picodrive/cpu/sh2/compiler.c
2019-10-12 11:10:28 +02:00

6521 lines
200 KiB
C

/*
* SH2 recompiler
* (C) notaz, 2009,2010,2013
* (C) kub, 2018,2019
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*
* notes:
* - tcache, block descriptor, link buffer overflows result in sh2_translate()
* failure, followed by full tcache invalidation for that region
* - jumps between blocks are tracked for SMC handling (in block_entry->links),
* except jumps between different tcaches
*
* implemented:
* - static register allocation
* - remaining register caching and tracking in temporaries
* - block-local branch linking
* - block linking (except between tcaches)
* - some constant propagation
*
* TODO:
* - better constant propagation
* - stack caching?
* - bug fixing
*/
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include "../../pico/pico_int.h"
#include "../../pico/arm_features.h"
#include "sh2.h"
#include "compiler.h"
#include "../drc/cmn.h"
#include "../debug.h"
// features
#define PROPAGATE_CONSTANTS 1
#define LINK_BRANCHES 1
#define BRANCH_CACHE 1
#define CALL_STACK 1
#define ALIAS_REGISTERS 1
#define REMAP_REGISTER 1
#define LOOP_DETECTION 1
#define LOOP_OPTIMIZER 1
// limits (per block)
#define MAX_BLOCK_SIZE (BLOCK_INSN_LIMIT * 6 * 6)
// max literal offset from the block end
#define MAX_LITERAL_OFFSET 0x200 // max. MOVA, MOV @(PC) offset
#define MAX_LITERALS (BLOCK_INSN_LIMIT / 4)
#define MAX_LOCAL_BRANCHES (BLOCK_INSN_LIMIT / 4)
// debug stuff
// 01 - warnings/errors
// 02 - block info/smc
// 04 - asm
// 08 - runtime block entry log
// 10 - smc self-check
// 20 - runtime block entry counter
// 40 - rcache checking
// 80 - branch cache statistics
// 100 - write trace
// 200 - compare trace
// 400 - block entry backtrace on exit
// 800 - state dump on exit
// {
#ifndef DRC_DEBUG
#define DRC_DEBUG 0//x847
#endif
#if DRC_DEBUG
#define dbg(l,...) { \
if ((l) & DRC_DEBUG) \
elprintf(EL_STATUS, ##__VA_ARGS__); \
}
#include "mame/sh2dasm.h"
#include <platform/libpicofe/linux/host_dasm.h>
static int insns_compiled, hash_collisions, host_insn_count;
#define COUNT_OP \
host_insn_count++
#else // !DRC_DEBUG
#define COUNT_OP
#define dbg(...)
#endif
///
#define FETCH_OP(pc) \
dr_pc_base[(pc) / 2]
#define FETCH32(a) \
((dr_pc_base[(a) / 2] << 16) | dr_pc_base[(a) / 2 + 1])
#define CHECK_UNHANDLED_BITS(mask, label) { \
if ((op & (mask)) != 0) \
goto label; \
}
#define GET_Fx() \
((op >> 4) & 0x0f)
#define GET_Rm GET_Fx
#define GET_Rn() \
((op >> 8) & 0x0f)
#define SHR_T SHR_SR // might make them separate someday
#define SHR_MEM 31
#define SHR_TMP -1
#define T 0x00000001
#define S 0x00000002
#define I 0x000000f0
#define Q 0x00000100
#define M 0x00000200
#define T_save 0x00000800
#define I_SHIFT 4
#define Q_SHIFT 8
#define M_SHIFT 9
static struct op_data {
u8 op;
u8 cycles;
u8 size; // 0, 1, 2 - byte, word, long
s8 rm; // branch or load/store data reg
u32 source; // bitmask of src regs
u32 dest; // bitmask of dest regs
u32 imm; // immediate/io address/branch target
// (for literal - address, not value)
} ops[BLOCK_INSN_LIMIT];
enum op_types {
OP_UNHANDLED = 0,
OP_BRANCH,
OP_BRANCH_N, // conditional known not to be taken
OP_BRANCH_CT, // conditional, branch if T set
OP_BRANCH_CF, // conditional, branch if T clear
OP_BRANCH_R, // indirect
OP_BRANCH_RF, // indirect far (PC + Rm)
OP_SETCLRT, // T flag set/clear
OP_MOVE, // register move
OP_LOAD_CONST,// load const to register
OP_LOAD_POOL, // literal pool load, imm is address
OP_MOVA, // MOVA instruction
OP_SLEEP, // SLEEP instruction
OP_RTE, // RTE instruction
OP_TRAPA, // TRAPA instruction
OP_LDC, // LDC instruction
OP_UNDEFINED,
};
// XXX consider trap insns: OP_TRAPA, OP_UNDEFINED?
#define OP_ISBRANCH(op) ((BITRANGE(OP_BRANCH, OP_BRANCH_RF)| BITMASK1(OP_RTE)) \
& BITMASK1(op))
#define OP_ISBRAUC(op) (BITMASK4(OP_BRANCH, OP_BRANCH_R, OP_BRANCH_RF, OP_RTE) \
& BITMASK1(op))
#define OP_ISBRACND(op) (BITMASK3(OP_BRANCH_CT, OP_BRANCH_CF, OP_BRANCH_N) \
& BITMASK1(op))
#define OP_ISBRAIMM(op) (BITMASK3(OP_BRANCH, OP_BRANCH_CT, OP_BRANCH_CF) \
& BITMASK1(op))
#define OP_ISBRAIND(op) (BITMASK3(OP_BRANCH_R, OP_BRANCH_RF, OP_RTE) \
& BITMASK1(op))
#ifdef DRC_SH2
#if (DRC_DEBUG & 4)
static u8 *tcache_dsm_ptrs[3];
static char sh2dasm_buff[64];
#define do_host_disasm(tcid) \
host_dasm(tcache_dsm_ptrs[tcid], emith_insn_ptr() - tcache_dsm_ptrs[tcid]); \
tcache_dsm_ptrs[tcid] = emith_insn_ptr()
#else
#define do_host_disasm(x)
#endif
#define SH2_DUMP(sh2, reason) { \
char ms = (sh2)->is_slave ? 's' : 'm'; \
printf("%csh2 %s %08x\n", ms, reason, (sh2)->pc); \
printf("%csh2 r0-7 %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->r[0], (sh2)->r[1], (sh2)->r[2], (sh2)->r[3], \
(sh2)->r[4], (sh2)->r[5], (sh2)->r[6], (sh2)->r[7]); \
printf("%csh2 r8-15 %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->r[8], (sh2)->r[9], (sh2)->r[10], (sh2)->r[11], \
(sh2)->r[12], (sh2)->r[13], (sh2)->r[14], (sh2)->r[15]); \
printf("%csh2 pc-ml %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->pc, (sh2)->ppc, (sh2)->pr, (sh2)->sr&0x3ff, \
(sh2)->gbr, (sh2)->vbr, (sh2)->mach, (sh2)->macl); \
printf("%csh2 tmp-p %08x %08x %08x %08x %08x %08x %08x %08x\n", ms, \
(sh2)->drc_tmp, (sh2)->irq_cycles, \
(sh2)->pdb_io_csum[0], (sh2)->pdb_io_csum[1], (sh2)->state, \
(sh2)->poll_addr, (sh2)->poll_cycles, (sh2)->poll_cnt); \
}
#if (DRC_DEBUG & (8|256|512|1024)) || defined(PDB)
#if (DRC_DEBUG & (256|512|1024))
static SH2 csh2[2][8];
static FILE *trace[2];
#endif
static void REGPARM(3) *sh2_drc_log_entry(void *block, SH2 *sh2, u32 sr)
{
if (block != NULL) {
dbg(8, "= %csh2 enter %08x %p, c=%d", sh2->is_slave ? 's' : 'm',
sh2->pc, block, (signed int)sr >> 12);
#if defined PDB
pdb_step(sh2, sh2->pc);
#elif (DRC_DEBUG & 256)
{
int idx = sh2->is_slave;
if (!trace[0]) {
trace[0] = fopen("pico.trace0", "wb");
trace[1] = fopen("pico.trace1", "wb");
}
if (csh2[idx][0].pc != sh2->pc) {
fwrite(sh2, offsetof(SH2, read8_map), 1, trace[idx]);
fwrite(&sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx]);
memcpy(&csh2[idx][0], sh2, offsetof(SH2, poll_cnt)+4);
csh2[idx][0].is_slave = idx;
}
}
#elif (DRC_DEBUG & 512)
{
static SH2 fsh2;
int idx = sh2->is_slave;
if (!trace[0]) {
trace[0] = fopen("pico.trace0", "rb");
trace[1] = fopen("pico.trace1", "rb");
}
if (csh2[idx][0].pc != sh2->pc) {
if (!fread(&fsh2, offsetof(SH2, read8_map), 1, trace[idx]) ||
!fread(&fsh2.pdb_io_csum, sizeof(sh2->pdb_io_csum), 1, trace[idx])) {
printf("trace eof at %08lx\n",ftell(trace[idx]));
exit(1);
}
fsh2.sr = (fsh2.sr & 0xfff) | (sh2->sr & ~0xfff);
fsh2.is_slave = idx;
if (memcmp(&fsh2, sh2, offsetof(SH2, read8_map)) ||
0)//memcmp(&fsh2.pdb_io_csum, &sh2->pdb_io_csum, sizeof(sh2->pdb_io_csum)))
{
printf("difference at %08lx!\n",ftell(trace[idx]));
SH2_DUMP(&fsh2, "file");
SH2_DUMP(sh2, "current");
SH2_DUMP(&csh2[idx][0], "previous");
exit(1);
}
csh2[idx][0] = fsh2;
}
}
#elif (DRC_DEBUG & 1024)
{
int x = sh2->is_slave, i;
for (i = 0; i < ARRAY_SIZE(csh2[x])-1; i++)
memcpy(&csh2[x][i], &csh2[x][i+1], offsetof(SH2, poll_cnt)+4);
memcpy(&csh2[x][ARRAY_SIZE(csh2[x])-1], sh2, offsetof(SH2, poll_cnt)+4);
csh2[x][0].is_slave = x;
}
#endif
}
return block;
}
#endif
// } debug
#define TCACHE_BUFFERS 3
// we have 3 translation cache buffers, split from one drc/cmn buffer.
