picodrive/Pico/carthw/svp/ssp16.c
notaz 5de27868df more SVP work
git-svn-id: file:///home/notaz/opt/svn/PicoDrive@320 be3aeb3a-fb24-0410-a615-afba39da0efa
2008-01-15 18:55:10 +00:00

998 lines
27 KiB
C

// basic, incomplete SSP160x (SSP1601?) interpreter
/*
* Register info
* most names taken from MAME code
*
* 0. "-"
* size: 16
* desc: Constant register with all bits set (0xffff).
*
* 1. "X"
* size: 16
* desc: Generic register. When set, updates P (P = X * Y * 2) ??
*
* 2. "Y"
* size: 16
* desc: Generic register. When set, updates P (P = X * Y * 2) ??
*
* 3. "A"
* size: 32
* desc: Accumulator.
*
* 4. "ST"
* size: 16
* desc: Status register. From MAME: bits 0-9 are CONTROL, other FLAG
* fedc ba98 7654 3210
* 210 - RPL (?) "Loop size". If non-zero, makes (rX+) and (rX-) respectively
* modulo-increment and modulo-decrement. The value shows which
* power of 2 to use, i.e. 4 means modulo by 16.
* (e: fir16_32.sc, IIR_4B.SC, DECIM.SC)
* 43 - RB (?)
* 5 - GP0_0 (ST5?) Changed before acessing PM0 (affects banking?).
* 6 - GP0_1 (ST6?) Cleared before acessing PM0 (affects banking?). Set after.
* datasheet says these (5,6) bits correspond to hardware pins.
* 7 - IE (?) Not directly used by SVP code (never set, but preserved)?
* 8 - OP (?) Not used by SVP code (only cleared)? (MAME: saturated value
* (probably means clamping? i.e. 0x7ffc + 9 -> 0x7fff))
* 9 - MACS (?) Not used by SVP code (only cleared)? (e: "mac shift")
* a - GPI_0 Interrupt 0 enable/status?
* b - GPI_1 Interrupt 1 enable/status?
* c - L L flag. Carry?
* d - Z Zero flag.
* e - OV Overflow flag.
* f - N Negative flag.
* seen directly changing code sequences:
* ldi ST, 0 ld A, ST ld A, ST ld A, ST ldi st, 20h
* ldi ST, 60h ori A, 60h and A, E8h and A, E8h
* ld ST, A ld ST, A ori 3
* ld ST, A
*
* 5. "STACK"
* size: 16
* desc: hw stack of 6 levels (according to datasheet)
*
* 6. "PC"
* size: 16
* desc: Program counter.
*
* 7. "P"
* size: 32
* desc: multiply result register. Updated after mp* instructions,
* or writes to X or Y (P = X * Y * 2) ??
* probably affected by MACS bit in ST.
*
* 8. "PM0" (PM from PMAR name from Tasco's docs)
* size: 16?
* desc: Programmable Memory access register.
* On reset, or when one (both?) GP0 bits are clear,
* acts as some additional status reg?
*
* 9. "PM1"
* size: 16?
* desc: Programmable Memory access register.
* This reg. is only used as PMAR.
*
* 10. "PM2"
* size: 16?
* desc: Programmable Memory access register.
* This reg. is only used as PMAR.
*
* 11. "XST"
* size: 16?
* desc: eXternal STate. Mapped to a15000 at 68k side.
* Can be programmed as PMAR? (only seen in test mode code)
*
* 12. "PM4"
* size: 16?
* desc: Programmable Memory access register.
* This reg. is only used as PMAR. The most used PMAR by VR.
*
* 13. (unused by VR)
*
* 14. "PMC" (PMC from PMAC name from Tasco's docs)
* size: 32?
* desc: Programmable Memory access Control. Set using 2 16bit writes,
* first address, then mode word. After setting PMAC, PMAR sould
* be accessed to program it.
*
* 15. "AL"
* size: 16
* desc: Accumulator Low. 16 least significant bits of accumulator (not 100% sure)
* (normally reading acc (ld X, A) you get 16 most significant bits).
*
*
* There are 8 8-bit pointer registers rX. r0-r3 (ri) point to RAM0, r4-r7 (rj) point to RAM1.
* They can be accessed directly, or 2 indirection levels can be used [ (rX), ((rX)) ],
* which work similar to * and ** operators in C, only they use different memory banks and
* ((rX)) also does post-increment. First indirection level (rX) accesses RAMx, second accesses
* program memory at address read from (rX), and increments value in (rX).
*
* r0,r1,r2,r4,r5,r6 can be modified [ex: ldi r0, 5].
* 3 modifiers can be applied (optional):
* + : post-increment [ex: ld a, (r0+) ]. Can be made modulo-increment by setting RPL bits in ST.
