initial import

git-svn-id: file:///home/notaz/opt/svn/PicoDrive@2 be3aeb3a-fb24-0410-a615-afba39da0efa
This commit is contained in:
notaz 2006-12-19 20:53:21 +00:00
parent 2cadbd5e56
commit cc68a136aa
341 changed files with 180839 additions and 0 deletions

371
cpu/musashi/m68k.h Normal file
View file

@ -0,0 +1,371 @@
#ifndef M68K__HEADER
#define M68K__HEADER
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 3.3
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright 1998-2001 Karl Stenerud. All rights reserved.
*
* This code may be freely used for non-commercial purposes as long as this
* copyright notice remains unaltered in the source code and any binary files
* containing this code in compiled form.
*
* All other lisencing terms must be negotiated with the author
* (Karl Stenerud).
*
* The latest version of this code can be obtained at:
* http://kstenerud.cjb.net
*/
/* ======================================================================== */
/* ============================= CONFIGURATION ============================ */
/* ======================================================================== */
/* Import the configuration for this build */
#include "m68kconf.h"
/* ======================================================================== */
/* ============================ GENERAL DEFINES =========================== */
/* ======================================================================== */
/* There are 7 levels of interrupt to the 68K.
* A transition from < 7 to 7 will cause a non-maskable interrupt (NMI).
*/
#define M68K_IRQ_NONE 0
#define M68K_IRQ_1 1
#define M68K_IRQ_2 2
#define M68K_IRQ_3 3
#define M68K_IRQ_4 4
#define M68K_IRQ_5 5
#define M68K_IRQ_6 6
#define M68K_IRQ_7 7
/* Special interrupt acknowledge values.
* Use these as special returns from the interrupt acknowledge callback
* (specified later in this header).
*/
/* Causes an interrupt autovector (0x18 + interrupt level) to be taken.
* This happens in a real 68K if VPA or AVEC is asserted during an interrupt
* acknowledge cycle instead of DTACK.
*/
#define M68K_INT_ACK_AUTOVECTOR 0xffffffff
/* Causes the spurious interrupt vector (0x18) to be taken
* This happens in a real 68K if BERR is asserted during the interrupt
* acknowledge cycle (i.e. no devices responded to the acknowledge).
*/
#define M68K_INT_ACK_SPURIOUS 0xfffffffe
/* CPU types for use in m68k_set_cpu_type() */
enum
{
M68K_CPU_TYPE_INVALID,
M68K_CPU_TYPE_68000,
M68K_CPU_TYPE_68008,
M68K_CPU_TYPE_68010,
M68K_CPU_TYPE_68EC020,
M68K_CPU_TYPE_68020,
M68K_CPU_TYPE_68030, /* Supported by disassembler ONLY */
M68K_CPU_TYPE_68040 /* Supported by disassembler ONLY */
};
/* Registers used by m68k_get_reg() and m68k_set_reg() */
typedef enum
{
/* Real registers */
M68K_REG_D0, /* Data registers */
M68K_REG_D1,
M68K_REG_D2,
M68K_REG_D3,
M68K_REG_D4,
M68K_REG_D5,
M68K_REG_D6,
M68K_REG_D7,
M68K_REG_A0, /* Address registers */
M68K_REG_A1,
M68K_REG_A2,
M68K_REG_A3,
M68K_REG_A4,
M68K_REG_A5,
M68K_REG_A6,
M68K_REG_A7,
M68K_REG_PC, /* Program Counter */
M68K_REG_SR, /* Status Register */
M68K_REG_SP, /* The current Stack Pointer (located in A7) */
M68K_REG_USP, /* User Stack Pointer */
M68K_REG_ISP, /* Interrupt Stack Pointer */
M68K_REG_MSP, /* Master Stack Pointer */
M68K_REG_SFC, /* Source Function Code */
M68K_REG_DFC, /* Destination Function Code */
M68K_REG_VBR, /* Vector Base Register */
M68K_REG_CACR, /* Cache Control Register */
M68K_REG_CAAR, /* Cache Address Register */
/* Assumed registers */
/* These are cheat registers which emulate the 1-longword prefetch
* present in the 68000 and 68010.
*/
M68K_REG_PREF_ADDR, /* Last prefetch address */
M68K_REG_PREF_DATA, /* Last prefetch data */
/* Convenience registers */
M68K_REG_PPC, /* Previous value in the program counter */
M68K_REG_IR, /* Instruction register */
M68K_REG_CPU_TYPE /* Type of CPU being run */
} m68k_register_t;
/* ======================================================================== */
/* ====================== FUNCTIONS CALLED BY THE CPU ===================== */
/* ======================================================================== */
/* You will have to implement these functions */
/* read/write functions called by the CPU to access memory.
* while values used are 32 bits, only the appropriate number
* of bits are relevant (i.e. in write_memory_8, only the lower 8 bits
* of value should be written to memory).
*
* NOTE: I have separated the immediate and PC-relative memory fetches
* from the other memory fetches because some systems require
