// This is part of Pico Library // (c) Copyright 2004 Dave, All rights reserved. // (c) Copyright 2006 notaz, All rights reserved. // Free for non-commercial use. // For commercial use, separate licencing terms must be obtained. #include #include "ym2612.h" #include "sn76496.h" #if defined(_USE_MZ80) #include "../../cpu/mz80/mz80.h" #elif defined(_USE_DRZ80) #include "../../cpu/DrZ80/drz80.h" #elif defined(_USE_CZ80) #include "../../cpu/cz80/cz80.h" #endif #include "../PicoInt.h" #include "../cd/pcm.h" #include "mix.h" // master int buffer to mix to static int PsndBuffer[2*44100/50]; // dac static unsigned short dac_info[312]; // pppppppp ppppllll, p - pos in buff, l - length to write for this sample // for Pico int PsndRate=0; int PsndLen=0; // number of mono samples, multiply by 2 for stereo int PsndLen_exc_add=0; // this is for non-integer sample counts per line, eg. 22050/60 int PsndLen_exc_cnt=0; short *PsndOut=NULL; // PCM data buffer // from ym2612.c extern int *ym2612_dacen; extern INT32 *ym2612_dacout; void YM2612TimerHandler(int c,int cnt); // sn76496 extern int *sn76496_regs; static void dac_recalculate(void) { int i, dac_cnt, pos, len, lines = Pico.m.pal ? 312 : 262, mid = Pico.m.pal ? 68 : 93; if(PsndLen <= lines) { // shrinking algo dac_cnt = -PsndLen; len=1; pos=0; dac_info[225] = 1; for(i=226; i != 225; i++) { if (i >= lines) i = 0; len = 0; if(dac_cnt < 0) { len=1; pos++; dac_cnt += lines; } dac_cnt -= PsndLen; dac_info[i] = (pos<<4)|len; } } else { // stretching dac_cnt = PsndLen; pos=0; for(i = 225; i != 224; i++) { if (i >= lines) i = 0; len=0; while(dac_cnt >= 0) { dac_cnt -= lines; len++; } if (i == mid) // midpoint while(pos+len < PsndLen/2) { dac_cnt -= lines; len++; } dac_cnt += PsndLen; dac_info[i] = (pos<<4)|len; pos+=len; } // last sample for(len = 0, i = pos; i < PsndLen; i++) len++; if (PsndLen_exc_add) len++; dac_info[224] = (pos<<4)|len; } //for(i=len=0; i < lines; i++) { // printf("%03i : %03i : %i\n", i, dac_info[i]>>4, dac_info[i]&0xf); // len+=dac_info[i]&0xf; //} //printf("rate is %i, len %f\n", PsndRate, (double)PsndRate/(Pico.m.pal ? 50.0 : 60.0)); //printf("len total: %i, last pos: %i\n", len, pos); //exit(8); } PICO_INTERNAL void PsndReset(void) { void *ym2612_regs; // also clear the internal registers+addr line ym2612_regs = YM2612GetRegs(); memset(ym2612_regs, 0, 0x200+4); z80startCycle = z80stopCycle = 0; PsndRerate(0); } // to be called after changing sound rate or chips void PsndRerate(int preserve_state) { void *state = NULL; int target_fps = Pico.m.pal ? 