* - : post-decrement. Can be made modulo-decrement by setting RPL bits in ST (not sure).
* +!: post-increment, unaffected by RPL (probably).
* These are only used on 1st indirection level, so things like [ld a, ((r0+))] and [ld X, r6-]
* ar probably invalid.
*
* r3 and r7 are special and can not be changed (at least Samsung samples and SVP code never do).
* They are fixed to the start of their RAM banks. (They are probably changeable for ssp1605+,
* Samsung's old DSP page claims that).
* 1 of these 4 modifiers must be used (short form direct addressing?):
* |00: RAMx[0] [ex: (r3|00), 0] (based on sample code)
* |01: RAMx[1]
* |10: RAMx[2] ? maybe 10h? accortding to Div_c_dp.sc, 2
* |11: RAMx[3]
*
*
* Instruction notes
*
* mld (rj), (ri) [, b]
* operation: A = 0; P = (rj) * (ri)
* notes: based on IIR_4B.SC sample. flags? what is b???
* TODO: figure out if (rj) and (ri) get loaded in X and Y
*
* mpya (rj), (ri) [, b]
* name: multiply and add?
* operation: A += P; P = (rj) * (ri)
*
* mpys (rj), (ri), b
* name: multiply and subtract?
* notes: not used by VR code.
*
*
* Assumptions in this code
* P is not directly writeable
* flags correspond to full 32bit accumulator
* only Z and N status flags are emulated (others unused by SVP)
* modifiers for 'OP a, ri' are ignored (invalid?/not used by SVP)
* modifiers '+' and '+!' act the same (this is most likely wrong)
* 'ld d, (a)' loads from program ROM
*/
#include "../../PicoInt.h"
#define u32 unsigned int
// 0
#define rX ssp->gr[SSP_X].h
#define rY ssp->gr[SSP_Y].h
#define rA ssp->gr[SSP_A].h
#define rST ssp->gr[SSP_ST].h // 4
#define rSTACK ssp->gr[SSP_STACK].h
#define rPC ssp->gr[SSP_PC].h
#define rP ssp->gr[SSP_P]
#define rPM0 ssp->gr[SSP_PM0].h // 8
#define rPM1 ssp->gr[SSP_PM1].h
#define rPM2 ssp->gr[SSP_PM2].h
#define rXST ssp->gr[SSP_XST].h
#define rPM4 ssp->gr[SSP_PM4].h // 12
// 13
#define rPMC ssp->gr[SSP_PMC] // will keep addr in .h, mode in .l
#define rAL ssp->gr[SSP_A].l
#define rA32 ssp->gr[SSP_A].v
#define rIJ ssp->r
#define IJind (((op>>6)&4)|(op&3))
#define GET_PC() (PC - (unsigned short *)svp->iram_rom)
#define GET_PPC_OFFS() ((unsigned int)PC - (unsigned int)svp->iram_rom - 2)
#define SET_PC(d) PC = (unsigned short *)svp->iram_rom + d
#define REG_READ(r) (((r) <= 4) ? ssp->gr[r].h : read_handlers[r]())
// if r is 'A', should we set flags?
#define REG_WRITE(r,d) { \
int r1 = r; \
if (r1 >= 4) write_handlers[r1](d); \
else if (r1 > 0) ssp->gr[r1].h = d; \
}
// flags
#define FLAG_L (1<<0xc)
#define FLAG_Z (1<<0xd)
#define FLAG_V (1<<0xe)
#define FLAG_N (1<<0xf)
// update ZN according to 32bit ACC.
#define UPD_ACC_ZN \
rST &= ~(FLAG_Z|FLAG_N); \
if (!rA32) rST |= FLAG_Z; \
else rST |= (rA32>>16)&FLAG_N;
// it seems SVP code never checks for L and OV, so we leave them out.
// rST |= (t>>4)&FLAG_L;
#define UPD_t_LZVN \
rST &= ~(FLAG_L|FLAG_Z|FLAG_V|FLAG_N); \
if (!t) rST |= FLAG_Z; \
else rST |= t&FLAG_N; \
// standard cond processing.
// again, only Z and N is checked, as SVP doesn't seem to use any other conds.
#define COND_CHECK \
switch (op&0xf0) { \
case 0x00: cond = 1; break; /* always true */ \
case 0x50: cond = !((rST ^ (op<<5)) & FLAG_Z); break; /* Z matches f(?) bit */ \
case 0x70: cond = !((rST ^ (op<<7)) & FLAG_N); break; /* N matches f(?) bit */ \
default:elprintf(EL_SVP, "unimplemented cond @ %04x", GET_PPC_OFFS()); break; \
}
// ops with accumulator.
