picodrive/pico/32x/memory.c

2471 lines
67 KiB
C

/*
* PicoDrive
* (C) notaz, 2009,2010,2013
* (C) kub, 2019
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*
* Register map:
* a15100 F....... R.....EA F.....AC N...VHMP 4000 // Fm Ren nrEs Aden Cart heN V H cMd Pwm
* a15102 ........ ......SM ? 4002 // intS intM
* a15104 ........ ......10 ........ hhhhhhhh 4004 // bk1 bk0 Hint
* a15106 ........ F....SDR UE...... .....SDR 4006 // Full 68S Dma Rv fUll[fb] Empt[fb]
* a15108 (32bit DREQ src) 4008
* a1510c (32bit DREQ dst) 400c
* a15110 llllllll llllll00 4010 // DREQ Len
* a15112 (16bit FIFO reg) 4012
* a15114 0 (16bit VRES clr) 4014
* a15116 0 (16bit Vint clr) 4016
* a15118 0 (16bit Hint clr) 4018
* a1511a .......? .......C (16bit CMD clr) 401a // TV Cm
* a1511c 0 (16bit PWM clr) 401c
* a1511e 0 ? 401e
* a15120 (16 bytes comm) 2020
* a15130 (PWM) 2030
*
* SH2 addr lines:
* iii. .cc. ..xx * // Internal, Cs, x
*
* sh2 map, wait/bus cycles (from docs):
* r w
* rom 0000000-0003fff 1 -
* sys reg 0004000-00040ff 1 1
* vdp reg 0004100-00041ff 5 5
* vdp pal 0004200-00043ff 5 5
* cart 2000000-23fffff 6-15
* dram/fb 4000000-401ffff 5-12 1-3
* fb ovr 4020000-403ffff
* sdram 6000000-603ffff 12 2 (cycles)
* d.a. c0000000-?
*/
#include "../pico_int.h"
#include "../memory.h"
#include "../../cpu/sh2/compiler.h"
DRC_DECLARE_SR;
static const char str_mars[] = "MARS";
void *p32x_bios_g, *p32x_bios_m, *p32x_bios_s;
struct Pico32xMem *Pico32xMem;
static void bank_switch_rom_68k(int b);
static void (*m68k_write8_io)(u32 a, u32 d);
static void (*m68k_write16_io)(u32 a, u32 d);
// addressing byte in 16bit reg
#define REG8IN16(ptr, offs) ((u8 *)ptr)[(offs) ^ 1]
// poll detection
#define POLL_THRESHOLD 5
static struct {
u32 addr1, addr2, cycles;
int cnt;
} m68k_poll;
static int m68k_poll_detect(u32 a, u32 cycles, u32 flags)
{
int ret = 0;
// support polling on 2 addresses - seen in Wolfenstein
int match = (a - m68k_poll.addr1 <= 2 || a - m68k_poll.addr2 <= 2);
if (match && cycles - m68k_poll.cycles <= 64 && !SekNotPolling)
{
// detect split 32bit access by same cycle count, and ignore those
if (cycles != m68k_poll.cycles && ++m68k_poll.cnt >= POLL_THRESHOLD) {
if (!(Pico32x.emu_flags & flags)) {
elprintf(EL_32X, "m68k poll addr %08x, cyc %u",
a, cycles - m68k_poll.cycles);
}
Pico32x.emu_flags |= flags;
ret = 1;
}
}
else {
// reset poll state in case of restart by interrupt
Pico32x.emu_flags &= ~(P32XF_68KCPOLL|P32XF_68KVPOLL);
SekSetStop(0);
m68k_poll.cnt = 0;
if (!match) {
m68k_poll.addr2 = m68k_poll.addr1;
m68k_poll.addr1 = a;
}
SekNotPolling = 0;
}
m68k_poll.cycles = cycles;
return ret;
}
void p32x_m68k_poll_event(u32 flags)
{
if (Pico32x.emu_flags & flags) {
elprintf(EL_32X, "m68k poll %02x -> %02x", Pico32x.emu_flags,
Pico32x.emu_flags & ~flags);
Pico32x.emu_flags &= ~flags;
SekSetStop(0);
}
m68k_poll.addr1 = m68k_poll.addr2 = m68k_poll.cnt = 0;
}
void NOINLINE p32x_sh2_poll_detect(u32 a, SH2 *sh2, u32 flags, int maxcnt)
{
u32 cycles_done = sh2_cycles_done_t(sh2);
u32 cycles_diff = cycles_done - sh2->poll_cycles;
// reading 2 consecutive 16bit values is probably a 32bit access. detect this
// by checking address (max 2 bytes away) and cycles (max 2 cycles later).
// no polling if more than 20 cycles have passed since last detect call.
if (a - sh2->poll_addr <= 2 && CYCLES_GE(20, cycles_diff)) {
if (CYCLES_GT(cycles_diff, 2) && ++sh2->poll_cnt >= maxcnt) {
if (!(sh2->state & flags))
elprintf_sh2(sh2, EL_32X, "state: %02x->%02x",
sh2->state, sh2->state | flags);
sh2->state |= flags;
sh2_end_run(sh2, 1);
pevt_log_sh2(sh2, EVT_POLL_START);
#ifdef DRC_SH2
// mark this as an address used for polling if SDRAM
if ((a & 0xc6000000) == 0x06000000) {
unsigned char *p = sh2->p_drcblk_ram;
p[(a & 0x3ffff) >> SH2_DRCBLK_RAM_SHIFT] |= 0x80;
// mark next word too to enable poll fifo for 32bit access
p[((a+2) & 0x3ffff) >> SH2_DRCBLK_RAM_SHIFT] |= 0x80;
}
#endif
}
}
else if (!(sh2->state & (SH2_STATE_CPOLL|SH2_STATE_VPOLL|SH2_STATE_RPOLL))) {
sh2->poll_cnt = 0;
sh2->poll_addr = a;
}
sh2->poll_cycles = cycles_done;
}
void NOINLINE p32x_sh2_poll_event(SH2 *sh2, u32 flags, u32 m68k_cycles)
{
if (sh2->state & flags) {
elprintf_sh2(sh2, EL_32X, "state: %02x->%02x", sh2->state,
sh2->state & ~flags);
if (sh2->m68krcycles_done < m68k_cycles && !(sh2->state & SH2_STATE_RUN))
sh2->m68krcycles_done = m68k_cycles;
pevt_log_sh2_o(sh2, EVT_POLL_END);
sh2->state &= ~flags;
}
if (!(sh2->state & (SH2_STATE_CPOLL|SH2_STATE_VPOLL|SH2_STATE_RPOLL)))
sh2->poll_addr = sh2->poll_cycles = sh2->poll_cnt = 0;
}
static void sh2s_sync_on_read(SH2 *sh2, unsigned cycles)
{
if (sh2->poll_cnt != 0)
return;
if (p32x_sh2_ready(sh2->other_sh2, cycles-250))
p32x_sync_other_sh2(sh2, cycles);
}
// poll fifo, stores writes to potential addresses used for polling.
// This is used to correctly deliver syncronisation data to the 3 cpus. The
// fifo stores 16 bit values, 8/32 bit accesses must be adapted accordingly.
#define PFIFO_SZ 4
#define PFIFO_CNT 8
struct sh2_poll_fifo {
u32 cycles;
u32 a;
u16 d;
int cpu;
} sh2_poll_fifo[PFIFO_CNT][PFIFO_SZ];
unsigned sh2_poll_rd[PFIFO_CNT], sh2_poll_wr[PFIFO_CNT]; // ringbuffer pointers
static NOINLINE u32 sh2_poll_read(u32 a, u32 d, unsigned int cycles, SH2* sh2)
{
int hix = (a >> 1) % PFIFO_CNT;
struct sh2_poll_fifo *fifo = sh2_poll_fifo[hix];
struct sh2_poll_fifo *p;
int cpu = sh2 ? sh2->is_slave : -1;
unsigned idx;
a &= ~0x20000000; // ignore writethrough bit
// fetch oldest write to address from fifo, but stop when reaching the present
idx = sh2_poll_rd[hix];
while (idx != sh2_poll_wr[hix] && CYCLES_GE(cycles, fifo[idx].cycles)) {
p = &fifo[idx];
idx = (idx+1) % PFIFO_SZ;
if (cpu != p->cpu) {
if (CYCLES_GT(cycles, p->cycles+80)) {
// drop older fifo stores that may cause synchronisation problems.
p->a = -1;
} else if (p->a == a) {
// replace current data with fifo value and discard fifo entry
d = p->d;
p->a = -1;
break;
}
}
}
return d;
}
static NOINLINE void sh2_poll_write(u32 a, u32 d, unsigned int cycles, SH2 *sh2)
{
int hix = (a >> 1) % PFIFO_CNT;
struct sh2_poll_fifo *fifo = sh2_poll_fifo[hix];
struct sh2_poll_fifo *q;
int cpu = sh2 ? sh2->is_slave : -1;
unsigned rd = sh2_poll_rd[hix], wr = sh2_poll_wr[hix];
unsigned idx, nrd;
a &= ~0x20000000; // ignore writethrough bit
// throw out any values written by other cpus, plus heading cancelled stuff
for (idx = nrd = wr; idx != rd; ) {
idx = (idx-1) % PFIFO_SZ;
q = &fifo[idx];
if (q->a == a && q->cpu != cpu) { q->a = -1; }
if (q->a != -1) { nrd = idx; }
}
rd = nrd;
// fold 2 consecutive writes to the same address to avoid reading of
// intermediate values that may cause synchronisation problems.
// NB this can take an eternity on m68k: mov.b <addr1.l>,<addr2.l> needs
// 28 m68k-cycles (~80 sh2-cycles) to complete (observed in Metal Head)
q = &fifo[(sh2_poll_wr[hix]-1) % PFIFO_SZ];
if (rd != wr && q->a == a && !CYCLES_GT(cycles,q->cycles + (cpu<0 ? 30:4))) {
q->d = d;
} else {
// store write to poll address in fifo
fifo[wr] =
(struct sh2_poll_fifo){ .cycles = cycles, .a = a, .d = d, .cpu = cpu };
wr = (wr+1) % PFIFO_SZ;
if (wr == rd)
// fifo overflow, discard oldest value
rd = (rd+1) % PFIFO_SZ;
}
sh2_poll_rd[hix] = rd; sh2_poll_wr[hix] = wr;
}
u32 REGPARM(3) p32x_sh2_poll_memory8(u32 a, u32 d, SH2 *sh2)
{
int shift = (a & 1 ? 0 : 8);
d = (s8)(p32x_sh2_poll_memory16(a & ~1, d << shift, sh2) >> shift);
return d;
}
u32 REGPARM(3) p32x_sh2_poll_memory16(u32 a, u32 d, SH2 *sh2)
{
unsigned char *p = sh2->p_drcblk_ram;
unsigned int cycles;
DRC_SAVE_SR(sh2);
// is this a synchronisation address?
