// This is part of Pico Library // (c) Copyright 2004 Dave, All rights reserved. // (c) Copyright 2006,2007 notaz, All rights reserved. // Free for non-commercial use. // For commercial use, separate licencing terms must be obtained. #include #include "ym2612.h" #include "sn76496.h" #include "../PicoInt.h" #include "../cd/pcm.h" #include "mix.h" void (*PsndMix_32_to_16l)(short *dest, int *src, int count) = mix_32_to_16l_stereo; // master int buffer to mix to static int PsndBuffer[2*44100/50]; // dac static unsigned short dac_info[312+4]; // pppppppp ppppllll, p - pos in buff, l - length to write for this sample // cdda output buffer short cdda_out_buffer[2*1152]; // for Pico int PsndRate=0; int PsndLen=0; // number of mono samples, multiply by 2 for stereo int PsndLen_exc_add=0; // this is for non-integer sample counts per line, eg. 22050/60 int PsndLen_exc_cnt=0; int PsndDacLine=0; short *PsndOut=NULL; // PCM data buffer // timers int timer_a_next_oflow, timer_a_step; // in z80 cycles int timer_b_next_oflow, timer_b_step; // sn76496 extern int *sn76496_regs; static void dac_recalculate(void) { int i, dac_cnt, pos, len, lines = Pico.m.pal ? 312 : 262, mid = Pico.m.pal ? 68 : 93; if (PsndLen <= lines) { // shrinking algo dac_cnt = -PsndLen; len=1; pos=0; dac_info[225] = 1; for(i=226; i != 225; i++) { if (i >= lines) i = 0; len = 0; if(dac_cnt < 0) { len=1; pos++; dac_cnt += lines; } dac_cnt -= PsndLen; dac_info[i] = (pos<<4)|len; } } else { // stretching dac_cnt = PsndLen; pos=0; for(i = 225; i != 224; i++) { if (i >= lines) i = 0; len=0; while(dac_cnt >= 0) { dac_cnt -= lines; len++; } if (i == mid) // midpoint while(pos+len < PsndLen/2) { dac_cnt -= lines; len++; } dac_cnt += PsndLen; dac_info[i] = (pos<<4)|len; pos+=len; } // last sample for(len = 0, i = pos; i < PsndLen; i++) len++; if (PsndLen_exc_add) len++; dac_info[224] = (pos<<4)|len; } mid = (dac_info[lines-1] & 0xfff0) + ((dac_info[lines-1] & 0xf) << 4); for (i = lines; i < sizeof(dac_info) / sizeof(dac_info[0]); i++) dac_info[i] = mid; //for(i=len=0; i < lines; i++) { // printf("%03i : %03i : %i\n", i, dac_info[i]>>4, dac_info[i]&0xf); // len+=dac_info[i]&0xf; //} //printf("rate is %i, len %f\n", PsndRate, (double)PsndRate/(Pico.m.pal ? 50.0 : 60.0)); //printf("len total: %i, last pos: %i\n", len, pos); //exit(8); } PICO_INTERNAL void PsndReset(void) { void *ym2612_regs; // also clear the internal registers+addr line ym2612_regs = YM2612GetRegs(); memset(ym2612_regs, 0, 0x200+4); timers_reset(); PsndRerate(0); } // to be called after changing sound rate or chips void PsndRerate(int preserve_state) { void *state = NULL; int target_fps = Pico.m.pal ? 