// how is low word really affected by these?
// not sure if 'ld A' affects flags (assume it does..)
#define OP_LDA(x) \
ssp->gr[SSP_A].h = x; \
UPD_ACC_ZN
#define OP_SUBA(x) { \
u32 t = (ssp->gr[SSP_A].v >> 16) - (x); \
UPD_t_LZVN \
ssp->gr[SSP_A].h = t; \
}
#define OP_CMPA(x) { \
u32 t = (ssp->gr[SSP_A].v >> 16) - (x); \
UPD_t_LZVN \
}
#define OP_ADDA(x) { \
u32 t = (ssp->gr[SSP_A].v >> 16) + (x); \
UPD_t_LZVN \
ssp->gr[SSP_A].h = t; \
}
#define OP_ANDA(x) \
ssp->gr[SSP_A].v &= (x) << 16; \
UPD_ACC_ZN
#define OP_ORA(x) \
ssp->gr[SSP_A].v |= (x) << 16; \
UPD_ACC_ZN
#define OP_EORA(x) \
ssp->gr[SSP_A].v ^= (x) << 16; \
UPD_ACC_ZN
static ssp1601_t *ssp = NULL;
static unsigned short *PC;
static int g_cycles;
// debug
static int running = 0;
// -----------------------------------------------------
// register i/o handlers
// 0-4, 13
static u32 read_unknown(void)
{
elprintf(EL_ANOMALY|EL_SVP, "ssp16: unknown read @ %04x", GET_PPC_OFFS());
return 0;
}
static void write_unknown(u32 d)
{
elprintf(EL_ANOMALY|EL_SVP, "ssp16: unknown write @ %04x", GET_PPC_OFFS());
}
// 4
static void write_ST(u32 d)
{
if ((rST ^ d) & 7) {
elprintf(EL_SVP, "ssp16: RPL %i -> %i @ %04x", rST&7, d&7, GET_PPC_OFFS());
running = 0;
}
rST = d;
}
// 5
static u32 read_STACK(void)
{
//elprintf(EL_SVP, "pop %i @ %04x", rSTACK, GET_PPC_OFFS());
--rSTACK;
if ((short)rSTACK < 0) {
rSTACK = 5;
elprintf(EL_ANOMALY|EL_SVP, "ssp16: stack underflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
}
return ssp->stack[rSTACK];
}
static void write_STACK(u32 d)
{
if (rSTACK >= 6) {
//running = 0;
elprintf(EL_ANOMALY|EL_SVP, "ssp16: stack overflow! (%i) @ %04x", rSTACK, GET_PPC_OFFS());
rSTACK = 0;
}
ssp->stack[rSTACK++] = d;
}
// 6
static u32 read_PC(void)
{
return GET_PC();
}
static void write_PC(u32 d)
{
SET_PC(d);
g_cycles--;
}
// 7
static u32 read_P(void)
{
rP.v = (u32)rX * rY * 2;
return rP.h;
}
// -----------------------------------------------------
static void iram_write(int addr, u32 d, int reg, int inc)
{
if ((addr&0xfc00) != 0x8000)
elprintf(EL_SVP|EL_ANOMALY, "ssp invalid IRAM addr: %04x", addr<<1);
elprintf(EL_SVP, "ssp IRAM w [%06x] %04x (inc %i)", (addr<<1)&0x7ff, d, inc);
((unsigned short *)svp->iram_rom)[addr&0x3ff] = d;
ssp->pmac_write[reg] += inc<<16;
}
static u32 pm_io(int reg, int write, u32 d)
{
if (ssp->emu_status & SSP_PMC_SET) {
elprintf(EL_SVP, "PM%i (%c) set to %08x @ %04x", reg, write ? 'w' : 'r', rPMC.v, GET_PPC_OFFS());
ssp->pmac_read[write ? reg + 6 : reg] = rPMC.v;
ssp->emu_status &= ~SSP_PMC_SET;
return 0;
}
// just in case
ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
// if (ssp->pmac_read[reg] != 0)
if (reg == 4 || (rST & 0x60))
{
if (write)
{
int mode = ssp->pmac_write[reg]&0xffff;
int addr = ssp->pmac_write[reg]>>16;
switch (mode) {
case 0x0018: elprintf(EL_SVP, "ssp DRAM w [%06x] %04x", addr<<1, d);
((unsigned short *)svp->dram)[addr] = d;
break;
case 0x0818: elprintf(EL_SVP, "ssp DRAM w [%06x] %04x (inc 1)", addr<<1, d);
((unsigned short *)svp->dram)[addr] = d;
ssp->pmac_write[reg] += 1<<16;
break;
case 0x081c: iram_write(addr, d, reg, 1); break; // checked: used by code @ 0902