if(p[(a & 0x3ffff) >> SH2_DRCBLK_RAM_SHIFT] & 0x80) {
cycles = sh2_cycles_done_m68k(sh2);
sh2s_sync_on_read(sh2, cycles);
// check poll fifo and sign-extend the result correctly
d = (s16)sh2_poll_read(a, d, cycles, sh2);
}
p32x_sh2_poll_detect(a, sh2, SH2_STATE_RPOLL, 5);
DRC_RESTORE_SR(sh2);
return d;
}
u32 REGPARM(3) p32x_sh2_poll_memory32(u32 a, u32 d, SH2 *sh2)
{
unsigned char *p = sh2->p_drcblk_ram;
unsigned int cycles;
DRC_SAVE_SR(sh2);
// is this a synchronisation address?
if(p[(a & 0x3ffff) >> SH2_DRCBLK_RAM_SHIFT] & 0x80) {
cycles = sh2_cycles_done_m68k(sh2);
sh2s_sync_on_read(sh2, cycles);
// check poll fifo and sign-extend the result correctly
d = (sh2_poll_read(a, d >> 16, cycles, sh2) << 16) |
((u16)sh2_poll_read(a+2, d, cycles, sh2));
}
p32x_sh2_poll_detect(a, sh2, SH2_STATE_RPOLL, 5);
DRC_RESTORE_SR(sh2);
return d;
}
// SH2 faking
//#define FAKE_SH2
#ifdef FAKE_SH2
static int p32x_csum_faked;
static const u16 comm_fakevals[] = {
0x4d5f, 0x4f4b, // M_OK
0x535f, 0x4f4b, // S_OK
0x4D41, 0x5346, // MASF - Brutal Unleashed
0x5331, 0x4d31, // Darxide
0x5332, 0x4d32,
0x5333, 0x4d33,
0x0000, 0x0000, // eq for doom
0x0002, // Mortal Kombat
// 0, // pad
};
static u32 sh2_comm_faker(u32 a)
{
static int f = 0;
if (a == 0x28 && !p32x_csum_faked) {
p32x_csum_faked = 1;
return *(unsigned short *)(Pico.rom + 0x18e);
}
if (f >= sizeof(comm_fakevals) / sizeof(comm_fakevals[0]))
f = 0;
return comm_fakevals[f++];
}
#endif
// ------------------------------------------------------------------
// 68k regs
static u32 p32x_reg_read16(u32 a)
{
a &= 0x3e;
#if 0
if ((a & 0x30) == 0x20)
return sh2_comm_faker(a);
#else
if ((a & 0x30) == 0x20) {
unsigned int cycles = SekCyclesDone();
if (CYCLES_GT(cycles - msh2.m68krcycles_done, 244))
p32x_sync_sh2s(cycles);
if (m68k_poll_detect(a, cycles, P32XF_68KCPOLL)) {
SekSetStop(1);
SekEndRun(16);
}
return sh2_poll_read(a, Pico32x.regs[a / 2], cycles, NULL);
}
#endif
if (a == 2) { // INTM, INTS
unsigned int cycles = SekCyclesDone();
if (CYCLES_GT(cycles - msh2.m68krcycles_done, 64))
p32x_sync_sh2s(cycles);
goto out;
}
if ((a & 0x30) == 0x30)
return p32x_pwm_read16(a, NULL, SekCyclesDone());
out:
return Pico32x.regs[a / 2];
}
static void dreq0_write(u16 *r, u32 d)
{
if (!(r[6 / 2] & P32XS_68S)) {
elprintf(EL_32X|EL_ANOMALY, "DREQ FIFO w16 without 68S?");
return; // ignored - tested
}
if (Pico32x.dmac0_fifo_ptr < DMAC_FIFO_LEN) {
Pico32x.dmac_fifo[Pico32x.dmac0_fifo_ptr++] = d;
if (Pico32x.dmac0_fifo_ptr == DMAC_FIFO_LEN)
r[6 / 2] |= P32XS_FULL;
// tested: len register decrements and 68S clears
// even if SH2s/DMAC aren't active..
r[0x10 / 2]--;
if (r[0x10 / 2] == 0)
r[6 / 2] &= ~P32XS_68S;
if ((Pico32x.dmac0_fifo_ptr & 3) == 0) {
p32x_sync_sh2s(SekCyclesDone());
p32x_dreq0_trigger();
}
}
else
elprintf(EL_32X|EL_ANOMALY, "DREQ FIFO overflow!");
}
// writable bits tested
static void p32x_reg_write8(u32 a, u32 d)
{
u16 *r = Pico32x.regs;
a &= 0x3f;
// for things like bset on comm port
m68k_poll.cnt = 0;
switch (a) {
case 0x00: // adapter ctl: FM writable
REG8IN16(r, 0x00) = d & 0x80;
return;
case 0x01: // adapter ctl: RES and ADEN writable
if ((d ^ r[0]) & d & P32XS_nRES)
p32x_reset_sh2s();
REG8IN16(r, 0x01) &= ~(P32XS_nRES|P32XS_ADEN);
REG8IN16(r, 0x01) |= d & (P32XS_nRES|P32XS_ADEN);
return;
case 0x02: // ignored, always 0
return;
case 0x03: // irq ctl
if ((d ^ r[0x02 / 2]) & 3) {
unsigned int cycles = SekCyclesDone();
p32x_sync_sh2s(cycles);
r[0x02 / 2] = d & 3;
p32x_update_cmd_irq(NULL, cycles);
}
return;
case 0x04: // ignored, always 0
return;
case 0x05: // bank
d &= 3;
if (r[0x04 / 2] != d) {
r[0x04 / 2] = d;
bank_switch_rom_68k(d);
}
return;
case 0x06: // ignored, always 0
return;
case 0x07: // DREQ ctl
REG8IN16(r, 0x07) &= ~(P32XS_68S|P32XS_DMA|P32XS_RV);
if (!(d & P32XS_68S)) {
Pico32x.dmac0_fifo_ptr = 0;
REG8IN16(r, 0x07) &= ~P32XS_FULL;
}
REG8IN16(r, 0x07) |= d & (P32XS_68S|P32XS_DMA|P32XS_RV);
return;
case 0x08: // ignored, always 0
return;
case 0x09: // DREQ src
REG8IN16(r, 0x09) = d;
return;
case 0x0a:
REG8IN16(r, 0x0a) = d;
return;
case 0x0b:
REG8IN16(r, 0x0b) = d & 0xfe;
return;
case 0x0c: // ignored, always 0
return;
case 0x0d: // DREQ dest
case 0x0e:
case 0x0f:
case 0x10: // DREQ len
REG8IN16(r, a) = d;
return;
case 0x11:
REG8IN16(r, a) = d & 0xfc;
return;
// DREQ FIFO - writes to odd addr go to fifo
// do writes to even work? Reads return 0
case 0x12:
REG8IN16(r, a) = d;
return;
case 0x13:
d = (REG8IN16(r, 0x12) << 8) | (d & 0xff);
REG8IN16(r, 0x12) = 0;
dreq0_write(r, d);
return;
case 0x14: // ignored, always 0
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
return;
case 0x1a: // what's this?
elprintf(EL_32X|EL_ANOMALY, "mystery w8 %02x %02x", a, d);
REG8IN16(r, a) = d & 0x01;
return;
case 0x1b: // TV
REG8IN16(r, a) = d & 0x01;
return;
case 0x1c: // ignored, always 0
case 0x1d:
case 0x1e:
case 0x1f:
return;
case 0x20: // comm port
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
if (REG8IN16(r, a) != d) {
unsigned int cycles = SekCyclesDone();
if (CYCLES_GT(cycles - msh2.m68krcycles_done, 64))
p32x_sync_sh2s(cycles);
REG8IN16(r, a) = d;
p32x_sh2_poll_event(&sh2s[0], SH2_STATE_CPOLL, cycles);
p32x_sh2_poll_event(&sh2s[1], SH2_STATE_CPOLL, cycles);
sh2_poll_write(a & ~1, r[a / 2], cycles, NULL);
}
return;
case 0x30:
return;
case 0x31: // PWM control
REG8IN16(r, a) &= ~0x0f;
REG8IN16(r, a) |= d & 0x0f;
d = r[0x30 / 2];
goto pwm_write;
case 0x32: // PWM cycle
REG8IN16(r, a) = d & 0x0f;
d = r[0x32 / 2];
goto pwm_write;
case 0x33:
REG8IN16(r, a) = d;
d = r[0x32 / 2];
goto pwm_write;
// PWM pulse regs.. Only writes to odd address send a value
// to FIFO; reads are 0 (except status bits)
case 0x34:
case 0x36:
case 0x38:
REG8IN16(r, a) = d;
return;
case 0x35:
case 0x37:
case 0x39:
d = (REG8IN16(r, a ^ 1) << 8) | (d & 0xff);
REG8IN16(r, a ^ 1) = 0;
goto pwm_write;
case 0x3a: // ignored, always 0
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
return;
pwm_write:
p32x_pwm_write16(a & ~1, d, NULL, SekCyclesDone());
return;
}
}
static void p32x_reg_write16(u32 a, u32 d)
{
u16 *r = Pico32x.regs;
a &= 0x3e;
// for things like bset on comm port
m68k_poll.cnt = 0;
switch (a/2) {
case 0x00/2: // adapter ctl
if ((d ^ r[0]) & d & P32XS_nRES)
p32x_reset_sh2s();
r[0] &= ~(P32XS_FM|P32XS_nRES|P32XS_ADEN);
r[0] |= d & (P32XS_FM|P32XS_nRES|P32XS_ADEN);
return;
case 0x08/2: // DREQ src
r[a / 2] = d & 0xff;
return;
case 0x0a/2:
r[a / 2] = d & ~1;
return;
case 0x0c/2: // DREQ dest
r[a / 2] = d & 0xff;
return;
case 0x0e/2:
r[a / 2] = d;
return;
case 0x10/2: // DREQ len
r[a / 2] = d & ~3;
return;
case 0x12/2: // FIFO reg
dreq0_write(r, d);
return;
case 0x1a/2: // TV + mystery bit
r[a / 2] = d & 0x0101;
return;
case 0x20/2: // comm port
case 0x22/2:
case 0x24/2:
case 0x26/2:
case 0x28/2:
case 0x2a/2:
case 0x2c/2:
case 0x2e/2:
if (r[a / 2] != d) {
unsigned int cycles = SekCyclesDone();
if (CYCLES_GT(cycles - msh2.m68krcycles_done, 64))
p32x_sync_sh2s(cycles);
r[a / 2] = d;
p32x_sh2_poll_event(&sh2s[0], SH2_STATE_CPOLL, cycles);
p32x_sh2_poll_event(&sh2s[1], SH2_STATE_CPOLL, cycles);
sh2_poll_write(a, (u16)d, cycles, NULL);
}
return;
case 0x30/2: // PWM control
d = (r[a / 2] & ~0x0f) | (d & 0x0f);
r[a / 2] = d;
p32x_pwm_write16(a, d, NULL, SekCyclesDone());
return;
case 0x32/2:
case 0x34/2:
case 0x36/2:
case 0x38/2:
case 0x3a/2:
case 0x3c/2:
case 0x3e/2:
p32x_pwm_write16(a, d, NULL, SekCyclesDone());
return;
}
p32x_reg_write8(a + 1, d);
}
// ------------------------------------------------------------------
// VDP regs
static u32 p32x_vdp_read16(u32 a)
{
u32 d;
a &= 0x0e;
d = Pico32x.vdp_regs[a / 2];
if (a == 0x0a) {
// tested: FEN seems to be randomly pulsing on hcnt 0x80-0xf0,
// most often at 0xb1-0xb5, even during vblank,
// what's the deal with that?
