// This is part of Pico Library // (c) Copyright 2004 Dave, All rights reserved. // (c) Copyright 2006 notaz, All rights reserved. // Free for non-commercial use. // For commercial use, separate licencing terms must be obtained. // A68K no longer supported here //#define __debug_io #include "../PicoInt.h" #include "../sound/sound.h" #include "../sound/ym2612.h" #include "../sound/sn76496.h" #include "gfx_cd.h" typedef unsigned char u8; typedef unsigned short u16; typedef unsigned int u32; //#define __debug_io //#define __debug_io2 //#define rdprintf dprintf #define rdprintf(...) // ----------------------------------------------------------------- // extern m68ki_cpu_core m68ki_cpu; extern int counter75hz; static u32 m68k_reg_read16(u32 a) { u32 d=0; a &= 0x3e; // dprintf("m68k_regs r%2i: [%02x] @%06x", realsize&~1, a+(realsize&1), SekPc); switch (a) { case 0: d = ((Pico_mcd->s68k_regs[0x33]<<13)&0x8000) | Pico_mcd->m.busreq; // here IFL2 is always 0, just like in Gens goto end; case 2: d = (Pico_mcd->s68k_regs[a]<<8) | (Pico_mcd->s68k_regs[a+1]&0xc7); dprintf("m68k_regs r3: %02x @%06x", (u8)d, SekPc); goto end; case 4: d = Pico_mcd->s68k_regs[4]<<8; goto end; case 6: d = Pico_mcd->m.hint_vector; goto end; case 8: d = Read_CDC_Host(0); goto end; case 0xA: dprintf("m68k reserved read"); goto end; case 0xC: dprintf("m68k stopwatch read"); break; } if (a < 0x30) { // comm flag/cmd/status (0xE-0x2F) d = (Pico_mcd->s68k_regs[a]<<8) | Pico_mcd->s68k_regs[a+1]; goto end; } dprintf("m68k_regs invalid read @ %02x", a); end: // dprintf("ret = %04x", d); return d; } static void m68k_reg_write8(u32 a, u32 d) { a &= 0x3f; // dprintf("m68k_regs w%2i: [%02x] %02x @%06x", realsize, a, d, SekPc); switch (a) { case 0: d &= 1; if ((d&1) && (Pico_mcd->s68k_regs[0x33]&(1<<2))) { dprintf("m68k: s68k irq 2"); SekInterruptS68k(2); } return; case 1: d &= 3; if (!(d&1)) PicoMCD |= 2; // reset pending, needed to be sure we fetch the right vectors on reset if ( (Pico_mcd->m.busreq&1) != (d&1)) dprintf("m68k: s68k reset %i", !(d&1)); if ( (Pico_mcd->m.busreq&2) != (d&2)) dprintf("m68k: s68k brq %i", (d&2)>>1); if ((PicoMCD&2) && (d&3)==1) { SekResetS68k(); // S68k comes out of RESET or BRQ state PicoMCD&=~2; dprintf("m68k: resetting s68k, cycles=%i", SekCyclesLeft); } Pico_mcd->m.busreq = d; return; case 2: Pico_mcd->s68k_regs[2] = d; // really use s68k side register return; case 3: dprintf("m68k_regs w3: %02x @%06x", (u8)d, SekPc); d &= 0xc2; if ((Pico_mcd->s68k_regs[3]>>6) != ((d>>6)&3)) dprintf("m68k: prg bank: %i -> %i", (Pico_mcd->s68k_regs[a]>>6), ((d>>6)&3)); //if ((Pico_mcd->s68k_regs[3]&4) != (d&4)) dprintf("m68k: ram mode %i mbit", (d&4) ? 1 : 2); //if ((Pico_mcd->s68k_regs[3]&2) != (d&2)) dprintf("m68k: %s", (d&4) ? ((d&2) ? "word swap req" : "noop?") : // ((d&2) ? "word ram to s68k" : "word ram to m68k")); d |= Pico_mcd->s68k_regs[3]&0x1d; if (!