// This is part of Pico Library // (c) Copyright 2004 Dave, All rights reserved. // (c) Copyright 2006,2007 notaz, All rights reserved. // Free for non-commercial use. // For commercial use, separate licencing terms must be obtained. #include "PicoInt.h" #include "sound/ym2612.h" #include "sound/sn76496.h" #ifndef UTYPES_DEFINED typedef unsigned char u8; typedef unsigned short u16; typedef unsigned int u32; #define UTYPES_DEFINED #endif extern unsigned int lastSSRamWrite; // used by serial SRAM code #ifdef _ASM_MEMORY_C u32 PicoRead8(u32 a); u32 PicoRead16(u32 a); void PicoWrite8(u32 a,u8 d); void PicoWriteRomHW_SSF2(u32 a,u32 d); #endif #ifdef EMU_CORE_DEBUG u32 lastread_a, lastread_d[16]={0,}, lastwrite_cyc_d[16]={0,}, lastwrite_mus_d[16]={0,}; int lrp_cyc=0, lrp_mus=0, lwp_cyc=0, lwp_mus=0; extern unsigned int ppop; #endif #ifdef IO_STATS void log_io(unsigned int addr, int bits, int rw); #elif defined(_MSC_VER) #define log_io #else #define log_io(...) #endif #if defined(EMU_C68K) static __inline int PicoMemBase(u32 pc) { int membase=0; if (pc>2; // ?0SA 0000 return value; } else if(phase == 3) { if(data_reg&0x40) value|=(pad&0x30)|((pad>>8)&0xf); // ?1CB MXYZ else value|=((pad&0xc0)>>2)|0x0f; // ?0SA 1111 return value; } } if(data_reg&0x40) // TH value|=(pad&0x3f); // ?1CB RLDU else value|=((pad&0xc0)>>2)|(pad&3); // ?0SA 00DU return value; // will mirror later } #ifndef _ASM_MEMORY_C static #endif u32 SRAMRead(u32 a) { unsigned int sreg = Pico.m.sram_reg; if (!(sreg & 0x10) && (sreg & 1) && a > 0x200001) { // not yet detected SRAM elprintf(EL_SRAMIO, "normal sram detected."); Pico.m.sram_reg|=0x10; // should be normal SRAM } if (sreg & 4) // EEPROM read return SRAMReadEEPROM(); else // if(sreg & 1) // (sreg&5) is one of prerequisites return *(u8 *)(SRam.data-SRam.start+a); } #ifndef _ASM_MEMORY_C static #endif u32 SRAMRead16(u32 a) { u32 d; if (Pico.m.sram_reg & 4) { d = SRAMReadEEPROM(); d |= d << 8; } else { u8 *pm=(u8 *)(SRam.data-SRam.start+a); d =*pm++ << 8; d|=*pm++; } return d; } static void SRAMWrite(u32 a, u32 d) { unsigned int sreg = Pico.m.sram_reg; if(!(sreg & 0x10)) { // not detected SRAM if((a&~1)==0x200000) { elprintf(EL_SRAMIO, "eeprom detected."); sreg|=4; // this should be a game with EEPROM (like NBA Jam) SRam.start=0x200000; SRam.end=SRam.start+1; } else elprintf(EL_SRAMIO, "normal sram detected."); sreg|=0x10; Pico.m.sram_reg=sreg; } if(sreg & 4) { // EEPROM write // this diff must be at most 16 for NBA Jam to work if(SekCyclesDoneT()-lastSSRamWrite < 16) { // just update pending state elprintf(EL_EEPROM, "eeprom: skip because cycles=%i", SekCyclesDoneT()-lastSSRamWrite); SRAMUpdPending(a, d); } else { int old=sreg; SRAMWriteEEPROM(sreg>>6); // execute pending SRAMUpdPending(a, d); if ((old^Pico.m.sram_reg)&0xc0) // update time only if SDA/SCL changed lastSSRamWrite = SekCyclesDoneT(); } } else if(!