// BIOS shares tcache with data array because it's only used for init
// and can be discarded early
// XXX: need to tune sizes
static const int tcache_sizes[TCACHE_BUFFERS] = {
DRC_TCACHE_SIZE * 14 / 16, // ROM (rarely used), DRAM
DRC_TCACHE_SIZE / 16, // BIOS, data array in master sh2
DRC_TCACHE_SIZE / 16, // ... slave
};
static u8 *tcache_bases[TCACHE_BUFFERS];
static u8 *tcache_ptrs[TCACHE_BUFFERS];
static u8 *tcache_limit[TCACHE_BUFFERS];
// ptr for code emiters
static u8 *tcache_ptr;
#define MAX_BLOCK_ENTRIES (BLOCK_INSN_LIMIT / 6)
enum { BL_JMP=1, BL_LDJMP, BL_JCCBLX };
struct block_link {
short tcache_id;
short type; // BL_JMP et al
u32 target_pc;
void *jump; // insn address
void *blx; // block link/exit area if any
u8 jdisp[8]; // jump backup buffer
struct block_link *next; // either in block_entry->links or unresolved
struct block_link *o_next; // ...in block_entry->o_links
struct block_link *prev;
struct block_link *o_prev;
struct block_entry *target;// target block this is linked in (be->links)
};
struct block_entry {
u32 pc;
u8 *tcache_ptr; // translated block for above PC
struct block_entry *next; // chain in hash_table with same pc hash
struct block_entry *prev;
struct block_link *links; // incoming links to this entry
struct block_link *o_links;// outgoing links from this entry
#if (DRC_DEBUG & 2)
struct block_desc *block;
#endif
#if (DRC_DEBUG & 32)
int entry_count;
#endif
};
struct block_desc {
u32 addr; // block start SH2 PC address
u32 addr_lit; // block start SH2 literal pool addr
int size; // ..of recompiled insns
int size_lit; // ..of (insns+)literal pool
u8 *tcache_ptr; // start address of block in cache
u16 crc; // crc of insns and literals
u16 active; // actively used or deactivated?
struct block_list *list;
#if (DRC_DEBUG & 2)
int refcount;
#endif
int entry_count;
struct block_entry entryp[MAX_BLOCK_ENTRIES];
};
#define BLOCK_MAX_COUNT(tcid) ((tcid) ? 256 : 16*256)
static struct block_desc *block_tables[TCACHE_BUFFERS];
static int block_counts[TCACHE_BUFFERS];
static int block_limit[TCACHE_BUFFERS];
// we have block_link_pool to avoid using mallocs
#define BLOCK_LINK_MAX_COUNT(tcid) ((tcid) ? 1024 : 16*1024)
static struct block_link *block_link_pool[TCACHE_BUFFERS];
static int block_link_pool_counts[TCACHE_BUFFERS];
static struct block_link **unresolved_links[TCACHE_BUFFERS];
static struct block_link *blink_free[TCACHE_BUFFERS];
// used for invalidation
#define RAM_SIZE(tcid) ((tcid) ? 0x1000 : 0x40000)
#define INVAL_PAGE_SIZE 0x100
struct block_list {
struct block_desc *block;
struct block_list *next;
struct block_list *prev;
struct block_list **head;
struct block_list *l_next;
};
struct block_list *blist_free;
static struct block_list *inactive_blocks[TCACHE_BUFFERS];
// array of pointers to block_lists for RAM and 2 data arrays
// each array has len: sizeof(mem) / INVAL_PAGE_SIZE
static struct block_list **inval_lookup[TCACHE_BUFFERS];
#define HASH_TABLE_SIZE(tcid) ((tcid) ? 256 : 64*256)
static struct block_entry **hash_tables[TCACHE_BUFFERS];
#define HASH_FUNC(hash_tab, addr, mask) \
(hash_tab)[((addr) >> 1) & (mask)]
#if (DRC_DEBUG & 128)
#if BRANCH_CACHE
int bchit, bcmiss;
#endif
#if CALL_STACK
int rchit, rcmiss;
#endif
#endif
// host register tracking
enum cache_reg_htype {
HRT_TEMP = 1, // is for temps and args
HRT_REG = 2, // is for sh2 regs
HRT_STATIC = 2, // is for static mappings (same as HRT_REG)
};
enum cache_reg_flags {
HRF_DIRTY = 1 << 0, // has "dirty" value to be written to ctx
HRF_PINNED = 1 << 1, // has a pinned mapping
};
enum cache_reg_type {
HR_FREE,
HR_CACHED, // vreg has sh2_reg_e
HR_TEMP, // reg used for temp storage
};
typedef struct {
u8 hreg; // "host" reg
u8 htype:2; // TEMP or REG?
u8 flags:2; // DIRTY, PINNED?
u8 type:2; // CACHED or TEMP?
u8 locked:2; // LOCKED reference counter
u16 stamp; // kind of a timestamp
u32 gregs; // "guest" reg mask
} cache_reg_t;
// guest register tracking
enum guest_reg_flags {
GRF_DIRTY = 1 << 0, // reg has "dirty" value to be written to ctx
GRF_CONST = 1 << 1, // reg has a constant
GRF_CDIRTY = 1 << 2, // constant not yet written to ctx
GRF_STATIC = 1 << 3, // reg has static mapping to vreg
GRF_PINNED = 1 << 4, // reg has pinned mapping to vreg
};
typedef struct {
u8 flags; // guest flags: is constant, is dirty?
s8 sreg; // cache reg for static mapping
s8 vreg; // cache_reg this is currently mapped to, -1 if not mapped
s8 cnst; // const index if this is constant
} guest_reg_t;
// possibly needed in code emitter
static int rcache_get_tmp(void);
static void rcache_free_tmp(int hr);
// Note: cache_regs[] must have at least the amount of REG/TEMP registers used
// by handlers in worst case (currently 4).
// Register assignment goes by ABI convention. Caller save registers are TEMP,
// the others are either static or REG. SR must be static, R0 very recommended.
// XXX the static definition of SR MUST match that in compiler.h
// VBR, PC, PR must not be static (read from context in utils).
// RET_REG/params should be first TEMPs to avoid allocation conflicts in calls.
// There MUST be at least 3 params and one non-RET_REG/param TEMP.
// XXX shouldn't this be somehow defined in the code emitters?
#ifdef __arm__
#include "../drc/emit_arm.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
#ifndef __MACH__ // no r9..