50 : 60; // not all rates are supported in MCD mode due to mp3 decoder limitations if (PicoAHW & PAHW_MCD) { if (PsndRate != 11025 && PsndRate != 22050 && PsndRate != 44100) PsndRate = 22050; PicoOpt |= POPT_EN_STEREO; // force stereo } if (preserve_state) { state = malloc(0x200); if (state == NULL) return; memcpy(state, YM2612GetRegs(), 0x200); } YM2612Init(Pico.m.pal ? OSC_PAL/7 : OSC_NTSC/7, PsndRate); if (preserve_state) { // feed it back it's own registers, just like after loading state memcpy(YM2612GetRegs(), state, 0x200); ym2612_unpack_state(); if ((PicoAHW & PAHW_MCD) && !(Pico_mcd->s68k_regs[0x36] & 1) && (Pico_mcd->scd.Status_CDC & 1)) cdda_start_play(); } if (preserve_state) memcpy(state, sn76496_regs, 28*4); // remember old state SN76496_init(Pico.m.pal ? OSC_PAL/15 : OSC_NTSC/15, PsndRate); if (preserve_state) memcpy(sn76496_regs, state, 28*4); // restore old state if (state) free(state); // calculate PsndLen PsndLen=PsndRate / target_fps; PsndLen_exc_add=((PsndRate - PsndLen*target_fps)<<16) / target_fps; PsndLen_exc_cnt=0; // recalculate dac info dac_recalculate(); if (PicoAHW & PAHW_MCD) pcm_set_rate(PsndRate); // clear all buffers memset32(PsndBuffer, 0, sizeof(PsndBuffer)/4); memset(cdda_out_buffer, 0, sizeof(cdda_out_buffer)); if (PsndOut) PsndClear(); // set mixer PsndMix_32_to_16l = (PicoOpt & POPT_EN_STEREO) ? mix_32_to_16l_stereo : mix_32_to_16_mono; if (PicoAHW & PAHW_PICO) PicoReratePico(); } PICO_INTERNAL void PsndDoDAC(int line_to) { int pos, pos1, len; int dout = ym2612.dacout; int line_from = PsndDacLine; PsndDacLine = line_to + 1; pos =dac_info[line_from]>>4; pos1=dac_info[line_to]; len = ((pos1>>4)-pos) + (pos1&0xf); if (!len) return; if (PicoOpt & POPT_EN_STEREO) { short *d = PsndOut + pos*2; for (; len > 0; len--, d+=2) *d = dout; } else { short *d = PsndOut + pos; for (; len > 0; len--, d++) *d = dout; } #if 0 if (do_pcm) { int *d = PsndBuffer; d += (PicoOpt&8) ? pos*2 : pos; pcm_update(d, len, 1); } #endif } // cdda static pm_file *cdda_stream = NULL; static void cdda_raw_update(int *buffer, int length) { int ret, cdda_bytes; if (cdda_stream == NULL) return; cdda_bytes = length*4; if (PsndRate <= 22050) cdda_bytes *= 2; if (PsndRate < 22050) cdda_bytes *= 2; ret = pm_read(cdda_out_buffer, cdda_bytes, cdda_stream); if (ret < cdda_bytes) { memset((char *)cdda_out_buffer + ret, 0, cdda_bytes - ret); cdda_stream = NULL; return; } // now mix switch (PsndRate) { case 44100: mix_16h_to_32(buffer, cdda_out_buffer, length*2); break; case 22050: mix_16h_to_32_s1(buffer, cdda_out_buffer, length*2); break; case 11025: mix_16h_to_32_s2(buffer, cdda_out_buffer, length*2); break; } } PICO_INTERNAL void cdda_start_play(void) { int lba_offset, index, lba_length, i; elprintf(EL_STATUS, "cdda play track #%i", Pico_mcd->scd.Cur_Track); index = Pico_mcd->scd.Cur_Track - 1; lba_offset = Pico_mcd->scd.Cur_LBA - Track_to_LBA(index + 1); if (lba_offset < 0) lba_offset = 0; lba_offset += Pico_mcd->TOC.Tracks[index].Offset; // find the actual file for this track for (i = index; i >= 0; i--) if (Pico_mcd->TOC.Tracks[i].F != NULL) break; if (Pico_mcd->TOC.Tracks[i].F == NULL) { elprintf(EL_STATUS|EL_ANOMALY, "no track?!"); return; } if (Pico_mcd->TOC.Tracks[i].ftype == TYPE_MP3) { int pos1024 = 0; lba_length = Pico_mcd->TOC.Tracks[i].Length; for (i++; i < Pico_mcd->TOC.Last_Track; i++) { if (Pico_mcd->TOC.Tracks[i].F != NULL) break; lba_length += Pico_mcd->TOC.Tracks[i].Length; } if (lba_offset) pos1024 = lba_offset * 1024 / lba_length; mp3_start_play(Pico_mcd->TOC.Tracks[index].F, pos1024); return; } cdda_stream = Pico_mcd->TOC.Tracks[i].F; PicoCDBufferFlush(); // buffering relies on fp not being touched pm_seek(cdda_stream, lba_offset * 2352, SEEK_SET); if (Pico_mcd->TOC.Tracks[i].ftype == TYPE_WAV) { // skip headers, assume it's 44kHz stereo uncompressed pm_seek(cdda_stream, 44, SEEK_CUR); } } PICO_INTERNAL void PsndClear(void) { int len = PsndLen; if (PsndLen_exc_add) len++; if (PicoOpt & POPT_EN_STEREO) memset32((int *) PsndOut, 0, len); // assume PsndOut to be aligned else { short *out = PsndOut; if ((int)out & 2) { *out++ = 0; len--; } memset32((int *) out, 0, len/2); if (len & 1) out[len-1] = 0; } } PICO_INTERNAL int PsndRender(int offset, int length) { int buf32_updated = 0; int *buf32 = PsndBuffer+offset; int stereo = (PicoOpt & 8) >> 3; // emulating CD && PCM option enabled && PCM chip on && have enabled channels int do_pcm = (PicoAHW & PAHW_MCD) && (PicoOpt&POPT_EN_MCD_PCM) && (Pico_mcd->pcm.control & 0x80) && Pico_mcd->pcm.enabled; offset <<= stereo; #if !SIMPLE_WRITE_SOUND if (offset == 0) { // should happen once per frame // compensate for float part of PsndLen PsndLen_exc_cnt += PsndLen_exc_add; if (PsndLen_exc_cnt >= 0x10000) { PsndLen_exc_cnt -= 0x10000; length++; } } #endif // PSG if (PicoOpt & POPT_EN_PSG) SN76496Update(PsndOut+offset, length, stereo); if (PicoAHW & PAHW_PICO) { PicoPicoPCMUpdate(PsndOut+offset, length, stereo); return length; } // Add in the stereo FM buffer if (PicoOpt & POPT_EN_FM) { buf32_updated = YM2612UpdateOne(buf32, length, stereo, 1); } else memset32(buf32, 0, length<s68k_regs[0x36] & 1) && (Pico_mcd->scd.Status_CDC & 1)) { // note: only 44, 22 and 11 kHz supported, with forced stereo int index = Pico_mcd->scd.Cur_Track - 1; if (Pico_mcd->TOC.Tracks[index].ftype == TYPE_MP3) mp3_update(buf32, length, stereo); else cdda_raw_update(buf32, length); } // convert + limit to normal 16bit output PsndMix_32_to_16l(PsndOut+offset, buf32, length); return length; } // ----------------------------------------------------------------- // z80 stuff #ifdef _USE_MZ80 // memhandlers for mz80 core unsigned char mz80_read(UINT32 a, struct MemoryReadByte *w) { return z80_read(a); } void mz80_write(UINT32 a, UINT8 d, struct MemoryWriteByte *w) { z80_write(d, a); } // structures for mz80 core static struct MemoryReadByte mz80_mem_read[]= { {0x0000,0xffff,mz80_read}, {(UINT32) -1,(UINT32) -1,NULL} }; static struct MemoryWriteByte