* differentiation between PROGRAM and DATA fetches (usually
* for security setups such as encryption).
* This separation can either be achieved by setting
* M68K_SEPARATE_READS in m68kconf.h and defining
* the read functions, or by setting M68K_EMULATE_FC and
* making a function code callback function.
* Using the callback offers better emulation coverage
* because you can also monitor whether the CPU is in SYSTEM or
* USER mode, but it is also slower.
*/
/* Read from anywhere */
unsigned int m68k_read_memory_8(unsigned int address);
unsigned int m68k_read_memory_16(unsigned int address);
unsigned int m68k_read_memory_32(unsigned int address);
/* Read data immediately following the PC */
unsigned int m68k_read_immediate_16(unsigned int address);
unsigned int m68k_read_immediate_32(unsigned int address);
/* Read data relative to the PC */
unsigned int m68k_read_pcrelative_8(unsigned int address);
unsigned int m68k_read_pcrelative_16(unsigned int address);
unsigned int m68k_read_pcrelative_32(unsigned int address);
/* Memory access for the disassembler */
unsigned int m68k_read_disassembler_8 (unsigned int address);
unsigned int m68k_read_disassembler_16 (unsigned int address);
unsigned int m68k_read_disassembler_32 (unsigned int address);
/* Write to anywhere */
void m68k_write_memory_8(unsigned int address, unsigned int value);
void m68k_write_memory_16(unsigned int address, unsigned int value);
void m68k_write_memory_32(unsigned int address, unsigned int value);
/* Special call to simulate undocumented 68k behavior when move.l with a
* predecrement destination mode is executed.
* To simulate real 68k behavior, first write the high word to
* [address+2], and then write the low word to [address].
*
* Enable this functionality with M68K_SIMULATE_PD_WRITES in m68kconf.h.
*/
void m68k_write_memory_32_pd(unsigned int address, unsigned int value);
/* ======================================================================== */
/* ============================== CALLBACKS =============================== */
/* ======================================================================== */
/* These functions allow you to set callbacks to the host when specific events
* occur. Note that you must enable the corresponding value in m68kconf.h
* in order for these to do anything useful.
* Note: I have defined default callbacks which are used if you have enabled
* the corresponding #define in m68kconf.h but either haven't assigned a
* callback or have assigned a callback of NULL.
*/
/* Set the callback for an interrupt acknowledge.
* You must enable M68K_EMULATE_INT_ACK in m68kconf.h.
* The CPU will call the callback with the interrupt level being acknowledged.
* The host program must return either a vector from 0x02-0xff, or one of the
* special interrupt acknowledge values specified earlier in this header.
* If this is not implemented, the CPU will always assume an autovectored
* interrupt, and will automatically clear the interrupt request when it
* services the interrupt.
* Default behavior: return M68K_INT_ACK_AUTOVECTOR.
*/
void m68k_set_int_ack_callback(int (*callback)(int int_level));
/* Set the callback for a breakpoint acknowledge (68010+).
* You must enable M68K_EMULATE_BKPT_ACK in m68kconf.h.
* The CPU will call the callback with whatever was in the data field of the
* BKPT instruction for 68020+, or 0 for 68010.
* Default behavior: do nothing.
*/
void m68k_set_bkpt_ack_callback(void (*callback)(unsigned int data));
/* Set the callback for the RESET instruction.
* You must enable M68K_EMULATE_RESET in m68kconf.h.
* The CPU calls this callback every time it encounters a RESET instruction.
* Default behavior: do nothing.
*/
void m68k_set_reset_instr_callback(void (*callback)(void));
/* Set the callback for the CMPI.L #v, Dn instruction.
* You must enable M68K_CMPILD_HAS_CALLBACK in m68kconf.h.
* The CPU calls this callback every time it encounters a CMPI.L #v, Dn instruction.
* Default behavior: do nothing.
*/
void m68k_set_cmpild_instr_callback(void (*callback)(unsigned int val, int reg));
/* Set the callback for the RTE instruction.
* You must enable M68K_RTE_HAS_CALLBACK in m68kconf.h.
* The CPU calls this callback every time it encounters a RTE instruction.
* Default behavior: do nothing.
*/
void m68k_set_rte_instr_callback(void (*callback)(void));
/* Set the callback for informing of a large PC change.
* You must enable M68K_MONITOR_PC in m68kconf.h.
* The CPU calls this callback with the new PC value every time the PC changes