50 : 60; // not all rates are supported in MCD mode due to mp3 decoder limitations if (PicoMCD & 1) { if (PsndRate != 11025 && PsndRate != 22050 && PsndRate != 44100) PsndRate = 22050; PicoOpt |= 8; // force stereo } if (preserve_state) { state = malloc(0x200); if (state == NULL) return; memcpy(state, YM2612GetRegs(), 0x200); if ((PicoMCD & 1) && Pico_mcd->m.audio_track) Pico_mcd->m.audio_offset = mp3_get_offset(); } YM2612Init(Pico.m.pal ? OSC_PAL/7 : OSC_NTSC/7, PsndRate); if (preserve_state) { // feed it back it's own registers, just like after loading state memcpy(YM2612GetRegs(), state, 0x200); YM2612PicoStateLoad(); if ((PicoMCD & 1) && Pico_mcd->m.audio_track) mp3_start_play(Pico_mcd->TOC.Tracks[Pico_mcd->m.audio_track].F, Pico_mcd->m.audio_offset); } if (preserve_state) memcpy(state, sn76496_regs, 28*4); // remember old state SN76496_init(Pico.m.pal ? OSC_PAL/15 : OSC_NTSC/15, PsndRate); if (preserve_state) memcpy(sn76496_regs, state, 28*4); // restore old state if (state) free(state); // calculate PsndLen PsndLen=PsndRate / target_fps; PsndLen_exc_add=((PsndRate - PsndLen*target_fps)<<16) / target_fps; PsndLen_exc_cnt=0; // recalculate dac info dac_recalculate(); if (PicoMCD & 1) pcm_set_rate(PsndRate); // clear all buffers memset32(PsndBuffer, 0, sizeof(PsndBuffer)/4); if (PsndOut) PsndClear(); } // This is called once per raster (aka line), but not necessarily for every line PICO_INTERNAL void Psnd_timers_and_dac(int raster) { int pos, len; int do_dac = PsndOut && (PicoOpt&1) && *ym2612_dacen; // int do_pcm = PsndOut && (PicoMCD&1) && (PicoOpt&0x400); // Our raster lasts 63.61323/64.102564 microseconds (NTSC/PAL) YM2612PicoTick(1); if (!do_dac /*&& !do_pcm*/) return; pos=dac_info[raster], len=pos&0xf; if (!len) return; pos>>=4; if (do_dac) { short *d = PsndOut + pos*2; int dout = *ym2612_dacout; if(PicoOpt&8) { // some manual loop unrolling here :) d[0] = dout; if (len > 1) { d[2] = dout; if (len > 2) d[4] = dout; } } else { short *d = PsndOut + pos; d[0] = dout; if (len > 1) { d[1] = dout; if (len > 2) d[2] = dout; } } } #if 0 if (do_pcm) { int *d = PsndBuffer; d += (PicoOpt&8) ? pos*2 : pos; pcm_update(d, len, 1); } #endif } PICO_INTERNAL void PsndClear(void) { int len = PsndLen; if (PsndLen_exc_add) len++; if (PicoOpt & 8) memset32((int *) PsndOut, 0, len); // assume PsndOut to be aligned else { short *out = PsndOut; if ((int)out & 2) { *out++ = 0; len--; } memset32((int *) out, 0, len/2); if (len & 1) out[len-1] = 0; } } PICO_INTERNAL int PsndRender(int offset, int length) { int buf32_updated = 0; int *buf32 = PsndBuffer+offset; int stereo = (PicoOpt & 8) >> 3; // emulating CD && PCM option enabled && PCM chip on && have enabled channels int do_pcm = (PicoMCD&1) && (PicoOpt&0x400) && (Pico_mcd->pcm.control & 0x80) && Pico_mcd->pcm.enabled; offset <<= stereo; if (offset == 0) { // should happen once per frame // compensate for float part of PsndLen PsndLen_exc_cnt += PsndLen_exc_add; if (PsndLen_exc_cnt >= 0x10000) { PsndLen_exc_cnt -= 0x10000; length++; } } // PSG if (PicoOpt & 2) SN76496Update(PsndOut+offset, length, stereo); // Add in the stereo FM buffer if (PicoOpt & 1) { buf32_updated = YM2612UpdateOne(buf32, length, stereo, 1); } else memset32(buf32, 0, length<s68k_regs[0x36] & 