mz80_mem_write[]= { {0x0000,0xffff,mz80_write}, {(UINT32) -1,(UINT32) -1,NULL} }; static struct z80PortRead mz80_io_read[] ={ {(UINT16) -1,(UINT16) -1,NULL} }; static struct z80PortWrite mz80_io_write[]={ {(UINT16) -1,(UINT16) -1,NULL} }; int mz80_run(int cycles) { int ticks_pre = mz80GetElapsedTicks(0); mz80exec(cycles); return mz80GetElapsedTicks(0) - ticks_pre; } #endif #ifdef _USE_DRZ80 struct DrZ80 drZ80; static unsigned int DrZ80_rebasePC(unsigned short a) { drZ80.Z80PC_BASE = (unsigned int) Pico.zram; return drZ80.Z80PC_BASE + a; } static unsigned int DrZ80_rebaseSP(unsigned short a) { drZ80.Z80SP_BASE = (unsigned int) Pico.zram; return drZ80.Z80SP_BASE + a; } #endif #if defined(_USE_DRZ80) || defined(_USE_CZ80) static unsigned char z80_in(unsigned short p) { elprintf(EL_ANOMALY, "Z80 port %04x read", p); return 0xff; } static void z80_out(unsigned short p,unsigned char d) { elprintf(EL_ANOMALY, "Z80 port %04x write %02x", p, d); } #endif // z80 functionality wrappers PICO_INTERNAL void z80_init(void) { #ifdef _USE_MZ80 struct mz80context z80; // z80 mz80init(); // Modify the default context mz80GetContext(&z80); // point mz80 stuff z80.z80Base=Pico.zram; z80.z80MemRead=mz80_mem_read; z80.z80MemWrite=mz80_mem_write; z80.z80IoRead=mz80_io_read; z80.z80IoWrite=mz80_io_write; mz80SetContext(&z80); #endif #ifdef _USE_DRZ80 memset(&drZ80, 0, sizeof(struct DrZ80)); drZ80.z80_rebasePC=DrZ80_rebasePC; drZ80.z80_rebaseSP=DrZ80_rebaseSP; drZ80.z80_read8 =z80_read; drZ80.z80_read16 =NULL; drZ80.z80_write8 =z80_write; drZ80.z80_write16 =NULL; drZ80.z80_in =z80_in; drZ80.z80_out =z80_out; drZ80.z80_irq_callback=NULL; #endif #ifdef _USE_CZ80 memset(&CZ80, 0, sizeof(CZ80)); Cz80_Init(&CZ80); Cz80_Set_Fetch(&CZ80, 0x0000, 0x1fff, (UINT32)Pico.zram); // main RAM Cz80_Set_Fetch(&CZ80, 0x2000, 0x3fff, (UINT32)Pico.zram); // mirror Cz80_Set_ReadB(&CZ80, (UINT8 (*)(UINT32 address))z80_read); // unused (hacked in) Cz80_Set_WriteB(&CZ80, z80_write); Cz80_Set_INPort(&CZ80, z80_in); Cz80_Set_OUTPort(&CZ80, z80_out); #endif } PICO_INTERNAL void z80_reset(void) { #ifdef _USE_MZ80 mz80reset(); #endif #ifdef _USE_DRZ80 memset(&drZ80, 0, 0x54); drZ80.Z80F = (1<<2); // set ZFlag drZ80.Z80F2 = (1<<2); // set ZFlag drZ80.Z80IX = 0xFFFF << 16; drZ80.Z80IY = 0xFFFF << 16; drZ80.Z80IM = 0; // 1? drZ80.z80irqvector = 0xff0000; // RST 38h drZ80.Z80PC = drZ80.z80_rebasePC(0); drZ80.Z80SP = drZ80.z80_rebaseSP(0x2000); // 0xf000 ? #endif #ifdef _USE_CZ80 Cz80_Reset(&CZ80); Cz80_Set_Reg(&CZ80, CZ80_IX, 0xffff); Cz80_Set_Reg(&CZ80, CZ80_IY, 0xffff); Cz80_Set_Reg(&CZ80, CZ80_SP, 0x2000); #endif Pico.m.z80_fakeval = 0; // for faking when Z80 is disabled } #if 0 static int had_irq = 0, z80_ppc, z80_ops_done = 0; int z80_cycles_left = 0; void z80_int(void) { had_irq = 1; } static void xfail(void) { printf("PC: %04x, %04x\n", Cz80_Get_Reg(&CZ80, CZ80_PC), z80_ppc); printf("z80_ops_done