// we'll just fake it along with hblank for now
Pico32x.vdp_fbcr_fake++;
if (Pico32x.vdp_fbcr_fake & 4)
d |= P32XV_HBLK;
if ((Pico32x.vdp_fbcr_fake & 7) == 0)
d |= P32XV_nFEN;
}
return d;
}
static void p32x_vdp_write8(u32 a, u32 d)
{
u16 *r = Pico32x.vdp_regs;
a &= 0x0f;
// TODO: verify what's writeable
switch (a) {
case 0x01:
// priority inversion is handled in palette
if ((r[0] ^ d) & P32XV_PRI)
Pico32x.dirty_pal = 1;
r[0] = (r[0] & P32XV_nPAL) | (d & 0xff);
break;
case 0x03: // shift (for pp mode)
r[2 / 2] = d & 1;
break;
case 0x05: // fill len
r[4 / 2] = d & 0xff;
break;
case 0x0b:
d &= 1;
Pico32x.pending_fb = d;
// if we are blanking and FS bit is changing
if (((r[0x0a/2] & P32XV_VBLK) || (r[0] & P32XV_Mx) == 0) && ((r[0x0a/2] ^ d) & P32XV_FS)) {
r[0x0a/2] ^= P32XV_FS;
Pico32xSwapDRAM(d ^ 1);
elprintf(EL_32X, "VDP FS: %d", r[0x0a/2] & P32XV_FS);
}
break;
}
}
static void p32x_vdp_write16(u32 a, u32 d, SH2 *sh2)
{
a &= 0x0e;
if (a == 6) { // fill start
Pico32x.vdp_regs[6 / 2] = d;
return;
}
if (a == 8) { // fill data
u16 *dram = Pico32xMem->dram[(Pico32x.vdp_regs[0x0a/2] & P32XV_FS) ^ 1];
int len = Pico32x.vdp_regs[4 / 2] + 1;
int len1 = len;
a = Pico32x.vdp_regs[6 / 2];
while (len1--) {
dram[a] = d;
a = (a & 0xff00) | ((a + 1) & 0xff);
}
Pico32x.vdp_regs[0x06 / 2] = a;
Pico32x.vdp_regs[0x08 / 2] = d;
if (sh2 != NULL && len > 8) {
Pico32x.vdp_regs[0x0a / 2] |= P32XV_nFEN;
// supposedly takes 3 bus/6 sh2 cycles? or 3 sh2 cycles?
p32x_event_schedule_sh2(sh2, P32X_EVENT_FILLEND, 3 + len);
}
return;
}
p32x_vdp_write8(a | 1, d);
}
// ------------------------------------------------------------------
// SH2 regs
static u32 p32x_sh2reg_read16(u32 a, SH2 *sh2)
{
u16 *r = Pico32x.regs;
unsigned cycles;
a &= 0x3e;
switch (a/2) {
case 0x00/2: // adapter/irq ctl
return (r[0] & P32XS_FM) | Pico32x.sh2_regs[0]
| Pico32x.sh2irq_mask[sh2->is_slave];
case 0x04/2: // H count (often as comm too)
p32x_sh2_poll_detect(a, sh2, SH2_STATE_CPOLL, 9);
cycles = sh2_cycles_done_m68k(sh2);
sh2s_sync_on_read(sh2, cycles);
return sh2_poll_read(a, Pico32x.sh2_regs[4 / 2], cycles, sh2);
case 0x06/2:
return (r[a / 2] & ~P32XS_FULL) | 0x4000;
case 0x08/2: // DREQ src
case 0x0a/2:
case 0x0c/2: // DREQ dst
case 0x0e/2:
case 0x10/2: // DREQ len
return r[a / 2];
case 0x12/2: // DREQ FIFO - does this work on hw?
if (Pico32x.dmac0_fifo_ptr > 0) {
Pico32x.dmac0_fifo_ptr--;
r[a / 2] = Pico32x.dmac_fifo[0];
memmove(&Pico32x.dmac_fifo[0], &Pico32x.dmac_fifo[1],
Pico32x.dmac0_fifo_ptr * 2);
}
return r[a / 2];
case 0x14/2:
case 0x16/2:
case 0x18/2:
case 0x1a/2:
case 0x1c/2:
return 0; // ?
case 0x20/2: // comm port
case 0x22/2:
case 0x24/2:
case 0x26/2:
case 0x28/2:
case 0x2a/2:
case 0x2c/2:
case 0x2e/2:
p32x_sh2_poll_detect(a, sh2, SH2_STATE_CPOLL, 9);
cycles = sh2_cycles_done_m68k(sh2);
sh2s_sync_on_read(sh2, cycles);
return sh2_poll_read(a, r[a / 2], cycles, sh2);
case 0x30/2: // PWM
case 0x32/2:
case 0x34/2:
case 0x36/2:
case 0x38/2:
case 0x3a/2:
case 0x3c/2:
case 0x3e/2:
return p32x_pwm_read16(a, sh2, sh2_cycles_done_m68k(sh2));
}
elprintf_sh2(sh2, EL_32X|EL_ANOMALY,
"unhandled sysreg r16 [%02x] @%08x", a, sh2_pc(sh2));
return 0;
}
static void p32x_sh2reg_write8(u32 a, u32 d, SH2 *sh2)
{
u16 *r = Pico32x.regs;
u32 old;
a &= 0x3f;
sh2->poll_cnt = 0;
switch (a) {
case 0x00: // FM
r[0] &= ~P32XS_FM;
r[0] |= (d << 8) & P32XS_FM;
return;
case 0x01: // HEN/irq masks
old = Pico32x.sh2irq_mask[sh2->is_slave];
if ((d ^ old) & 1)
p32x_pwm_sync_to_sh2(sh2);
Pico32x.sh2irq_mask[sh2->is_slave] = d & 0x0f;
Pico32x.sh2_regs[0] &= ~0x80;
Pico32x.sh2_regs[0] |= d & 0x80;
if ((d ^ old) & 1)
p32x_pwm_schedule_sh2(sh2);
if ((old ^ d) & 2)
p32x_update_cmd_irq(sh2, 0);
if ((old ^ d) & 4)
p32x_schedule_hint(sh2, 0);
return;
case 0x04: // ignored?
return;
case 0x05: // H count
d &= 0xff;
if (Pico32x.sh2_regs[4 / 2] != d) {
unsigned int cycles = sh2_cycles_done_m68k(sh2);
Pico32x.sh2_regs[4 / 2] = d;
p32x_sh2_poll_event(sh2->other_sh2, SH2_STATE_CPOLL, cycles);
if (p32x_sh2_ready(sh2->other_sh2, cycles+8))
sh2_end_run(sh2, 4);
sh2_poll_write(a & ~1, d, cycles, sh2);
}
return;
case 0x20: // comm port
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
if (REG8IN16(r, a) != d) {
unsigned int cycles = sh2_cycles_done_m68k(sh2);
REG8IN16(r, a) = d;
p32x_m68k_poll_event(P32XF_68KCPOLL);
p32x_sh2_poll_event(sh2->other_sh2, SH2_STATE_CPOLL, cycles);
if (p32x_sh2_ready(sh2->other_sh2, cycles+8))
sh2_end_run(sh2, 1);
sh2_poll_write(a & ~1, r[a / 2], cycles, sh2);
}
return;
case 0x30:
REG8IN16(r, a) = d & 0x0f;
d = r[0x30 / 2];
goto pwm_write;
case 0x31: // PWM control
REG8IN16(r, a) = d & 0x8f;
d = r[0x30 / 2];
goto pwm_write;
case 0x32: // PWM cycle
REG8IN16(r, a) = d & 0x0f;
d = r[0x32 / 2];
goto pwm_write;
case 0x33:
REG8IN16(r, a) = d;
d = r[0x32 / 2];
goto pwm_write;
// PWM pulse regs.. Only writes to odd address send a value
// to FIFO; reads are 0 (except status bits)
case 0x34:
case 0x36:
case 0x38:
REG8IN16(r, a) = d;
return;
case 0x35:
case 0x37:
case 0x39:
d = (REG8IN16(r, a ^ 1) << 8) | (d & 0xff);
REG8IN16(r, a ^ 1) = 0;
goto pwm_write;
case 0x3a: // ignored, always 0?
