |
| 	perf_pmu_enable(event->pmu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void x86_pmu_start(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int idx = event->hw.idx;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
 | |
| 		return;
 | |
| 
 | |
| 	if (WARN_ON_ONCE(idx == -1))
 | |
| 		return;
 | |
| 
 | |
| 	if (flags & PERF_EF_RELOAD) {
 | |
| 		WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
 | |
| 		x86_perf_event_set_period(event);
 | |
| 	}
 | |
| 
 | |
| 	event->hw.state = 0;
 | |
| 
 | |
| 	cpuc->events[idx] = event;
 | |
| 	__set_bit(idx, cpuc->active_mask);
 | |
| 	__set_bit(idx, cpuc->running);
 | |
| 	x86_pmu.enable(event);
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| void perf_event_print_debug(void)
 | |
| {
 | |
| 	u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
 | |
| 	u64 pebs;
 | |
| 	struct cpu_hw_events *cpuc;
 | |
| 	unsigned long flags;
 | |
| 	int cpu, idx;
 | |
| 
 | |
| 	if (!x86_pmu.num_counters)
 | |
| 		return;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	cpu = smp_processor_id();
 | |
| 	cpuc = &per_cpu(cpu_hw_events, cpu);
 | |
| 
 | |
| 	if (x86_pmu.version >= 2) {
 | |
| 		rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
 | |
| 		rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
 | |
| 		rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
 | |
| 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
 | |
| 		rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
 | |
| 
 | |
| 		pr_info("\n");
 | |
| 		pr_info("CPU#%d: ctrl:       %016llx\n", cpu, ctrl);
 | |
| 		pr_info("CPU#%d: status:     %016llx\n", cpu, status);
 | |
| 		pr_info("CPU#%d: overflow:   %016llx\n", cpu, overflow);
 | |
| 		pr_info("CPU#%d: fixed:      %016llx\n", cpu, fixed);
 | |
| 		pr_info("CPU#%d: pebs:       %016llx\n", cpu, pebs);
 | |
| 	}
 | |
| 	pr_info("CPU#%d: active:     %016llx\n", cpu, *(u64 *)cpuc->active_mask);
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 | |
| 		rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
 | |
| 		rdmsrl(x86_pmu_event_addr(idx), pmc_count);
 | |
| 
 | |
| 		prev_left = per_cpu(pmc_prev_left[idx], cpu);
 | |
| 
 | |
| 		pr_info("CPU#%d:   gen-PMC%d ctrl:  %016llx\n",
 | |
| 			cpu, idx, pmc_ctrl);
 | |
| 		pr_info("CPU#%d:   gen-PMC%d count: %016llx\n",
 | |
| 			cpu, idx, pmc_count);
 | |
| 		pr_info("CPU#%d:   gen-PMC%d left:  %016llx\n",
 | |
| 			cpu, idx, prev_left);
 | |
| 	}
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
 | |
| 		rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
 | |
| 
 | |
| 		pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
 | |
| 			cpu, idx, pmc_count);
 | |
| 	}
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| void x86_pmu_stop(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	struct hw_perf_event *hwc = &event->hw;
 | |
| 
 | |
| 	if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
 | |
| 		x86_pmu.disable(event);
 | |
| 		cpuc->events[hwc->idx] = NULL;
 | |
| 		WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
 | |
| 		hwc->state |= PERF_HES_STOPPED;
 | |
| 	}
 | |
| 
 | |
| 	if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
 | |
| 		/*
 | |
| 		 * Drain the remaining delta count out of a event
 | |
| 		 * that we are disabling:
 | |
| 		 */
 | |
| 		x86_perf_event_update(event);
 | |
| 		hwc->state |= PERF_HES_UPTODATE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void x86_pmu_del(struct perf_event *event, int flags)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * event is descheduled
 | |
| 	 */
 | |
| 	event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
 | |
| 
 | |
| 	/*
 | |
| 	 * If we're called during a txn, we don't need to do anything.
 | |
| 	 * The events never got scheduled and ->cancel_txn will truncate
 | |
| 	 * the event_list.
 | |
| 	 *
 | |
| 	 * XXX assumes any ->del() called during a TXN will only be on
 | |
| 	 * an event added during that same TXN.
 | |
| 	 */
 | |
| 	if (cpuc->group_flag & PERF_EVENT_TXN)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Not a TXN, therefore cleanup properly.