case 0x101c: iram_write(addr, d, reg, 2); break; // checked: used by code @ 3b7c
default: elprintf(EL_SVP|EL_ANOMALY, "ssp PM%i unhandled write mode %04x, [%06x] %04x @ %04x",
reg, mode, addr<<1, d, GET_PPC_OFFS()); break;
}
}
else
{
int mode = ssp->pmac_read[reg]&0xffff;
int addr = ssp->pmac_read[reg]>>16;
switch (mode) {
case 0x0809: elprintf(EL_SVP, "ssp ROM r [%06x] %04x", (addr|((mode&0xf)<<16))<<1,
((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)]);
// possibly correct, the first word read is some sort of counter, sane values in ROM
ssp->pmac_read[reg] += 1<<16;
return ((unsigned short *)Pico.rom)[addr|((mode&0xf)<<16)];
case 0x0018: elprintf(EL_SVP, "ssp DRAM r [%06x] %04x", addr<<1, ((unsigned short *)svp->dram)[addr]);
return ((unsigned short *)svp->dram)[addr]; // checked
case 0x0818: elprintf(EL_SVP, "ssp DRAM r [%06x] %04x (inc 1)", addr<<1, ((unsigned short *)svp->dram)[addr]);
ssp->pmac_read[reg] += 1<<16;
return ((unsigned short *)svp->dram)[addr];
case 0x3018: elprintf(EL_SVP, "ssp DRAM r [%06x] %04x (inc 32)", addr<<1, ((unsigned short *)svp->dram)[addr]);
ssp->pmac_read[reg] += 32<<16;
return ((unsigned short *)svp->dram)[addr];
default: elprintf(EL_SVP|EL_ANOMALY, "ssp PM%i unhandled read mode %04x, [%06x] @ %04x",
reg, mode, addr<<1, GET_PPC_OFFS()); break;
}
}
return 0;
}
return (u32)-1;
}
// 8
static u32 read_PM0(void)
{
u32 d = pm_io(0, 0, 0);
if (d != (u32)-1) return d;
if (GET_PPC_OFFS() != 0x800 || rPM0 != 0) // debug
elprintf(EL_SVP, "PM0 raw r %04x @ %04x", rPM0, GET_PPC_OFFS());
return rPM0;
}
static void write_PM0(u32 d)
{
u32 r = pm_io(0, 1, d);
if (r != (u32)-1) return;
elprintf(EL_SVP, "PM0 raw w %04x @ %04x", d, GET_PPC_OFFS());
rPM0 = d;
}
// 9
static u32 read_PM1(void)
{
u32 d = pm_io(1, 0, 0);
if (d != (u32)-1) return d;
// can be removed?
elprintf(EL_SVP, "PM1 raw r %04x @ %04x", rPM1, GET_PPC_OFFS());
return rPM1;
}
static void write_PM1(u32 d)
{
u32 r = pm_io(1, 1, d);
if (r != (u32)-1) return;
// can be removed?
elprintf(EL_SVP, "PM1 raw w %04x @ %04x", d, GET_PPC_OFFS());
rPM1 = d;
}
// 10
static u32 read_PM2(void)
{
u32 d = pm_io(2, 0, 0);
if (d != (u32)-1) return d;
// can be removed?
elprintf(EL_SVP, "PM2 raw r %04x @ %04x", rPM2, GET_PPC_OFFS());
return rPM2;
}
static void write_PM2(u32 d)
{
u32 r = pm_io(2, 1, d);
if (r != (u32)-1) return;
// can be removed?
elprintf(EL_SVP, "PM2 raw w %04x @ %04x", d, GET_PPC_OFFS());
rPM2 = d;
}
// 11
static u32 read_XST(void)
{
// can be removed?
u32 d = pm_io(3, 0, 0);
if (d != (u32)-1) return d;
elprintf(EL_SVP, "XST raw r %04x @ %04x", rXST, GET_PPC_OFFS());
return rXST;
}
static void write_XST(u32 d)
{
// can be removed?
u32 r = pm_io(3, 1, d);
if (r != (u32)-1) return;
elprintf(EL_SVP, "XST raw w %04x @ %04x", d, GET_PPC_OFFS());
rXST = d;
}
// 12
static u32 read_PM4(void)
{
u32 d = pm_io(4, 0, 0);
if (d != (u32)-1) return d;
// can be removed?
elprintf(EL_SVP, "PM4 raw r %04x @ %04x", rPM4, GET_PPC_OFFS());
return rPM4;
}
static void write_PM4(u32 d)
{
u32 r = pm_io(4, 1, d);
if (r != (u32)-1) return;
// can be removed?