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
return;
pwm_write:
p32x_pwm_write16(a & ~1, d, sh2, sh2_cycles_done_m68k(sh2));
return;
}
elprintf(EL_32X|EL_ANOMALY,
"unhandled sysreg w8 [%02x] %02x @%08x", a, d, sh2_pc(sh2));
}
static void p32x_sh2reg_write16(u32 a, u32 d, SH2 *sh2)
{
a &= 0x3e;
sh2->poll_cnt = 0;
switch (a/2) {
case 0x00/2: // FM
Pico32x.regs[0] &= ~P32XS_FM;
Pico32x.regs[0] |= d & P32XS_FM;
break;
case 0x14/2:
Pico32x.sh2irqs &= ~P32XI_VRES;
goto irls;
case 0x16/2:
Pico32x.sh2irqi[sh2->is_slave] &= ~P32XI_VINT;
goto irls;
case 0x18/2:
Pico32x.sh2irqi[sh2->is_slave] &= ~P32XI_HINT;
goto irls;
case 0x1a/2:
Pico32x.regs[2 / 2] &= ~(1 << sh2->is_slave);
p32x_update_cmd_irq(sh2, 0);
return;
case 0x1c/2:
p32x_pwm_sync_to_sh2(sh2);
Pico32x.sh2irqi[sh2->is_slave] &= ~P32XI_PWM;
p32x_pwm_schedule_sh2(sh2);
goto irls;
case 0x20/2: // comm port
case 0x22/2:
case 0x24/2:
case 0x26/2:
case 0x28/2:
case 0x2a/2:
case 0x2c/2:
case 0x2e/2:
if (Pico32x.regs[a / 2] != d) {
unsigned int cycles = sh2_cycles_done_m68k(sh2);
Pico32x.regs[a / 2] = d;
p32x_m68k_poll_event(P32XF_68KCPOLL);
p32x_sh2_poll_event(sh2->other_sh2, SH2_STATE_CPOLL, cycles);
if (p32x_sh2_ready(sh2->other_sh2, cycles+8))
sh2_end_run(sh2, 1);
sh2_poll_write(a, d, cycles, sh2);
}
return;
case 0x30/2: // PWM
case 0x32/2:
case 0x34/2:
case 0x36/2:
case 0x38/2:
case 0x3a/2:
case 0x3c/2:
case 0x3e/2:
p32x_pwm_write16(a, d, sh2, sh2_cycles_done_m68k(sh2));
return;
}
p32x_sh2reg_write8(a | 1, d, sh2);
return;
irls:
p32x_update_irls(sh2, 0);
}
// ------------------------------------------------------------------
// 32x 68k handlers
// after ADEN
static u32 PicoRead8_32x_on(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
d = p32x_reg_read16(a);
goto out_16to8;
}
if ((a & 0xfc00) != 0x5000) {
if (PicoIn.AHW & PAHW_MCD)
return PicoRead8_mcd_io(a);
else
return PicoRead8_io(a);
}
if ((a & 0xfff0) == 0x5180) { // a15180
d = p32x_vdp_read16(a);
goto out_16to8;
}
if ((a & 0xfe00) == 0x5200) { // a15200
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out_16to8;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = str_mars[a & 3];
goto out;
}
elprintf(EL_UIO, "m68k unmapped r8 [%06x] @%06x", a, SekPc);
return d;
out_16to8:
if (a & 1)
d &= 0xff;
else
d >>= 8;
out:
elprintf(EL_32X, "m68k 32x r8 [%06x] %02x @%06x", a, d, SekPc);
return d;
}
static u32 PicoRead16_32x_on(u32 a)
{
u32 d = 0;
if ((a & 0xffc0) == 0x5100) { // a15100
d = p32x_reg_read16(a);
goto out;
}
if ((a & 0xfc00) != 0x5000) {
if (PicoIn.AHW & PAHW_MCD)
return PicoRead16_mcd_io(a);
else
return PicoRead16_io(a);
}
if ((a & 0xfff0) == 0x5180) { // a15180
d = p32x_vdp_read16(a);
goto out;
}
if ((a & 0xfe00) == 0x5200) { // a15200
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = !(a & 2) ? ('M'<<8)|'A' : ('R'<<8)|'S';
goto out;
}
elprintf(EL_UIO, "m68k unmapped r16 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r16 [%06x] %04x @%06x", a, d, SekPc);
return d;
}
static void PicoWrite8_32x_on(u32 a, u32 d)
{
if ((a & 0xfc00) == 0x5000)
elprintf(EL_32X, "m68k 32x w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
if ((a & 0xffc0) == 0x5100) { // a15100
p32x_reg_write8(a, d);
return;
}
if ((a & 0xfc00) != 0x5000) {
m68k_write8_io(a, d);
return;
}
if (!(Pico32x.regs[0] & P32XS_FM)) {
if ((a & 0xfff0) == 0x5180) { // a15180
p32x_vdp_write8(a, d);
return;
}
// TODO: verify
if ((a & 0xfe00) == 0x5200) { // a15200
elprintf(EL_32X|EL_ANOMALY, "m68k 32x PAL w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
((u8 *)Pico32xMem->pal)[(a & 0x1ff) ^ 1] = d;
Pico32x.dirty_pal = 1;
return;
}
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
static void PicoWrite8_32x_on_io(u32 a, u32 d)
{
PicoWrite8_io(a, d);
if (a == 0xa130f1)
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
static void PicoWrite8_32x_on_io_cd(u32 a, u32 d)
{
PicoWrite8_mcd_io(a, d);
if (a == 0xa130f1)
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
static void PicoWrite8_32x_on_io_ssf2(u32 a, u32 d)
{
carthw_ssf2_write8(a, d);
if ((a & ~0x0e) == 0xa130f1)
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
static void PicoWrite16_32x_on(u32 a, u32 d)
{
if ((a & 0xfc00) == 0x5000)
elprintf(EL_32X, "m68k 32x w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
if ((a & 0xffc0) == 0x5100) { // a15100
p32x_reg_write16(a, d);
return;
}
if ((a & 0xfc00) != 0x5000) {
m68k_write16_io(a, d);
return;
}
if (!(Pico32x.regs[0] & P32XS_FM)) {
if ((a & 0xfff0) == 0x5180) { // a15180
p32x_vdp_write16(a, d, NULL); // FIXME?
return;
}
if ((a & 0xfe00) == 0x5200) { // a15200
Pico32xMem->pal[(a & 0x1ff) / 2] = d;
Pico32x.dirty_pal = 1;
return;
}
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
static void PicoWrite16_32x_on_io(u32 a, u32 d)
{
PicoWrite16_io(a, d);
if (a == 0xa130f0)
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
static void PicoWrite16_32x_on_io_cd(u32 a, u32 d)
{
PicoWrite16_mcd_io(a, d);
if (a == 0xa130f0)
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
static void PicoWrite16_32x_on_io_ssf2(u32 a, u32 d)
{
PicoWrite16_io(a, d);
if ((a & ~0x0f) == 0xa130f0) {
carthw_ssf2_write8(a + 1, d);
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
}
}
// before ADEN
u32 PicoRead8_32x(u32 a)
{
u32 d = 0;
if (PicoIn.opt & POPT_EN_32X) {
if ((a & 0xffc0) == 0x5100) { // a15100
// regs are always readable
d = ((u8 *)Pico32x.regs)[(a & 0x3f) ^ 1];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = str_mars[a & 3];
goto out;
}
}
elprintf(EL_UIO, "m68k unmapped r8 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r8 [%06x] %02x @%06x", a, d, SekPc);
return d;
}
u32 PicoRead16_32x(u32 a)
{
u32 d = 0;
if (PicoIn.opt & POPT_EN_32X) {
if ((a & 0xffc0) == 0x5100) { // a15100
d = Pico32x.regs[(a & 0x3f) / 2];
goto out;
}
if ((a & 0xfffc) == 0x30ec) { // a130ec
d = !(a & 2) ? ('M'<<8)|'A' : ('R'<<8)|'S';
goto out;
}
}
elprintf(EL_UIO, "m68k unmapped r16 [%06x] @%06x", a, SekPc);
return d;
out:
elprintf(EL_32X, "m68k 32x r16 [%06x] %04x @%06x", a, d, SekPc);
return d;
}
void PicoWrite8_32x(u32 a, u32 d)
{
if ((PicoIn.opt & POPT_EN_32X) && (a & 0xffc0) == 0x5100) // a15100
{
u16 *r = Pico32x.regs;
elprintf(EL_32X, "m68k 32x w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
a &= 0x3f;
if (a == 1) {
if ((d ^ r[0]) & d & P32XS_ADEN) {
Pico32xStartup();
r[0] &= ~P32XS_nRES; // causes reset if specified by this write
r[0] |= P32XS_ADEN;
p32x_reg_write8(a, d); // forward for reset processing
}
return;
}
// allow only COMM for now
if ((a & 0x30) == 0x20) {
u8 *r8 = (u8 *)r;
r8[a ^ 1] = d;
}
return;
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
void PicoWrite16_32x(u32 a, u32 d)
{
if ((PicoIn.opt & POPT_EN_32X) && (a & 0xffc0) == 0x5100) // a15100
{
u16 *r = Pico32x.regs;
elprintf(EL_UIO, "m68k 32x w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
a &= 0x3e;
if (a == 0) {
if ((d ^ r[0]) & d & P32XS_ADEN) {
Pico32xStartup();
r[0] &= ~P32XS_nRES; // causes reset if specified by this write
r[0] |= P32XS_ADEN;
p32x_reg_write16(a, d); // forward for reset processing
}
return;
}
// allow only COMM for now
if ((a & 0x30) == 0x20)
r[a / 2] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
/* quirk: in both normal and overwrite areas only nonzero values go through */
#define sh2_write8_dramN(p, a, d) \
if ((d & 0xff) != 0) { \
u8 *dram = (u8 *)p; \
dram[(a & 0x1ffff) ^ 1] = d; \
}
static void m68k_write8_dram0_ow(u32 a, u32 d)
{
sh2_write8_dramN(Pico32xMem->dram[0], a, d);
}
static void m68k_write8_dram1_ow(u32 a, u32 d)
{
sh2_write8_dramN(Pico32xMem->dram[1], a, d);
}
#define sh2_write16_dramN(p, a, d) \
u16 *pd = &((u16 *)p)[(a & 0x1ffff) / 2]; \
if (!(a & 0x20000)) { \
*pd = d; \
} else { \
u16 v = *pd; /* overwrite */ \
if (!(d & 0x00ff)) d |= v & 0x00ff; \
if (!(d & 0xff00)) d |= v & 0xff00; \
*pd = d; \
}
static void m68k_write16_dram0_ow(u32 a, u32 d)
{
sh2_write16_dramN(Pico32xMem->dram[0], a, d);
}
static void m68k_write16_dram1_ow(u32 a, u32 d)
{
sh2_write16_dramN(Pico32xMem->dram[1], a, d);
}
// -----------------------------------------------------------------
// hint vector is writeable
static void PicoWrite8_hint(u32 a, u32 d)
{
if ((a & 0xfffc) == 0x0070) {
Pico32xMem->m68k_rom[a ^ 1] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x",
a, d & 0xff, SekPc);
}
static void PicoWrite16_hint(u32 a, u32 d)
{
if ((a & 0xfffc) == 0x0070) {
((u16 *)Pico32xMem->m68k_rom)[a/2] = d;
return;
}
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x",
a, d & 0xffff, SekPc);
}
// normally not writable, but somebody could make a RAM cart
static void PicoWrite8_cart(u32 a, u32 d)
{
elprintf(EL_UIO, "m68k w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
a &= 0xfffff;
m68k_write8(a, d);
}
static void PicoWrite16_cart(u32 a, u32 d)
{
elprintf(EL_UIO, "m68k w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
a &= 0xfffff;
m68k_write16(a, d);
}
// same with bank, but save ram is sometimes here
static u32 PicoRead8_bank(u32 a)
{
a = (Pico32x.regs[4 / 2] << 20) | (a & 0xfffff);
return m68k_read8(a);
}
static u32 PicoRead16_bank(u32 a)
{
a = (Pico32x.regs[4 / 2] << 20) | (a & 0xfffff);
return m68k_read16(a);
}
static void PicoWrite8_bank(u32 a, u32 d)
{
if (!(Pico.m.sram_reg & SRR_MAPPED))
elprintf(EL_UIO, "m68k w8 [%06x] %02x @%06x",
a, d & 0xff, SekPc);
a = (Pico32x.regs[4 / 2] << 20) | (a & 0xfffff);
m68k_write8(a, d);
}
static void PicoWrite16_bank(u32 a, u32 d)
{
if (!(Pico.m.sram_reg & SRR_MAPPED))
elprintf(EL_UIO, "m68k w16 [%06x] %04x @%06x",
a, d & 0xffff, SekPc);
a = (Pico32x.regs[4 / 2] << 20) | (a & 0xfffff);
m68k_write16(a, d);
}
static void bank_map_handler(void)
{
cpu68k_map_set(m68k_read8_map, 0x900000, 0x9fffff, PicoRead8_bank, 1);
cpu68k_map_set(m68k_read16_map, 0x900000, 0x9fffff, PicoRead16_bank, 1);
}
static void bank_switch_rom_68k(int b)
{
unsigned int rs, bank, bank2;
if (Pico.m.ncart_in)
return;
bank = b << 20;
if ((Pico.m.sram_reg & SRR_MAPPED) && bank == Pico.sv.start) {
bank_map_handler();
return;
}
if (bank >= Pico.romsize) {
elprintf(EL_32X|EL_ANOMALY, "missing bank @ %06x", bank);
bank_map_handler();
return;
}
// 32X ROM (XXX: consider mirroring?)