{ GRF_STATIC, 8 }, { GRF_STATIC, 9 }, { 0 } , { 0 } ,
#else
{ GRF_STATIC, 8 }, { 0 } , { 0 } , { 0 } ,
#endif
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , { GRF_STATIC, 10 },
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// OABI/EABI: params: r0-r3, return: r0-r1, temp: r12,r14, saved: r4-r8,r10,r11
// SP,PC: r13,r15 must not be used. saved: r9 (for platform use, e.g. on ios)
static cache_reg_t cache_regs[] = {
{ 0, HRT_TEMP }, // RET_REG, params
{ 1, HRT_TEMP },
{ 2, HRT_TEMP }, // params
{ 3, HRT_TEMP },
{ 12, HRT_TEMP }, // temps
{ 14, HRT_TEMP },
{ 8, HRT_STATIC }, // statics
#ifndef __MACH__ // no r9..
{ 9, HRT_STATIC },
#endif
{ 10, HRT_STATIC },
{ 4, HRT_REG }, // other regs
{ 5, HRT_REG },
{ 6, HRT_REG },
{ 7, HRT_REG },
};
#elif defined(__aarch64__)
#include "../drc/emit_arm64.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
{ GRF_STATIC,20 }, { GRF_STATIC,21 }, { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , { GRF_STATIC, 22 },
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// AAPCS64: params: r0-r7, return: r0-r1, temp: r8-r17, saved: r19-r29
// saved: r18 (for platform use)
// since drc never needs more than 4 parameters, r4-r7 are treated as temp.
static cache_reg_t cache_regs[] = {
{ 0, HRT_TEMP }, // RET_REG, params
{ 1, HRT_TEMP },
{ 2, HRT_TEMP }, // params
{ 3, HRT_TEMP },
{ 4, HRT_TEMP }, // temps
{ 5, HRT_TEMP },
{ 6, HRT_TEMP },
{ 7, HRT_TEMP },
{ 8, HRT_TEMP },
{ 9, HRT_TEMP },
{ 10, HRT_TEMP },
{ 11, HRT_TEMP },
{ 12, HRT_TEMP },
{ 13, HRT_TEMP },
{ 14, HRT_TEMP },
{ 15, HRT_TEMP },
{ 16, HRT_TEMP },
{ 17, HRT_TEMP },
{ 20, HRT_STATIC }, // statics
{ 21, HRT_STATIC },
{ 22, HRT_STATIC },
{ 23, HRT_REG }, // other regs
{ 24, HRT_REG },
{ 25, HRT_REG },
{ 26, HRT_REG },
{ 27, HRT_REG },
{ 28, HRT_REG },
{ 29, HRT_REG },
};
#elif defined(__mips__)
#include "../drc/emit_mips.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
{GRF_STATIC, 16} , {GRF_STATIC, 17} , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , {GRF_STATIC, 18} ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// MIPS ABI: params: r4-r7, return: r2-r3, temp: r1(at),r8-r15,r24-r25,r31(ra),
// saved: r16-r23,r30, reserved: r0(zero), r26-r27(irq), r28(gp), r29(sp)
// r1,r15,r24,r25 are used internally by the code emitter
static cache_reg_t cache_regs[] = {
{ 2, HRT_TEMP }, // RET_REG (v0-v1)
{ 3, HRT_TEMP },
{ 4, HRT_TEMP }, // params (a0-a3)
{ 5, HRT_TEMP },
{ 6, HRT_TEMP },
{ 7, HRT_TEMP },
{ 8, HRT_TEMP }, // temps (t0-t6)
{ 9, HRT_TEMP },
{ 10, HRT_TEMP },
{ 11, HRT_TEMP },
{ 12, HRT_TEMP },
{ 13, HRT_TEMP },
{ 14, HRT_TEMP },
{ 16, HRT_STATIC }, // statics (s0-s2)
{ 17, HRT_STATIC },
{ 18, HRT_STATIC },
{ 19, HRT_REG }, // other regs (s3-s6)
{ 20, HRT_REG },
{ 21, HRT_REG },
{ 22, HRT_REG },
};
#elif defined(__i386__)
#include "../drc/emit_x86.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
{GRF_STATIC, xSI}, { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , {GRF_STATIC, xDI},
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// MS/SystemV ABI: ebx,esi,edi,ebp are preserved, eax,ecx,edx are temporaries
// DRC uses REGPARM to pass upto 3 parameters in registers eax,ecx,edx.
// To avoid conflicts with param passing ebx must be declared temp here.
static cache_reg_t cache_regs[] = {
{ xAX, HRT_TEMP }, // RET_REG, param
{ xDX, HRT_TEMP }, // params
{ xCX, HRT_TEMP },
{ xBX, HRT_TEMP }, // temp
{ xSI, HRT_STATIC }, // statics
{ xDI, HRT_STATIC },
};
#elif defined(__x86_64__)
#include "../drc/emit_x86.c"
static guest_reg_t guest_regs[] = {
// SHR_R0 .. SHR_SP
{GRF_STATIC,xR12}, { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
{ 0 } , { 0 } , { 0 } , { 0 } ,
// SHR_PC, SHR_PPC, SHR_PR, SHR_SR,
// SHR_GBR, SHR_VBR, SHR_MACH, SHR_MACL,
{ 0 } , { 0 } , { 0 } , {GRF_STATIC, xBX},
{ 0 } , { 0 } , { 0 } , { 0 } ,
};
// M$/SystemV ABI conventions:
// rbx,rbp,r12-r15 are preserved, rcx,rdx,rax,r8,r9,r10,r11 are temporaries
// rsi,rdi are preserved in M$ ABI, temporary in SystemV ABI
// parameters in rcx,rdx,r8,r9, SystemV ABI additionally uses rsi,rdi
static cache_reg_t cache_regs[] = {
{ xAX, HRT_TEMP }, // RET_REG
{ xDX, HRT_TEMP }, // params
{ xCX, HRT_TEMP },
{ xDI, HRT_TEMP },
{ xSI, HRT_TEMP },
{ xR8, HRT_TEMP },
{ xR9, HRT_TEMP },
{ xR10,HRT_TEMP }, // temps
{ xR11,HRT_TEMP },
{ xBX, HRT_STATIC }, // statics
{ xR12,HRT_STATIC },
{ xR13,HRT_REG }, // other regs
{ xR14,HRT_REG },
{ xR15,HRT_REG },
};
#else
#error unsupported arch
#endif
static signed char reg_map_host[HOST_REGS];
static void REGPARM(1) (*sh2_drc_entry)(SH2 *sh2);
static void REGPARM(1) (*sh2_drc_dispatcher)(u32 pc);
#if CALL_STACK
static u32 REGPARM(2) (*sh2_drc_dispatcher_call)(u32 pc);
static void REGPARM(1) (*sh2_drc_dispatcher_return)(u32 pc);
#endif
static void REGPARM(1) (*sh2_drc_exit)(u32 pc);
static void (*sh2_drc_test_irq)(void);
static u32 REGPARM(1) (*sh2_drc_read8)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read16)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read32)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read8_poll)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read16_poll)(u32 a);
static u32 REGPARM(1) (*sh2_drc_read32_poll)(u32 a);
static void REGPARM(2) (*sh2_drc_write8)(u32 a, u32 d);
static void REGPARM(2) (*sh2_drc_write16)(u32 a, u32 d);
static void REGPARM(2) (*sh2_drc_write32)(u32 a, u32 d);
// flags for memory access
#define MF_SIZEMASK 0x03 // size of access
#define MF_POSTINCR 0x10 // post increment (for read_rr)
#define MF_PREDECR MF_POSTINCR // pre decrement (for write_rr)
#define MF_POLLING 0x20 // include polling check in read
// address space stuff
static int dr_is_rom(u32 a)
{
// tweak for WWF Raw which writes data to some high ROM addresses
return (a & 0xc6000000) == 0x02000000 && (a & 0x3f0000) < 0x3e0000;
}
static int dr_ctx_get_mem_ptr(SH2 *sh2, u32 a, u32 *mask)
{
void *memptr;
int poffs = -1;
// check if region is mapped memory
memptr = p32x_sh2_get_mem_ptr(a, mask, sh2);
if (memptr == NULL)
return poffs;
if (memptr == sh2->p_bios) // BIOS
poffs = offsetof(SH2, p_bios);
else if (memptr == sh2->p_da) // data array
poffs = offsetof(SH2, p_da);
else if (memptr == sh2->p_sdram) // SDRAM
poffs = offsetof(SH2, p_sdram);
else if (memptr == sh2->p_rom) // ROM
poffs = offsetof(SH2, p_rom);
return poffs;
}
static int dr_get_tcache_id(u32 pc, int is_slave)
{
u32 tcid = 0;
if ((pc & 0xe0000000) == 0xc0000000)
tcid = 1 + is_slave; // data array
if ((pc & ~0xfff) == 0)
tcid = 1 + is_slave; // BIOS
return tcid;
}
static struct block_entry *dr_get_entry(u32 pc, int is_slave, int *tcache_id)
{
struct block_entry *be;
*tcache_id = dr_get_tcache_id(pc, is_slave);
be = HASH_FUNC(hash_tables[*tcache_id], pc, HASH_TABLE_SIZE(*tcache_id) - 1);
if (be != NULL) // don't ask... gcc code generation hint
for (; be != NULL; be = be->next)
if (be->pc == pc)
return be;
return NULL;
}