elprintf(EL_SVP, "PM4 raw w %04x @ %04x", d, GET_PPC_OFFS());
rPM4 = d;
}
// 14
static u32 read_PMC(void)
{
if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
if (ssp->emu_status & SSP_PMC_SET)
elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
ssp->emu_status |= SSP_PMC_SET;
ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
return rPMC.l;
} else {
ssp->emu_status |= SSP_PMC_HAVE_ADDR;
return rPMC.h;
}
}
static void write_PMC(u32 d)
{
if (ssp->emu_status & SSP_PMC_HAVE_ADDR) {
if (ssp->emu_status & SSP_PMC_SET)
elprintf(EL_ANOMALY|EL_SVP, "prev PMC not used @ %04x", GET_PPC_OFFS());
ssp->emu_status |= SSP_PMC_SET;
ssp->emu_status &= ~SSP_PMC_HAVE_ADDR;
rPMC.l = d;
} else {
ssp->emu_status |= SSP_PMC_HAVE_ADDR;
rPMC.h = d;
}
}
// 15
static u32 read_AL(void)
{
// TODO: figure out what's up with those blind reads..
return rAL;
}
static void write_AL(u32 d)
{
rAL = d;
}
typedef u32 (*read_func_t)(void);
typedef void (*write_func_t)(u32 d);
static read_func_t read_handlers[16] =
{
read_unknown, read_unknown, read_unknown, read_unknown, // -, X, Y, A
read_unknown, // 4 ST
read_STACK,
read_PC,
read_P,
read_PM0, // 8
read_PM1,
read_PM2,
read_XST,
read_PM4, // 12
read_unknown, // 13 gr13
read_PMC,
read_AL
};
static write_func_t write_handlers[16] =
{
write_unknown, write_unknown, write_unknown, write_unknown, // -, X, Y, A
// write_unknown, // 4 ST
write_ST, // 4 ST (debug hook)
write_STACK,
write_PC,
write_unknown, // 7 P
write_PM0, // 8
write_PM1,
write_PM2,
write_XST,
write_PM4, // 12
write_unknown, // 13 gr13
write_PMC,
write_AL
};
// -----------------------------------------------------
// pointer register handlers
//
#define ptr1_read(op) ptr1_read_(op&3,(op>>6)&4,(op<<1)&0x18)
static u32 ptr1_read_(int ri, int isj2, int modi3)
{
//int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
int t = ri | isj2 | modi3;
switch (t)
{
// mod=0 (00)
case 0x00:
case 0x01:
case 0x02: return ssp->RAM0[ssp->r0[t&3]];
case 0x03: return ssp->RAM0[0];
case 0x04:
case 0x05:
case 0x06: return ssp->RAM1[ssp->r1[t&3]];
case 0x07: return ssp->RAM1[0];
// mod=1 (01), "+!"
// mod=3, "+"
case 0x08:
case 0x18:
case 0x09:
case 0x19:
case 0x0a:
case 0x1a: return ssp->RAM0[ssp->r0[t&3]++];
case 0x0b: return ssp->RAM0[1];
case 0x0c:
case 0x1c:
case 0x0d:
case 0x1d:
case 0x0e:
case 0x1e: return ssp->RAM1[ssp->r1[t&3]++];
case 0x0f: return ssp->RAM1[1];
// mod=2 (10), "-"
case 0x10:
case 0x11:
case 0x12: return ssp->RAM0[ssp->r0[t&3]--];
case 0x13: return ssp->RAM0[2];
case 0x14:
case 0x15:
case 0x16: return ssp->RAM1[ssp->r1[t&3]--];
case 0x17: return ssp->RAM1[2];
// mod=3 (11)
case 0x1b: return ssp->RAM0[3];
case 0x1f: return ssp->RAM1[3];
}
return 0;
}
static void ptr1_write(int op, u32 d)
{
int t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
switch (t)
{
// mod=0 (00)
case 0x00:
case 0x01:
case 0x02: ssp->RAM0[ssp->r0[t&3]] = d; return;
case 0x03: ssp->RAM0[0] = d; return;
case 0x04:
case 0x05:
case 0x06: ssp->RAM1[ssp->r1[t&3]] = d; return;
case 0x07: ssp->RAM1[0] = d; return;
// mod=1 (01), "+!"