rs = (Pico.romsize + M68K_BANK_MASK) & ~M68K_BANK_MASK;
if (!carthw_ssf2_active) {
rs -= bank;
if (rs > 0x100000)
rs = 0x100000;
cpu68k_map_set(m68k_read8_map, 0x900000, 0x900000 + rs - 1, Pico.rom + bank, 0);
cpu68k_map_set(m68k_read16_map, 0x900000, 0x900000 + rs - 1, Pico.rom + bank, 0);
elprintf(EL_32X, "bank %06x-%06x -> %06x", 0x900000, 0x900000 + rs - 1, bank);
}
else {
bank = bank >> 19;
bank2 = carthw_ssf2_banks[bank + 0] << 19;
cpu68k_map_set(m68k_read8_map, 0x900000, 0x97ffff, Pico.rom + bank2, 0);
cpu68k_map_set(m68k_read16_map, 0x900000, 0x97ffff, Pico.rom + bank2, 0);
bank2 = carthw_ssf2_banks[bank + 1] << 19;
cpu68k_map_set(m68k_read8_map, 0x980000, 0x9fffff, Pico.rom + bank2, 0);
cpu68k_map_set(m68k_read16_map, 0x980000, 0x9fffff, Pico.rom + bank2, 0);
}
}
// -----------------------------------------------------------------
// SH2
// -----------------------------------------------------------------
// read8
static REGPARM(2) u32 sh2_read8_unmapped(u32 a, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped r8 [%08x] %02x @%06x",
a, 0, sh2_pc(sh2));
return 0;
}
static u32 REGPARM(2) sh2_read8_cs0(u32 a, SH2 *sh2)
{
u32 d = 0;
DRC_SAVE_SR(sh2);
sh2_burn_cycles(sh2, 1*2);
// 0x3ffc0 is verified
if ((a & 0x3ffc0) == 0x4000) {
d = p32x_sh2reg_read16(a, sh2);
goto out_16to8;
}
if ((a & 0x3fff0) == 0x4100) {
d = p32x_vdp_read16(a);
p32x_sh2_poll_detect(a, sh2, SH2_STATE_VPOLL, 9);
goto out_16to8;
}
if ((a & 0x3fe00) == 0x4200) {
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out_16to8;
}
// TODO: mirroring?
if (!sh2->is_slave && a < sizeof(Pico32xMem->sh2_rom_m))
d = Pico32xMem->sh2_rom_m.b[a ^ 1];
else if (sh2->is_slave && a < sizeof(Pico32xMem->sh2_rom_s))
d = Pico32xMem->sh2_rom_s.b[a ^ 1];
else
d = sh2_read8_unmapped(a, sh2);
goto out;
out_16to8:
if (a & 1)
d &= 0xff;
else
d >>= 8;
out:
elprintf_sh2(sh2, EL_32X, "r8 [%08x] %02x @%06x",
a, d, sh2_pc(sh2));
DRC_RESTORE_SR(sh2);
return (s8)d;
}
// for ssf2
static u32 REGPARM(2) sh2_read8_rom(u32 a, SH2 *sh2)
{
u32 bank = carthw_ssf2_banks[(a >> 19) & 7] << 19;
s8 *p = sh2->p_rom;
return p[(bank + (a & 0x7ffff)) ^ 1];
}
// read16
static u32 REGPARM(2) sh2_read16_unmapped(u32 a, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped r16 [%08x] %04x @%06x",
a, 0, sh2_pc(sh2));
return 0;
}
static u32 REGPARM(2) sh2_read16_cs0(u32 a, SH2 *sh2)
{
u32 d = 0;
DRC_SAVE_SR(sh2);
sh2_burn_cycles(sh2, 1*2);
if ((a & 0x3ffc0) == 0x4000) {
d = p32x_sh2reg_read16(a, sh2);
if (!(EL_LOGMASK & EL_PWM) && (a & 0x30) == 0x30) // hide PWM
goto out_noprint;
goto out;
}
if ((a & 0x3fff0) == 0x4100) {
d = p32x_vdp_read16(a);
p32x_sh2_poll_detect(a, sh2, SH2_STATE_VPOLL, 9);
goto out;
}
if ((a & 0x3fe00) == 0x4200) {
d = Pico32xMem->pal[(a & 0x1ff) / 2];
goto out;
}
if (!sh2->is_slave && a < sizeof(Pico32xMem->sh2_rom_m))
d = Pico32xMem->sh2_rom_m.w[a / 2];
else if (sh2->is_slave && a < sizeof(Pico32xMem->sh2_rom_s))
d = Pico32xMem->sh2_rom_s.w[a / 2];
else
d = sh2_read16_unmapped(a, sh2);
out:
elprintf_sh2(sh2, EL_32X, "r16 [%08x] %04x @%06x",
a, d, sh2_pc(sh2));
out_noprint:
DRC_RESTORE_SR(sh2);
return (s16)d;
}
static u32 REGPARM(2) sh2_read16_rom(u32 a, SH2 *sh2)
{
u32 bank = carthw_ssf2_banks[(a >> 19) & 7] << 19;
s16 *p = sh2->p_rom;
return p[(bank + (a & 0x7fffe)) / 2];
}
static u32 REGPARM(2) sh2_read32_unmapped(u32 a, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped r32 [%08x] %08x @%06x",
a, 0, sh2_pc(sh2));
return 0;
}
static u32 REGPARM(2) sh2_read32_cs0(u32 a, SH2 *sh2)
{
u32 d1 = sh2_read16_cs0(a, sh2) << 16, d2 = sh2_read16_cs0(a + 2, sh2) << 16;
return d1 | (d2 >> 16);
}
static u32 REGPARM(2) sh2_read32_rom(u32 a, SH2 *sh2)
{
u32 bank = carthw_ssf2_banks[(a >> 19) & 7] << 19;
u32 *p = sh2->p_rom;
u32 d = p[(bank + (a & 0x7fffc)) / 4];
return (d << 16) | (d >> 16);
}
// writes
#ifdef DRC_SH2
static void sh2_sdram_poll(u32 a, u32 d, SH2 *sh2)
{
unsigned cycles;
DRC_SAVE_SR(sh2);
cycles = sh2_cycles_done_m68k(sh2);
sh2_poll_write(a, d, cycles, sh2);
p32x_sh2_poll_event(sh2->other_sh2, SH2_STATE_RPOLL, cycles);
if (p32x_sh2_ready(sh2->other_sh2, cycles+8))
sh2_end_run(sh2, 1);
DRC_RESTORE_SR(sh2);
}
void sh2_sdram_checks(u32 a, u32 d, SH2 *sh2, u32 t)
{
if (t & 0x80) sh2_sdram_poll(a, d, sh2);
if (t & 0x7f) sh2_drc_wcheck_ram(a, 2, sh2);
}
void sh2_sdram_checks_l(u32 a, u32 d, SH2 *sh2, u32 t)
{
if (t & 0x000080) sh2_sdram_poll(a, d>>16, sh2);
if (t & 0x800000) sh2_sdram_poll(a+2, d, sh2);
if (t & ~0x800080) sh2_drc_wcheck_ram(a, 4, sh2);
}
#ifndef _ASM_32X_MEMORY_C
static void sh2_da_checks(u32 a, u32 t, SH2 *sh2)
{
sh2_drc_wcheck_da(a, 2, sh2);
}
static void sh2_da_checks_l(u32 a, u32 t, SH2 *sh2)
{
sh2_drc_wcheck_da(a, 4, sh2);
}
#endif
#endif
static void REGPARM(3) sh2_write_ignore(u32 a, u32 d, SH2 *sh2)
{
}
// write8
static void REGPARM(3) sh2_write8_unmapped(u32 a, u32 d, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped w8 [%08x] %02x @%06x",
a, d & 0xff, sh2_pc(sh2));
}
static void REGPARM(3) sh2_write8_cs0(u32 a, u32 d, SH2 *sh2)
{
DRC_SAVE_SR(sh2);
elprintf_sh2(sh2, EL_32X, "w8 [%08x] %02x @%06x",
a, d & 0xff, sh2_pc(sh2));
if ((a & 0x3ffc0) == 0x4000) {
p32x_sh2reg_write8(a, d, sh2);
goto out;
}
if (Pico32x.regs[0] & P32XS_FM) {
if ((a & 0x3fff0) == 0x4100) {
sh2->poll_cnt = 0;
p32x_vdp_write8(a, d);
goto out;
}
if ((a & 0x3fe00) == 0x4200) {
sh2->poll_cnt = 0;
((u8 *)Pico32xMem->pal)[(a & 0x1ff) ^ 1] = d;
Pico32x.dirty_pal = 1;
goto out;
}
}
sh2_write8_unmapped(a, d, sh2);
out:
DRC_RESTORE_SR(sh2);
}
#ifdef _ASM_32X_MEMORY_C
extern void REGPARM(3) sh2_write8_dram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write8_sdram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write8_da(u32 a, u32 d, SH2 *sh2);
#else
static void REGPARM(3) sh2_write8_dram(u32 a, u32 d, SH2 *sh2)
{
sh2_write8_dramN(sh2->p_dram, a, d);
}
static void REGPARM(3) sh2_write8_sdram(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = (a & 0x3ffff) ^ 1;
((u8 *)sh2->p_sdram)[a1] = d;
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_ram;
u32 t = p[a1 >> SH2_DRCBLK_RAM_SHIFT];
if (t)
sh2_sdram_checks(a & ~1, ((u16 *)sh2->p_sdram)[a1 / 2], sh2, t);
#endif
}
static void REGPARM(3) sh2_write8_da(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = (a & 0xfff) ^ 1;
sh2->data_array[a1] = d;
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_da;
u32 t = p[a1 >> SH2_DRCBLK_DA_SHIFT];
if (t)
sh2_da_checks(a, t, sh2);
#endif
}
#endif
// write16
static void REGPARM(3) sh2_write16_unmapped(u32 a, u32 d, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped w16 [%08x] %04x @%06x",
a, d & 0xffff, sh2_pc(sh2));
}
static void REGPARM(3) sh2_write16_cs0(u32 a, u32 d, SH2 *sh2)
{
DRC_SAVE_SR(sh2);
if (((EL_LOGMASK & EL_PWM) || (a & 0x30) != 0x30)) // hide PWM
elprintf_sh2(sh2, EL_32X, "w16 [%08x] %04x @%06x",
a, d & 0xffff, sh2_pc(sh2));
if ((a & 0x3ffc0) == 0x4000) {
p32x_sh2reg_write16(a, d, sh2);
goto out;
}
if (Pico32x.regs[0] & P32XS_FM) {
if ((a & 0x3fff0) == 0x4100) {
sh2->poll_cnt = 0;
p32x_vdp_write16(a, d, sh2);
goto out;
}
if ((a & 0x3fe00) == 0x4200) {
sh2->poll_cnt = 0;
Pico32xMem->pal[(a & 0x1ff) / 2] = d;
Pico32x.dirty_pal = 1;
goto out;
}
}
sh2_write16_unmapped(a, d, sh2);
out:
DRC_RESTORE_SR(sh2);
}
#ifdef _ASM_32X_MEMORY_C
extern void REGPARM(3) sh2_write16_dram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write16_sdram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write16_da(u32 a, u32 d, SH2 *sh2);
#else
static void REGPARM(3) sh2_write16_dram(u32 a, u32 d, SH2 *sh2)
{
sh2_write16_dramN(sh2->p_dram, a, d);
}
static void REGPARM(3) sh2_write16_sdram(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = a & 0x3fffe;
((u16 *)sh2->p_sdram)[a1 / 2] = d;
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_ram;
u32 t = p[a1 >> SH2_DRCBLK_RAM_SHIFT];
if (t)
sh2_sdram_checks(a, d, sh2, t);
#endif
}
static void REGPARM(3) sh2_write16_da(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = a & 0xffe;
((u16 *)sh2->data_array)[a1 / 2] = d;
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_da;
u32 t = p[a1 >> SH2_DRCBLK_DA_SHIFT];
if (t)
sh2_da_checks(a, t, sh2);
#endif
}
#endif
static void REGPARM(3) sh2_write16_rom(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = a & 0x3ffffe;
// tweak for WWF Raw: does writes to ROM area, and it doesn't work without
// allowing this.