// ---------------------------------------------------------------
// block management
static void add_to_block_list(struct block_list **blist, struct block_desc *block)
{
struct block_list *added;
if (blist_free) {
added = blist_free;
blist_free = added->next;
} else {
added = malloc(sizeof(*added));
}
if (!added) {
elprintf(EL_ANOMALY, "drc OOM (1)");
return;
}
added->block = block;
added->l_next = block->list;
block->list = added;
added->head = blist;
added->prev = NULL;
if (*blist)
(*blist)->prev = added;
added->next = *blist;
*blist = added;
}
static void rm_from_block_lists(struct block_desc *block)
{
struct block_list *entry;
entry = block->list;
while (entry != NULL) {
if (entry->prev != NULL)
entry->prev->next = entry->next;
else
*(entry->head) = entry->next;
if (entry->next != NULL)
entry->next->prev = entry->prev;
entry->next = blist_free;
blist_free = entry;
entry = entry->l_next;
}
block->list = NULL;
}
static void rm_block_list(struct block_list **blist)
{
struct block_list *next, *current = *blist;
while (current != NULL) {
next = current->next;
rm_from_block_lists(current->block);
current = next;
}
*blist = NULL;
}
static void REGPARM(1) flush_tcache(int tcid)
{
int i;
#if (DRC_DEBUG & 1)
int tc_used, bl_used;
tc_used = tcache_sizes[tcid] - (tcache_limit[tcid] - tcache_ptrs[tcid]);
bl_used = BLOCK_MAX_COUNT(tcid) - (block_limit[tcid] - block_counts[tcid]);
elprintf(EL_STATUS, "tcache #%d flush! (%d/%d, bds %d/%d)", tcid, tc_used,
tcache_sizes[tcid], bl_used, BLOCK_MAX_COUNT(tcid));
#endif
block_counts[tcid] = 0;
block_limit[tcid] = BLOCK_MAX_COUNT(tcid) - 1;
block_link_pool_counts[tcid] = 0;
blink_free[tcid] = NULL;
memset(unresolved_links[tcid], 0, sizeof(*unresolved_links[0]) * HASH_TABLE_SIZE(tcid));
memset(hash_tables[tcid], 0, sizeof(*hash_tables[0]) * HASH_TABLE_SIZE(tcid));
tcache_ptrs[tcid] = tcache_bases[tcid];
tcache_limit[tcid] = tcache_bases[tcid] + tcache_sizes[tcid];
if (Pico32xMem->sdram != NULL) {
if (tcid == 0) { // ROM, RAM
memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
memset(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache));
memset(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache));
memset(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache));
memset(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache));
sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
} else {
memset(Pico32xMem->drcblk_ram, 0, sizeof(Pico32xMem->drcblk_ram));
memset(Pico32xMem->drclit_ram, 0, sizeof(Pico32xMem->drclit_ram));
memset(Pico32xMem->drcblk_da[tcid - 1], 0, sizeof(Pico32xMem->drcblk_da[tcid - 1]));
memset(Pico32xMem->drclit_da[tcid - 1], 0, sizeof(Pico32xMem->drclit_da[tcid - 1]));
memset(sh2s[tcid - 1].branch_cache, -1, sizeof(sh2s[0].branch_cache));
memset(sh2s[tcid - 1].rts_cache, -1, sizeof(sh2s[0].rts_cache));
sh2s[tcid - 1].rts_cache_idx = 0;
}
}
#if (DRC_DEBUG & 4)
tcache_dsm_ptrs[tcid] = tcache_bases[tcid];
#endif
for (i = 0; i < RAM_SIZE(tcid) / INVAL_PAGE_SIZE; i++)
rm_block_list(&inval_lookup[tcid][i]);
rm_block_list(&inactive_blocks[tcid]);
}
static void add_to_hashlist(struct block_entry *be, int tcache_id)
{
u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
be->prev = NULL;
if (*head)
(*head)->prev = be;
be->next = *head;
*head = be;
#if (DRC_DEBUG & 2)
if (be->next != NULL) {
printf(" %08x: entry hash collision with %08x\n",
be->pc, be->next->pc);
hash_collisions++;
}
#endif
}
static void rm_from_hashlist(struct block_entry *be, int tcache_id)
{
u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
struct block_entry **head = &HASH_FUNC(hash_tables[tcache_id], be->pc, tcmask);
#if DRC_DEBUG & 1
struct block_entry *current = be;
while (current->prev != NULL)
current = current->prev;
if (current != *head)
dbg(1, "rm_from_hashlist @%p: be %p %08x missing?", head, be, be->pc);
#endif
if (be->prev != NULL)
be->prev->next = be->next;
else
*head = be->next;
if (be->next != NULL)
be->next->prev = be->prev;
}
static void add_to_hashlist_unresolved(struct block_link *bl, int tcache_id)
{
u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
#if DRC_DEBUG & 1
struct block_link *current = *head;
while (current != NULL && current != bl)
current = current->next;
if (current == bl)
dbg(1, "add_to_hashlist_unresolved @%p: bl %p %p %08x already in?", head, bl, bl->target, bl->target_pc);
#endif
bl->target = NULL; // marker for not resolved
bl->prev = NULL;
if (*head)
(*head)->prev = bl;
bl->next = *head;
*head = bl;
}
static void rm_from_hashlist_unresolved(struct block_link *bl, int tcache_id)
{
u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], bl->target_pc, tcmask);
#if DRC_DEBUG & 1
struct block_link *current = bl;
while (current->prev != NULL)
current = current->prev;
if (current != *head)
dbg(1, "rm_from_hashlist_unresolved @%p: bl %p %p %08x missing?", head, bl, bl->target, bl->target_pc);
#endif
if (bl->prev != NULL)
bl->prev->next = bl->next;
else
*head = bl->next;
if (bl->next != NULL)
bl->next->prev = bl->prev;
}
static void sh2_smc_rm_block_entry(struct block_desc *bd, int tcache_id, u32 nolit, int free);
static void dr_free_oldest_block(int tcache_id)
{
struct block_desc *bd;
if (block_limit[tcache_id] >= BLOCK_MAX_COUNT(tcache_id)) {
// block desc wrap around
block_limit[tcache_id] = 0;
}
bd = &block_tables[tcache_id][block_limit[tcache_id]];
if (bd->tcache_ptr && bd->tcache_ptr < tcache_ptrs[tcache_id]) {
// cache wrap around
tcache_ptrs[tcache_id] = bd->tcache_ptr;
}
if (bd->addr && bd->entry_count)
sh2_smc_rm_block_entry(bd, tcache_id, 0, 1);
block_limit[tcache_id]++;
if (block_limit[tcache_id] >= BLOCK_MAX_COUNT(tcache_id))
block_limit[tcache_id] = 0;
bd = &block_tables[tcache_id][block_limit[tcache_id]];
if (bd->tcache_ptr >= tcache_ptrs[tcache_id])
tcache_limit[tcache_id] = bd->tcache_ptr;
else
tcache_limit[tcache_id] = tcache_bases[tcache_id] + tcache_sizes[tcache_id];
}
static u8 *dr_prepare_cache(int tcache_id, int insn_count)
{
u8 *limit = tcache_limit[tcache_id];
// if no block desc available
if (block_counts[tcache_id] == block_limit[tcache_id])
dr_free_oldest_block(tcache_id);
// while not enough cache space left (limit - tcache_ptr < max space needed)
while (tcache_limit[tcache_id] - tcache_ptrs[tcache_id] < insn_count * 128)
dr_free_oldest_block(tcache_id);
if (limit != tcache_limit[tcache_id]) {
#if BRANCH_CACHE
if (tcache_id)
memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
else {
memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
}
#endif
#if CALL_STACK
if (tcache_id) {
memset32(sh2s[tcache_id-1].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
sh2s[tcache_id-1].rts_cache_idx = 0;
} else {
memset32(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
memset32(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache)/4);
sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
}
#endif
}
return (u8 *)tcache_ptrs[tcache_id];
}
static void dr_mark_memory(int mark, struct block_desc *block, int tcache_id, u32 nolit)