(d & 4) && (d & 2)) d &= ~1; // return word RAM to s68k in 2M mode Pico_mcd->s68k_regs[3] = d; // really use s68k side register return; case 6: *((char *)&Pico_mcd->m.hint_vector+1) = d; return; case 7: *(char *)&Pico_mcd->m.hint_vector = d; return; case 0xe: //dprintf("m68k: comm flag: %02x", d); //dprintf("s68k @ %06x", SekPcS68k); Pico_mcd->s68k_regs[0xe] = d; return; } if ((a&0xf0) == 0x10) { Pico_mcd->s68k_regs[a] = d; return; } dprintf("m68k: invalid write? [%02x] %02x", a, d); } static u32 s68k_reg_read16(u32 a) { u32 d=0; // dprintf("s68k_regs r%2i: [%02x] @ %06x", realsize&~1, a+(realsize&1), SekPcS68k); switch (a) { case 0: d = ((Pico_mcd->s68k_regs[0]&3)<<8) | 1; // ver = 0, not in reset state goto end; case 2: d = (Pico_mcd->s68k_regs[a]<<8) | (Pico_mcd->s68k_regs[a+1]&0x1f); dprintf("s68k_regs r3: %02x @%06x", (u8)d, SekPc); goto end; case 6: d = CDC_Read_Reg(); goto end; case 8: d = Read_CDC_Host(1); // Gens returns 0 here on byte reads goto end; case 0xC: dprintf("s68k stopwatch read"); break; case 0x34: // fader d = 0; // no busy bit goto end; } d = (Pico_mcd->s68k_regs[a]<<8) | Pico_mcd->s68k_regs[a+1]; end: // dprintf("ret = %04x", d); return d; } static void s68k_reg_write8(u32 a, u32 d) { //dprintf("s68k_regs w%2i: [%02x] %02x @ %06x", realsize, a, d, SekPcS68k); // TODO: review against Gens switch (a) { case 2: return; // only m68k can change WP case 3: dprintf("s68k_regs w3: %02x @%06x", (u8)d, SekPc); d &= 0x1d; if (d&4) { d |= Pico_mcd->s68k_regs[3]&0xc2; if ((d ^ Pico_mcd->s68k_regs[3]) & 5) d &= ~2; // in case of mode or bank change we clear DMNA (m68k req) bit } else { d |= Pico_mcd->s68k_regs[3]&0xc3; if (d&1) d &= ~2; // return word RAM to m68k in 2M mode } break; case 4: dprintf("s68k CDC dest: %x", d&7); Pico_mcd->s68k_regs[4] = (Pico_mcd->s68k_regs[4]&0xC0) | (d&7); // CDC mode return; case 5: //dprintf("s68k CDC reg addr: %x", d&0xf); break; case 7: CDC_Write_Reg(d); return; case 0xa: dprintf("s68k set CDC dma addr"); break; case 0x33: // IRQ mask dprintf("s68k irq mask: %02x", d); if ((d&(1<<4)) && (Pico_mcd->s68k_regs[0x37]&4) && !(Pico_mcd->s68k_regs[0x33]&(1<<4))) { CDD_Export_Status(); // counter75hz = 0; // ??? } break; case 0x34: // fader Pico_mcd->s68k_regs[a] = (u8) d & 0x7f; return; case 0x36: return; // d/m bit is unsetable case 0x37: { u32 d_old = Pico_mcd->s68k_regs[0x37]; Pico_mcd->s68k_regs[0x37] = d&7; if ((d&4) && !(d_old&4)) { CDD_Export_Status(); // counter75hz = 0; // ??? } return; } case 0x4b: Pico_mcd->s68k_regs[a] = (u8) d; CDD_Import_Command(); return; } if ((a&0x1f0) == 0x10 || a == 0x0e || (a >= 0x38 && a < 0x42)) { dprintf("m68k: invalid write @ %02x?", a); return; } Pico_mcd->s68k_regs[a] = (u8) d; } static int PadRead(int i) { int pad=0,value=0,TH; pad=~PicoPad[i]; // Get inverse of pad MXYZ SACB RLDU TH=Pico.ioports[i+1]&0x40; if(PicoOpt & 0x20) { // 6 button gamepad enabled int phase = Pico.m.padTHPhase[i]; if(phase == 2 && !TH) { value=(pad&0xc0)>>2; // ?0SA 0000 goto end; } else if(phase == 3 && TH) { value=(pad&0x30)|((pad>>8)&0xf); // ?1CB MXYZ goto end; } else if(phase == 3 && !TH) { value=((pad&0xc0)>>2)|0x0f; // ?0SA 1111 goto end; } } if(TH) value=(pad&0x3f); // ?1CB RLDU else value=((pad&0xc0)>>2)|(pad&3); // ?0SA 00DU end: // orr the bits, which are set as output value |= Pico.ioports[i+1]&Pico.ioports[i+4]; return value; // will mirror later } static u8 z80Read8(u32 a) { if(Pico.m.z80Run&1) return 0; a&=0x1fff; if(!