 | |
| 	 */
 | |
| 	x86_pmu_stop(event, PERF_EF_UPDATE);
 | |
| 
 | |
| 	for (i = 0; i < cpuc->n_events; i++) {
 | |
| 		if (event == cpuc->event_list[i])
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
 | |
| 		return;
 | |
| 
 | |
| 	/* If we have a newly added event; make sure to decrease n_added. */
 | |
| 	if (i >= cpuc->n_events - cpuc->n_added)
 | |
| 		--cpuc->n_added;
 | |
| 
 | |
| 	if (x86_pmu.put_event_constraints)
 | |
| 		x86_pmu.put_event_constraints(cpuc, event);
 | |
| 
 | |
| 	/* Delete the array entry. */
 | |
| 	while (++i < cpuc->n_events)
 | |
| 		cpuc->event_list[i-1] = cpuc->event_list[i];
 | |
| 	--cpuc->n_events;
 | |
| 
 | |
| 	perf_event_update_userpage(event);
 | |
| }
 | |
| 
 | |
| int x86_pmu_handle_irq(struct pt_regs *regs)
 | |
| {
 | |
| 	struct perf_sample_data data;
 | |
| 	struct cpu_hw_events *cpuc;
 | |
| 	struct perf_event *event;
 | |
| 	int idx, handled = 0;
 | |
| 	u64 val;
 | |
| 
 | |
| 	cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 
 | |
| 	/*
 | |
| 	 * Some chipsets need to unmask the LVTPC in a particular spot
 | |
| 	 * inside the nmi handler.  As a result, the unmasking was pushed
 | |
| 	 * into all the nmi handlers.
 | |
| 	 *
 | |
| 	 * This generic handler doesn't seem to have any issues where the
 | |
| 	 * unmasking occurs so it was left at the top.
 | |
| 	 */
 | |
| 	apic_write(APIC_LVTPC, APIC_DM_NMI);
 | |
| 
 | |
| 	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
 | |
| 		if (!test_bit(idx, cpuc->active_mask)) {
 | |
| 			/*
 | |
| 			 * Though we deactivated the counter some cpus
 | |
| 			 * might still deliver spurious interrupts still
 | |
| 			 * in flight. Catch them:
 | |
| 			 */
 | |
| 			if (__test_and_clear_bit(idx, cpuc->running))
 | |
| 				handled++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		event = cpuc->events[idx];
 | |
| 
 | |
| 		val = x86_perf_event_update(event);
 | |
| 		if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
 | |
| 			continue;
 | |
| 
 | |
| 		/*
 | |
| 		 * event overflow
 | |
| 		 */
 | |
| 		handled++;
 | |
| 		perf_sample_data_init(&data, 0, event->hw.last_period);
 | |
| 
 | |
| 		if (!x86_perf_event_set_period(event))
 | |
| 			continue;
 | |
| 
 | |
| 		if (perf_event_overflow(event, &data, regs))
 | |
| 			x86_pmu_stop(event, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (handled)
 | |
| 		inc_irq_stat(apic_perf_irqs);
 | |
| 
 | |
| 	return handled;
 | |
| }
 | |
| 
 | |
| void perf_events_lapic_init(void)
 | |
| {
 | |
| 	if (!x86_pmu.apic || !x86_pmu_initialized())
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Always use NMI for PMU
 | |
| 	 */
 | |
| 	apic_write(APIC_LVTPC, APIC_DM_NMI);
 | |
| }
 | |
| 
 | |
| static int
 | |
| perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
 | |
| {
 | |
| 	u64 start_clock;
 | |
| 	u64 finish_clock;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!atomic_read(&active_events))
 | |
| 		return NMI_DONE;
 | |
| 
 | |
| 	start_clock = sched_clock();
 | |
| 	ret = x86_pmu.handle_irq(regs);
 | |
| 	finish_clock = sched_clock();
 | |
| 
 | |
| 	perf_sample_event_took(finish_clock - start_clock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| NOKPROBE_SYMBOL(perf_event_nmi_handler);
 | |
| 
 | |
| struct event_constraint emptyconstraint;
 | |
| struct event_constraint unconstrained;
 | |
| 
 | |
| static int
 | |
| x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
 | |
| {
 | |
| 	unsigned int cpu = (long)hcpu;
 | |
| 	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
 | |
| 	int ret = NOTIFY_OK;
 | |
| 
 | |
| 	switch (action & ~CPU_TASKS_FROZEN) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 		cpuc->kfree_on_online = NULL;
 | |
| 		if (x86_pmu.cpu_prepare)
 | |
| 			ret = x86_pmu.cpu_prepare(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_STARTING:
 | |
| 		if (x86_pmu.attr_rdpmc)
 | |
| 			set_in_cr4(X86_CR4_PCE);
 | |
| 		if (x86_pmu.cpu_starting)
 | |
| 			x86_pmu.cpu_starting(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_ONLINE:
 | |
| 		kfree(cpuc->kfree_on_online);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_DYING:
 | |
| 		if (x86_pmu.cpu_dying)
 | |
| 			x86_pmu.cpu_dying(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_DEAD:
 | |
| 		if (x86_pmu.cpu_dead)
 | |
| 			x86_pmu.cpu_dead(cpu);
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void __init pmu_check_apic(void)
 | |
| {
 | |
| 	if (cpu_has_apic)
 | |
| 		return;
 | |
| 
 | |
| 	x86_pmu.apic = 0;
 | |
| 	pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
 | |
| 	pr_info("no hardware sampling interrupt available.\n");
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have a PMU initialized but no APIC
 | |
| 	 * interrupts, we cannot sample hardware
 | |
| 	 * events (user-space has to fall back and
 | |
| 	 * sample via a hrtimer based software event):
 | |
| 	 */
 | |
| 	pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
 | |
| 
 | |
| }
 | |
| 
 | |
| static struct attribute_group x86_pmu_format_group = {
 | |
| 	.name = "format",
 | |
| 	.attrs = NULL,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Remove all undefined events (x86_pmu.event_map(id) == 0)
 | |
|  * out of events_attr attributes.