{
u8 *drc_ram_blk = NULL, *lit_ram_blk = NULL;
u32 addr, end, mask = 0, shift = 0, idx;
// mark memory blocks as containing compiled code
if ((block->addr & 0xc7fc0000) == 0x06000000
|| (block->addr & 0xfffff000) == 0xc0000000)
{
if (tcache_id != 0) {
// data array
drc_ram_blk = Pico32xMem->drcblk_da[tcache_id-1];
lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
shift = SH2_DRCBLK_DA_SHIFT;
}
else {
// SDRAM
drc_ram_blk = Pico32xMem->drcblk_ram;
lit_ram_blk = Pico32xMem->drclit_ram;
shift = SH2_DRCBLK_RAM_SHIFT;
}
mask = RAM_SIZE(tcache_id) - 1;
// mark recompiled insns
addr = block->addr & ~((1 << shift) - 1);
end = block->addr + block->size;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
drc_ram_blk[idx++] += mark;
// mark literal pool
if (addr < (block->addr_lit & ~((1 << shift) - 1)))
addr = block->addr_lit & ~((1 << shift) - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
drc_ram_blk[idx++] += mark;
// mark for literals disabled
if (nolit) {
addr = nolit & ~((1 << shift) - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
lit_ram_blk[idx++] = 1;
}
if (mark < 0)
rm_from_block_lists(block);
else {
// add to invalidation lookup lists
addr = block->addr & ~(INVAL_PAGE_SIZE - 1);
end = block->addr + block->size;
for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
add_to_block_list(&inval_lookup[tcache_id][idx++], block);
if (addr < (block->addr_lit & ~(INVAL_PAGE_SIZE - 1)))
addr = block->addr_lit & ~(INVAL_PAGE_SIZE - 1);
end = block->addr_lit + block->size_lit;
for (idx = (addr & mask) / INVAL_PAGE_SIZE; addr < end; addr += INVAL_PAGE_SIZE)
add_to_block_list(&inval_lookup[tcache_id][idx++], block);
}
}
}
static u32 dr_check_nolit(u32 start, u32 end, int tcache_id)
{
u8 *lit_ram_blk = NULL;
u32 mask = 0, shift = 0, addr, idx;
if ((start & 0xc7fc0000) == 0x06000000
|| (start & 0xfffff000) == 0xc0000000)
{
if (tcache_id != 0) {
// data array
lit_ram_blk = Pico32xMem->drclit_da[tcache_id-1];
shift = SH2_DRCBLK_DA_SHIFT;
}
else {
// SDRAM
lit_ram_blk = Pico32xMem->drclit_ram;
shift = SH2_DRCBLK_RAM_SHIFT;
}
mask = RAM_SIZE(tcache_id) - 1;
addr = start & ~((1 << shift) - 1);
for (idx = (addr & mask) >> shift; addr < end; addr += (1 << shift))
if (lit_ram_blk[idx++])
break;
return (addr < start ? start : addr > end ? end : addr);
}
return end;
}
static struct block_desc *dr_find_inactive_block(int tcache_id, u16 crc,
u32 addr, int size, u32 addr_lit, int size_lit)
{
struct block_list **head = &inactive_blocks[tcache_id];
struct block_list *current;
for (current = *head; current != NULL; current = current->next) {
struct block_desc *block = current->block;
if (block->crc == crc && block->addr == addr && block->size == size &&
block->addr_lit == addr_lit && block->size_lit == size_lit)
{
rm_from_block_lists(block);
return block;
}
}
return NULL;
}
static struct block_desc *dr_add_block(u32 addr, int size,
u32 addr_lit, int size_lit, u16 crc, int is_slave, int *blk_id)
{
struct block_entry *be;
struct block_desc *bd;
int tcache_id;
int *bcount;
// do a lookup to get tcache_id and override check
be = dr_get_entry(addr, is_slave, &tcache_id);
if (be != NULL)
dbg(1, "block override for %08x", addr);
bcount = &block_counts[tcache_id];
if (*bcount == block_limit[tcache_id]) {
dbg(1, "bd overflow for tcache %d", tcache_id);
return NULL;
}
bd = &block_tables[tcache_id][*bcount];
bd->addr = addr;
bd->size = size;
bd->addr_lit = addr_lit;
bd->size_lit = size_lit;
bd->tcache_ptr = tcache_ptr;
bd->crc = crc;
bd->active = 0;
bd->entry_count = 0;
#if (DRC_DEBUG & 2)
bd->refcount = 0;
#endif
*blk_id = *bcount;
(*bcount)++;
if (*bcount >= BLOCK_MAX_COUNT(tcache_id))
*bcount = 0;
return bd;
}
static void REGPARM(3) *dr_lookup_block(u32 pc, SH2 *sh2, int *tcache_id)
{
struct block_entry *be = NULL;
void *block = NULL;
be = dr_get_entry(pc, sh2->is_slave, tcache_id);
if (be != NULL)
block = be->tcache_ptr;
#if (DRC_DEBUG & 2)
if (be != NULL)
be->block->refcount++;
#endif
return block;
}
static void *dr_failure(void)
{
lprintf("recompilation failed\n");
exit(1);
}
#if LINK_BRANCHES
static void dr_block_link(struct block_entry *be, struct block_link *bl, int emit_jump)
{
dbg(2, "- %slink from %p to pc %08x entry %p", emit_jump ? "":"early ",
bl->jump, bl->target_pc, be->tcache_ptr);
if (emit_jump) {
u8 *jump = bl->jump;
int jsz = emith_jump_patch_size();
if (bl->type == BL_JMP) { // patch: jump @entry
// inlined: @jump far jump to target
emith_jump_patch(jump, be->tcache_ptr, &jump);
} else if (bl->type == BL_LDJMP) { // write: jump @entry
// inlined: @jump far jump to target
emith_jump_at(jump, be->tcache_ptr);
jsz = emith_jump_at_size();
} else if (bl->type == BL_JCCBLX) { // patch: jump cond -> jump @entry
if (emith_jump_patch_inrange(bl->jump, be->tcache_ptr)) {
// inlined: @jump near jumpcc to target
emith_jump_patch(jump, be->tcache_ptr, &jump);
} else { // dispatcher cond immediate
// via blx: @jump near jumpcc to blx; @blx far jump
emith_jump_patch(jump, bl->blx, &jump);
emith_jump_at(bl->blx, be->tcache_ptr);
if ((((uintptr_t)bl->blx & 0xf) + emith_jump_at_size()-1) > 0xf)
host_instructions_updated(bl->blx, bl->blx + emith_jump_at_size()-1);
}
} else {
printf("unknown BL type %d\n", bl->type);
exit(1);
}
// only needs sync if patch is possibly crossing cacheline (assume 16 byte)
if ((((uintptr_t)jump & 0xf) + jsz-1) > 0xf)
host_instructions_updated(jump, jump + jsz-1);
}
// move bl to block_entry
bl->target = be;
bl->prev = NULL;
if (be->links)
be->links->prev = bl;
bl->next = be->links;
be->links = bl;
}
static void dr_block_unlink(struct block_link *bl, int emit_jump)
{
dbg(2,"- unlink from %p to pc %08x", bl->jump, bl->target_pc);
if (bl->target) {
if (emit_jump) {
u8 *jump = bl->jump;
int jsz = emith_jump_patch_size();
if (bl->type == BL_JMP) { // jump_patch @dispatcher
// inlined: @jump far jump to dispatcher
emith_jump_patch(jump, sh2_drc_dispatcher, &jump);
} else if (bl->type == BL_LDJMP) { // restore: load pc, jump @dispatcher
// inlined: @jump load target_pc, far jump to dispatcher
memcpy(jump, bl->jdisp, emith_jump_at_size());
jsz = emith_jump_at_size();
} else if (bl->type == BL_JCCBLX) { // jump cond @blx; @blx: load pc, jump
// via blx: @jump near jumpcc to blx; @blx load target_pc, far jump
emith_jump_patch(bl->jump, bl->blx, &jump);
memcpy(bl->blx, bl->jdisp, emith_jump_at_size());
host_instructions_updated(bl->blx, bl->blx + emith_jump_at_size()-1);
} else {
printf("unknown BL type %d\n", bl->type);
exit(1);
}
// update cpu caches since the previous jump target doesn't exist anymore
host_instructions_updated(jump, jump + jsz-1);
}
if (bl->prev)
bl->prev->next = bl->next;
else
bl->target->links = bl->next;
if (bl->next)
bl->next->prev = bl->prev;
bl->target = NULL;
}
}
#endif
static struct block_link *dr_prepare_ext_branch(struct block_entry *owner, u32 pc, int is_slave, int tcache_id)
{
#if LINK_BRANCHES