(PicoOpt&4)) { // Z80 disabled, do some faking static u8 zerosent = 0; if(a == Pico.m.z80_lastaddr) { // probably polling something u8 d = Pico.m.z80_fakeval; if((d & 0xf) == 0xf && !zerosent) { d = 0; zerosent = 1; } else { Pico.m.z80_fakeval++; zerosent = 0; } return d; } else { Pico.m.z80_fakeval = 0; } } Pico.m.z80_lastaddr = (u16) a; return Pico.zram[a]; } // for nonstandard reads static u32 UnusualRead16(u32 a, int realsize) { u32 d=0; dprintf("unusual r%i: %06x @%06x", realsize&~1, (a&0xfffffe)+(realsize&1), SekPc); dprintf("ret = %04x", d); return d; } static u32 OtherRead16(u32 a, int realsize) { u32 d=0; if ((a&0xff0000)==0xa00000) { if ((a&0x4000)==0x0000) { d=z80Read8(a); d|=d<<8; goto end; } // Z80 ram (not byteswaped) if ((a&0x6000)==0x4000) { if(PicoOpt&1) d=YM2612Read(); else d=Pico.m.rotate++&3; goto end; } // 0x4000-0x5fff, Fudge if disabled d=0xffff; goto end; } if ((a&0xffffe0)==0xa10000) { // I/O ports a=(a>>1)&0xf; switch(a) { case 0: d=Pico.m.hardware; break; // Hardware value (Version register) case 1: d=PadRead(0); d|=Pico.ioports[1]&0x80; break; case 2: d=PadRead(1); d|=Pico.ioports[2]&0x80; break; default: d=Pico.ioports[a]; break; // IO ports can be used as RAM } d|=d<<8; goto end; } // |=0x80 for Shadow of the Beast & Super Offroad; rotate fakes next fetched instruction for Time Killers if (a==0xa11100) { d=((Pico.m.z80Run&1)<<8)|0x8000|Pico.m.rotate++; goto end; } if ((a&0xe700e0)==0xc00000) { d=PicoVideoRead(a); goto end; } if ((a&0xffffc0)==0xa12000) { d=m68k_reg_read16(a); goto end; } d = UnusualRead16(a, realsize); end: return d; } //extern UINT32 mz80GetRegisterValue(void *, UINT32); static void OtherWrite8(u32 a,u32 d,int realsize) { if ((a&0xe700f9)==0xc00011||(a&0xff7ff9)==0xa07f11) { if(PicoOpt&2) SN76496Write(d); return; } // PSG Sound if ((a&0xff4000)==0xa00000) { if(!(Pico.m.z80Run&1)) Pico.zram[a&0x1fff]=(u8)d; return; } // Z80 ram if ((a&0xff6000)==0xa04000) { if(PicoOpt&1) emustatus|=YM2612Write(a&3, d); return; } // FM Sound if ((a&0xffffe0)==0xa10000) { // I/O ports a=(a>>1)&0xf; // 6 button gamepad: if TH went from 0 to 1, gamepad changes state if(PicoOpt&0x20) { if(a==1) { Pico.m.padDelay[0] = 0; if(!(Pico.ioports[1]&0x40) && (d&0x40)) Pico.m.padTHPhase[0]++; } else if(a==2) { Pico.m.padDelay[1] = 0; if(!(Pico.ioports[2]&0x40) && (d&0x40)) Pico.m.padTHPhase[1]++; } } Pico.ioports[a]=(u8)d; // IO ports can be used as RAM return; } if (a==0xa11100) { extern int z80startCycle, z80stopCycle; //int lineCycles=(488-SekCyclesLeft)&0x1ff; d&=1; d^=1; if(!d) { // hack: detect a nasty situation where Z80 was enabled and disabled in the same 68k timeslice (Golden Axe III) if((PicoOpt&4) && Pico.m.z80Run==1) z80_run(20); z80stopCycle = SekCyclesDone(); //z80ExtraCycles += (lineCycles>>1)-(lineCycles>>5); // only meaningful in PicoFrameHints() } else { z80startCycle = SekCyclesDone(); //if(Pico.m.scanline != -1) //z80ExtraCycles -= (lineCycles>>1)-(lineCycles>>5)+16; } //dprintf("set_zrun: %i [%i|%i] zPC=%04x @%06x", d, Pico.m.scanline, SekCyclesDone(), mz80GetRegisterValue(NULL, 0), SekPc); Pico.m.z80Run=(u8)d; return; } if (a==0xa11200) { if(!