 | |
|  */
 | |
| static void __init filter_events(struct attribute **attrs)
 | |
| {
 | |
| 	struct device_attribute *d;
 | |
| 	struct perf_pmu_events_attr *pmu_attr;
 | |
| 	int i, j;
 | |
| 
 | |
| 	for (i = 0; attrs[i]; i++) {
 | |
| 		d = (struct device_attribute *)attrs[i];
 | |
| 		pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
 | |
| 		/* str trumps id */
 | |
| 		if (pmu_attr->event_str)
 | |
| 			continue;
 | |
| 		if (x86_pmu.event_map(i))
 | |
| 			continue;
 | |
| 
 | |
| 		for (j = i; attrs[j]; j++)
 | |
| 			attrs[j] = attrs[j + 1];
 | |
| 
 | |
| 		/* Check the shifted attr. */
 | |
| 		i--;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Merge two pointer arrays */
 | |
| static __init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
 | |
| {
 | |
| 	struct attribute **new;
 | |
| 	int j, i;
 | |
| 
 | |
| 	for (j = 0; a[j]; j++)
 | |
| 		;
 | |
| 	for (i = 0; b[i]; i++)
 | |
| 		j++;
 | |
| 	j++;
 | |
| 
 | |
| 	new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
 | |
| 	if (!new)
 | |
| 		return NULL;
 | |
| 
 | |
| 	j = 0;
 | |
| 	for (i = 0; a[i]; i++)
 | |
| 		new[j++] = a[i];
 | |
| 	for (i = 0; b[i]; i++)
 | |
| 		new[j++] = b[i];
 | |
| 	new[j] = NULL;
 | |
| 
 | |
| 	return new;
 | |
| }
 | |
| 
 | |
| ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr,
 | |
| 			  char *page)
 | |
| {
 | |
| 	struct perf_pmu_events_attr *pmu_attr = \
 | |
| 		container_of(attr, struct perf_pmu_events_attr, attr);
 | |
| 	u64 config = x86_pmu.event_map(pmu_attr->id);
 | |
| 
 | |
| 	/* string trumps id */
 | |
| 	if (pmu_attr->event_str)
 | |
| 		return sprintf(page, "%s", pmu_attr->event_str);
 | |
| 
 | |
| 	return x86_pmu.events_sysfs_show(page, config);
 | |
| }
 | |
| 
 | |
| EVENT_ATTR(cpu-cycles,			CPU_CYCLES		);
 | |
| EVENT_ATTR(instructions,		INSTRUCTIONS		);
 | |
| EVENT_ATTR(cache-references,		CACHE_REFERENCES	);
 | |
| EVENT_ATTR(cache-misses, 		CACHE_MISSES		);
 | |
| EVENT_ATTR(branch-instructions,		BRANCH_INSTRUCTIONS	);
 | |
| EVENT_ATTR(branch-misses,		BRANCH_MISSES		);
 | |
| EVENT_ATTR(bus-cycles,			BUS_CYCLES		);
 | |
| EVENT_ATTR(stalled-cycles-frontend,	STALLED_CYCLES_FRONTEND	);
 | |
| EVENT_ATTR(stalled-cycles-backend,	STALLED_CYCLES_BACKEND	);
 | |
| EVENT_ATTR(ref-cycles,			REF_CPU_CYCLES		);
 | |
| 
 | |
| static struct attribute *empty_attrs;
 | |
| 
 | |
| static struct attribute *events_attr[] = {
 | |
| 	EVENT_PTR(CPU_CYCLES),
 | |
| 	EVENT_PTR(INSTRUCTIONS),
 | |
| 	EVENT_PTR(CACHE_REFERENCES),
 | |
| 	EVENT_PTR(CACHE_MISSES),
 | |
| 	EVENT_PTR(BRANCH_INSTRUCTIONS),
 | |
| 	EVENT_PTR(BRANCH_MISSES),
 | |
| 	EVENT_PTR(BUS_CYCLES),
 | |
| 	EVENT_PTR(STALLED_CYCLES_FRONTEND),
 | |
| 	EVENT_PTR(STALLED_CYCLES_BACKEND),
 | |
| 	EVENT_PTR(REF_CPU_CYCLES),
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group x86_pmu_events_group = {
 | |
| 	.name = "events",
 | |
| 	.attrs = events_attr,
 | |
| };
 | |
| 
 | |
| ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
 | |
| {
 | |
| 	u64 umask  = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
 | |
| 	u64 cmask  = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
 | |
| 	bool edge  = (config & ARCH_PERFMON_EVENTSEL_EDGE);
 | |
| 	bool pc    = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
 | |
| 	bool any   = (config & ARCH_PERFMON_EVENTSEL_ANY);
 | |
| 	bool inv   = (config & ARCH_PERFMON_EVENTSEL_INV);
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	/*
 | |
| 	* We have whole page size to spend and just little data
 | |
| 	* to write, so we can safely use sprintf.