// Presumably the write goes to the CPU cache and is read back from there,
// but it would be extremely costly to emulate cache behaviour. Just allow
// writes to that region, hoping that the original ROM values are never used.
if ((a1 & 0x3e0000) == 0x3e0000)
((u16 *)sh2->p_rom)[a1 / 2] = d;
else
sh2_write16_unmapped(a, d, sh2);
}
static void REGPARM(3) sh2_write32_unmapped(u32 a, u32 d, SH2 *sh2)
{
elprintf_sh2(sh2, EL_32X, "unmapped w32 [%08x] %08x @%06x",
a, d, sh2_pc(sh2));
}
static void REGPARM(3) sh2_write32_cs0(u32 a, u32 d, SH2 *sh2)
{
sh2_write16_cs0(a, d >> 16, sh2);
sh2_write16_cs0(a + 2, d, sh2);
}
#define sh2_write32_dramN(p, a, d) \
u32 *pd = &((u32 *)p)[(a & 0x1ffff) / 4]; \
if (!(a & 0x20000)) { \
*pd = (d << 16) | (d >> 16); \
} else { \
/* overwrite */ \
u32 v = *pd, m = 0; d = (d << 16) | (d >> 16) ; \
if (!(d & 0x000000ff)) m |= 0x000000ff; \
if (!(d & 0x0000ff00)) m |= 0x0000ff00; \
if (!(d & 0x00ff0000)) m |= 0x00ff0000; \
if (!(d & 0xff000000)) m |= 0xff000000; \
*pd = d | (v&m); \
}
#ifdef _ASM_32X_MEMORY_C
extern void REGPARM(3) sh2_write32_dram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write32_sdram(u32 a, u32 d, SH2 *sh2);
extern void REGPARM(3) sh2_write32_da(u32 a, u32 d, SH2 *sh2);
#else
static void REGPARM(3) sh2_write32_dram(u32 a, u32 d, SH2 *sh2)
{
sh2_write32_dramN(sh2->p_dram, a, d);
}
static void REGPARM(3) sh2_write32_sdram(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = a & 0x3fffc;
*(u32 *)((char*)sh2->p_sdram + a1) = (d << 16) | (d >> 16);
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_ram;
u32 t = p[a1 >> SH2_DRCBLK_RAM_SHIFT];
u32 u = p[(a1+2) >> SH2_DRCBLK_RAM_SHIFT];
if (t|(u<<16))
sh2_sdram_checks_l(a, d, sh2, t|(u<<16));
#endif
}
static void REGPARM(3) sh2_write32_da(u32 a, u32 d, SH2 *sh2)
{
u32 a1 = a & 0xffc;
*((u32 *)sh2->data_array + a1/4) = (d << 16) | (d >> 16);
#ifdef DRC_SH2
u8 *p = sh2->p_drcblk_da;
u32 t = p[a1 >> SH2_DRCBLK_DA_SHIFT];
u32 u = p[(a1+2) >> SH2_DRCBLK_DA_SHIFT];
if (t|(u<<16))
sh2_da_checks_l(a, t|(u<<16), sh2);
#endif
}
#endif
static void REGPARM(3) sh2_write32_rom(u32 a, u32 d, SH2 *sh2)
{
sh2_write16_rom(a, d >> 16, sh2);
sh2_write16_rom(a + 2, d, sh2);
}
typedef u32 (sh2_read_handler)(u32 a, SH2 *sh2);
typedef void REGPARM(3) (sh2_write_handler)(u32 a, u32 d, SH2 *sh2);
#define SH2MAP_ADDR2OFFS_R(a) \
((u32)(a) >> SH2_READ_SHIFT)
#define SH2MAP_ADDR2OFFS_W(a) \
((u32)(a) >> SH2_WRITE_SHIFT)
u32 REGPARM(2) p32x_sh2_read8(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read8_map;
uptr p;
sh2_map += SH2MAP_ADDR2OFFS_R(a);
p = sh2_map->addr;
if (!map_flag_set(p))
return *(s8 *)((p << 1) + ((a & sh2_map->mask) ^ 1));
else
return ((sh2_read_handler *)(p << 1))(a, sh2);
}
u32 REGPARM(2) p32x_sh2_read16(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read16_map;
uptr p;
sh2_map += SH2MAP_ADDR2OFFS_R(a);
p = sh2_map->addr;
if (!map_flag_set(p))
return *(s16 *)((p << 1) + (a & sh2_map->mask));
else
return ((sh2_read_handler *)(p << 1))(a, sh2);
}
u32 REGPARM(2) p32x_sh2_read32(u32 a, SH2 *sh2)
{
const sh2_memmap *sh2_map = sh2->read32_map;
uptr p;
sh2_map += SH2MAP_ADDR2OFFS_R(a);
p = sh2_map->addr;
if (!map_flag_set(p)) {
u32 *pd = (u32 *)((p << 1) + (a & sh2_map->mask));
return (*pd << 16) | (*pd >> 16);
} else
return ((sh2_read_handler *)(p << 1))(a, sh2);
}
void REGPARM(3) p32x_sh2_write8(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write8_tab;
sh2_write_handler *wh;
wh = sh2_wmap[SH2MAP_ADDR2OFFS_W(a)];
wh(a, d, sh2);
}
void REGPARM(3) p32x_sh2_write16(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write16_tab;
sh2_write_handler *wh;
wh = sh2_wmap[SH2MAP_ADDR2OFFS_W(a)];
wh(a, d, sh2);
}
void REGPARM(3) p32x_sh2_write32(u32 a, u32 d, SH2 *sh2)
{
const void **sh2_wmap = sh2->write32_tab;
sh2_write_handler *wh;
wh = sh2_wmap[SH2MAP_ADDR2OFFS_W(a)];
wh(a, d, sh2);
}
void *p32x_sh2_get_mem_ptr(u32 a, u32 *mask, SH2 *sh2)
{
const sh2_memmap *mm = sh2->read8_map;
void *ret = (void *)-1;
mm += SH2MAP_ADDR2OFFS_R(a);
if (!map_flag_set(mm->addr)) {
// directly mapped memory (SDRAM, ROM, data array)
ret = (void *)(mm->addr << 1);
*mask = mm->mask;
} else if ((a & ~0x7ff) == 0) {
// BIOS, has handler function since it shares its segment with I/O
ret = sh2->p_bios;
*mask = 0x7ff;
} else if ((a & 0xc6000000) == 0x02000000) {
// banked ROM. Return bank address
u32 bank = carthw_ssf2_banks[(a >> 19) & 7] << 19;
ret = (char*)sh2->p_rom + bank;
*mask = 0x07ffff;
}
return ret;
}
int p32x_sh2_memcpy(u32 dst, u32 src, int count, int size, SH2 *sh2)
{
u32 mask;
u8 *ps, *pd;
int len, i;
// check if src and dst points to memory (rom/sdram/dram/da)
if ((pd = p32x_sh2_get_mem_ptr(dst, &mask, sh2)) == (void *)-1)
return 0;
if ((ps = p32x_sh2_get_mem_ptr(src, &mask, sh2)) == (void *)-1)
return 0;
ps += src & mask;
len = count * size;
// DRAM in byte access is always in overwrite mode
if (pd == sh2->p_dram && size == 1)
dst |= 0x20000;
// align dst to halfword
if (dst & 1) {
p32x_sh2_write8(dst, *(u8 *)((uptr)ps ^ 1), sh2);
ps++, dst++, len --;
}
// copy data
if ((uptr)ps & 1) {
// unaligned, use halfword copy mode to reduce memory bandwidth
u16 *sp = (u16 *)(ps - 1);
u16 dl, dh = *sp++;
for (i = 0; i < (len & ~1); i += 2, dst += 2, sp++) {
dl = dh, dh = *sp;
p32x_sh2_write16(dst, (dh >> 8) | (dl << 8), sh2);
}
if (len & 1)
p32x_sh2_write8(dst, dh, sh2);
} else {
// dst and src at least halfword aligned
u16 *sp = (u16 *)ps;
// align dst to word
if ((dst & 2) && len >= 2) {
p32x_sh2_write16(dst, *sp++, sh2);
dst += 2, len -= 2;
}
if ((uptr)sp & 2) {
// halfword copy, using word writes to reduce memory bandwidth
u16 dl, dh;
for (i = 0; i < (len & ~3); i += 4, dst += 4, sp += 2) {
dl = sp[0], dh = sp[1];
p32x_sh2_write32(dst, (dl << 16) | dh, sh2);
}
} else {
// word copy
u32 d;
for (i = 0; i < (len & ~3); i += 4, dst += 4, sp += 2) {
d = *(u32 *)sp;
p32x_sh2_write32(dst, (d << 16) | (d >> 16), sh2);
}
}
if (len & 2) {
p32x_sh2_write16(dst, *sp++, sh2);
dst += 2;
}
if (len & 1)
p32x_sh2_write8(dst, *sp >> 8, sh2);
}
return count;
}
// -----------------------------------------------------------------
static void z80_md_bank_write_32x(u32 a, unsigned char d)
{
u32 addr68k;
addr68k = Pico.m.z80_bank68k << 15;
addr68k += a & 0x7fff;
if ((addr68k & 0xfff000) == 0xa15000)
Pico32x.emu_flags |= P32XF_Z80_32X_IO;
elprintf(EL_Z80BNK, "z80->68k w8 [%06x] %02x", addr68k, d);
m68k_write8(addr68k, d);
}
// -----------------------------------------------------------------
static const u16 msh2_code[] = {
// trap instructions
0xaffe, // 200 bra <self>
0x0009, // 202 nop
// have to wait a bit until m68k initial program finishes clearing stuff
// to avoid races with game SH2 code, like in Tempo
0xd406, // 204 mov.l @(_m_ok,pc), r4
0xc400, // 206 mov.b @(h'0,gbr),r0
0xc801, // 208 tst #1, r0
0x8b0f, // 20a bf cd_start
0xd105, // 20c mov.l @(_cnt,pc), r1
0xd206, // 20e mov.l @(_start,pc), r2
0x71ff, // 210 add #-1, r1
0x4115, // 212 cmp/pl r1
0x89fc, // 214 bt -2
0x6043, // 216 mov r4, r0
0xc208, // 218 mov.l r0, @(h'20,gbr)
0x6822, // 21a mov.l @r2, r8
0x482b, // 21c jmp @r8
0x0009, // 21e nop
('M'<<8)|'_', ('O'<<8)|'K', // 220 _m_ok
0x0001, 0x0000, // 224 _cnt
0x2200, 0x03e0, // master start pointer in ROM
// cd_start:
0xd20d, // 22c mov.l @(__cd_,pc), r2
0xc608, // 22e mov.l @(h'20,gbr), r0
