#include "../pico_int.h" static int pwm_line_samples; static int pwm_cycles; static int pwm_mult; static int pwm_ptr; int pwm_frame_smp_cnt; static int timer_line_ticks[2]; // timers. This includes PWM timer in 32x and internal SH2 timers void p32x_timers_recalc(void) { int cycles = Pico32x.regs[0x32 / 2]; int frame_samples; int tmp, i; cycles = (cycles - 1) & 0x0fff; if (cycles < 500) { elprintf(EL_32X|EL_PWM|EL_ANOMALY, "pwm: low cycle value: %d", cycles + 1); cycles = 500; } pwm_cycles = cycles; pwm_mult = 0x10000 / cycles; if (Pico.m.pal) frame_samples = OSC_PAL / 7 * 3 / 50 / cycles; else frame_samples = OSC_NTSC / 7 * 3 / 60 / cycles; pwm_line_samples = (frame_samples << 16) / scanlines_total; // SH2 timer step for (i = 0; i < 2; i++) { tmp = PREG8(Pico32xMem->sh2_peri_regs[i], 0x80) & 7; // Sclk cycles per timer tick if (tmp) cycles = 0x20 << tmp; else cycles = 2; if (Pico.m.pal) tmp = OSC_PAL / 7 * 3 / 50 / scanlines_total; else tmp = OSC_NTSC / 7 * 3 / 60 / scanlines_total; timer_line_ticks[i] = (tmp << 16) / cycles; elprintf(EL_32X, "timer_line_ticks[%d] = %.3f", i, (double)timer_line_ticks[i] / 0x10000); } } // PWM irq for every tm samples void p32x_timers_do(int line_call) { int tm, cnt, i; if (PicoOpt & POPT_EN_PWM) { tm = (Pico32x.regs[0x30 / 2] & 0x0f00) >> 8; if (tm != 0) { if (line_call) Pico32x.pwm_irq_sample_cnt += pwm_line_samples; if (Pico32x.pwm_irq_sample_cnt >= (tm << 16)) { Pico32x.pwm_irq_sample_cnt -= tm << 16; Pico32x.sh2irqs |= P32XI_PWM; p32x_update_irls(!line_call); } } } if (!line_call) return; for (i = 0; i < 2; i++) { void *pregs = Pico32xMem->sh2_peri_regs[i]; if (PREG8(pregs, 0x80) & 0x20) { // TME cnt = PREG8(pregs, 0x81); cnt += timer_line_ticks[i]; if (cnt >= 0x100) { int level = PREG8(pregs, 0xe3) >> 4; int vector = PREG8(pregs, 0xe4) & 0x7f; elprintf(EL_32X, "%csh2 WDT irq (%d, %d)", i ? 's' : 'm', level, vector); sh2_internal_irq(&sh2s[i], level, vector); } cnt &= 0xff; PREG8(pregs, 0x81) = cnt; } } } unsigned int p32x_pwm_read16(unsigned int a) { unsigned int d = 0; int predict; a &= 0x0e; switch (a) { case 0: // control case 2: // cycle return Pico32x.regs[(0x30 + a) / 2]; case 4: // L ch case 6: // R ch case 8: // MONO predict = (pwm_line_samples * Pico.m.scanline) >> 16; elprintf(EL_PWM, "pwm: read status: ptr %d/%d, predict %d", pwm_frame_smp_cnt, (pwm_line_samples * scanlines_total) >> 16, predict); if (pwm_frame_smp_cnt > predict + 3) d |= P32XP_FULL; else if (pwm_frame_smp_cnt == 0 || pwm_frame_smp_cnt < predict - 1) d |= P32XP_EMPTY; break; } return d; } void p32x_pwm_write16(unsigned int a, unsigned int d) { a &= 0x0e; if (a == 0) // control Pico32x.regs[0x30 / 2] = d; else if (a == 2) { // cycle Pico32x.regs[0x32 / 2] = d & 0x0fff; p32x_timers_recalc(); Pico32x.pwm_irq_sample_cnt = 0; // resets? } else if (a <= 8) { d &= 0x0fff; if (d > pwm_cycles) d = pwm_cycles; d = (d - pwm_cycles / 2) * pwm_mult; if (a < 6) // L ch Pico32xMem->pwm[pwm_ptr * 2] = d; else if (a == 6) // R ch Pico32xMem->pwm[pwm_ptr * 2 + 1] = d; else // MONO Pico32xMem->pwm[pwm_ptr * 2] = Pico32xMem->pwm[pwm_ptr * 2 + 1] = d; if (a >= 6) { // R or MONO pwm_frame_smp_cnt++; pwm_ptr = (pwm_ptr + 1) & (PWM_BUFF_LEN - 1); elprintf(EL_PWM, "pwm: smp_cnt %d, ptr %d, smp %x", pwm_frame_smp_cnt, pwm_ptr, d); } } } void p32x_pwm_update(int *buf32, int length, int stereo) { extern int pwm_ptr; short *pwmb; int step; int p = 0; if (pwm_ptr <= 16) // at least some samples.. return; step = (pwm_ptr << 16) / length; // FIXME: division.. pwmb = Pico32xMem->pwm; if (stereo) { while (length-- > 0) { *buf32++ += pwmb[0]; *buf32++ += pwmb[1]; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; } } else { while (length-- > 0) { *buf32++ += pwmb[0]; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; } } elprintf(EL_PWM, "pwm_update: pwm_ptr %d, len %d, step %04x, done %d", pwm_ptr, length, step, (pwmb - Pico32xMem->pwm) / 2); pwm_ptr = 0; }