 | |
| 	*/
 | |
| 	ret = sprintf(page, "event=0x%02llx", event);
 | |
| 
 | |
| 	if (umask)
 | |
| 		ret += sprintf(page + ret, ",umask=0x%02llx", umask);
 | |
| 
 | |
| 	if (edge)
 | |
| 		ret += sprintf(page + ret, ",edge");
 | |
| 
 | |
| 	if (pc)
 | |
| 		ret += sprintf(page + ret, ",pc");
 | |
| 
 | |
| 	if (any)
 | |
| 		ret += sprintf(page + ret, ",any");
 | |
| 
 | |
| 	if (inv)
 | |
| 		ret += sprintf(page + ret, ",inv");
 | |
| 
 | |
| 	if (cmask)
 | |
| 		ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
 | |
| 
 | |
| 	ret += sprintf(page + ret, "\n");
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int __init init_hw_perf_events(void)
 | |
| {
 | |
| 	struct x86_pmu_quirk *quirk;
 | |
| 	int err;
 | |
| 
 | |
| 	pr_info("Performance Events: ");
 | |
| 
 | |
| 	switch (boot_cpu_data.x86_vendor) {
 | |
| 	case X86_VENDOR_INTEL:
 | |
| 		err = intel_pmu_init();
 | |
| 		break;
 | |
| 	case X86_VENDOR_AMD:
 | |
| 		err = amd_pmu_init();
 | |
| 		break;
 | |
| 	default:
 | |
| 		err = -ENOTSUPP;
 | |
| 	}
 | |
| 	if (err != 0) {
 | |
| 		pr_cont("no PMU driver, software events only.\n");
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	pmu_check_apic();
 | |
| 
 | |
| 	/* sanity check that the hardware exists or is emulated */
 | |
| 	if (!check_hw_exists())
 | |
| 		return 0;
 | |
| 
 | |
| 	pr_cont("%s PMU driver.\n", x86_pmu.name);
 | |
| 
 | |
| 	x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
 | |
| 
 | |
| 	for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
 | |
| 		quirk->func();
 | |
| 
 | |
| 	if (!x86_pmu.intel_ctrl)
 | |
| 		x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
 | |
| 
 | |
| 	perf_events_lapic_init();
 | |
| 	register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
 | |
| 
 | |
| 	unconstrained = (struct event_constraint)
 | |
| 		__EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
 | |
| 				   0, x86_pmu.num_counters, 0, 0);
 | |
| 
 | |
| 	x86_pmu_format_group.attrs = x86_pmu.format_attrs;
 | |
| 
 | |
| 	if (x86_pmu.event_attrs)
 | |
| 		x86_pmu_events_group.attrs = x86_pmu.event_attrs;
 | |
| 
 | |
| 	if (!x86_pmu.events_sysfs_show)
 | |
| 		x86_pmu_events_group.attrs = &empty_attrs;
 | |
| 	else
 | |
| 		filter_events(x86_pmu_events_group.attrs);
 | |
| 
 | |
| 	if (x86_pmu.cpu_events) {
 | |
| 		struct attribute **tmp;
 | |
| 
 | |
| 		tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
 | |
| 		if (!WARN_ON(!tmp))
 | |
| 			x86_pmu_events_group.attrs = tmp;
 | |
| 	}
 | |
| 
 | |
| 	pr_info("... version:                %d\n",     x86_pmu.version);
 | |
| 	pr_info("... bit width:              %d\n",     x86_pmu.cntval_bits);
 | |
| 	pr_info("... generic registers:      %d\n",     x86_pmu.num_counters);
 | |
| 	pr_info("... value mask:             %016Lx\n", x86_pmu.cntval_mask);
 | |
| 	pr_info("... max period:             %016Lx\n", x86_pmu.max_period);
 | |
| 	pr_info("... fixed-purpose events:   %d\n",     x86_pmu.num_counters_fixed);
 | |
| 	pr_info("... event mask:             %016Lx\n", x86_pmu.intel_ctrl);
 | |
| 
 | |
| 	perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
 | |
| 	perf_cpu_notifier(x86_pmu_notifier);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_initcall(init_hw_perf_events);
 | |
| 
 | |
| static inline void x86_pmu_read(struct perf_event *event)
 | |
| {
 | |
| 	x86_perf_event_update(event);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Start group events scheduling transaction
 | |
|  * Set the flag to make pmu::enable() not perform the
 | |
|  * schedulability test, it will be performed at commit time
 | |
|  */
 | |
| static void x86_pmu_start_txn(struct pmu *pmu)
 | |
| {
 | |
| 	perf_pmu_disable(pmu);
 | |
| 	__this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
 | |
| 	__this_cpu_write(cpu_hw_events.n_txn, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stop group events scheduling transaction
 | |
|  * Clear the flag and pmu::enable() will perform the
 | |
|  * schedulability test.