(sreg & 2)) { u8 *pm=(u8 *)(SRam.data-SRam.start+a); if(*pm != (u8)d) { SRam.changed = 1; *pm=(u8)d; } } } // for nonstandard reads static u32 OtherRead16End(u32 a, int realsize) { u32 d=0; // 32x test /* if (a == 0xa130ec) { d = 0x4d41; goto end; } // MA else if (a == 0xa130ee) { d = 0x5253; goto end; } // RS else if (a == 0xa15100) { d = 0x0080; goto end; } else */ // for games with simple protection devices, discovered by Haze // some dumb detection is used, but that should be enough to make things work if ((a>>22) == 1 && Pico.romsize >= 512*1024) { if (*(int *)(Pico.rom+0x123e4) == 0x00550c39 && *(int *)(Pico.rom+0x123e8) == 0x00000040) { // Super Bubble Bobble (Unl) [!] if (a == 0x400000) { d=0x55<<8; goto end; } else if (a == 0x400002) { d=0x0f<<8; goto end; } } else if (*(int *)(Pico.rom+0x008c4) == 0x66240055 && *(int *)(Pico.rom+0x008c8) == 0x00404df9) { // Smart Mouse (Unl) if (a == 0x400000) { d=0x55<<8; goto end; } else if (a == 0x400002) { d=0x0f<<8; goto end; } else if (a == 0x400004) { d=0xaa<<8; goto end; } else if (a == 0x400006) { d=0xf0<<8; goto end; } } else if (*(int *)(Pico.rom+0x00404) == 0x00a90600 && *(int *)(Pico.rom+0x00408) == 0x6708b013) { // King of Fighters '98, The (Unl) [!] if (a == 0x480000 || a == 0x4800e0 || a == 0x4824a0 || a == 0x488880) { d=0xaa<<8; goto end; } else if (a == 0x4a8820) { d=0x0a<<8; goto end; } // there is also a read @ 0x4F8820 which needs 0, but that is returned in default case } else if (*(int *)(Pico.rom+0x01b24) == 0x004013f9 && *(int *)(Pico.rom+0x01b28) == 0x00ff0000) { // Mahjong Lover (Unl) [!] if (a == 0x400000) { d=0x90<<8; goto end; } else if (a == 0x401000) { d=0xd3<<8; goto end; } // this one doesn't seem to be needed, the code does 2 comparisons and only then // checks the result, which is of the above one. Left it just in case. } else if (*(int *)(Pico.rom+0x05254) == 0x0c3962d0 && *(int *)(Pico.rom+0x05258) == 0x00400055) { // Elf Wor (Unl) if (a == 0x400000) { d=0x55<<8; goto end; } else if (a == 0x400004) { d=0xc9<<8; goto end; } // this check is done if the above one fails else if (a == 0x400002) { d=0x0f<<8; goto end; } else if (a == 0x400006) { d=0x18<<8; goto end; } // similar to above } // our default behaviour is to return whatever was last written a 0x400000-0x7fffff range (used by Squirrel King (R) [!]) // Lion King II, The (Unl) [!] writes @ 400000 and wants to get that val @ 400002 and wites another val // @ 400004 which is expected @ 400006, so we really remember 2 values here d = Pico.m.prot_bytes[(a>>2)&1]<<8; } else if (a == 0xa13000 && Pico.romsize >= 1024*1024) { if (*(int *)(Pico.rom+0xc8af0) == 0x30133013 && *(int *)(Pico.rom+0xc8af4) == 0x000f0240) { // Rockman X3 (Unl) [!] d=0x0c; goto end; } else if (*(int *)(Pico.rom+0x28888) == 0x07fc0000 && *(int *)(Pico.rom+0x2888c) == 0x4eb94e75) { // Bug's Life, A (Unl) [!] d=0x28; goto end; // does the check from RAM } else if (*(int *)(Pico.rom+0xc8778) == 0x30133013 && *(int *)(Pico.rom+0xc877c) == 0x000f0240) { // Super Mario Bros. (Unl) [!] d=0x0c; goto end; // seems to be the same code as in Rockman X3 (Unl) [!] } else if (*(int *)(Pico.rom+0xf20ec) == 0x30143013 && *(int *)(Pico.rom+0xf20f0) == 0x000f0200) { // Super Mario 2 1998 (Unl) [!] d=0x0a; goto end; } } else if (a == 0xa13002) { // Pocket Monsters (Unl) d=0x01; goto end; } else if (a == 0xa1303E) { // Pocket Monsters (Unl) d=0x1f; goto end; } else if (a == 0x30fe02) { // Virtua Racing - just for fun // this seems to be some flag that SVP is ready or something similar d=1; goto end; } end: elprintf(EL_UIO, "strange r%i: [%06x] %04x @%06x", realsize, a&0xffffff, d, SekPc); return d; } //extern UINT32 mz80GetRegisterValue(void *, UINT32); static void OtherWrite8End(u32 a,u32 d,int realsize) { // sram if(a >= SRam.start && a <= SRam.end) { elprintf(EL_SRAMIO, "sram w8 [%06x] %02x @ %06x", a, d, SekPc); SRAMWrite(a, d); return; } #ifdef _ASM_MEMORY_C // special ROM hardware (currently only banking and sram reg supported) if((a&0xfffff1) == 0xA130F1) { PicoWriteRomHW_SSF2(a, d); // SSF2 or SRAM return; } #else // sram access register if(a == 0xA130F1) { elprintf(EL_SRAMIO, "sram reg=%02x", d); Pico.m.sram_reg &= ~3; Pico.m.sram_reg |= (u8)(d&3); return; } #endif elprintf(EL_UIO, "strange w%i: %06x, %08x @%06x", realsize, a&0xffffff, d, SekPc); // for games with simple protection devices, discovered by Haze if ((a>>22) == 1) Pico.m.prot_bytes[(a>>2)&1] = (u8)d; } #include "MemoryCmn.c" // ----------------------------------------------------------------- // Read Rom and read Ram #ifndef _ASM_MEMORY_C PICO_INTERNAL_ASM u32 PicoRead8(u32 a) { u32 d=0; if ((a&0xe00000)==0xe00000) { d = *(u8 *)(Pico.ram+((a^1)&0xffff)); goto end; } // Ram a&=0xffffff; #ifndef EMU_CORE_DEBUG // sram if (a >= SRam.start && a <= SRam.end && (Pico.m.sram_reg&5)) { d = SRAMRead(a); elprintf(EL_SRAMIO, "sram r8 [%06x] %02x @ %06x", a, d, SekPc); goto end; } #endif if (a>=8; end: elprintf(EL_IO, "r8 : %06x, %02x @%06x", a&0xffffff, (u8)d, SekPc); #ifdef EMU_CORE_DEBUG if (a>=Pico.romsize) { lastread_a = a; lastread_d[lrp_cyc++&15] = (u8)d; } #endif return d; } PICO_INTERNAL_ASM u32 PicoRead16(u32 a) { u32 d=0; if ((a&0xe00000)==0xe00000) { d=*(u16 *)(Pico.ram+(a&0xfffe)); goto end; } // Ram a&=0xfffffe; #ifndef EMU_CORE_DEBUG // sram if (a >= SRam.start && a <= SRam.end && (Pico.m.sram_reg&5)) { d = SRAMRead16(a); elprintf(EL_SRAMIO, "sram r16 [%06x] %04x @ %06x", a, d, SekPc); goto end; } #endif if (a=Pico.romsize) { lastread_a = a; lastread_d[lrp_cyc++&15] = d; } #endif return d; } PICO_INTERNAL_ASM u32 