* by a large value (currently set for changes by longwords).
* Default behavior: do nothing.
*/
void m68k_set_pc_changed_callback(void (*callback)(unsigned int new_pc));
/* Set the callback for CPU function code changes.
* You must enable M68K_EMULATE_FC in m68kconf.h.
* The CPU calls this callback with the function code before every memory
* access to set the CPU's function code according to what kind of memory
* access it is (supervisor/user, program/data and such).
* Default behavior: do nothing.
*/
void m68k_set_fc_callback(void (*callback)(unsigned int new_fc));
/* Set a callback for the instruction cycle of the CPU.
* You must enable M68K_INSTRUCTION_HOOK in m68kconf.h.
* The CPU calls this callback just before fetching the opcode in the
* instruction cycle.
* Default behavior: do nothing.
*/
void m68k_set_instr_hook_callback(void (*callback)(void));
/* ======================================================================== */
/* ====================== FUNCTIONS TO ACCESS THE CPU ===================== */
/* ======================================================================== */
/* Use this function to set the CPU type you want to emulate.
* Currently supported types are: M68K_CPU_TYPE_68000, M68K_CPU_TYPE_68008,
* M68K_CPU_TYPE_68010, M68K_CPU_TYPE_EC020, and M68K_CPU_TYPE_68020.
*/
void m68k_set_cpu_type(unsigned int cpu_type);
/* Do whatever initialisations the core requires. Should be called
* at least once at init time.
*/
void m68k_init(void);
/* Pulse the RESET pin on the CPU.
* You *MUST* reset the CPU at least once to initialize the emulation
* Note: If you didn't call m68k_set_cpu_type() before resetting
* the CPU for the first time, the CPU will be set to
* M68K_CPU_TYPE_68000.
*/
void m68k_pulse_reset(void);
/* execute num_cycles worth of instructions. returns number of cycles used */
int m68k_execute(int num_cycles);
/* These functions let you read/write/modify the number of cycles left to run
* while m68k_execute() is running.
* These are useful if the 68k accesses a memory-mapped port on another device
* that requires immediate processing by another CPU.
*/
int m68k_cycles_run(void); /* Number of cycles run so far */
int m68k_cycles_remaining(void); /* Number of cycles left */
void m68k_modify_timeslice(int cycles); /* Modify cycles left */
void m68k_end_timeslice(void); /* End timeslice now */
/* Set the IPL0-IPL2 pins on the CPU (IRQ).
* A transition from < 7 to 7 will cause a non-maskable interrupt (NMI).
* Setting IRQ to 0 will clear an interrupt request.
*/
void m68k_set_irq(unsigned int int_level);
/* Halt the CPU as if you pulsed the HALT pin. */
void m68k_pulse_halt(void);
/* Context switching to allow multiple CPUs */
/* Get the size of the cpu context in bytes */
unsigned int m68k_context_size(void);
/* Get a cpu context */
unsigned int m68k_get_context(void* dst);
/* set the current cpu context */
void m68k_set_context(void* dst);
/* Register the CPU state information */
void m68k_state_register(const char *type, int index);
/* Peek at the internals of a CPU context. This can either be a context
* retrieved using m68k_get_context() or the currently running context.
* If context is NULL, the currently running CPU context will be used.
*/
unsigned int m68k_get_reg(void* context, m68k_register_t reg);
/* Poke values into the internals of the currently running CPU context */
void m68k_set_reg(m68k_register_t reg, unsigned int value);
/* Check if an instruction is valid for the specified CPU type */
unsigned int m68k_is_valid_instruction(unsigned int instruction, unsigned int cpu_type);
/* Disassemble 1 instruction using the epecified CPU type at pc. Stores
* disassembly in str_buff and returns the size of the instruction in bytes.
*/
unsigned int m68k_disassemble(char* str_buff, unsigned int pc, unsigned int cpu_type);
/* Same as above but accepts raw opcode data directly rather than fetching
* via the read/write interfaces.
*/
unsigned int m68k_disassemble_raw(char* str_buff, unsigned int pc, unsigned char* opdata, unsigned char* argdata, int length, unsigned int cpu_type);
/* ======================================================================== */
/* ============================== MAME STUFF ============================== */
/* ======================================================================== */
#if M68K_COMPILE_FOR_MAME == OPT_ON
#include "m68kmame.h"
#endif /* M68K_COMPILE_FOR_MAME */
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68K__HEADER */