 | |
|  */
 | |
| static void x86_pmu_cancel_txn(struct pmu *pmu)
 | |
| {
 | |
| 	__this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
 | |
| 	/*
 | |
| 	 * Truncate collected array by the number of events added in this
 | |
| 	 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
 | |
| 	 */
 | |
| 	__this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
 | |
| 	__this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
 | |
| 	perf_pmu_enable(pmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Commit group events scheduling transaction
 | |
|  * Perform the group schedulability test as a whole
 | |
|  * Return 0 if success
 | |
|  *
 | |
|  * Does not cancel the transaction on failure; expects the caller to do this.
 | |
|  */
 | |
| static int x86_pmu_commit_txn(struct pmu *pmu)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
 | |
| 	int assign[X86_PMC_IDX_MAX];
 | |
| 	int n, ret;
 | |
| 
 | |
| 	n = cpuc->n_events;
 | |
| 
 | |
| 	if (!x86_pmu_initialized())
 | |
| 		return -EAGAIN;
 | |
| 
 | |
| 	ret = x86_pmu.schedule_events(cpuc, n, assign);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	/*
 | |
| 	 * copy new assignment, now we know it is possible
 | |
| 	 * will be used by hw_perf_enable()
 | |
| 	 */
 | |
| 	memcpy(cpuc->assign, assign, n*sizeof(int));
 | |
| 
 | |
| 	cpuc->group_flag &= ~PERF_EVENT_TXN;
 | |
| 	perf_pmu_enable(pmu);
 | |
| 	return 0;
 | |
| }
 | |
| /*
 | |
|  * a fake_cpuc is used to validate event groups. Due to
 | |
|  * the extra reg logic, we need to also allocate a fake
 | |
|  * per_core and per_cpu structure. Otherwise, group events
 | |
|  * using extra reg may conflict without the kernel being
 | |
|  * able to catch this when the last event gets added to
 | |
|  * the group.
 | |
|  */
 | |
| static void free_fake_cpuc(struct cpu_hw_events *cpuc)
 | |
| {
 | |
| 	kfree(cpuc->shared_regs);
 | |
| 	kfree(cpuc);
 | |
| }
 | |
| 
 | |
| static struct cpu_hw_events *allocate_fake_cpuc(void)
 | |
| {
 | |
| 	struct cpu_hw_events *cpuc;
 | |
| 	int cpu = raw_smp_processor_id();
 | |
| 
 | |
| 	cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
 | |
| 	if (!cpuc)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	/* only needed, if we have extra_regs */
 | |
| 	if (x86_pmu.extra_regs) {
 | |
| 		cpuc->shared_regs = allocate_shared_regs(cpu);
 | |
| 		if (!cpuc->shared_regs)
 | |
| 			goto error;
 | |
| 	}
 | |
| 	cpuc->is_fake = 1;
 | |
| 	return cpuc;
 | |
| error:
 | |
| 	free_fake_cpuc(cpuc);
 | |
| 	return ERR_PTR(-ENOMEM);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validate that we can schedule this event
 | |
|  */
 | |
| static int validate_event(struct perf_event *event)
 | |
| {
 | |
| 	struct cpu_hw_events *fake_cpuc;
 | |
| 	struct event_constraint *c;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	fake_cpuc = allocate_fake_cpuc();
 | |
| 	if (IS_ERR(fake_cpuc))
 | |
| 		return PTR_ERR(fake_cpuc);
 | |
| 
 | |
| 	c = x86_pmu.get_event_constraints(fake_cpuc, event);
 | |
| 
 | |
| 	if (!c || !c->weight)
 | |
| 		ret = -EINVAL;
 | |
| 
 | |
| 	if (x86_pmu.put_event_constraints)
 | |
| 		x86_pmu.put_event_constraints(fake_cpuc, event);
 | |
| 
 | |
| 	free_fake_cpuc(fake_cpuc);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * validate a single event group
 | |
|  *
 | |
|  * validation include:
 | |
|  *	- check events are compatible which each other
 | |
|  *	- events do not compete for the same counter
 | |
|  *	- number of events <= number of counters
 | |
|  *
 | |
|  * validation ensures the group can be loaded onto the
 | |
|  * PMU if it was the only group available.