PicoRead32(u32 a) { u32 d=0; if ((a&0xe00000)==0xe00000) { u16 *pm=(u16 *)(Pico.ram+(a&0xfffe)); d = (pm[0]<<16)|pm[1]; goto end; } // Ram a&=0xfffffe; // sram if(a >= SRam.start && a <= SRam.end && (Pico.m.sram_reg&5)) { d = (SRAMRead16(a)<<16)|SRAMRead16(a+2); elprintf(EL_SRAMIO, "sram r32 [%06x] %08x @ %06x", a, d, SekPc); goto end; } if (a=Pico.romsize) { lastread_a = a; lastread_d[lrp_cyc++&15] = d; } #endif return d; } #endif // ----------------------------------------------------------------- // Write Ram #if !defined(_ASM_MEMORY_C) || defined(_ASM_MEMORY_C_AMIPS) PICO_INTERNAL_ASM void PicoWrite8(u32 a,u8 d) { elprintf(EL_IO, "w8 : %06x, %02x @%06x", a&0xffffff, d, SekPc); #ifdef EMU_CORE_DEBUG lastwrite_cyc_d[lwp_cyc++&15] = d; #endif if ((a&0xe00000)==0xe00000) { *(u8 *)(Pico.ram+((a^1)&0xffff))=d; return; } // Ram log_io(a, 8, 1); a&=0xffffff; OtherWrite8(a,d); } #endif void PicoWrite16(u32 a,u16 d) { elprintf(EL_IO, "w16: %06x, %04x", a&0xffffff, d); #ifdef EMU_CORE_DEBUG lastwrite_cyc_d[lwp_cyc++&15] = d; #endif if ((a&0xe00000)==0xe00000) { *(u16 *)(Pico.ram+(a&0xfffe))=d; return; } // Ram log_io(a, 16, 1); a&=0xfffffe; if ((a&0xe700e0)==0xc00000) { PicoVideoWrite(a,(u16)d); return; } // VDP OtherWrite16(a,d); } static void PicoWrite32(u32 a,u32 d) { elprintf(EL_IO, "w32: %06x, %08x", a&0xffffff, d); #ifdef EMU_CORE_DEBUG lastwrite_cyc_d[lwp_cyc++&15] = d; #endif if ((a&0xe00000)==0xe00000) { // Ram: u16 *pm=(u16 *)(Pico.ram+(a&0xfffe)); pm[0]=(u16)(d>>16); pm[1]=(u16)d; return; } log_io(a, 32, 1); a&=0xfffffe; if ((a&0xe700e0)==0xc00000) { // VDP: PicoVideoWrite(a, (u16)(d>>16)); PicoVideoWrite(a+2,(u16)d); return; } OtherWrite16(a, (u16)(d>>16)); OtherWrite16(a+2,(u16)d); } // ----------------------------------------------------------------- static void OtherWrite16End(u32 a,u32 d,int realsize) { PicoWrite8Hook(a, d>>8, realsize); PicoWrite8Hook(a+1,d&0xff, realsize); } u32 (*PicoRead16Hook) (u32 a, int realsize) = OtherRead16End; void (*PicoWrite8Hook) (u32 a, u32 d, int realsize) = OtherWrite8End; void (*PicoWrite16Hook)(u32 a, u32 d, int realsize) = OtherWrite16End; PICO_INTERNAL void PicoMemResetHooks(void) { // default unmapped/cart specific handlers PicoRead16Hook = OtherRead16End; PicoWrite8Hook = OtherWrite8End; PicoWrite16Hook = OtherWrite16End; } #ifdef EMU_M68K static void m68k_mem_setup(void); #endif PICO_INTERNAL void PicoMemSetup(void) { // Setup memory callbacks: #ifdef EMU_C68K PicoCpuCM68k.checkpc=PicoCheckPc; PicoCpuCM68k.fetch8 =PicoCpuCM68k.read8 =PicoRead8; PicoCpuCM68k.fetch16=PicoCpuCM68k.read16=PicoRead16; PicoCpuCM68k.fetch32=PicoCpuCM68k.read32=PicoRead32; PicoCpuCM68k.write8 =PicoWrite8; PicoCpuCM68k.write16=PicoWrite16; PicoCpuCM68k.write32=PicoWrite32; #endif #ifdef EMU_F68K PicoCpuFM68k.read_byte =PicoRead8; PicoCpuFM68k.read_word =PicoRead16; PicoCpuFM68k.read_long =PicoRead32; PicoCpuFM68k.write_byte=PicoWrite8; PicoCpuFM68k.write_word=PicoWrite16; PicoCpuFM68k.write_long=PicoWrite32; // setup FAME fetchmap { int i; // by default, point everything to first 64k of ROM for (i = 0; i < M68K_FETCHBANK1; i++) PicoCpuFM68k.Fetch[i] = (unsigned int)Pico.rom - (i<<(24-FAMEC_FETCHBITS)); // now real ROM for (i = 0; i < M68K_FETCHBANK1 && (i<<(24-FAMEC_FETCHBITS)) < Pico.romsize; i++) PicoCpuFM68k.Fetch[i] = (unsigned int)Pico.rom; // .. and RAM for (i = M68K_FETCHBANK1*14/16; i < M68K_FETCHBANK1; i++) PicoCpuFM68k.Fetch[i] = (unsigned int)Pico.ram - (i<<(24-FAMEC_FETCHBITS)); } #endif #ifdef EMU_M68K m68k_mem_setup(); #endif } /* some nasty things below :( */ #ifdef EMU_M68K unsigned int (*pm68k_read_memory_8) (unsigned int address) = NULL; unsigned int (*pm68k_read_memory_16)(unsigned int address) = NULL; unsigned int (*pm68k_read_memory_32)(unsigned int address) = NULL; void (*pm68k_write_memory_8) (unsigned int address, unsigned char value) = NULL; void (*pm68k_write_memory_16)(unsigned int address, unsigned short value) = NULL; void (*pm68k_write_memory_32)(unsigned int address, unsigned int value) = NULL; unsigned int (*pm68k_read_memory_pcr_8) (unsigned int address) = NULL; unsigned int (*pm68k_read_memory_pcr_16)(unsigned int address) = NULL; unsigned int (*pm68k_read_memory_pcr_32)(unsigned int address) = NULL; // these are here for core debugging mode static unsigned int m68k_read_8 (unsigned int a, int do_fake) { a&=0xffffff; if(a= 228) z80_scanline++, z80_scanline_cycles += 228; return z80_scanline; } return Pico.m.scanline; } /* probably not should be in this file, but it's near related code here */ void ym2612_sync_timers(int z80_cycles, int mode_old, int mode_new) { int xcycles = z80_cycles << 8; /* check for overflows */ if ((mode_old & 4) && xcycles > timer_a_next_oflow) ym2612.OPN.ST.status |= 1; if ((mode_old & 8) && xcycles > timer_b_next_oflow) ym2612.OPN.ST.status |= 2; /* update timer a */ if (mode_old & 1) while (xcycles > timer_a_next_oflow) timer_a_next_oflow += timer_a_step; if ((mode_old ^ mode_new) & 1) // turning on/off { if (mode_old & 1) { timer_a_offset = timer_a_next_oflow - xcycles; timer_a_next_oflow = TIMER_NO_OFLOW; } else timer_a_next_oflow = xcycles + timer_a_offset; } if (mode_new & 1) elprintf(EL_YMTIMER, "timer a upd to %i @ %i", timer_a_next_oflow>>8, z80_cycles); /* update timer b */ if (mode_old & 2) while (xcycles > timer_b_next_oflow) timer_b_next_oflow += timer_b_step; if ((mode_old ^ mode_new) & 2) { if (mode_old & 2) { timer_b_offset = timer_b_next_oflow - xcycles; timer_b_next_oflow = TIMER_NO_OFLOW; } else timer_b_next_oflow = xcycles + timer_b_offset; } if (mode_new & 2) elprintf(EL_YMTIMER, "timer b upd to %i @ %i", timer_b_next_oflow>>8, z80_cycles); } // ym2612 DAC and timer I/O handlers for z80 int ym2612_write_local(u32 a, u32 d, int is_from_z80) { int addr; a &= 3; if (a == 1 && ym2612.OPN.ST.address == 0x2a) /* DAC data */ { int scanline = get_scanline(is_from_z80); //elprintf(EL_STATUS, "%03i -> %03i dac w %08x z80 %i", PsndDacLine, scanline, d, is_from_z80); ym2612.dacout = ((int)d - 0x80) << 6; if (PsndOut && ym2612.dacen && scanline >= PsndDacLine) PsndDoDAC(scanline); return 0; } switch (a) { case 0: /* address port 0 */ ym2612.OPN.ST.address = d; ym2612.addr_A1 = 0; #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, -1); #endif return 0; case 1: /* data port 0 */ if (ym2612.addr_A1 != 0) return 0; addr = ym2612.OPN.ST.address; ym2612.REGS[addr] = d; switch (addr) { case 0x24: // timer A High 8 case 0x25: { // timer A Low 2 int TAnew = (addr == 0x24) ? ((ym2612.OPN.ST.TA & 0x03)|(((int)d)<<2)) : ((ym2612.OPN.ST.TA & 0x3fc)|(d&3)); if (ym2612.OPN.ST.TA != TAnew) { //elprintf(EL_STATUS, "timer a set %i", TAnew); ym2612.OPN.ST.TA = TAnew; //ym2612.OPN.ST.TAC = (1024-TAnew)*18; //ym2612.OPN.ST.TAT = 0; timer_a_step = timer_a_offset = TIMER_A_TICK_ZCYCLES * (1024 - TAnew); if (ym2612.OPN.ST.mode & 1) { int cycles = is_from_z80 ? z80_cyclesDone() : cycles_68k_to_z80(SekCyclesDone()); timer_a_next_oflow = (cycles << 8) + timer_a_step; } elprintf(EL_YMTIMER, "timer a set to %i, %i", 1024 - TAnew, timer_a_next_oflow>>8); } return 0; } case 0x26: // timer B if (ym2612.OPN.ST.TB != d) { //elprintf(EL_STATUS, "timer b set %i", d); ym2612.OPN.ST.TB = d; //ym2612.OPN.ST.TBC = (256-d) * 288; //ym2612.OPN.ST.TBT = 0; timer_b_step = timer_b_offset = TIMER_B_TICK_ZCYCLES * (256 - d); // 262800 if (ym2612.OPN.ST.mode & 2) { int cycles = is_from_z80 ? z80_cyclesDone() : cycles_68k_to_z80(SekCyclesDone()); timer_b_next_oflow = (cycles << 8) + timer_b_step; } elprintf(EL_YMTIMER, "timer b set to %i, %i", 256 - d, timer_b_next_oflow>>8); } return 0; case 0x27: { /* mode, timer control */ int old_mode = ym2612.OPN.ST.mode; int cycles = is_from_z80 ? z80_cyclesDone() : cycles_68k_to_z80(SekCyclesDone()); ym2612.OPN.ST.mode = d; elprintf(EL_YMTIMER, "st mode %02x", d); ym2612_sync_timers(cycles, old_mode, d); /* reset Timer a flag */ if (d & 0x10) ym2612.OPN.ST.status &= ~1; /* reset Timer b flag */ if (d & 0x20) ym2612.OPN.ST.status &= ~2; if ((d ^ old_mode) & 0xc0) { #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) return YM2612Write_940(a, d, get_scanline(is_from_z80)); #endif return 1; } return 0; } case 0x2b: { /* DAC Sel (YM2612) */ int scanline = get_scanline(is_from_z80); ym2612.dacen = d & 0x80; if (d & 0x80) PsndDacLine = scanline; #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, scanline); #endif return 0; } } break; case 2: /* address port 1 */ ym2612.OPN.ST.address = d; ym2612.addr_A1 = 1; #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, -1); #endif return 0; case 3: /* data port 1 */ if (ym2612.addr_A1 != 1) return 0; addr = ym2612.OPN.ST.address | 0x100; ym2612.REGS[addr] = d; break; } #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) return YM2612Write_940(a, d, get_scanline(is_from_z80)); #endif return YM2612Write_(a, d); } #define ym2612_read_local() \ if (xcycles >= timer_a_next_oflow) \ ym2612.OPN.ST.status |= (ym2612.OPN.ST.mode >> 2) & 1; \ if (xcycles >= timer_b_next_oflow) \ ym2612.OPN.ST.status |= (ym2612.OPN.ST.mode >> 2) & 2 u32 ym2612_read_local_z80(void) { int xcycles = z80_cyclesDone() << 8; ym2612_read_local(); elprintf(EL_YMTIMER, "timer z80 read %i, sched %i, %i @ %i|%i", ym2612.OPN.ST.status, timer_a_next_oflow>>8, timer_b_next_oflow>>8, xcycles >> 8, (xcycles >> 8) / 228); return ym2612.OPN.ST.status; } u32 ym2612_read_local_68k(void) { int xcycles = cycles_68k_to_z80(SekCyclesDone()) << 8; ym2612_read_local(); elprintf(EL_YMTIMER, "timer 68k read %i, sched %i, %i @ %i|%i", ym2612.OPN.ST.status, timer_a_next_oflow>>8, timer_b_next_oflow>>8, xcycles >> 8, (xcycles >> 8) / 228); return ym2612.OPN.ST.status; } void ym2612_pack_state(void) { // timers are saved as tick counts, in 16.16 int format int tac, tat = 0, tbc, tbt = 0; tac = 1024 - ym2612.OPN.ST.TA; tbc = 256 - ym2612.OPN.ST.TB; if (timer_a_next_oflow != TIMER_NO_OFLOW) tat = (int)((double)(timer_a_step - timer_a_next_oflow) / (double)timer_a_step * tac * 65536); if (timer_b_next_oflow != TIMER_NO_OFLOW) tbt = (int)((double)(timer_b_step - timer_b_next_oflow) / (double)timer_b_step * tbc * 65536); elprintf(EL_YMTIMER, "save: timer a %i/%i", tat >> 16, tac); elprintf(EL_YMTIMER, "save: timer b %i/%i", tbt >> 16, tbc); #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) YM2612PicoStateSave2_940(tat, tbt); else #endif YM2612PicoStateSave2(tat, tbt); } void ym2612_unpack_state(void) { int i, ret, tac, tat, tbc, tbt; YM2612PicoStateLoad(); // feed all the registers and update internal state for (i = 0x20; i < 0xA0; i++) { ym2612_write_local(0, i, 0); ym2612_write_local(1, ym2612.REGS[i], 0); } for (i = 0x30; i < 0xA0; i++) { ym2612_write_local(2, i, 0); ym2612_write_local(3, ym2612.REGS[i|0x100], 0); } for (i = 0xAF; i >= 0xA0; i--) { // must apply backwards ym2612_write_local(2, i, 0); ym2612_write_local(3, ym2612.REGS[i|0x100], 0); ym2612_write_local(0, i, 0); ym2612_write_local(1, ym2612.REGS[i], 0); } for (i = 0xB0; i < 0xB8; i++) { ym2612_write_local(0, i, 0); ym2612_write_local(1, ym2612.REGS[i], 0); ym2612_write_local(2, i, 0); ym2612_write_local(3, ym2612.REGS[i|0x100], 0); } #ifdef __GP2X__ if (PicoOpt & POPT_EXT_FM) ret = YM2612PicoStateLoad2_940(&tat, &tbt); else #endif ret = YM2612PicoStateLoad2(&tat, &tbt); if (ret != 0) { elprintf(EL_STATUS, "old