10636
cpu/musashi/m68k_in.c Normal file

File diff suppressed because it is too large Load diff

203
cpu/musashi/m68kconf.h Normal file
View file

@ -0,0 +1,203 @@
/* ======================================================================== */
/* ========================= LICENSING & COPYRIGHT ======================== */
/* ======================================================================== */
/*
* MUSASHI
* Version 3.3
*
* A portable Motorola M680x0 processor emulation engine.
* Copyright 1998-2001 Karl Stenerud. All rights reserved.
*
* This code may be freely used for non-commercial purposes as long as this
* copyright notice remains unaltered in the source code and any binary files
* containing this code in compiled form.
*
* All other lisencing terms must be negotiated with the author
* (Karl Stenerud).
*
* The latest version of this code can be obtained at:
* http://kstenerud.cjb.net
*/
// notaz: kill some stupid VC warnings
#ifndef __GNUC__
#pragma warning (disable:4100) // unreferenced formal parameter
#pragma warning (disable:4127) // conditional expression is constant
#pragma warning (disable:4245) // type conversion
#pragma warning (disable:4514) // unreferenced inline function has been removed
#endif
#ifndef M68KCONF__HEADER
#define M68KCONF__HEADER
/* Configuration switches.
* Use OPT_SPECIFY_HANDLER for configuration options that allow callbacks.
* OPT_SPECIFY_HANDLER causes the core to link directly to the function
* or macro you specify, rather than using callback functions whose pointer
* must be passed in using m68k_set_xxx_callback().
*/
#define OPT_OFF 0
#define OPT_ON 1
#define OPT_SPECIFY_HANDLER 2
/* ======================================================================== */
/* ============================== MAME STUFF ============================== */
/* ======================================================================== */
/* If you're compiling this for MAME, only change M68K_COMPILE_FOR_MAME
* to OPT_ON and use m68kmame.h to configure the 68k core.
*/
#ifndef M68K_COMPILE_FOR_MAME
#define M68K_COMPILE_FOR_MAME OPT_OFF
#endif /* M68K_COMPILE_FOR_MAME */
#if M68K_COMPILE_FOR_MAME == OPT_OFF
/* ======================================================================== */
/* ============================= CONFIGURATION ============================ */
/* ======================================================================== */
/* Turn ON if you want to use the following M68K variants */
#define M68K_EMULATE_008 OPT_OFF
#define M68K_EMULATE_010 OPT_OFF
#define M68K_EMULATE_EC020 OPT_OFF
#define M68K_EMULATE_020 OPT_OFF
#define M68K_EMULATE_040 OPT_OFF
/* If ON, the CPU will call m68k_read_immediate_xx() for immediate addressing
* and m68k_read_pcrelative_xx() for PC-relative addressing.
* If off, all read requests from the CPU will be redirected to m68k_read_xx()
*/
#define M68K_SEPARATE_READS OPT_ON
/* If ON, the CPU will call m68k_write_32_pd() when it executes move.l with a
* predecrement destination EA mode instead of m68k_write_32().
* To simulate real 68k behavior, m68k_write_32_pd() must first write the high
* word to [address+2], and then write the low word to [address].
*/
#define M68K_SIMULATE_PD_WRITES OPT_OFF
/* If ON, CPU will call the interrupt acknowledge callback when it services an
* interrupt.
* If off, all interrupts will be autovectored and all interrupt requests will
* auto-clear when the interrupt is serviced.
*/
#define M68K_EMULATE_INT_ACK OPT_ON