0x3200, // 230 cmp/eq r0, r2
0x8bfc, // 232 bf #-2
0xe000, // 234 mov #0, r0
0xcf80, // 236 or.b #0x80,@(r0,gbr)
0xd80b, // 238 mov.l @(_start_cd,pc), r8 // 24000018
0xd30c, // 23a mov.l @(_max_len,pc), r3
0x5b84, // 23c mov.l @(h'10,r8), r11 // master vbr
0x5a82, // 23e mov.l @(8,r8), r10 // entry
0x5081, // 240 mov.l @(4,r8), r0 // len
0x5980, // 242 mov.l @(0,r8), r9 // dst
0x3036, // 244 cmp/hi r3,r0
0x8b00, // 246 bf #1
0x6033, // 248 mov r3,r0
0x7820, // 24a add #0x20, r8
// ipl_copy:
0x6286, // 24c mov.l @r8+, r2
0x2922, // 24e mov.l r2, @r9
0x7904, // 250 add #4, r9
0x70fc, // 252 add #-4, r0
0x8800, // 254 cmp/eq #0, r0
0x8bf9, // 256 bf #-5
//
0x4b2e, // 258 ldc r11, vbr
0x6043, // 25a mov r4, r0 // M_OK
0xc208, // 25c mov.l r0, @(h'20,gbr)
0x4a2b, // 25e jmp @r10
0x0009, // 260 nop
0x0009, // 262 nop // pad
('_'<<8)|'C', ('D'<<8)|'_', // 264 __cd_
0x2400, 0x0018, // 268 _start_cd
0x0001, 0xffe0, // 26c _max_len
};
static const u16 ssh2_code[] = {
0xaffe, // 200 bra <self>
0x0009, // 202 nop
// code to wait for master, in case authentic master BIOS is used
0xd106, // 204 mov.l @(_m_ok,pc), r1
0xd208, // 206 mov.l @(_start,pc), r2
0xc608, // 208 mov.l @(h'20,gbr), r0
0x3100, // 20a cmp/eq r0, r1
0x8bfc, // 20c bf #-2
0xc400, // 20e mov.b @(h'0,gbr),r0
0xc801, // 210 tst #1, r0
0xd004, // 212 mov.l @(_s_ok,pc), r0
0x8b0a, // 214 bf cd_start
0xc209, // 216 mov.l r0, @(h'24,gbr)
0x6822, // 218 mov.l @r2, r8
0x482b, // 21a jmp @r8
0x0009, // 21c nop
0x0009, // 21e nop
('M'<<8)|'_', ('O'<<8)|'K', // 220
('S'<<8)|'_', ('O'<<8)|'K', // 224
0x2200, 0x03e4, // slave start pointer in ROM
// cd_start:
0xd803, // 22c mov.l @(_start_cd,pc), r8 // 24000018
0x5b85, // 22e mov.l @(h'14,r8), r11 // slave vbr
0x5a83, // 230 mov.l @(h'0c,r8), r10 // entry
0x4b2e, // 232 ldc r11, vbr
0xc209, // 234 mov.l r0, @(h'24,gbr) // write S_OK
0x4a2b, // 236 jmp @r10
0x0009, // 238 nop
0x0009, // 23a nop
0x2400, 0x0018, // 23c _start_cd
};
#define HWSWAP(x) (((u16)(x) << 16) | ((x) >> 16))
static void get_bios(void)
{
u16 *ps;
u32 *pl;
int i;
// M68K ROM
if (p32x_bios_g != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied 68k BIOS");
Byteswap(Pico32xMem->m68k_rom, p32x_bios_g, sizeof(Pico32xMem->m68k_rom));
}
else {
static const u16 andb[] = { 0x0239, 0x00fe, 0x00a1, 0x5107 };
static const u16 p_d4[] = {
0x48e7, 0x8040, // movem.l d0/a1, -(sp)
0x227c, 0x00a1, 0x30f1, // movea.l #0xa130f1, a1
0x7007, // moveq.l #7, d0
0x12d8, //0: move.b (a0)+, (a1)+
0x5289, // addq.l #1, a1
0x51c8, 0xfffa, // dbra d0, 0b
0x0239, 0x00fe, 0x00a1, // and.b #0xfe, (0xa15107).l
0x5107,
0x4cdf, 0x0201 // movem.l (sp)+, d0/a1
};
// generate 68k ROM
ps = (u16 *)Pico32xMem->m68k_rom;
pl = (u32 *)ps;
for (i = 1; i < 0xc0/4; i++)
pl[i] = HWSWAP(0x880200 + (i - 1) * 6);
pl[0x70/4] = 0;
// fill with nops
for (i = 0xc0/2; i < 0x100/2; i++)
ps[i] = 0x4e71;
// c0: don't need to care about RV - not emulated
ps[0xc8/2] = 0x1280; // move.b d0, (a1)
memcpy(ps + 0xca/2, andb, sizeof(andb)); // and.b #0xfe, (a15107)
ps[0xd2/2] = 0x4e75; // rts
// d4:
memcpy(ps + 0xd4/2, p_d4, sizeof(p_d4));
ps[0xfe/2] = 0x4e75; // rts
}
// fill remaining m68k_rom page with game ROM
memcpy(Pico32xMem->m68k_rom_bank + sizeof(Pico32xMem->m68k_rom),
Pico.rom + sizeof(Pico32xMem->m68k_rom),
sizeof(Pico32xMem->m68k_rom_bank) - sizeof(Pico32xMem->m68k_rom));
// MSH2
if (p32x_bios_m != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied master SH2 BIOS");
Byteswap(&Pico32xMem->sh2_rom_m, p32x_bios_m, sizeof(Pico32xMem->sh2_rom_m));
}
else {
pl = (u32 *)&Pico32xMem->sh2_rom_m;
// fill exception vector table to our trap address
for (i = 0; i < 128; i++)
pl[i] = HWSWAP(0x200);
// start
pl[0] = pl[2] = HWSWAP(0x204);
// reset SP
pl[1] = pl[3] = HWSWAP(0x6040000);
// startup code
memcpy(&Pico32xMem->sh2_rom_m.b[0x200], msh2_code, sizeof(msh2_code));
}
// SSH2
if (p32x_bios_s != NULL) {
elprintf(EL_STATUS|EL_32X, "32x: using supplied slave SH2 BIOS");
Byteswap(&Pico32xMem->sh2_rom_s, p32x_bios_s, sizeof(Pico32xMem->sh2_rom_s));
}
else {
pl = (u32 *)&Pico32xMem->sh2_rom_s;
// fill exception vector table to our trap address
for (i = 0; i < 128; i++)
pl[i] = HWSWAP(0x200);
// start
pl[0] = pl[2] = HWSWAP(0x204);
// reset SP
pl[1] = pl[3] = HWSWAP(0x603f800);
// startup code
memcpy(&Pico32xMem->sh2_rom_s.b[0x200], ssh2_code, sizeof(ssh2_code));
}
}
#define MAP_MEMORY(m) ((uptr)(m) >> 1)
#define MAP_HANDLER(h) ( ((uptr)(h) >> 1) | ((uptr)1 << (sizeof(uptr) * 8 - 1)) )
static sh2_memmap msh2_read8_map[0x80], msh2_read16_map[0x80], msh2_read32_map[0x80];
static sh2_memmap ssh2_read8_map[0x80], ssh2_read16_map[0x80], ssh2_read32_map[0x80];
// for writes we are using handlers only
static sh2_write_handler *msh2_write8_map[0x80], *msh2_write16_map[0x80], *msh2_write32_map[0x80];
static sh2_write_handler *ssh2_write8_map[0x80], *ssh2_write16_map[0x80], *ssh2_write32_map[0x80];
void Pico32xSwapDRAM(int b)
{
cpu68k_map_set(m68k_read8_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_read16_map, 0x840000, 0x85ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_read8_map, 0x860000, 0x87ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_read16_map, 0x860000, 0x87ffff, Pico32xMem->dram[b], 0);
cpu68k_map_set(m68k_write8_map, 0x840000, 0x87ffff,
b ? m68k_write8_dram1_ow : m68k_write8_dram0_ow, 1);
cpu68k_map_set(m68k_write16_map, 0x840000, 0x87ffff,
b ? m68k_write16_dram1_ow : m68k_write16_dram0_ow, 1);
// SH2
msh2_read8_map[0x04/2].addr = msh2_read8_map[0x24/2].addr =
msh2_read16_map[0x04/2].addr = msh2_read16_map[0x24/2].addr =
msh2_read32_map[0x04/2].addr = msh2_read32_map[0x24/2].addr = MAP_MEMORY(Pico32xMem->dram[b]);
ssh2_read8_map[0x04/2].addr = ssh2_read8_map[0x24/2].addr =
ssh2_read16_map[0x04/2].addr = ssh2_read16_map[0x24/2].addr =
ssh2_read32_map[0x04/2].addr = ssh2_read32_map[0x24/2].addr = MAP_MEMORY(Pico32xMem->dram[b]);
// convenience ptrs
msh2.p_dram = ssh2.p_dram = Pico32xMem->dram[b];
}
static void bank_switch_rom_sh2(void)
{
if (!carthw_ssf2_active) {
// easy
msh2_read8_map[0x02/2].addr = msh2_read8_map[0x22/2].addr =
msh2_read16_map[0x02/2].addr = msh2_read16_map[0x22/2].addr =
msh2_read32_map[0x02/2].addr = msh2_read32_map[0x22/2].addr = MAP_MEMORY(Pico.rom);
ssh2_read8_map[0x02/2].addr = ssh2_read8_map[0x22/2].addr =
ssh2_read16_map[0x02/2].addr = ssh2_read16_map[0x22/2].addr =
ssh2_read32_map[0x02/2].addr = ssh2_read32_map[0x22/2].addr = MAP_MEMORY(Pico.rom);
}
else {
msh2_read8_map[0x02/2].addr = msh2_read8_map[0x22/2].addr = MAP_HANDLER(sh2_read8_rom);
msh2_read16_map[0x02/2].addr = msh2_read16_map[0x22/2].addr = MAP_HANDLER(sh2_read16_rom);
msh2_read32_map[0x02/2].addr = msh2_read32_map[0x22/2].addr = MAP_HANDLER(sh2_read32_rom);
ssh2_read8_map[0x02/2].addr = ssh2_read8_map[0x22/2].addr = MAP_HANDLER(sh2_read8_rom);
ssh2_read16_map[0x02/2].addr = ssh2_read16_map[0x22/2].addr = MAP_HANDLER(sh2_read16_rom);
ssh2_read32_map[0x02/2].addr = ssh2_read32_map[0x22/2].addr = MAP_HANDLER(sh2_read32_rom);
}
}
void PicoMemSetup32x(void)
{
unsigned int rs;
int i;
Pico32xMem = plat_mmap(0x06000000, sizeof(*Pico32xMem), 0, 0);
if (Pico32xMem == NULL) {
elprintf(EL_STATUS, "OOM");
return;
}
get_bios();
// cartridge area becomes unmapped
// XXX: we take the easy way and don't unmap ROM,
// so that we can avoid handling the RV bit.
