mirror of
				https://github.com/RaySollium99/picodrive.git
				synced 2025-10-27 21:48:50 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			96 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			96 lines
		
	
	
	
		
			3.1 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* @(#)k_cos.c 5.1 93/09/24 */
 | |
| /*
 | |
|  * ====================================================
 | |
|  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 | |
|  *
 | |
|  * Developed at SunPro, a Sun Microsystems, Inc. business.
 | |
|  * Permission to use, copy, modify, and distribute this
 | |
|  * software is freely granted, provided that this notice
 | |
|  * is preserved.
 | |
|  * ====================================================
 | |
|  */
 | |
| 
 | |
| #if defined(LIBM_SCCS) && !defined(lint)
 | |
| static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $";
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * __kernel_cos( x,  y )
 | |
|  * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
 | |
|  * Input x is assumed to be bounded by ~pi/4 in magnitude.
 | |
|  * Input y is the tail of x.
 | |
|  *
 | |
|  * Algorithm
 | |
|  *	1. Since cos(-x) = cos(x), we need only to consider positive x.
 | |
|  *	2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0.
 | |
|  *	3. cos(x) is approximated by a polynomial of degree 14 on
 | |
|  *	   [0,pi/4]
 | |
|  *		  	                 4            14
 | |
|  *	   	cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
 | |
|  *	   where the remez error is
 | |
|  *
 | |
|  * 	|              2     4     6     8     10    12     14 |     -58
 | |
|  * 	|cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
 | |
|  * 	|    					               |
 | |
|  *
 | |
|  * 	               4     6     8     10    12     14
 | |
|  *	4. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
 | |
|  *	       cos(x) = 1 - x*x/2 + r
 | |
|  *	   since cos(x+y) ~ cos(x) - sin(x)*y
 | |
|  *			  ~ cos(x) - x*y,
 | |
|  *	   a correction term is necessary in cos(x) and hence
 | |
|  *		cos(x+y) = 1 - (x*x/2 - (r - x*y))
 | |
|  *	   For better accuracy when x > 0.3, let qx = |x|/4 with
 | |
|  *	   the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
 | |
|  *	   Then
 | |
|  *		cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)).
 | |
|  *	   Note that 1-qx and (x*x/2-qx) is EXACT here, and the
 | |
|  *	   magnitude of the latter is at least a quarter of x*x/2,
 | |
|  *	   thus, reducing the rounding error in the subtraction.
 | |
|  */
 | |
| 
 | |
| #include "math.h"
 | |
| #include "math_private.h"
 | |
| 
 | |
| #ifdef __STDC__
 | |
| static const double
 | |
| #else
 | |
| static double
 | |
| #endif
 | |
| one =  1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */
 | |
| C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
 | |
| C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
 | |
| C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
 | |
| C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
 | |
| C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
 | |
| C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
 | |
| 
 | |
| #ifdef __STDC__
 | |
| 	double __kernel_cos(double x, double y)
 | |
| #else
 | |
| 	double __kernel_cos(x, y)
 | |
| 	double x,y;
 | |
| #endif
 | |
| {
 | |
| 	double a,hz,z,r,qx;
 | |
| 	int32_t ix;
 | |
| 	GET_HIGH_WORD(ix,x);
 | |
| 	ix &= 0x7fffffff;			/* ix = |x|'s high word*/
 | |
| 	if(ix<0x3e400000) {			/* if x < 2**27 */
 | |
| 	    if(((int)x)==0) return one;		/* generate inexact */
 | |
| 	}
 | |
| 	z  = x*x;
 | |
| 	r  = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*C6)))));
 | |
| 	if(ix < 0x3FD33333) 			/* if |x| < 0.3 */
 | |
| 	    return one - (0.5*z - (z*r - x*y));
 | |
| 	else {
 | |
| 	    if(ix > 0x3fe90000) {		/* x > 0.78125 */
 | |
| 		qx = 0.28125;
 | |
| 	    } else {
 | |
| 	        INSERT_WORDS(qx,ix-0x00200000,0);	/* x/4 */
 | |
| 	    }
 | |
| 	    hz = 0.5*z-qx;
 | |
| 	    a  = one-qx;
 | |
| 	    return a - (hz - (z*r-x*y));
 | |
| 	}
 | |
| }
 | 