#define M68K_INT_ACK_CALLBACK(A) your_int_ack_handler_function(A)
/* If ON, CPU will call the breakpoint acknowledge callback when it encounters
* a breakpoint instruction and it is running a 68010+.
*/
#define M68K_EMULATE_BKPT_ACK OPT_OFF
#define M68K_BKPT_ACK_CALLBACK() your_bkpt_ack_handler_function()
/* If ON, the CPU will monitor the trace flags and take trace exceptions
*/
#define M68K_EMULATE_TRACE OPT_OFF
/* If ON, CPU will call the output reset callback when it encounters a reset
* instruction.
*/
#define M68K_EMULATE_RESET OPT_OFF
#define M68K_RESET_CALLBACK() your_reset_handler_function()
/* If ON, CPU will call the callback when it encounters a cmpi.l #v, dn
* instruction.
*/
#define M68K_CMPILD_HAS_CALLBACK OPT_OFF
#define M68K_CMPILD_CALLBACK(v,r) your_cmpild_handler_function(v,r)
/* If ON, CPU will call the callback when it encounters a rte
* instruction.
*/
#define M68K_RTE_HAS_CALLBACK OPT_OFF
#define M68K_RTE_CALLBACK() your_rte_handler_function()
/* If ON, CPU will call the set fc callback on every memory access to
* differentiate between user/supervisor, program/data access like a real
* 68000 would. This should be enabled and the callback should be set if you
* want to properly emulate the m68010 or higher. (moves uses function codes
* to read/write data from different address spaces)
*/
#define M68K_EMULATE_FC OPT_OFF
#define M68K_SET_FC_CALLBACK(A) your_set_fc_handler_function(A)
/* If ON, CPU will call the pc changed callback when it changes the PC by a
* large value. This allows host programs to be nicer when it comes to
* fetching immediate data and instructions on a banked memory system.
*/
#define M68K_MONITOR_PC OPT_OFF
#define M68K_SET_PC_CALLBACK(A) your_pc_changed_handler_function(A)
/* If ON, CPU will call the instruction hook callback before every
* instruction.
*/
#define M68K_INSTRUCTION_HOOK OPT_OFF
#define M68K_INSTRUCTION_CALLBACK() your_instruction_hook_function()
/* If ON, the CPU will emulate the 4-byte prefetch queue of a real 68000 */
#define M68K_EMULATE_PREFETCH OPT_OFF
/* If ON, the CPU will generate address error exceptions if it tries to
* access a word or longword at an odd address.
* NOTE: This is only emulated properly for 68000 mode.
*/
#define M68K_EMULATE_ADDRESS_ERROR OPT_OFF
/* Turn ON to enable logging of illegal instruction calls.
* M68K_LOG_FILEHANDLE must be #defined to a stdio file stream.
* Turn on M68K_LOG_1010_1111 to log all 1010 and 1111 calls.
*/
#define M68K_LOG_ENABLE OPT_OFF
#define M68K_LOG_1010_1111 OPT_OFF
#define M68K_LOG_FILEHANDLE some_file_handle
/* ----------------------------- COMPATIBILITY ---------------------------- */
/* The following options set optimizations that violate the current ANSI
* standard, but will be compliant under the forthcoming C9X standard.
*/
/* If ON, the enulation core will use 64-bit integers to speed up some
* operations.
*/
#define M68K_USE_64_BIT OPT_OFF
/* Set to your compiler's static inline keyword to enable it, or
* set it to blank to disable it.
* If you define INLINE in the makefile, it will override this value.
* NOTE: not enabling inline functions will SEVERELY slow down emulation.
*/
#ifndef INLINE
#define INLINE static __inline
#endif /* INLINE */
#endif /* M68K_COMPILE_FOR_MAME */
/* ======================================================================== */
/* ============================== END OF FILE ============================= */
/* ======================================================================== */
#endif /* M68KCONF__HEADER */