done: %i\n", z80_ops_done); exit(1); } int z80_run(int cycles) { int fail = 0; int cdrz, ccz; z80_cycles_left = cycles; z80_ppc = Cz80_Get_Reg(&CZ80, CZ80_PC); if (had_irq) { printf("irq @ %04x\n", Cz80_Get_Reg(&CZ80, CZ80_PC)); Cz80_Set_IRQ(&CZ80, 0, HOLD_LINE); drZ80.Z80_IRQ = 1; had_irq = 0; } while (z80_cycles_left > 0) { ccz = Cz80_Exec(&CZ80, 1); cdrz = 1 - DrZ80Run(&drZ80, 1); if (drZ80.Z80_IRQ && (drZ80.Z80IF&1)) cdrz += 1 - DrZ80Run(&drZ80, 1); // cz80 processes IRQ after EI, DrZ80 does not if (cdrz != ccz) { printf("cycles: %i vs %i\n", cdrz, ccz); fail = 1; } if (drZ80.Z80PC - drZ80.Z80PC_BASE != Cz80_Get_Reg(&CZ80, CZ80_PC)) { printf("PC: %04x vs %04x\n", drZ80.Z80PC - drZ80.Z80PC_BASE, Cz80_Get_Reg(&CZ80, CZ80_PC)); fail = 1; } if (fail) xfail(); z80_ops_done++; z80_cycles_left -= ccz; z80_ppc = Cz80_Get_Reg(&CZ80, CZ80_PC); } return co - z80_cycles_left; } #endif PICO_INTERNAL void z80_pack(unsigned char *data) { #if defined(_USE_MZ80) struct mz80context mz80; *(int *)data = 0x00005A6D; // "mZ" mz80GetContext(&mz80); memcpy(data+4, &mz80.z80clockticks, sizeof(mz80)-5*4); // don't save base&memhandlers #elif defined(_USE_DRZ80) *(int *)data = 0x015A7244; // "DrZ" v1 drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE); drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE); memcpy(data+4, &drZ80, 0x54); #elif defined(_USE_CZ80) *(int *)data = 0x00007a43; // "Cz" *(int *)(data+4) = Cz80_Get_Reg(&CZ80, CZ80_PC); memcpy(data+8, &CZ80, (INT32)&CZ80.BasePC - (INT32)&CZ80); #endif } PICO_INTERNAL void z80_unpack(unsigned char *data) { #if defined(_USE_MZ80) if (*(int *)data == 0x00005A6D) { // "mZ" save? struct mz80context mz80; mz80GetContext(&mz80); memcpy(&mz80.z80clockticks, data+4, sizeof(mz80)-5*4); mz80SetContext(&mz80); } else { z80_reset(); z80_int(); } #elif defined(_USE_DRZ80) if (*(int *)data == 0x015A7244) { // "DrZ" v1 save? memcpy(&drZ80, data+4, 0x54); // update bases drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE); drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE); } else { z80_reset(); drZ80.Z80IM = 1; z80_int(); // try to goto int handler, maybe we won't execute trash there? } #elif defined(_USE_CZ80) if (*(int *)data == 0x00007a43) { // "Cz" save? memcpy(&CZ80, data+8, (INT32)&CZ80.BasePC - (INT32)&CZ80); Cz80_Set_Reg(&CZ80, CZ80_PC, *(int *)(data+4)); } else { z80_reset(); z80_int(); } #endif } PICO_INTERNAL void z80_exit(void) { #if defined(_USE_MZ80) mz80shutdown(); #endif } #if 1 // defined(__DEBUG_PRINT) || defined(__GP2X__) || defined(__GIZ__) PICO_INTERNAL void z80_debug(char *dstr) { #if defined(_USE_DRZ80) sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", drZ80.Z80PC-drZ80.Z80PC_BASE, drZ80.Z80SP-drZ80.Z80SP_BASE); #elif defined(_USE_CZ80) sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", CZ80.PC - CZ80.BasePC, CZ80.SP.W); #endif } #endif