1) && (Pico_mcd->scd.Status_CDC & 1)) mp3_update(buf32, length, stereo); // convert + limit to normal 16bit output if (stereo) mix_32_to_16l_stereo(PsndOut+offset, buf32, length); else mix_32_to_16_mono (PsndOut+offset, buf32, length); return length; } #if defined(_USE_MZ80) // memhandlers for mz80 core unsigned char mz80_read(UINT32 a, struct MemoryReadByte *w) { return z80_read(a); } void mz80_write(UINT32 a, UINT8 d, struct MemoryWriteByte *w) { z80_write(d, a); } // structures for mz80 core static struct MemoryReadByte mz80_mem_read[]= { {0x0000,0xffff,mz80_read}, {(UINT32) -1,(UINT32) -1,NULL} }; static struct MemoryWriteByte mz80_mem_write[]= { {0x0000,0xffff,mz80_write}, {(UINT32) -1,(UINT32) -1,NULL} }; static struct z80PortRead mz80_io_read[] ={ {(UINT16) -1,(UINT16) -1,NULL} }; static struct z80PortWrite mz80_io_write[]={ {(UINT16) -1,(UINT16) -1,NULL} }; #elif defined(_USE_DRZ80) static struct DrZ80 drZ80; static unsigned int DrZ80_rebasePC(unsigned short a) { drZ80.Z80PC_BASE = (unsigned int) Pico.zram; return drZ80.Z80PC_BASE + a; } static unsigned int DrZ80_rebaseSP(unsigned short a) { drZ80.Z80SP_BASE = (unsigned int) Pico.zram; return drZ80.Z80SP_BASE + a; } static void DrZ80_irq_callback() { drZ80.Z80_IRQ = 0; // lower irq when accepted } #endif #if defined(_USE_DRZ80) || defined(_USE_CZ80) static unsigned char z80_in(unsigned short p) { elprintf(EL_ANOMALY, "Z80 port %04x read", p); return 0xff; } static void z80_out(unsigned short p,unsigned char d) { elprintf(EL_ANOMALY, "Z80 port %04x write %02x", p, d); } #endif // z80 functionality wrappers PICO_INTERNAL void z80_init(void) { #if defined(_USE_MZ80) struct mz80context z80; // z80 mz80init(); // Modify the default context mz80GetContext(&z80); // point mz80 stuff z80.z80Base=Pico.zram; z80.z80MemRead=mz80_mem_read; z80.z80MemWrite=mz80_mem_write; z80.z80IoRead=mz80_io_read; z80.z80IoWrite=mz80_io_write; mz80SetContext(&z80); #elif defined(_USE_DRZ80) memset(&drZ80, 0, sizeof(struct DrZ80)); drZ80.z80_rebasePC=DrZ80_rebasePC; drZ80.z80_rebaseSP=DrZ80_rebaseSP; drZ80.z80_read8 =z80_read; drZ80.z80_read16 =z80_read16; drZ80.z80_write8 =z80_write; drZ80.z80_write16 =z80_write16; drZ80.z80_in =z80_in; drZ80.z80_out =z80_out; drZ80.z80_irq_callback=DrZ80_irq_callback; #elif defined(_USE_CZ80) memset(&CZ80, 0, sizeof(CZ80)); Cz80_Init(&CZ80); Cz80_Set_Fetch(&CZ80, 0x0000, 0x1fff, (UINT32)Pico.zram); // main RAM Cz80_Set_Fetch(&CZ80, 0x2000, 0x3fff, (UINT32)Pico.zram - 0x2000); // mirror Cz80_Set_ReadB(&CZ80, (UINT8 (*)(UINT32 address))z80_read); Cz80_Set_WriteB(&CZ80, z80_write); Cz80_Set_INPort(&CZ80, z80_in); Cz80_Set_OUTPort(&CZ80, z80_out); #endif } PICO_INTERNAL void z80_reset(void) { #if defined(_USE_MZ80) mz80reset(); #elif defined(_USE_DRZ80) memset(&drZ80, 0, 0x54); drZ80.Z80F = (1<<2); // set ZFlag drZ80.Z80F2 = (1<<2); // set ZFlag drZ80.Z80IX = 0xFFFF << 16; drZ80.Z80IY = 0xFFFF << 