1015
cpu/musashi/m68kcpu.c Normal file

File diff suppressed because it is too large Load diff

2022
cpu/musashi/m68kcpu.h Normal file

File diff suppressed because it is too large Load diff

3604
cpu/musashi/m68kdasm.c Normal file

File diff suppressed because it is too large Load diff

1484
cpu/musashi/m68kmake.c Normal file

File diff suppressed because it is too large Load diff

12199
cpu/musashi/m68kopac.c Normal file

File diff suppressed because it is too large Load diff

13385
cpu/musashi/m68kopdm.c Normal file

File diff suppressed because it is too large Load diff

8878
cpu/musashi/m68kopnz.c Normal file

File diff suppressed because it is too large Load diff

2093
cpu/musashi/m68kops.c Normal file

File diff suppressed because it is too large Load diff

1986
cpu/musashi/m68kops.h Normal file

File diff suppressed because it is too large Load diff

315
cpu/musashi/readme.txt Normal file
View file

@ -0,0 +1,315 @@
MUSASHI
=======
Version 3.3
A portable Motorola M680x0 processor emulation engine.
Copyright 1998-2001 Karl Stenerud. All rights reserved.
INTRODUCTION:
------------
Musashi is a Motorola 68000, 68010, 68EC020, and 68020 emulator written in C.
This emulator was written with two goals in mind: portability and speed.
The emulator is written to ANSI C specifications with the exception that I use
inline functions. This is not compliant to the ANSI spec, but will be
compliant to the ANSI C9X spec.
It has been successfully running in the MAME project (www.mame.net) for over 2
years and so has had time to mature.
LICENSE AND COPYRIGHT:
---------------------
The Musashi M680x0 emulator is copyright 1998-2001 Karl Stenerud.
The source code included in this archive is provided AS-IS, free for any
non-commercial purpose.
If you build a program using this core, please give credit to the author.
If you wish to use this core in a commercial environment, please contact
the author to discuss commercial licensing.
AVAILABILITY:
------------
The latest version of this code can be obtained at:
http://kstenerud.cjb.net
CONTACTING THE AUTHOR:
---------------------
I can be reached at kstenerud@mame.net
BASIC CONFIGURATION:
-------------------
The basic configuration will give you a standard 68000 that has sufficient
functionality to work in a primitive environment.
This setup assumes that you only have 1 device interrupting it, that the
device will always request an autovectored interrupt, and it will always clear
the interrupt before the interrupt service routine finishes (but could
possibly re-assert the interrupt).
You will have only one address space, no tracing, and no instruction prefetch.
To implement the basic configuration:
- Open m68kconf.h and verify that the settings for INLINE and DECL_SPEC will
work with your compiler. (They are set for gcc)
- In your host program, implement the following functions:
unsigned int m68k_read_memory_8(unsigned int address);
unsigned int m68k_read_memory_16(unsigned int address);
unsigned int m68k_read_memory_32(unsigned int address);
void m68k_write_memory_8(unsigned int address, unsigned int value);
void m68k_write_memory_16(unsigned int address, unsigned int value);
void m68k_write_memory_32(unsigned int address, unsigned int value);
- In your host program, be sure to call m68k_pulse_reset() once before calling
any of the other functions as this initializes the core.
- Use m68k_execute() to execute instructions and m68k_set_irq() to cause an
interrupt.
ADDING PROPER INTERRUPT HANDLING:
--------------------------------
The interrupt handling in the basic configuration doesn't emulate the
interrupt acknowledge phase of the CPU and automatically clears an interrupt