 | |
|  */
 | |
| static int validate_group(struct perf_event *event)
 | |
| {
 | |
| 	struct perf_event *leader = event->group_leader;
 | |
| 	struct cpu_hw_events *fake_cpuc;
 | |
| 	int ret = -EINVAL, n;
 | |
| 
 | |
| 	fake_cpuc = allocate_fake_cpuc();
 | |
| 	if (IS_ERR(fake_cpuc))
 | |
| 		return PTR_ERR(fake_cpuc);
 | |
| 	/*
 | |
| 	 * the event is not yet connected with its
 | |
| 	 * siblings therefore we must first collect
 | |
| 	 * existing siblings, then add the new event
 | |
| 	 * before we can simulate the scheduling
 | |
| 	 */
 | |
| 	n = collect_events(fake_cpuc, leader, true);
 | |
| 	if (n < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	fake_cpuc->n_events = n;
 | |
| 	n = collect_events(fake_cpuc, event, false);
 | |
| 	if (n < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	fake_cpuc->n_events = n;
 | |
| 
 | |
| 	ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
 | |
| 
 | |
| out:
 | |
| 	free_fake_cpuc(fake_cpuc);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int x86_pmu_event_init(struct perf_event *event)
 | |
| {
 | |
| 	struct pmu *tmp;
 | |
| 	int err;
 | |
| 
 | |
| 	switch (event->attr.type) {
 | |
| 	case PERF_TYPE_RAW:
 | |
| 	case PERF_TYPE_HARDWARE:
 | |
| 	case PERF_TYPE_HW_CACHE:
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		return -ENOENT;
 | |
| 	}
 | |
| 
 | |
| 	err = __x86_pmu_event_init(event);
 | |
| 	if (!err) {
 | |
| 		/*
 | |
| 		 * we temporarily connect event to its pmu
 | |
| 		 * such that validate_group() can classify
 | |
| 		 * it as an x86 event using is_x86_event()
 | |
| 		 */
 | |
| 		tmp = event->pmu;
 | |
| 		event->pmu = &pmu;
 | |
| 
 | |
| 		if (event->group_leader != event)
 | |
| 			err = validate_group(event);
 | |
| 		else
 | |
| 			err = validate_event(event);
 | |
| 
 | |
| 		event->pmu = tmp;
 | |
| 	}
 | |
| 	if (err) {
 | |
| 		if (event->destroy)
 | |
| 			event->destroy(event);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static int x86_pmu_event_idx(struct perf_event *event)
 | |
| {
 | |
| 	int idx = event->hw.idx;
 | |
| 
 | |
| 	if (!x86_pmu.attr_rdpmc)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
 | |
| 		idx -= INTEL_PMC_IDX_FIXED;
 | |
| 		idx |= 1 << 30;
 | |
| 	}
 | |
| 
 | |
| 	return idx + 1;
 | |
| }
 | |
| 
 | |
| static ssize_t get_attr_rdpmc(struct device *cdev,
 | |
| 			      struct device_attribute *attr,
 | |
| 			      char *buf)
 | |
| {
 | |
| 	return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
 | |
| }
 | |
| 
 | |
| static void change_rdpmc(void *info)
 | |
| {
 | |
| 	bool enable = !!(unsigned long)info;
 | |
| 
 | |
| 	if (enable)
 | |
| 		set_in_cr4(X86_CR4_PCE);
 | |
| 	else
 | |
| 		clear_in_cr4(X86_CR4_PCE);
 | |
| }
 | |
| 
 | |
| static ssize_t set_attr_rdpmc(struct device *cdev,
 | |
| 			      struct device_attribute *attr,
 | |
| 			      const char *buf, size_t count)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 	ssize_t ret;
 | |
| 
 | |
| 	ret = kstrtoul(buf, 0, &val);
 | |
| 	if (ret)
 | |
| 		return ret;
 | |
| 
 | |
| 	if (x86_pmu.attr_rdpmc_broken)
 | |
| 		return -ENOTSUPP;
 | |
| 
 | |
| 	if (!!val != !!x86_pmu.attr_rdpmc) {
 | |
| 		x86_pmu.attr_rdpmc = !!val;
 | |
| 		on_each_cpu(change_rdpmc, (void *)val, 1);
 | |
| 	}
 | |
| 
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
 | |
| 
 | |
| static struct attribute *x86_pmu_attrs[] = {
 | |
| 	&dev_attr_rdpmc.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group x86_pmu_attr_group = {
 | |
| 	.attrs = x86_pmu_attrs,
 | |
| };
 | |
| 
 | |
| static const struct attribute_group *x86_pmu_attr_groups[] = {
 | |
| 	&x86_pmu_attr_group,
 | |
| 	&x86_pmu_format_group,
 | |
| 	&x86_pmu_events_group,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static void x86_pmu_flush_branch_stack(void)
 | |
| {
 | |
| 	if (x86_pmu.flush_branch_stack)
 | |
| 		x86_pmu.flush_branch_stack();
 | |
| }
 | |
| 
 | |
| void perf_check_microcode(void)
 | |
| {
 | |
| 	if (x86_pmu.check_microcode)
 | |
| 		x86_pmu.check_microcode();
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_check_microcode);
 | |
| 
 | |
| static struct pmu pmu = {
 | |
| 	.pmu_enable		= x86_pmu_enable,
 | |
| 	.pmu_disable		= x86_pmu_disable,
 | |
| 
 | |
| 	.attr_groups		= x86_pmu_attr_groups,
 | |
| 
 | |
| 	.event_init		= x86_pmu_event_init,
 | |
| 
 | |
| 	.add			= x86_pmu_add,
 | |
| 	.del			= x86_pmu_del,