// mod=3, "+"
case 0x08:
case 0x18:
case 0x09:
case 0x19:
case 0x0a:
case 0x1a: ssp->RAM0[ssp->r0[t&3]++] = d; return;
case 0x0b: ssp->RAM0[1] = d; return;
case 0x0c:
case 0x1c:
case 0x0d:
case 0x1d:
case 0x0e:
case 0x1e: ssp->RAM1[ssp->r1[t&3]++] = d; return;
case 0x0f: ssp->RAM1[1] = d; return;
// mod=2 (10), "-"
case 0x10:
case 0x11:
case 0x12: ssp->RAM0[ssp->r0[t&3]--] = d; return;
case 0x13: ssp->RAM0[2] = d; return;
case 0x14:
case 0x15:
case 0x16: ssp->RAM1[ssp->r1[t&3]--] = d; return;
case 0x17: ssp->RAM1[2] = d; return;
// mod=3 (11)
case 0x1b: ssp->RAM0[3] = d; return;
case 0x1f: ssp->RAM1[3] = d; return;
}
}
static u32 ptr2_read(int op)
{
int mv = 0, t = (op&3) | ((op>>6)&4) | ((op<<1)&0x18);
switch (t)
{
// mod=0 (00)
case 0x00:
case 0x01:
case 0x02: mv = ssp->RAM0[ssp->r0[t&3]]++; break;
case 0x03: mv = ssp->RAM0[0]++; break;
case 0x04:
case 0x05:
case 0x06: mv = ssp->RAM1[ssp->r1[t&3]]++; break;
case 0x07: mv = ssp->RAM1[0]++; break;
// mod=1 (01)
case 0x0b: mv = ssp->RAM0[1]++; break;
case 0x0f: mv = ssp->RAM1[1]++; break;
// mod=2 (10)
case 0x13: mv = ssp->RAM0[2]++; break;
case 0x17: mv = ssp->RAM1[2]++; break;
// mod=3 (11)
case 0x1b: mv = ssp->RAM0[3]++; break;
case 0x1f: mv = ssp->RAM1[3]++; break;
default: elprintf(EL_SVP|EL_ANOMALY, "invalid mod in ((rX))? @ %04x", GET_PPC_OFFS());
return 0;
}
return ((unsigned short *)svp->iram_rom)[mv];
}
// -----------------------------------------------------
void ssp1601_reset(ssp1601_t *l_ssp)
{
ssp = l_ssp;
ssp->emu_status = 0;
ssp->gr[SSP_GR0].v = 0xffff0000;
rPC = 0x400;
rSTACK = 0; // ? using ascending stack
}
static void debug_dump(void)
{
printf("GR0: %04x X: %04x Y: %04x A: %08x\n", ssp->gr[SSP_GR0].h, rX, rY, ssp->gr[SSP_A].v);
printf("PC: %04x (%04x) P: %08x\n", GET_PC(), GET_PC() << 1, ssp->gr[SSP_P].v);
printf("PM0: %04x PM1: %04x PM2: %04x\n", rPM0, rPM1, rPM2);
printf("XST: %04x PM4: %04x PMC: %08x\n", rXST, rPM4, ssp->gr[SSP_PMC].v);
printf(" ST: %04x %c%c%c%c, GP0_0 %i, GP0_1 %i\n", rST, rST&FLAG_N?'N':'n', rST&FLAG_V?'V':'v',
rST&FLAG_Z?'Z':'z', rST&FLAG_L?'L':'l', (rST>>5)&1, (rST>>6)&1);
printf("STACK: %i %04x %04x %04x %04x %04x %04x\n", rSTACK, ssp->stack[0], ssp->stack[1],
ssp->stack[2], ssp->stack[3], ssp->stack[4], ssp->stack[5]);
printf("r0-r2: %02x %02x %02x r4-r6: %02x %02x %02x\n", rIJ[0], rIJ[1], rIJ[2], rIJ[4], rIJ[5], rIJ[6]);
elprintf(EL_SVP, "cycles: %i, emu_status: %x", g_cycles, ssp->emu_status);
}
static void debug_dump_mem(void)
{
int h, i;
printf("RAM0\n");
for (h = 0; h < 32; h++)
{
if (h == 16) printf("RAM1\n");
printf("%03x:", h*16);
for (i = 0; i < 16; i++)
printf(" %04x", ssp->RAM[h*16+i]);
printf("\n");
}
}
static int bpts[10] = { 0, };
static void debug(unsigned int pc, unsigned int op)
{
static char buffo[64] = {0,};
char buff[64] = {0,};
int i;
if (running) {
for (i = 0; i < 10; i++)
if (pc != 0 && bpts[i] == pc) {
printf("breakpoint %i\n", i);
running = 0;
break;
}
}
if (running) return;
printf("%04x (%02x) @ %04x\n", op, op >> 9, pc<<1);
while (1)
{
printf("dbg> ");
fflush(stdout);
fgets(buff, sizeof(buff), stdin);
if (buff[0] == '\n') strcpy(buff, buffo);
else strcpy(buffo, buff);
switch (buff[0]) {
case 0: exit(0);
case 'c':