(d&1)) z80_reset(); return; } if ((a&0xff7f00)==0xa06000) // Z80 BANK register { Pico.m.z80_bank68k>>=1; Pico.m.z80_bank68k|=(d&1)<<8; Pico.m.z80_bank68k&=0x1ff; // 9 bits and filled in the new top one return; } if ((a&0xe700e0)==0xc00000) { PicoVideoWrite(a,(u16)(d|(d<<8))); return; } // Byte access gets mirrored if ((a&0xffffc0)==0xa12000) { m68k_reg_write8(a, d); return; } dprintf("strange w%i: %06x, %08x @%06x", realsize, a&0xffffff, d, SekPc); } static void OtherWrite16(u32 a,u32 d) { if ((a&0xe700e0)==0xc00000) { PicoVideoWrite(a,(u16)d); return; } if ((a&0xff4000)==0xa00000) { if(!(Pico.m.z80Run&1)) Pico.zram[a&0x1fff]=(u8)(d>>8); return; } // Z80 ram (MSB only) if ((a&0xffffe0)==0xa10000) { // I/O ports a=(a>>1)&0xf; // 6 button gamepad: if TH went from 0 to 1, gamepad changes state if(PicoOpt&0x20) { if(a==1) { Pico.m.padDelay[0] = 0; if(!(Pico.ioports[1]&0x40) && (d&0x40)) Pico.m.padTHPhase[0]++; } else if(a==2) { Pico.m.padDelay[1] = 0; if(!(Pico.ioports[2]&0x40) && (d&0x40)) Pico.m.padTHPhase[1]++; } } Pico.ioports[a]=(u8)d; // IO ports can be used as RAM return; } if (a==0xa11100) { OtherWrite8(a, d>>8, 16); return; } if (a==0xa11200) { if(!(d&0x100)) z80_reset(); return; } OtherWrite8(a, d>>8, 16); OtherWrite8(a+1,d&0xff, 16); } // ----------------------------------------------------------------- // Read Rom and read Ram u8 PicoReadM68k8(u32 a) { u32 d=0; if ((a&0xe00000)==0xe00000) { d = *(u8 *)(Pico.ram+((a^1)&0xffff)); goto end; } // Ram a&=0xffffff; if (a < 0x20000) { d = *(u8 *)(Pico_mcd->bios+(a^1)); goto end; } // bios // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; d = *(prg_bank+((a^1)&0x1ffff)); goto end; } // word RAM if ((a&0xfc0000)==0x200000) { dprintf("m68k_wram r8: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { a=((a&0x1fffe)<<1)|(a&1); if (Pico_mcd->s68k_regs[3]&1) a+=2; d = Pico_mcd->word_ram[a^1]; } } else { // allow access in any mode, like Gens does d = Pico_mcd->word_ram[(a^1)&0x3ffff]; } dprintf("ret = %02x", (u8)d); goto end; } if ((a&0xff4000)==0xa00000) { d=z80Read8(a); goto end; } // Z80 Ram if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs r8: [%02x] @%06x", a&0x3f, SekPc); d=OtherRead16(a&~1, 8|(a&1)); if ((a&1)==0) d>>=8; if ((a&0xffffc0)==0xa12000) rdprintf("ret = %02x", (u8)d); end: #ifdef __debug_io dprintf("r8 : %06x, %02x @%06x", a&0xffffff, (u8)d, SekPc); #endif return (u8)d; } u16 PicoReadM68k16(u32 a) { u16 d=0; if ((a&0xe00000)==0xe00000) { d=*(u16 *)(Pico.ram+(a&0xfffe)); goto end; } // Ram a&=0xfffffe; if (a < 0x20000) { d = *(u16 *)(Pico_mcd->bios+a); goto end; } // bios // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; d = *(u16 *)(prg_bank+(a&0x1fffe)); goto end; } // word RAM if ((a&0xfc0000)==0x200000) { dprintf("m68k_wram r16: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { a=((a&0x1fffe)<<1); if (Pico_mcd->s68k_regs[3]&1) a+=2; d = *(u16 *)(Pico_mcd->word_ram+a); } } else { // allow access in any mode, like Gens does d = *(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); } dprintf("ret = %04x", d); goto end; } if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs r16: [%02x] @%06x", a&0x3f, SekPc); d = (u16)OtherRead16(a, 16); if ((a&0xffffc0)==0xa12000) rdprintf("ret = %04x", d); end: #ifdef __debug_io dprintf("r16: %06x, %04x @%06x", a&0xffffff, d, SekPc); #endif return d; } u32 PicoReadM68k32(u32 a) { u32 d=0; if ((a&0xe00000)==0xe00000) { u16 *pm=(u16 *)(Pico.ram+(a&0xfffe)); d = (pm[0]<<16)|pm[1]; goto end; } // Ram a&=0xfffffe; if (a < 0x20000) { u16 *pm=(u16 *)(Pico_mcd->bios+a); d = (pm[0]<<16)|pm[1]; goto end; } // bios // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; u16 *pm=(u16 *)(prg_bank+(a&0x1fffe)); d = (pm[0]<<16)|pm[1]; goto end; } // word RAM if ((a&0xfc0000)==0x200000) { dprintf("m68k_wram r32: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { u16 *pm; a=((a&0x1fffe)<<1); if (Pico_mcd->s68k_regs[3]&1) a+=2; pm=(u16 *)(Pico_mcd->word_ram+a); d = (pm[0]<<16)|pm[1]; } } else { // allow access in any mode, like Gens does u16 *pm=(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); d = (pm[0]<<16)|pm[1]; } dprintf("ret = %08x", d); goto end; } if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs r32: [%02x] @%06x", a&0x3f, SekPc); d = (OtherRead16(a, 32)<<16)|OtherRead16(a+2, 32); if ((a&0xffffc0)==0xa12000) rdprintf("ret = %08x", d); end: #ifdef __debug_io dprintf("r32: %06x, %08x @%06x", a&0xffffff, d, SekPc); #endif return d; } // ----------------------------------------------------------------- // Write Ram void PicoWriteM68k8(u32 a,u8 d) { #ifdef __debug_io dprintf("w8 : %06x, %02x @%06x", a&0xffffff, d, SekPc); #endif //if ((a&0xe0ffff)==0xe0a9ba+0x69c) // dprintf("w8 : %06x, %02x @%06x", a&0xffffff, d, SekPc); if ((a&0xe00000)==0xe00000) { u8 *pm=(u8 *)(Pico.ram+((a^1)&0xffff)); pm[0]=d; return; } // Ram a&=0xffffff; // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; *(u8 *)(prg_bank+((a^1)&0x1ffff))=d; return; } // word RAM if ((a&0xfc0000)==0x200000) { dprintf("m68k_wram w8: [%06x] %02x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { a=((a&0x1fffe)<<1)|(a&1); if (Pico_mcd->s68k_regs[3]&1) a+=2; *(u8 *)(Pico_mcd->word_ram+(a^1))=d; } } else { // allow access in any mode, like Gens does *(u8 *)(Pico_mcd->word_ram+((a^1)&0x3ffff))=d; } return; } if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs w8: [%02x] %02x @%06x", a&0x3f, d, SekPc); OtherWrite8(a,d,8); } void PicoWriteM68k16(u32 a,u16 d) { #ifdef __debug_io dprintf("w16: %06x, %04x", a&0xffffff, d); #endif // dprintf("w16: %06x, %04x @%06x", a&0xffffff, d, SekPc); if ((a&0xe00000)==0xe00000) { *(u16 *)(Pico.ram+(a&0xfffe))=d; return; } // Ram a&=0xfffffe; // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; *(u16 *)(prg_bank+(a&0x1fffe))=d; return; } // word RAM if ((a&0xfc0000)==0x200000) { dprintf("m68k_wram w16: [%06x] %04x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { a=((a&0x1fffe)<<1); if (Pico_mcd->s68k_regs[3]&1) a+=2; *(u16 *)(Pico_mcd->word_ram+a)=d; } } else { // allow access in any mode, like Gens does *(u16 *)(Pico_mcd->word_ram+(a&0x3fffe))=d; } return; } if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs w16: [%02x] %04x @%06x", a&0x3f, d, SekPc); OtherWrite16(a,d); } void PicoWriteM68k32(u32 a,u32 d) { #ifdef __debug_io dprintf("w32: %06x, %08x", a&0xffffff, d); #endif if ((a&0xe00000)==0xe00000) { // Ram: u16 *pm=(u16 *)(Pico.ram+(a&0xfffe)); pm[0]=(u16)(d>>16); pm[1]=(u16)d; return; } a&=0xfffffe; // prg RAM if ((a&0xfe0000)==0x020000) { u8 *prg_bank = Pico_mcd->prg_ram_b[Pico_mcd->s68k_regs[3]>>6]; u16 *pm=(u16 *)(prg_bank+(a&0x1fffe)); pm[0]=(u16)(d>>16); pm[1]=(u16)d; return; } // word RAM if ((a&0xfc0000)==0x200000) { if (d != 0) // don't log clears dprintf("m68k_wram w32: [%06x] %08x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? if (a >= 0x220000) { dprintf("cell"); } else { u16 *pm; a=((a&0x1fffe)<<1); if (Pico_mcd->s68k_regs[3]&1) a+=2; pm=(u16 *)(Pico_mcd->word_ram+a); pm[0]=(u16)(d>>16); pm[1]=(u16)d; } } else { // allow access in any mode, like Gens does u16 *pm=(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); pm[0]=(u16)(d>>16); pm[1]=(u16)d; } return; } if ((a&0xffffc0)==0xa12000) rdprintf("m68k_regs w32: [%02x] %08x @%06x", a&0x3f, d, SekPc); OtherWrite16(a, (u16)(d>>16)); OtherWrite16(a+2,(u16)d); } // ----------------------------------------------------------------- u8 PicoReadS68k8(u32 a) { u32 d=0; a&=0xffffff; // prg RAM if (a < 0x80000) { d = *(Pico_mcd->prg_ram+(a^1)); goto end; } // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1ff; rdprintf("s68k_regs r8: [%02x] @ %06x", a, SekPcS68k); if (a >= 0x50 && a < 0x68) d = gfx_cd_read(a&~1); else d = s68k_reg_read16(a&~1); if ((a&1)==0) d>>=8; rdprintf("ret = %02x", (u8)d); goto end; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M r8: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does d = Pico_mcd->word_ram[(a^1)&0x3ffff]; } dprintf("ret = %02x", (u8)d); goto end; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff dprintf("s68k_wram1M r8: [%06x] @%06x", a, SekPc); a=((a&0x1fffe)<<1)|(a&1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; d = Pico_mcd->word_ram[a^1]; dprintf("ret = %02x", (u8)d); goto end; } dprintf("s68k r8 : %06x, %02x @%06x", a&0xffffff, (u8)d, SekPcS68k); end: #ifdef __debug_io2 dprintf("s68k r8 : %06x, %02x @%06x", a&0xffffff, (u8)d, SekPcS68k); #endif return (u8)d; } u16 PicoReadS68k16(u32 a) { u16 d=0; a&=0xfffffe; // prg RAM if (a < 0x80000) { d = *(u16 *)(Pico_mcd->prg_ram+a); goto end; } // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1fe; rdprintf("s68k_regs r16: [%02x] @ %06x", a, SekPcS68k); if (a >= 0x50 && a < 0x68) d = gfx_cd_read(a); else d = s68k_reg_read16(a); rdprintf("ret = %04x", d); goto end; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M r16: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does d = *(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); } dprintf("ret = %04x", (u8)d); goto end; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff dprintf("s68k_wram1M r16: [%06x] @%06x", a, SekPc); a=((a&0x1fffe)<<1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; d = *(u16 *)(Pico_mcd->word_ram+a); dprintf("ret = %04x", (u8)d); goto end; } dprintf("s68k r16: %06x, %04x @%06x", a&0xffffff, d, SekPcS68k); end: #ifdef __debug_io2 dprintf("s68k r16: %06x, %04x @%06x", a&0xffffff, d, SekPcS68k); #endif return d; } u32 PicoReadS68k32(u32 a) { u32 d=0; a&=0xfffffe; // prg RAM if (a < 0x80000) { u16 *pm=(u16 *)(Pico_mcd->prg_ram+a); d = (pm[0]<<16)|pm[1]; goto end; } // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1fe; rdprintf("s68k_regs r32: [%02x] @ %06x", a, SekPcS68k); if (a >= 0x50 && a < 0x68) d = (gfx_cd_read(a)<<16)|gfx_cd_read(a+2); else d = (s68k_reg_read16(a)<<16)|s68k_reg_read16(a+2); rdprintf("ret = %08x", d); goto end; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M r32: [%06x] @%06x", a, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does u16 *pm=(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); d = (pm[0]<<16)|pm[1]; } dprintf("ret = %08x", (u8)d); goto end; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff u16 *pm; dprintf("s68k_wram1M 32: [%06x] @%06x", a, SekPc); a=((a&0x1fffe)<<1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; pm=(u16 *)(Pico_mcd->word_ram+a); d = (pm[0]<<16)|pm[1]; dprintf("ret = %08x", (u8)d); goto end; } dprintf("s68k r32: %06x, %08x @%06x", a&0xffffff, d, SekPcS68k); end: #ifdef __debug_io2 dprintf("s68k r32: %06x, %08x @%06x", a&0xffffff, d, SekPcS68k); #endif return d; } // ----------------------------------------------------------------- void PicoWriteS68k8(u32 a,u8 d) { #ifdef __debug_io2 dprintf("s68k w8 : %06x, %02x @%06x", a&0xffffff, d, SekPcS68k); #endif a&=0xffffff; // prg RAM if (a < 0x80000) { u8 *pm=(u8 *)(Pico_mcd->prg_ram+(a^1)); *pm=d; return; } if (a != 0xff0011 && (a&0xff8000) == 0xff0000) // PCM hack return; // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1ff; rdprintf("s68k_regs w8: [%02x] %02x @ %06x", a, d, SekPcS68k); if (a >= 0x50 && a < 0x68) gfx_cd_write(a&~1, (d<<8)|d); else s68k_reg_write8(a,d); return; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M w8: [%06x] %02x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does *(u8 *)(Pico_mcd->word_ram+((a^1)&0x3ffff))=d; } return; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff if (d) dprintf("s68k_wram1M w8: [%06x] %02x @%06x", a, d, SekPc); a=((a&0x1fffe)<<1)|(a&1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; *(u8 *)(Pico_mcd->word_ram+(a^1))=d; return; } dprintf("s68k w8 : %06x, %02x @%06x", a&0xffffff, d, SekPcS68k); } void PicoWriteS68k16(u32 a,u16 d) { #ifdef __debug_io2 dprintf("s68k w16: %06x, %04x @%06x", a&0xffffff, d, SekPcS68k); #endif a&=0xfffffe; // prg RAM if (a < 0x80000) { *(u16 *)(Pico_mcd->prg_ram+a)=d; return; } // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1fe; rdprintf("s68k_regs w16: [%02x] %04x @ %06x", a, d, SekPcS68k); if (a >= 0x50 && a < 0x68) gfx_cd_write(a, d); else { s68k_reg_write8(a, d>>8); s68k_reg_write8(a+1,d&0xff); } return; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M w16: [%06x] %04x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does *(u16 *)(Pico_mcd->word_ram+(a&0x3fffe))=d; } return; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff if (d) dprintf("s68k_wram1M w16: [%06x] %04x @%06x", a, d, SekPc); a=((a&0x1fffe)<<1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; *(u16 *)(Pico_mcd->word_ram+a)=d; return; } dprintf("s68k w16: %06x, %04x @%06x", a&0xffffff, d, SekPcS68k); } void PicoWriteS68k32(u32 a,u32 d) { #ifdef __debug_io2 dprintf("s68k w32: %06x, %08x @%06x", a&0xffffff, d, SekPcS68k); #endif a&=0xfffffe; // prg RAM if (a < 0x80000) { u16 *pm=(u16 *)(Pico_mcd->prg_ram+a); pm[0]=(u16)(d>>16); pm[1]=(u16)d; return; } // regs if ((a&0xfffe00) == 0xff8000) { a &= 0x1fe; rdprintf("s68k_regs w32: [%02x] %08x @ %06x", a, d, SekPcS68k); if (a >= 0x50 && a < 0x68) { gfx_cd_write(a, d>>16); gfx_cd_write(a+2, d&0xffff); } else { s68k_reg_write8(a, d>>24); s68k_reg_write8(a+1,(d>>16)&0xff); s68k_reg_write8(a+2,(d>>8) &0xff); s68k_reg_write8(a+3, d &0xff); } return; } // word RAM (2M area) if ((a&0xfc0000)==0x080000) { // 080000-0bffff dprintf("s68k_wram2M w32: [%06x] %08x @%06x", a, d, SekPc); if (Pico_mcd->s68k_regs[3]&4) { // 1M mode? // TODO (decode) dprintf("(decode)"); } else { // allow access in any mode, like Gens does u16 *pm=(u16 *)(Pico_mcd->word_ram+(a&0x3fffe)); pm[0]=(u16)(d>>16); pm[1]=(u16)d; } return; } // word RAM (1M area) if ((a&0xfe0000)==0x0c0000 && (Pico_mcd->s68k_regs[3]&4)) { // 0c0000-0dffff u16 *pm; if (d) dprintf("s68k_wram1M w32: [%06x] %08x @%06x", a, d, SekPc); a=((a&0x1fffe)<<1); if (!(Pico_mcd->s68k_regs[3]&1)) a+=2; pm=(u16 *)(Pico_mcd->word_ram+a); pm[0]=(u16)(d>>16); pm[1]=(u16)d; return; } dprintf("s68k w32: %06x, %08x @%06x", a&0xffffff, d, SekPcS68k); } // ----------------------------------------------------------------- #ifdef EMU_M68K unsigned char PicoReadCD8w (unsigned int a) { return m68ki_cpu_p == &PicoS68kCPU ? PicoReadS68k8(a) : PicoReadM68k8(a); } unsigned short PicoReadCD16w(unsigned int a) { return m68ki_cpu_p == &PicoS68kCPU ? PicoReadS68k16(a) : PicoReadM68k16(a); } unsigned int PicoReadCD32w(unsigned int a) { return m68ki_cpu_p == &PicoS68kCPU ? PicoReadS68k32(a) : PicoReadM68k32(a); } void PicoWriteCD8w (unsigned int a, unsigned char d) { if (m68ki_cpu_p == &PicoS68kCPU) PicoWriteS68k8(a, d); else PicoWriteM68k8(a, d); } void PicoWriteCD16w(unsigned int a, unsigned short d) { if (m68ki_cpu_p == &PicoS68kCPU) PicoWriteS68k16(a, d); else PicoWriteM68k16(a, d); } void PicoWriteCD32w(unsigned int a, unsigned int d) { if (m68ki_cpu_p == &PicoS68kCPU) PicoWriteS68k32(a, d); else PicoWriteM68k32(a, d); } // these are allowed to access RAM unsigned int m68k_read_pcrelative_CD8 (unsigned int a) { a&=0xffffff; if(m68ki_cpu_p == &PicoS68kCPU) { if (a < 0x80000) return *(u8 *)(Pico_mcd->prg_ram+(a^1)); // PRG Ram else dprintf("s68k read_pcrel8 @ %06x", a); } else { if(aprg_ram+(a&~1)); // PRG Ram else dprintf("s68k read_pcrel16 @ %06x", a); } else { if(aprg_ram+(a&~1)); return (pm[0]<<16)|pm[1]; } // PRG Ram else dprintf("s68k read_pcrel32 @ %06x", a); } else { if(a