 | |
| 	.start			= x86_pmu_start,
 | |
| 	.stop			= x86_pmu_stop,
 | |
| 	.read			= x86_pmu_read,
 | |
| 
 | |
| 	.start_txn		= x86_pmu_start_txn,
 | |
| 	.cancel_txn		= x86_pmu_cancel_txn,
 | |
| 	.commit_txn		= x86_pmu_commit_txn,
 | |
| 
 | |
| 	.event_idx		= x86_pmu_event_idx,
 | |
| 	.flush_branch_stack	= x86_pmu_flush_branch_stack,
 | |
| };
 | |
| 
 | |
| void arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
 | |
| {
 | |
| 	struct cyc2ns_data *data;
 | |
| 
 | |
| 	userpg->cap_user_time = 0;
 | |
| 	userpg->cap_user_time_zero = 0;
 | |
| 	userpg->cap_user_rdpmc = x86_pmu.attr_rdpmc;
 | |
| 	userpg->pmc_width = x86_pmu.cntval_bits;
 | |
| 
 | |
| 	if (!sched_clock_stable())
 | |
| 		return;
 | |
| 
 | |
| 	data = cyc2ns_read_begin();
 | |
| 
 | |
| 	userpg->cap_user_time = 1;
 | |
| 	userpg->time_mult = data->cyc2ns_mul;
 | |
| 	userpg->time_shift = data->cyc2ns_shift;
 | |
| 	userpg->time_offset = data->cyc2ns_offset - now;
 | |
| 
 | |
| 	userpg->cap_user_time_zero = 1;
 | |
| 	userpg->time_zero = data->cyc2ns_offset;
 | |
| 
 | |
| 	cyc2ns_read_end(data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * callchain support
 | |
|  */
 | |
| 
 | |
| static int backtrace_stack(void *data, char *name)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void backtrace_address(void *data, unsigned long addr, int reliable)
 | |
| {
 | |
| 	struct perf_callchain_entry *entry = data;
 | |
| 
 | |
| 	perf_callchain_store(entry, addr);
 | |
| }
 | |
| 
 | |
| static const struct stacktrace_ops backtrace_ops = {
 | |
| 	.stack			= backtrace_stack,
 | |
| 	.address		= backtrace_address,
 | |
| 	.walk_stack		= print_context_stack_bp,
 | |
| };
 | |
| 
 | |
| void
 | |
| perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
 | |
| {
 | |
| 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
 | |
| 		/* TODO: We don't support guest os callchain now */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	perf_callchain_store(entry, regs->ip);
 | |
| 
 | |
| 	dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| valid_user_frame(const void __user *fp, unsigned long size)
 | |
| {
 | |
| 	return (__range_not_ok(fp, size, TASK_SIZE) == 0);
 | |
| }
 | |
| 
 | |
| static unsigned long get_segment_base(unsigned int segment)
 | |
| {
 | |
| 	struct desc_struct *desc;
 | |
| 	int idx = segment >> 3;
 | |
| 
 | |
| 	if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
 | |
| 		if (idx > LDT_ENTRIES)
 | |
| 			return 0;
 | |
| 
 | |
| 		if (idx > current->active_mm->context.size)
 | |
| 			return 0;
 | |
| 
 | |
| 		desc = current->active_mm->context.ldt;
 | |
| 	} else {
 | |
| 		if (idx > GDT_ENTRIES)
 | |
| 			return 0;
 | |
| 
 | |
| 		desc = raw_cpu_ptr(gdt_page.gdt);
 | |
| 	}
 | |
| 
 | |
| 	return get_desc_base(desc + idx);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_COMPAT
 | |
| 
 | |
| #include <asm/compat.h>
 | |
| 
 | |
| static inline int
 | |
| perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
 | |
| {
 | |
| 	/* 32-bit process in 64-bit kernel. */
 | |
| 	unsigned long ss_base, cs_base;
 | |
| 	struct stack_frame_ia32 frame;
 | |
| 	const void __user *fp;
 | |
| 
 | |
| 	if (!test_thread_flag(TIF_IA32))
 | |
| 		return 0;
 | |
| 
 | |
| 	cs_base = get_segment_base(regs->cs);
 | |
| 	ss_base = get_segment_base(regs->ss);
 | |
| 
 | |
| 	fp = compat_ptr(ss_base + regs->bp);
 | |
| 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
 | |
| 		unsigned long bytes;
 | |
| 		frame.next_frame     = 0;
 | |
| 		frame.return_address = 0;
 | |
| 
 | |
| 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
 | |
| 		if (bytes != 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (!valid_user_frame(fp, sizeof(frame)))
 | |
| 			break;
 | |
| 
 | |
| 		perf_callchain_store(entry, cs_base + frame.return_address);
 | |
| 		fp = compat_ptr(ss_base + frame.next_frame);
 | |
| 	}
 | |
| 	return 1;
 | |
| }
 | |
| #else
 | |
| static inline int
 | |
| perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void
 | |
| perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
 | |
| {
 | |
| 	struct stack_frame frame;
 | |
| 	const void __user *fp;
 | |
| 
 | |
| 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
 | |
| 		/* TODO: We don't support guest os callchain now */
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't know what to do with VM86 stacks.. ignore them for now.