case 'r': running = 1; return;
case 's':
case 'n': return;
case 'x': debug_dump(); break;
case 'm': debug_dump_mem(); break;
case 'b': {
char *baddr = buff + 2;
i = 0;
if (buff[3] == ' ') { i = buff[2] - '0'; baddr = buff + 4; }
bpts[i] = strtol(baddr, NULL, 16) >> 1;
printf("breakpoint %i set @ %04x\n", i, bpts[i]<<1);
break;
}
case 'd': {
FILE *f = fopen("dump.bin", "wb");
unsigned short *p = (unsigned short *)svp->iram_rom;
int i;
if (f) {
for (i = 0; i < 0x10000; i++) p[i] = (p[i]<<8) | (p[i]>>8);
fwrite(svp->iram_rom, 1, 0x20000, f);
fclose(f);
for (i = 0; i < 0x10000; i++) p[i] = (p[i]<<8) | (p[i]>>8);
printf("dumped to dump.bin\n");
}
else
printf("dump failed\n");
break;
}
default: printf("unknown command\n"); break;
}
}
}
void ssp1601_run(int cycles)
{
SET_PC(rPC);
g_cycles = cycles;
//running = 0;
while (g_cycles > 0)
{
int op;
u32 tmpv;
op = *PC++;
debug(GET_PC()-1, op);
switch (op >> 9)
{
// ld d, s
case 0x00:
if (op == 0) break; // nop
if (op == ((SSP_A<<4)|SSP_P)) { // A <- P
// not sure. MAME claims that only hi word is transfered.
read_P(); // update P
ssp->gr[SSP_A].v = ssp->gr[SSP_P].v;
}
else
{
tmpv = REG_READ(op & 0x0f);
REG_WRITE((op & 0xf0) >> 4, tmpv);
}
break;
// ld d, (ri)
case 0x01: tmpv = ptr1_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); break;
// ld (ri), s
case 0x02: tmpv = REG_READ((op & 0xf0) >> 4); ptr1_write(op, tmpv); break;
// ldi d, imm
case 0x04: tmpv = *PC++; REG_WRITE((op & 0xf0) >> 4, tmpv); break;
// ld d, ((ri))
case 0x05: tmpv = ptr2_read(op); REG_WRITE((op & 0xf0) >> 4, tmpv); break;
// ldi (ri), imm
case 0x06: tmpv = *PC++; ptr1_write(op, tmpv); break;
// ld adr, a
case 0x07: ssp->RAM[op & 0x1ff] = rA; break;
// ld d, ri
case 0x09: tmpv = rIJ[(op&3)|((op>>6)&4)]; REG_WRITE((op & 0xf0) >> 4, tmpv); break;
// ld ri, s
case 0x0a: rIJ[(op&3)|((op>>6)&4)] = REG_READ((op & 0xf0) >> 4); break;
// ldi ri, simm
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f: rIJ[(op>>8)&7] = op; break;
// call cond, addr
case 0x24: {
int cond = 0;
COND_CHECK
if (cond) { int new_PC = *PC++; write_STACK(GET_PC()); write_PC(new_PC); }
else PC++;
break;
}
// ld d, (a)
case 0x25: tmpv = ((unsigned short *)svp->iram_rom)[rA]; REG_WRITE((op & 0xf0) >> 4, tmpv); break;
// bra cond, addr
case 0x26: {
int cond = 0;
COND_CHECK
if (cond) { int new_PC = *PC++; write_PC(new_PC); }
else PC++;
break;
}
// mod cond, op
case 0x48: {
int cond = 0;
COND_CHECK
if (cond) {
switch (op & 7) {
case 2: rA32 >>= 1; break; // shr
case 3: rA32 <<= 1; break; // shl
case 6: rA32 = -(int)rA32; break; // neg
case 7: if ((int)rA32 < 0) rA32 = -(int)rA32; break; // abs
default: elprintf(EL_SVP, "ssp16: unhandled mod %i @ %04x", op&7, GET_PPC_OFFS());
}
UPD_ACC_ZN
}
break;
}
// mpya (rj), (ri), b
case 0x4b:
// dunno if this is correct. What about b?
read_P(); // update P
ssp->gr[SSP_A].v += ssp->gr[SSP_P].v; // maybe only upper word?
rX = ptr1_read_(op&3, 0, (op<<1)&0x18); // ri (maybe rj?)
rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18); // rj
break;
// mld (rj), (ri), b
case 0x5b:
// dunno if this is correct. What about b?
ssp->gr[SSP_A].v = 0; // maybe only upper word?
rX = ptr1_read_(op&3, 0, (op<<1)&0x18); // ri (maybe rj?)