request during interrupt processing.
While this works for most systems, you may need more accurate interrupt
handling.
To add proper interrupt handling:
- In m68kconf.h, set M68K_EMULATE_INT_ACK to OPT_SPECIFY_HANDLER
- In m68kconf.h, set M68K_INT_ACK_CALLBACK(A) to your interrupt acknowledge
routine
- Your interrupt acknowledge routine must return an interrupt vector,
M68K_INT_ACK_AUTOVECTOR, or M68K_INT_ACK_SPURIOUS. most m68k
implementations just use autovectored interrupts.
- When the interrupting device is satisfied, you must call m68k_set_irq(0) to
remove the interrupt request.
MULTIPLE INTERRUPTS:
-------------------
The above system will work if you have only one device interrupting the CPU,
but if you have more than one device, you must do a bit more.
To add multiple interrupts:
- You must make an interrupt arbitration device that will take the highest
priority interrupt and encode it onto the IRQ pins on the CPU.
- The interrupt arbitration device should use m68k_set_irq() to set the
highest pending interrupt, or 0 for no interrupts pending.
SEPARATE IMMEDIATE AND PC-RELATIVE READS:
----------------------------------------
You can write faster memory access functions if you know whether you are
fetching from ROM or RAM. Immediate reads are always from the program space
(Always in ROM unless it is running self-modifying code).
This will also separate the pc-relative reads, since some systems treat
PROGRAM mode reads and DATA mode reads differently (for program encryption,
for instance). See the section below (ADDRESS SPACE) for an explanation of
PROGRAM and DATA mode.
To enable separate reads:
- In m68kconf.h, turn on M68K_SEPARATE_READS.
- In your host program, implement the following functions:
unsigned int m68k_read_immediate_16(unsigned int address);
unsigned int m68k_read_immediate_32(unsigned int address);
unsigned int m68k_read_pcrelative_8(unsigned int address);
unsigned int m68k_read_pcrelative_16(unsigned int address);
unsigned int m68k_read_pcrelative_32(unsigned int address);
- If you need to know the current PC (for banking and such), set
M68K_MONITOR_PC to OPT_SPECIFY_HANDLER, and set M68K_SET_PC_CALLBACK(A) to
your routine.
ADDRESS SPACES:
--------------
Most systems will only implement one address space, placing ROM at the lower
addresses and RAM at the higher. However, there is the possibility that a
system will implement ROM and RAM in the same address range, but in different
address spaces, or will have different mamory types that require different
handling for the program and the data.
The 68k accomodates this by allowing different program spaces, the most
important to us being PROGRAM and DATA space. Here is a breakdown of
how information is fetched:
- All immediate reads are fetched from PROGRAM space.
- All PC-relative reads are fetched from PROGRAM space.
- The initial stack pointer and program counter are fetched from PROGRAM space.
- All other reads (except for those from the moves instruction for 68020)
are fetched from DATA space.
The m68k deals with this by encoding the requested address space on the
function code pins:
FC
Address Space 210
------------------ ---
USER DATA 001
USER PROGRAM 010
SUPERVISOR DATA 101
SUPERVISOR PROGRAM 110
CPU SPACE 111 <-- not emulated in this core since we emulate
interrupt acknowledge in another way.
Problems arise here if you need to emulate this distinction (if, for example,
your ROM and RAM are at the same address range, with RAM and ROM enable
wired to the function code pins).
There are 2 ways to deal with this situation using Musashi:
1. If you only need the distinction between PROGRAM and DATA (the most common),