ym2612 state"); return; // no saved timers } tac = (1024 - ym2612.OPN.ST.TA) << 16; tbc = (256 - ym2612.OPN.ST.TB) << 16; if (ym2612.OPN.ST.mode & 1) timer_a_next_oflow = (double)(tac - tat) / (double)tac * timer_a_step; else timer_a_next_oflow = TIMER_NO_OFLOW; if (ym2612.OPN.ST.mode & 2) timer_b_next_oflow = (double)(tbc - tbt) / (double)tbc * timer_b_step; else timer_b_next_oflow = TIMER_NO_OFLOW; elprintf(EL_YMTIMER, "load: %i/%i, timer_a_next_oflow %i", tat>>16, tac>>16, timer_a_next_oflow >> 8); elprintf(EL_YMTIMER, "load: %i/%i, timer_b_next_oflow %i", tbt>>16, tbc>>16, timer_b_next_oflow >> 8); } // ----------------------------------------------------------------- // z80 memhandlers PICO_INTERNAL unsigned char z80_read(unsigned short a) { u8 ret = 0; if ((a>>13)==2) // 0x4000-0x5fff (Charles MacDonald) { if (PicoOpt&POPT_EN_FM) ret = ym2612_read_local_z80(); return ret; } if (a>=0x8000) { extern u32 PicoReadM68k8(u32 a); u32 addr68k; addr68k=Pico.m.z80_bank68k<<15; addr68k+=a&0x7fff; if (addr68k < Pico.romsize) { ret = Pico.rom[addr68k^1]; goto bnkend; } elprintf(EL_ANOMALY, "z80->68k upper read [%06x] %02x", addr68k, ret); if (PicoAHW & PAHW_MCD) ret = PicoReadM68k8(addr68k); else ret = PicoRead8(addr68k); bnkend: elprintf(EL_Z80BNK, "z80->68k r8 [%06x] %02x", addr68k, ret); return ret; } // should not be needed, cores should be able to access RAM themselves if (a<0x4000) return Pico.zram[a&0x1fff]; elprintf(EL_ANOMALY, "z80 invalid r8 [%06x] %02x", a, ret); return ret; } #ifndef _USE_CZ80 PICO_INTERNAL_ASM void z80_write(unsigned char data, unsigned short a) #else PICO_INTERNAL_ASM void z80_write(unsigned int a, unsigned char data) #endif { if ((a>>13)==2) // 0x4000-0x5fff (Charles MacDonald) { if(PicoOpt&POPT_EN_FM) emustatus|=ym2612_write_local(a, data, 1) & 1; return; } if ((a&0xfff9)==0x7f11) // 7f11 7f13 7f15 7f17 { if(PicoOpt&POPT_EN_PSG) SN76496Write(data); return; } if ((a>>8)==0x60) { Pico.m.z80_bank68k>>=1; Pico.m.z80_bank68k|=(data&1)<<8; Pico.m.z80_bank68k&=0x1ff; // 9 bits and filled in the new top one return; } if (a>=0x8000) { extern void PicoWriteM68k8(u32 a,u8 d); u32 addr68k; addr68k=Pico.m.z80_bank68k<<15; addr68k+=a&0x7fff; elprintf(EL_Z80BNK, "z80->68k w8 [%06x] %02x", addr68k, data); if (PicoAHW & PAHW_MCD) PicoWriteM68k8(addr68k, data); else PicoWrite8(addr68k, data); return; } // should not be needed if (a<0x4000) { Pico.zram[a&0x1fff]=data; return; } elprintf(EL_ANOMALY, "z80 invalid w8 [%06x] %02x", a, data); } #ifndef _USE_CZ80 PICO_INTERNAL unsigned short z80_read16(unsigned short a) { return (u16) ( (u16)z80_read(a) | ((u16)z80_read((u16)(a+1))<<8) ); } PICO_INTERNAL void z80_write16(unsigned short data, unsigned short a) { z80_write((unsigned char) data,a); z80_write((unsigned char)(data>>8),(u16)(a+1)); } #endif