struct block_link *bl = block_link_pool[tcache_id];
int cnt = block_link_pool_counts[tcache_id];
int target_tcache_id;
// get the target block entry
target_tcache_id = dr_get_tcache_id(pc, is_slave);
if (target_tcache_id && target_tcache_id != tcache_id)
return NULL;
// get a block link
if (blink_free[tcache_id] != NULL) {
bl = blink_free[tcache_id];
blink_free[tcache_id] = bl->next;
} else if (cnt >= BLOCK_LINK_MAX_COUNT(tcache_id)) {
dbg(1, "bl overflow for tcache %d", tcache_id);
return NULL;
} else {
bl += cnt;
block_link_pool_counts[tcache_id] = cnt+1;
}
// prepare link and add to outgoing list of owner
bl->tcache_id = tcache_id;
bl->target_pc = pc;
bl->jump = tcache_ptr;
bl->blx = NULL;
bl->o_next = owner->o_links;
owner->o_links = bl;
add_to_hashlist_unresolved(bl, tcache_id);
return bl;
#else
return NULL;
#endif
}
static void dr_link_blocks(struct block_entry *be, int tcache_id)
{
#if LINK_BRANCHES
u32 tcmask = HASH_TABLE_SIZE(tcache_id) - 1;
u32 pc = be->pc;
struct block_link **head = &HASH_FUNC(unresolved_links[tcache_id], pc, tcmask);
struct block_link *bl = *head, *next;
while (bl != NULL) {
next = bl->next;
if (bl->target_pc == pc && (!bl->tcache_id || bl->tcache_id == tcache_id)) {
rm_from_hashlist_unresolved(bl, bl->tcache_id);
dr_block_link(be, bl, 1);
}
bl = next;
}
#endif
}
static void dr_link_outgoing(struct block_entry *be, int tcache_id, int is_slave)
{
#if LINK_BRANCHES
struct block_link *bl;
int target_tcache_id;
for (bl = be->o_links; bl; bl = bl->o_next) {
if (bl->target == NULL) {
be = dr_get_entry(bl->target_pc, is_slave, &target_tcache_id);
if (be != NULL && (!target_tcache_id || target_tcache_id == tcache_id)) {
// remove bl from unresolved_links (must've been since target was NULL)
rm_from_hashlist_unresolved(bl, bl->tcache_id);
dr_block_link(be, bl, 1);
}
}
}
#endif
}
static void dr_activate_block(struct block_desc *bd, int tcache_id, int is_slave)
{
int i;
// connect branches
for (i = 0; i < bd->entry_count; i++) {
struct block_entry *entry = &bd->entryp[i];
add_to_hashlist(entry, tcache_id);
// incoming branches
dr_link_blocks(entry, tcache_id);
if (!tcache_id)
dr_link_blocks(entry, is_slave?2:1);
// outgoing branches
dr_link_outgoing(entry, tcache_id, is_slave);
}
// mark memory for overwrite detection
dr_mark_memory(1, bd, tcache_id, 0);
bd->active = 1;
}
#define ADD_TO_ARRAY(array, count, item, failcode) { \
if (count >= ARRAY_SIZE(array)) { \
dbg(1, "warning: " #array " overflow"); \
failcode; \
} else \
array[count++] = item; \
}
static inline int find_in_array(u32 *array, size_t size, u32 what)
{
size_t i;
for (i = 0; i < size; i++)
if (what == array[i])
return i;
return -1;
}
static int find_in_sorted_array(u32 *array, size_t size, u32 what)
{
// binary search in sorted array
int left = 0, right = size-1;
while (left <= right)
{
int middle = (left + right) / 2;
if (array[middle] == what)
return middle;
else if (array[middle] < what)
left = middle + 1;
else
right = middle - 1;
}
return -1;
}
// ---------------------------------------------------------------
// NB rcache allocation dependencies:
// - get_reg_arg/get_tmp_arg first (might evict other regs just allocated)
// - get_reg(..., NULL) before get_reg(..., &hr) if it might get the same reg
// - get_reg(..., RC_GR_READ/RMW, ...) before WRITE (might evict needed reg)
// register cache / constant propagation stuff
typedef enum {
RC_GR_READ,
RC_GR_WRITE,
RC_GR_RMW,
} rc_gr_mode;
typedef struct {
u32 gregs;
u32 val;
} gconst_t;
gconst_t gconsts[ARRAY_SIZE(guest_regs)];
static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr);
static inline int rcache_is_cached(sh2_reg_e r);
static void rcache_add_vreg_alias(int x, sh2_reg_e r);
static void rcache_remove_vreg_alias(int x, sh2_reg_e r);
static void rcache_evict_vreg(int x);
static void rcache_remap_vreg(int x);
#define RCACHE_DUMP(msg) { \
cache_reg_t *cp; \
guest_reg_t *gp; \
int i; \
printf("cache dump %s:\n",msg); \
printf(" cache_regs:\n"); \
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
cp = &cache_regs[i]; \
if (cp->type != HR_FREE || cp->gregs || cp->locked || cp->flags) \
printf(" %d: hr=%d t=%d f=%x c=%d m=%x\n", i, cp->hreg, cp->type, cp->flags, cp->locked, cp->gregs); \
} \
printf(" guest_regs:\n"); \
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) { \
gp = &guest_regs[i]; \
if (gp->vreg != -1 || gp->sreg >= 0 || gp->flags) \
printf(" %d: v=%d f=%x s=%d c=%d\n", i, gp->vreg, gp->flags, gp->sreg, gp->cnst); \
} \
printf(" gconsts:\n"); \
for (i = 0; i < ARRAY_SIZE(gconsts); i++) { \
if (gconsts[i].gregs) \
printf(" %d: m=%x v=%x\n", i, gconsts[i].gregs, gconsts[i].val); \
} \
}
#define RCACHE_CHECK(msg) { \
cache_reg_t *cp; \
guest_reg_t *gp; \
int i, x, m = 0, d = 0; \
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
cp = &cache_regs[i]; \
if (cp->flags & HRF_PINNED) m |= (1 << i); \
if (cp->type == HR_FREE || cp->type == HR_TEMP) continue; \
/* check connectivity greg->vreg */ \
FOR_ALL_BITS_SET_DO(cp->gregs, x, \
if (guest_regs[x].vreg != i) \
{ d = 1; printf("cache check v=%d r=%d not connected?\n",i,x); } \
) \
} \
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) { \
gp = &guest_regs[i]; \
if (gp->vreg != -1 && !(cache_regs[gp->vreg].gregs & (1 << i))) \
{ d = 1; printf("cache check r=%d v=%d not connected?\n", i, gp->vreg); }\
if (gp->vreg != -1 && cache_regs[gp->vreg].type != HR_CACHED) \
{ d = 1; printf("cache check r=%d v=%d wrong type?\n", i, gp->vreg); }\
if ((gp->flags & GRF_CONST) && !(gconsts[gp->cnst].gregs & (1 << i))) \
{ d = 1; printf("cache check r=%d c=%d not connected?\n", i, gp->cnst); }\
if ((gp->flags & GRF_CDIRTY) && (gp->vreg != -1 || !(gp->flags & GRF_CONST)))\
{ d = 1; printf("cache check r=%d CDIRTY?\n", i); } \
if (gp->flags & (GRF_STATIC|GRF_PINNED)) { \
if (gp->sreg == -1 || !(cache_regs[gp->sreg].flags & HRF_PINNED))\
{ d = 1; printf("cache check r=%d v=%d not pinned?\n", i, gp->vreg); } \
else m &= ~(1 << gp->sreg); \
} \
} \
for (i = 0; i < ARRAY_SIZE(gconsts); i++) { \
FOR_ALL_BITS_SET_DO(gconsts[i].gregs, x, \
if (guest_regs[x].cnst != i || !(guest_regs[x].flags & GRF_CONST)) \
{ d = 1; printf("cache check c=%d v=%d not connected?\n",i,x); } \
) \
} \
if (m) \
{ d = 1; printf("cache check m=%x pinning wrong?\n",m); } \
if (d) RCACHE_DUMP(msg) \
/* else { \
printf("locked regs %s:\n",msg); \
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) { \
cp = &cache_regs[i]; \
if (cp->locked) \
printf(" %d: hr=%d t=%d f=%x c=%d m=%x\n", i, cp->hreg, cp->type, cp->flags, cp->locked, cp->gregs); \
} \
} */ \
}
#if PROPAGATE_CONSTANTS
static inline int gconst_alloc(sh2_reg_e r)
{
int i, n = -1;
for (i = 0; i < ARRAY_SIZE(gconsts); i++) {
gconsts[i].gregs &= ~(1 << r);
if (gconsts[i].gregs == 0 && n < 0)
n = i;
}
if (n >= 0)
gconsts[n].gregs = (1 << r);
else {
printf("all gconst buffers in use, aborting\n");
exit(1); // cannot happen - more constants than guest regs?