// m68k_map_unmap(0x000000, 0x3fffff);
if (!Pico.m.ncart_in) {
// MD ROM area
rs = sizeof(Pico32xMem->m68k_rom_bank);
cpu68k_map_set(m68k_read8_map, 0x000000, rs - 1, Pico32xMem->m68k_rom_bank, 0);
cpu68k_map_set(m68k_read16_map, 0x000000, rs - 1, Pico32xMem->m68k_rom_bank, 0);
cpu68k_map_set(m68k_write8_map, 0x000000, rs - 1, PicoWrite8_hint, 1); // TODO verify
cpu68k_map_set(m68k_write16_map, 0x000000, rs - 1, PicoWrite16_hint, 1);
// 32X ROM (unbanked, XXX: consider mirroring?)
rs = (Pico.romsize + M68K_BANK_MASK) & ~M68K_BANK_MASK;
if (rs > 0x80000)
rs = 0x80000;
cpu68k_map_set(m68k_read8_map, 0x880000, 0x880000 + rs - 1, Pico.rom, 0);
cpu68k_map_set(m68k_read16_map, 0x880000, 0x880000 + rs - 1, Pico.rom, 0);
cpu68k_map_set(m68k_write8_map, 0x880000, 0x880000 + rs - 1, PicoWrite8_cart, 1);
cpu68k_map_set(m68k_write16_map, 0x880000, 0x880000 + rs - 1, PicoWrite16_cart, 1);
// 32X ROM (banked)
bank_switch_rom_68k(0);
cpu68k_map_set(m68k_write8_map, 0x900000, 0x9fffff, PicoWrite8_bank, 1);
cpu68k_map_set(m68k_write16_map, 0x900000, 0x9fffff, PicoWrite16_bank, 1);
}
// SYS regs
cpu68k_map_set(m68k_read8_map, 0xa10000, 0xa1ffff, PicoRead8_32x_on, 1);
cpu68k_map_set(m68k_read16_map, 0xa10000, 0xa1ffff, PicoRead16_32x_on, 1);
cpu68k_map_set(m68k_write8_map, 0xa10000, 0xa1ffff, PicoWrite8_32x_on, 1);
cpu68k_map_set(m68k_write16_map, 0xa10000, 0xa1ffff, PicoWrite16_32x_on, 1);
// TODO: cd + carthw
if (PicoIn.AHW & PAHW_MCD) {
m68k_write8_io = PicoWrite8_32x_on_io_cd;
m68k_write16_io = PicoWrite16_32x_on_io_cd;
}
else if (carthw_ssf2_active) {
m68k_write8_io = PicoWrite8_32x_on_io_ssf2;
m68k_write16_io = PicoWrite16_32x_on_io_ssf2;
}
else {
m68k_write8_io = PicoWrite8_32x_on_io;
m68k_write16_io = PicoWrite16_32x_on_io;
}
// SH2 maps: A31,A30,A29,CS1,CS0
// all unmapped by default
for (i = 0; i < ARRAY_SIZE(msh2_read8_map); i++) {
msh2_read8_map[i].addr = MAP_HANDLER(sh2_read8_unmapped);
msh2_read16_map[i].addr = MAP_HANDLER(sh2_read16_unmapped);
msh2_read32_map[i].addr = MAP_HANDLER(sh2_read32_unmapped);
}
for (i = 0; i < ARRAY_SIZE(msh2_write8_map); i++) {
msh2_write8_map[i] = sh2_write8_unmapped;
msh2_write16_map[i] = sh2_write16_unmapped;
msh2_write32_map[i] = sh2_write32_unmapped;
}
// "purge area"
for (i = 0x40; i <= 0x5f; i++) {
msh2_write8_map[i >> 1] =
msh2_write16_map[i >> 1] =
msh2_write32_map[i >> 1] = sh2_write_ignore;
}
// CS0
msh2_read8_map[0x00/2].addr = msh2_read8_map[0x20/2].addr = MAP_HANDLER(sh2_read8_cs0);
msh2_read16_map[0x00/2].addr = msh2_read16_map[0x20/2].addr = MAP_HANDLER(sh2_read16_cs0);
msh2_read32_map[0x00/2].addr = msh2_read32_map[0x20/2].addr = MAP_HANDLER(sh2_read32_cs0);
msh2_write8_map[0x00/2] = msh2_write8_map[0x20/2] = sh2_write8_cs0;
msh2_write16_map[0x00/2] = msh2_write16_map[0x20/2] = sh2_write16_cs0;
msh2_write32_map[0x00/2] = msh2_write32_map[0x20/2] = sh2_write32_cs0;
// CS1 - ROM
bank_switch_rom_sh2();
msh2_read8_map[0x02/2].mask = msh2_read8_map[0x22/2].mask = 0x3fffff; // FIXME
msh2_read16_map[0x02/2].mask = msh2_read16_map[0x22/2].mask = 0x3ffffe; // FIXME
msh2_read32_map[0x02/2].mask = msh2_read32_map[0x22/2].mask = 0x3ffffc; // FIXME
msh2_write16_map[0x02/2] = msh2_write16_map[0x22/2] = sh2_write16_rom;
msh2_write32_map[0x02/2] = msh2_write32_map[0x22/2] = sh2_write32_rom;
// CS2 - DRAM
msh2_read8_map[0x04/2].mask = msh2_read8_map[0x24/2].mask = 0x01ffff;
msh2_read16_map[0x04/2].mask = msh2_read16_map[0x24/2].mask = 0x01fffe;
msh2_read32_map[0x04/2].mask = msh2_read32_map[0x24/2].mask = 0x01fffc;
msh2_write8_map[0x04/2] = msh2_write8_map[0x24/2] = sh2_write8_dram;
msh2_write16_map[0x04/2] = msh2_write16_map[0x24/2] = sh2_write16_dram;
msh2_write32_map[0x04/2] = msh2_write32_map[0x24/2] = sh2_write32_dram;
// CS3 - SDRAM
msh2_read8_map[0x06/2].addr = msh2_read8_map[0x26/2].addr =
msh2_read16_map[0x06/2].addr = msh2_read16_map[0x26/2].addr =
msh2_read32_map[0x06/2].addr = msh2_read32_map[0x26/2].addr = MAP_MEMORY(Pico32xMem->sdram);
msh2_write8_map[0x06/2] = msh2_write8_map[0x26/2] = sh2_write8_sdram;
msh2_write16_map[0x06/2] = msh2_write16_map[0x26/2] = sh2_write16_sdram;
msh2_write32_map[0x06/2] = msh2_write32_map[0x26/2] = sh2_write32_sdram;
msh2_read8_map[0x06/2].mask = msh2_read8_map[0x26/2].mask = 0x03ffff;
msh2_read16_map[0x06/2].mask = msh2_read16_map[0x26/2].mask = 0x03fffe;
msh2_read32_map[0x06/2].mask = msh2_read32_map[0x26/2].mask = 0x03fffc;
// SH2 data array
msh2_read8_map[0xc0/2].mask = 0x0fff;
msh2_read16_map[0xc0/2].mask = 0x0ffe;
msh2_read32_map[0xc0/2].mask = 0x0ffc;
msh2_write8_map[0xc0/2] = sh2_write8_da;
msh2_write16_map[0xc0/2] = sh2_write16_da;
msh2_write32_map[0xc0/2] = sh2_write32_da;
// SH2 IO
msh2_read8_map[0xff/2].addr = MAP_HANDLER(sh2_peripheral_read8);
msh2_read16_map[0xff/2].addr = MAP_HANDLER(sh2_peripheral_read16);
msh2_read32_map[0xff/2].addr = MAP_HANDLER(sh2_peripheral_read32);
msh2_write8_map[0xff/2] = sh2_peripheral_write8;
msh2_write16_map[0xff/2] = sh2_peripheral_write16;
msh2_write32_map[0xff/2] = sh2_peripheral_write32;
memcpy(ssh2_read8_map, msh2_read8_map, sizeof(msh2_read8_map));
memcpy(ssh2_read16_map, msh2_read16_map, sizeof(msh2_read16_map));
memcpy(ssh2_read32_map, msh2_read32_map, sizeof(msh2_read32_map));
memcpy(ssh2_write8_map, msh2_write8_map, sizeof(msh2_write8_map));
memcpy(ssh2_write16_map, msh2_write16_map, sizeof(msh2_write16_map));
memcpy(ssh2_write32_map, msh2_write32_map, sizeof(msh2_write32_map));
msh2_read8_map[0xc0/2].addr =
msh2_read16_map[0xc0/2].addr =
msh2_read32_map[0xc0/2].addr = MAP_MEMORY(msh2.data_array);
ssh2_read8_map[0xc0/2].addr =
ssh2_read16_map[0xc0/2].addr =
ssh2_read32_map[0xc0/2].addr = MAP_MEMORY(ssh2.data_array);
// map DRAM area, both 68k and SH2
Pico32xSwapDRAM(1);
msh2.read8_map = msh2_read8_map; ssh2.read8_map = ssh2_read8_map;
msh2.read16_map = msh2_read16_map; ssh2.read16_map = ssh2_read16_map;
msh2.read32_map = msh2_read32_map; ssh2.read32_map = ssh2_read32_map;
msh2.write8_tab = (const void **)(void *)msh2_write8_map;
msh2.write16_tab = (const void **)(void *)msh2_write16_map;
msh2.write32_tab = (const void **)(void *)msh2_write32_map;
ssh2.write8_tab = (const void **)(void *)ssh2_write8_map;
ssh2.write16_tab = (const void **)(void *)ssh2_write16_map;
ssh2.write32_tab = (const void **)(void *)ssh2_write32_map;
// convenience ptrs
msh2.p_sdram = ssh2.p_sdram = Pico32xMem->sdram;
msh2.p_rom = ssh2.p_rom = Pico.rom;
msh2.p_bios = Pico32xMem->sh2_rom_m.w; msh2.p_da = msh2.data_array;
ssh2.p_bios = Pico32xMem->sh2_rom_s.w; ssh2.p_da = ssh2.data_array;
sh2_drc_mem_setup(&msh2);
sh2_drc_mem_setup(&ssh2);
memset(sh2_poll_rd, 0, sizeof(sh2_poll_rd));
memset(sh2_poll_wr, 0, sizeof(sh2_poll_wr));
memset(sh2_poll_fifo, -1, sizeof(sh2_poll_fifo));
// z80 hack
z80_map_set(z80_write_map, 0x8000, 0xffff, z80_md_bank_write_32x, 1);
}
void p32x_update_banks(void)
{
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
bank_switch_rom_sh2();
if (Pico32x.emu_flags & P32XF_DRC_ROM_C)
sh2_drc_flush_all();
}
void Pico32xMemStateLoaded(void)
{
bank_switch_rom_68k(Pico32x.regs[4 / 2]);
Pico32xSwapDRAM((Pico32x.vdp_regs[0x0a / 2] & P32XV_FS) ^ P32XV_FS);
memset(Pico32xMem->pwm, 0, sizeof(Pico32xMem->pwm));
Pico32x.dirty_pal = 1;
Pico32x.emu_flags &= ~(P32XF_68KCPOLL | P32XF_68KVPOLL);
memset(&m68k_poll, 0, sizeof(m68k_poll));
msh2.state = 0;
msh2.poll_addr = msh2.poll_cycles = msh2.poll_cnt = 0;
ssh2.state = 0;
ssh2.poll_addr = ssh2.poll_cycles = ssh2.poll_cnt = 0;
sh2_drc_flush_all();
}
// vim:shiftwidth=2:ts=2:expandtab