rY = ptr1_read_((op>>4)&3, 4, (op>>3)&0x18); // rj
break;
// OP a, s
case 0x10: tmpv = REG_READ(op & 0x0f); OP_SUBA(tmpv); break;
case 0x30: tmpv = REG_READ(op & 0x0f); OP_CMPA(tmpv); break;
case 0x40: tmpv = REG_READ(op & 0x0f); OP_ADDA(tmpv); break;
case 0x50: tmpv = REG_READ(op & 0x0f); OP_ANDA(tmpv); break;
case 0x60: tmpv = REG_READ(op & 0x0f); OP_ORA (tmpv); break;
case 0x70: tmpv = REG_READ(op & 0x0f); OP_EORA(tmpv); break;
// OP a, (ri)
case 0x11: tmpv = ptr1_read(op); OP_SUBA(tmpv); break;
case 0x31: tmpv = ptr1_read(op); OP_CMPA(tmpv); break;
case 0x41: tmpv = ptr1_read(op); OP_ADDA(tmpv); break;
case 0x51: tmpv = ptr1_read(op); OP_ANDA(tmpv); break;
case 0x61: tmpv = ptr1_read(op); OP_ORA (tmpv); break;
case 0x71: tmpv = ptr1_read(op); OP_EORA(tmpv); break;
// OP a, adr
case 0x03: tmpv = ssp->RAM[op & 0x1ff]; OP_LDA (tmpv); break;
case 0x13: tmpv = ssp->RAM[op & 0x1ff]; OP_SUBA(tmpv); break;
case 0x33: tmpv = ssp->RAM[op & 0x1ff]; OP_CMPA(tmpv); break;
case 0x43: tmpv = ssp->RAM[op & 0x1ff]; OP_ADDA(tmpv); break;
case 0x53: tmpv = ssp->RAM[op & 0x1ff]; OP_ANDA(tmpv); break;
case 0x63: tmpv = ssp->RAM[op & 0x1ff]; OP_ORA (tmpv); break;
case 0x73: tmpv = ssp->RAM[op & 0x1ff]; OP_EORA(tmpv); break;
// OP a, imm
case 0x14: tmpv = *PC++; OP_SUBA(tmpv); break;
case 0x34: tmpv = *PC++; OP_CMPA(tmpv); break;
case 0x44: tmpv = *PC++; OP_ADDA(tmpv); break;
case 0x54: tmpv = *PC++; OP_ANDA(tmpv); break;
case 0x64: tmpv = *PC++; OP_ORA (tmpv); break;
case 0x74: tmpv = *PC++; OP_EORA(tmpv); break;
// OP a, ((ri))
case 0x15: tmpv = ptr2_read(op); OP_SUBA(tmpv); break;
case 0x35: tmpv = ptr2_read(op); OP_CMPA(tmpv); break;
case 0x45: tmpv = ptr2_read(op); OP_ADDA(tmpv); break;
case 0x55: tmpv = ptr2_read(op); OP_ANDA(tmpv); break;
case 0x65: tmpv = ptr2_read(op); OP_ORA (tmpv); break;
case 0x75: tmpv = ptr2_read(op); OP_EORA(tmpv); break;
// OP a, ri
case 0x19: tmpv = rIJ[IJind]; OP_SUBA(tmpv); break;
case 0x39: tmpv = rIJ[IJind]; OP_CMPA(tmpv); break;
case 0x49: tmpv = rIJ[IJind]; OP_ADDA(tmpv); break;
case 0x59: tmpv = rIJ[IJind]; OP_ANDA(tmpv); break;
case 0x69: tmpv = rIJ[IJind]; OP_ORA (tmpv); break;
case 0x79: tmpv = rIJ[IJind]; OP_EORA(tmpv); break;
// OP simm
case 0x1c: OP_SUBA(op & 0xff); break;
case 0x3c: OP_CMPA(op & 0xff); break;
case 0x4c: OP_ADDA(op & 0xff); break;
// MAME code only does LSB of top word, but this looks wrong to me.
case 0x5c: OP_ANDA(op & 0xff); break;
case 0x6c: OP_ORA (op & 0xff); break;
case 0x7c: OP_EORA(op & 0xff); break;
default:
elprintf(EL_ANOMALY|EL_SVP, "ssp16: unhandled op %04x @ %04x", op, GET_PPC_OFFS());
break;
}
g_cycles--;
}
read_P(); // update P
rPC = GET_PC();
if (ssp->gr[SSP_GR0].v != 0xffff0000)
elprintf(EL_ANOMALY|EL_SVP, "ssp16: REG 0 corruption! %08x", ssp->gr[SSP_GR0].v);
}