}
return n;
}
static void gconst_set(sh2_reg_e r, u32 val)
{
int i = gconst_alloc(r);
guest_regs[r].flags |= GRF_CONST;
guest_regs[r].cnst = i;
gconsts[i].val = val;
}
static void gconst_new(sh2_reg_e r, u32 val)
{
gconst_set(r, val);
guest_regs[r].flags |= GRF_CDIRTY;
// throw away old r that we might have cached
if (guest_regs[r].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[r].vreg, r);
}
#endif
static int gconst_get(sh2_reg_e r, u32 *val)
{
if (guest_regs[r].flags & GRF_CONST) {
*val = gconsts[guest_regs[r].cnst].val;
return 1;
}
*val = 0;
return 0;
}
static int gconst_check(sh2_reg_e r)
{
if (guest_regs[r].flags & (GRF_CONST|GRF_CDIRTY))
return 1;
return 0;
}
// update hr if dirty, else do nothing
static int gconst_try_read(int vreg, sh2_reg_e r)
{
int i, x;
if (guest_regs[r].flags & GRF_CDIRTY) {
x = guest_regs[r].cnst;
emith_move_r_imm(cache_regs[vreg].hreg, gconsts[x].val);
FOR_ALL_BITS_SET_DO(gconsts[x].gregs, i,
{
if (guest_regs[i].vreg >= 0 && guest_regs[i].vreg != vreg)
rcache_remove_vreg_alias(guest_regs[i].vreg, i);
if (guest_regs[i].vreg < 0)
rcache_add_vreg_alias(vreg, i);
guest_regs[i].flags &= ~GRF_CDIRTY;
guest_regs[i].flags |= GRF_DIRTY;
});
cache_regs[vreg].type = HR_CACHED;
cache_regs[vreg].flags |= HRF_DIRTY;
return 1;
}
return 0;
}
static u32 gconst_dirty_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_CDIRTY)
mask |= (1 << i);
return mask;
}
static void gconst_kill(sh2_reg_e r)
{
if (guest_regs[r].flags & (GRF_CONST|GRF_CDIRTY))
gconsts[guest_regs[r].cnst].gregs &= ~(1 << r);
guest_regs[r].flags &= ~(GRF_CONST|GRF_CDIRTY);
}
static void gconst_copy(sh2_reg_e rd, sh2_reg_e rs)
{
gconst_kill(rd);
if (guest_regs[rs].flags & GRF_CONST) {
guest_regs[rd].flags |= GRF_CONST;
if (guest_regs[rd].vreg < 0)
guest_regs[rd].flags |= GRF_CDIRTY;
guest_regs[rd].cnst = guest_regs[rs].cnst;
gconsts[guest_regs[rd].cnst].gregs |= (1 << rd);
}
}
static void gconst_clean(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_CDIRTY) {
// using RC_GR_READ here: it will call gconst_try_read,
// cache the reg and mark it dirty.
rcache_get_reg_(i, RC_GR_READ, 0, NULL);
}
}
static void gconst_invalidate(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if (guest_regs[i].flags & (GRF_CONST|GRF_CDIRTY))
gconsts[guest_regs[i].cnst].gregs &= ~(1 << i);
guest_regs[i].flags &= ~(GRF_CONST|GRF_CDIRTY);
}
}
static u16 rcache_counter;
// SH2 register usage bitmasks
static u32 rcache_hregs_reg; // regs of type HRT_REG (for pinning)
static u32 rcache_regs_static; // statically allocated regs
static u32 rcache_regs_pinned; // pinned regs
static u32 rcache_regs_now; // regs used in current insn
static u32 rcache_regs_soon; // regs used in the next few insns
static u32 rcache_regs_late; // regs used in later insns
static u32 rcache_regs_discard; // regs overwritten without being used
static u32 rcache_regs_clean; // regs needing cleaning
static void rcache_lock_vreg(int x)
{
if (x >= 0) {
if (cache_regs[x].type == HR_FREE) {
printf("locking free vreg %x, aborting\n", x);
exit(1);
}
cache_regs[x].locked ++;
}
}
static void rcache_unlock_vreg(int x)
{
if (x >= 0) {
if (cache_regs[x].type == HR_FREE) {
printf("unlocking free vreg %x, aborting\n", x);
exit(1);
}
cache_regs[x].locked --;
}
}
static void rcache_free_vreg(int x)
{
cache_regs[x].type = cache_regs[x].locked ? HR_TEMP : HR_FREE;
cache_regs[x].flags &= HRF_PINNED;
cache_regs[x].gregs = 0;
}
static void rcache_unmap_vreg(int x)
{
int i;
FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, i,
if (guest_regs[i].flags & GRF_DIRTY) {
// if a dirty reg is unmapped save its value to context
if (~rcache_regs_discard & (1 << i))
emith_ctx_write(cache_regs[x].hreg, i * 4);
guest_regs[i].flags &= ~GRF_DIRTY;
}
guest_regs[i].vreg = -1);
rcache_free_vreg(x);
}
static void rcache_move_vreg(int d, int x)
{
int i;
cache_regs[d].type = HR_CACHED;
cache_regs[d].gregs = cache_regs[x].gregs;
cache_regs[d].flags &= HRF_PINNED;
cache_regs[d].flags |= cache_regs[x].flags & ~HRF_PINNED;
cache_regs[d].locked = 0;
cache_regs[d].stamp = cache_regs[x].stamp;
emith_move_r_r(cache_regs[d].hreg, cache_regs[x].hreg);
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].vreg == x)
guest_regs[i].vreg = d;
rcache_free_vreg(x);
}
static void rcache_clean_vreg(int x)
{
u32 rns = rcache_regs_now | rcache_regs_soon;
int r;
if (cache_regs[x].flags & HRF_DIRTY) { // writeback
cache_regs[x].flags &= ~HRF_DIRTY;
rcache_lock_vreg(x);
FOR_ALL_BITS_SET_DO(cache_regs[x].gregs, r,
if (guest_regs[r].flags & GRF_DIRTY) {
if (guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) {
if (guest_regs[r].vreg != guest_regs[r].sreg &&
!cache_regs[guest_regs[r].sreg].locked &&
(~rcache_regs_discard & (1 << r)) &&
!(rns & cache_regs[guest_regs[r].sreg].gregs)) {
// statically mapped reg not in its sreg. move back to sreg
rcache_evict_vreg(guest_regs[r].sreg);
emith_move_r_r(cache_regs[guest_regs[r].sreg].hreg,
cache_regs[guest_regs[r].vreg].hreg);
rcache_remove_vreg_alias(x, r);
rcache_add_vreg_alias(guest_regs[r].sreg, r);
cache_regs[guest_regs[r].sreg].flags |= HRF_DIRTY;
} else
// cannot remap. keep dirty for writeback in unmap
cache_regs[x].flags |= HRF_DIRTY;
} else {
if (~rcache_regs_discard & (1 << r))
emith_ctx_write(cache_regs[x].hreg, r * 4);
guest_regs[r].flags &= ~GRF_DIRTY;
}
rcache_regs_clean &= ~(1 << r);
})
rcache_unlock_vreg(x);
}
#if DRC_DEBUG & 64
RCACHE_CHECK("after clean");
#endif
}
static void rcache_add_vreg_alias(int x, sh2_reg_e r)
{
cache_regs[x].gregs |= (1 << r);
guest_regs[r].vreg = x;
cache_regs[x].type = HR_CACHED;
}
static void rcache_remove_vreg_alias(int x, sh2_reg_e r)
{
cache_regs[x].gregs &= ~(1 << r);
if (!cache_regs[x].gregs) {
// no reg mapped -> free vreg