you can just separate the reads (see the preceeding section). This is the
faster solution.
2. You can emulate the function code pins entirely.
To emulate the function code pins:
- In m68kconf.h, set M68K_EMULATE_FC to OPT_SPECIFY_HANDLER and set
M68K_SET_FC_CALLBACK(A) to your function code handler function.
- Your function code handler should select the proper address space for
subsequent calls to m68k_read_xx (and m68k_write_xx for 68010+).
Note: immediate reads are always done from program space, so technically you
don't need to implement the separate immediate reads, although you could
gain more speed improvements leaving them in and doing some clever
programming.
USING DIFFERENT CPU TYPES:
-------------------------
The default is to enable only the 68000 cpu type. To change this, change the
settings for M68K_EMULATE_010 etc in m68kconf.h.
To set the CPU type you want to use:
- Make sure it is enabled in m68kconf.h. Current switches are:
M68K_EMULATE_010
M68K_EMULATE_EC020
M68K_EMULATE_020
- In your host program, call m68k_set_cpu_type() and then call
m68k_pulse_reset(). Valid CPU types are:
M68K_CPU_TYPE_68000,
M68K_CPU_TYPE_68010,
M68K_CPU_TYPE_68EC020,
M68K_CPU_TYPE_68020
CLOCK FREQUENCY:
---------------
In order to emulate the correct clock frequency, you will have to calculate
how long it takes the emulation to execute a certain number of "cycles" and
vary your calls to m68k_execute() accordingly.
As well, it is a good idea to take away the CPU's timeslice when it writes to
a memory-mapped port in order to give the device it wrote to a chance to
react.
You can use the functions m68k_cycles_run(), m68k_cycles_remaining(),
m68k_modify_timeslice(), and m68k_end_timeslice() to do this.
Try to use large cycle values in your calls to m68k_execute() since it will
increase throughput. You can always take away the timeslice later.
MORE CORRECT EMULATION:
----------------------
You may need to enable these in order to properly emulate some of the more
obscure functions of the m68k:
- M68K_EMULATE_BKPT_ACK causes the CPU to call a breakpoint handler on a BKPT
instruction
- M68K_EMULATE_TRACE causes the CPU to generate trace exceptions when the
trace bits are set
- M68K_EMULATE_RESET causes the CPU to call a reset handler on a RESET
instruction.
- M68K_EMULATE_PREFETCH emulates the 4-word instruction prefetch that is part
of the 68000/68010 (needed for Amiga emulation).
- call m68k_pulse_halt() to emulate the HALT pin.
CONVENIENCE FUNCTIONS:
---------------------
These are in here for programmer convenience:
- M68K_INSTRUCTION_HOOK lets you call a handler before each instruction.
- M68K_LOG_ENABLE and M68K_LOG_1010_1111 lets you log illegal and A/F-line
instructions.
MULTIPLE CPU EMULATION:
----------------------
The default is to use only one CPU. To use more than one CPU in this core,
there are some things to keep in mind:
- To have different cpus call different functions, use OPT_ON instead of
OPT_SPECIFY_HANDLER, and use the m68k_set_xxx_callback() functions to set
your callback handlers on a per-cpu basis.
- Be sure to call set_cpu_type() for each CPU you use.
- Use m68k_set_context() and m68k_get_context() to switch to another CPU.
LOAD AND SAVE CPU CONTEXTS FROM DISK:
------------------------------------
You can use them68k_load_context() and m68k_save_context() functions to load
and save the CPU state to disk.
GET/SET INFORMATION FROM THE CPU:
--------------------------------
You can use m68k_get_reg() and m68k_set_reg() to gain access to the internals
of the CPU.
EXAMPLE:
-------
I have included a file example.zip that contains a full example.