 | |
| 	 */
 | |
| 	if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
 | |
| 		return;
 | |
| 
 | |
| 	fp = (void __user *)regs->bp;
 | |
| 
 | |
| 	perf_callchain_store(entry, regs->ip);
 | |
| 
 | |
| 	if (!current->mm)
 | |
| 		return;
 | |
| 
 | |
| 	if (perf_callchain_user32(regs, entry))
 | |
| 		return;
 | |
| 
 | |
| 	while (entry->nr < PERF_MAX_STACK_DEPTH) {
 | |
| 		unsigned long bytes;
 | |
| 		frame.next_frame	     = NULL;
 | |
| 		frame.return_address = 0;
 | |
| 
 | |
| 		bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
 | |
| 		if (bytes != 0)
 | |
| 			break;
 | |
| 
 | |
| 		if (!valid_user_frame(fp, sizeof(frame)))
 | |
| 			break;
 | |
| 
 | |
| 		perf_callchain_store(entry, frame.return_address);
 | |
| 		fp = frame.next_frame;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Deal with code segment offsets for the various execution modes:
 | |
|  *
 | |
|  *   VM86 - the good olde 16 bit days, where the linear address is
 | |
|  *          20 bits and we use regs->ip + 0x10 * regs->cs.
 | |
|  *
 | |
|  *   IA32 - Where we need to look at GDT/LDT segment descriptor tables
 | |
|  *          to figure out what the 32bit base address is.
 | |
|  *
 | |
|  *    X32 - has TIF_X32 set, but is running in x86_64
 | |
|  *
 | |
|  * X86_64 - CS,DS,SS,ES are all zero based.
 | |
|  */
 | |
| static unsigned long code_segment_base(struct pt_regs *regs)
 | |
| {
 | |
| 	/*
 | |
| 	 * If we are in VM86 mode, add the segment offset to convert to a
 | |
| 	 * linear address.
 | |
| 	 */
 | |
| 	if (regs->flags & X86_VM_MASK)
 | |
| 		return 0x10 * regs->cs;
 | |
| 
 | |
| 	/*
 | |
| 	 * For IA32 we look at the GDT/LDT segment base to convert the
 | |
| 	 * effective IP to a linear address.
 | |
| 	 */
 | |
| #ifdef CONFIG_X86_32
 | |
| 	if (user_mode(regs) && regs->cs != __USER_CS)
 | |
| 		return get_segment_base(regs->cs);
 | |
| #else
 | |
| 	if (test_thread_flag(TIF_IA32)) {
 | |
| 		if (user_mode(regs) && regs->cs != __USER32_CS)
 | |
| 			return get_segment_base(regs->cs);
 | |
| 	}
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| unsigned long perf_instruction_pointer(struct pt_regs *regs)
 | |
| {
 | |
| 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
 | |
| 		return perf_guest_cbs->get_guest_ip();
 | |
| 
 | |
| 	return regs->ip + code_segment_base(regs);
 | |
| }
 | |
| 
 | |
| unsigned long perf_misc_flags(struct pt_regs *regs)
 | |
| {
 | |
| 	int misc = 0;
 | |
| 
 | |
| 	if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
 | |
| 		if (perf_guest_cbs->is_user_mode())
 | |
| 			misc |= PERF_RECORD_MISC_GUEST_USER;
 | |
| 		else
 | |
| 			misc |= PERF_RECORD_MISC_GUEST_KERNEL;
 | |
| 	} else {
 | |
| 		if (user_mode(regs))
 | |
| 			misc |= PERF_RECORD_MISC_USER;
 | |
| 		else
 | |
| 			misc |= PERF_RECORD_MISC_KERNEL;
 | |
| 	}
 | |
| 
 | |
| 	if (regs->flags & PERF_EFLAGS_EXACT)
 | |
| 		misc |= PERF_RECORD_MISC_EXACT_IP;
 | |
| 
 | |
| 	return misc;
 | |
| }
 | |
| 
 | |
| void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
 | |
| {
 | |
| 	cap->version		= x86_pmu.version;
 | |
| 	cap->num_counters_gp	= x86_pmu.num_counters;
 | |
| 	cap->num_counters_fixed	= x86_pmu.num_counters_fixed;
 | |
| 	cap->bit_width_gp	= x86_pmu.cntval_bits;
 | |
| 	cap->bit_width_fixed	= x86_pmu.cntval_bits;
 | |
| 	cap->events_mask	= (unsigned int)x86_pmu.events_maskl;
 | |
| 	cap->events_mask_len	= x86_pmu.events_mask_len;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);
 | 