16; drZ80.Z80IM = 0; // 1? drZ80.Z80PC = drZ80.z80_rebasePC(0); drZ80.Z80SP = drZ80.z80_rebaseSP(0x2000); // 0xf000 ? #elif defined(_USE_CZ80) Cz80_Reset(&CZ80); #endif Pico.m.z80_fakeval = 0; // for faking when Z80 is disabled } PICO_INTERNAL void z80_resetCycles(void) { #if defined(_USE_MZ80) mz80GetElapsedTicks(1); #endif } PICO_INTERNAL void z80_int(void) { #if defined(_USE_MZ80) mz80int(0); #elif defined(_USE_DRZ80) drZ80.z80irqvector = 0xFF; // default IRQ vector RST opcode drZ80.Z80_IRQ = 1; #elif defined(_USE_CZ80) Cz80_Set_IRQ(&CZ80, 0, HOLD_LINE); #endif } // returns number of cycles actually executed PICO_INTERNAL int z80_run(int cycles) { #if defined(_USE_MZ80) int ticks_pre = mz80GetElapsedTicks(0); mz80exec(cycles); return mz80GetElapsedTicks(0) - ticks_pre; #elif defined(_USE_DRZ80) return cycles - DrZ80Run(&drZ80, cycles); #elif defined(_USE_CZ80) return Cz80_Exec(&CZ80, cycles); #else return cycles; #endif } PICO_INTERNAL void z80_pack(unsigned char *data) { #if defined(_USE_MZ80) struct mz80context mz80; *(int *)data = 0x00005A6D; // "mZ" mz80GetContext(&mz80); memcpy(data+4, &mz80.z80clockticks, sizeof(mz80)-5*4); // don't save base&memhandlers #elif defined(_USE_DRZ80) *(int *)data = 0x015A7244; // "DrZ" v1 drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE); drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE); memcpy(data+4, &drZ80, 0x54); #elif defined(_USE_CZ80) *(int *)data = 0x00007a43; // "Cz" *(int *)(data+4) = Cz80_Get_Reg(&CZ80, CZ80_PC); memcpy(data+8, &CZ80, (INT32)&CZ80.BasePC - (INT32)&CZ80); #endif } PICO_INTERNAL void z80_unpack(unsigned char *data) { #if defined(_USE_MZ80) if (*(int *)data == 0x00005A6D) { // "mZ" save? struct mz80context mz80; mz80GetContext(&mz80); memcpy(&mz80.z80clockticks, data+4, sizeof(mz80)-5*4); mz80SetContext(&mz80); } else { z80_reset(); z80_int(); } #elif defined(_USE_DRZ80) if (*(int *)data == 0x015A7244) { // "DrZ" v1 save? memcpy(&drZ80, data+4, 0x54); // update bases drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE); drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE); } else { z80_reset(); drZ80.Z80IM = 1; z80_int(); // try to goto int handler, maybe we won't execute trash there? } #elif defined(_USE_CZ80) if (*(int *)data == 0x00007a43) { // "Cz" save? memcpy(&CZ80, data+8, (INT32)&CZ80.BasePC - (INT32)&CZ80); Cz80_Set_Reg(&CZ80, CZ80_PC, *(int *)(data+4)); } else { z80_reset(); z80_int(); } #endif } PICO_INTERNAL void z80_exit(void) { #if defined(_USE_MZ80) mz80shutdown(); #endif } #if 1 // defined(__DEBUG_PRINT) || defined(__GP2X__) || defined(__GIZ__) PICO_INTERNAL void z80_debug(char *dstr) { #if defined(_USE_DRZ80) sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", drZ80.Z80PC-drZ80.Z80PC_BASE, drZ80.Z80SP-drZ80.Z80SP_BASE); #elif defined(_USE_CZ80) sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", CZ80.PC - CZ80.BasePC, CZ80.SP.W); #endif } #endif