if (cache_regs[x].locked)
cache_regs[x].type = HR_TEMP;
else
rcache_free_vreg(x);
}
guest_regs[r].vreg = -1;
}
static void rcache_evict_vreg(int x)
{
#if REMAP_REGISTER
rcache_remap_vreg(x);
#else
rcache_clean_vreg(x);
#endif
rcache_unmap_vreg(x);
}
static void rcache_evict_vreg_aliases(int x, sh2_reg_e r)
{
rcache_remove_vreg_alias(x, r);
rcache_evict_vreg(x);
rcache_add_vreg_alias(x, r);
}
static int rcache_allocate(int what, int minprio)
{
// evict reg with oldest stamp (only for HRT_REG, no temps)
int i, i_prio, oldest = -1, prio = 0;
u16 min_stamp = (u16)-1;
for (i = ARRAY_SIZE(cache_regs)-1; i >= 0; i--) {
// consider only non-static, unpinned, unlocked REG or TEMP
if ((cache_regs[i].flags & HRF_PINNED) || cache_regs[i].locked)
continue;
if ((what > 0 && !(cache_regs[i].htype & HRT_REG)) || // get a REG
(what == 0 && (cache_regs[i].htype & HRT_TEMP)) || // get a non-TEMP
(what < 0 && !(cache_regs[i].htype & HRT_TEMP))) // get a TEMP
continue;
if (cache_regs[i].type == HR_FREE || cache_regs[i].type == HR_TEMP) {
// REG is free
prio = 6;
oldest = i;
break;
}
if (cache_regs[i].type == HR_CACHED) {
if (rcache_regs_now & cache_regs[i].gregs)
// REGs needed for the current insn
i_prio = 1;
else if (rcache_regs_soon & cache_regs[i].gregs)
// REGs needed in the next insns
i_prio = 2;
else if (rcache_regs_late & cache_regs[i].gregs)
// REGs needed in some future insn
i_prio = 3;
else if (!(~rcache_regs_discard & cache_regs[i].gregs))
// REGs not needed in the foreseeable future
i_prio = 4;
else
// REGs soon overwritten anyway
i_prio = 5;
if (prio < i_prio || (prio == i_prio && cache_regs[i].stamp < min_stamp)) {
min_stamp = cache_regs[i].stamp;
oldest = i;
prio = i_prio;
}
}
}
if (prio < minprio || oldest == -1)
return -1;
if (cache_regs[oldest].type == HR_CACHED)
rcache_evict_vreg(oldest);
else
rcache_free_vreg(oldest);
return oldest;
}
static int rcache_allocate_vreg(int needed)
{
int x;
x = rcache_allocate(1, needed ? 0 : 3);
if (x < 0)
x = rcache_allocate(-1, 1);
return x;
}
static int rcache_allocate_nontemp(void)
{
int x = rcache_allocate(0, 3);
return x;
}
static int rcache_allocate_temp(void)
{
int x = rcache_allocate(-1, 1);
if (x < 0)
x = rcache_allocate(0, 0);
return x;
}
#if REMAP_REGISTER
// maps a host register to a REG
static int rcache_map_reg(sh2_reg_e r, int hr, int mode)
{
int x, i;
gconst_kill(r);
// lookup the TEMP hr maps to
i = reg_map_host[hr];
if (i < 0) {
// must not happen
printf("invalid host register %d\n", hr);
exit(1);
}
// deal with statically mapped regs
if (mode == RC_GR_RMW && (guest_regs[r].flags & (GRF_STATIC|GRF_PINNED))) {
x = guest_regs[r].sreg;
if (guest_regs[r].vreg == x) {
// STATIC in its sreg with no aliases, and some processing pending
if (cache_regs[x].gregs == 1 << r)
return cache_regs[x].hreg;
} else if (cache_regs[x].type == HR_FREE ||
(cache_regs[x].type == HR_TEMP && !cache_regs[x].locked))
// STATIC not in its sreg, with sreg available -> move it
i = guest_regs[r].sreg;
}
// remove old mappings of r and i if one exists
if (guest_regs[r].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[r].vreg, r);
if (cache_regs[i].type == HR_CACHED)
rcache_evict_vreg(i);
// set new mappping
cache_regs[i].type = HR_CACHED;
cache_regs[i].gregs = 1 << r;
cache_regs[i].flags &= HRF_PINNED;
cache_regs[i].locked = 0;
cache_regs[i].stamp = ++rcache_counter;
cache_regs[i].flags |= HRF_DIRTY;
rcache_lock_vreg(i);
guest_regs[r].flags |= GRF_DIRTY;
guest_regs[r].vreg = i;
#if DRC_DEBUG & 64
RCACHE_CHECK("after map");
#endif
return cache_regs[i].hreg;
}
// remap vreg from a TEMP to a REG if it will be used (upcoming TEMP invalidation)
static void rcache_remap_vreg(int x)
{
u32 rsl_d = rcache_regs_soon | rcache_regs_late;
int d;
// x must be a cached vreg
if (cache_regs[x].type != HR_CACHED)
return;
// don't do it if x is already a REG or isn't used or to be cleaned anyway
if ((cache_regs[x].htype & HRT_REG) ||
!(rsl_d & cache_regs[x].gregs)) {
// clean here to avoid data loss on invalidation
rcache_clean_vreg(x);
return;
}
if (cache_regs[x].locked) {
printf("remap vreg %d is locked\n", x);
exit(1);
}
// allocate a non-TEMP vreg
rcache_lock_vreg(x); // lock to avoid evicting x
d = rcache_allocate_nontemp();
rcache_unlock_vreg(x);
if (d < 0) {
rcache_clean_vreg(x);
return;
}
// move vreg to new location
rcache_move_vreg(d, x);
#if DRC_DEBUG & 64
RCACHE_CHECK("after remap");
#endif
}
#endif
#if ALIAS_REGISTERS
static void rcache_alias_vreg(sh2_reg_e rd, sh2_reg_e rs)
{
int x;
// if s isn't constant, it must be in cache for aliasing
if (!gconst_check(rs))
rcache_get_reg_(rs, RC_GR_READ, 0, NULL);
// if d and s are not already aliased
x = guest_regs[rs].vreg;
if (guest_regs[rd].vreg != x) {
// remove possible old mapping of dst
if (guest_regs[rd].vreg >= 0)
rcache_remove_vreg_alias(guest_regs[rd].vreg, rd);
// make dst an alias of src
if (x >= 0)
rcache_add_vreg_alias(x, rd);
// if d is now in cache, it must be dirty
if (guest_regs[rd].vreg >= 0) {
x = guest_regs[rd].vreg;
cache_regs[x].flags |= HRF_DIRTY;
guest_regs[rd].flags |= GRF_DIRTY;
}
}
gconst_copy(rd, rs);
#if DRC_DEBUG & 64
RCACHE_CHECK("after alias");
#endif
}
#endif
// note: must not be called when doing conditional code
static int rcache_get_reg_(sh2_reg_e r, rc_gr_mode mode, int do_locking, int *hr)
{
int src, dst, ali;
cache_reg_t *tr;
u32 rsp_d = (rcache_regs_now | rcache_regs_soon |
rcache_regs_static | rcache_regs_pinned) & ~rcache_regs_discard;
dst = src = guest_regs[r].vreg;
rcache_lock_vreg(src); // lock to avoid evicting src
// good opportunity to relocate a remapped STATIC?
if ((guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) &&
src != guest_regs[r].sreg && (src < 0 || mode != RC_GR_READ) &&
!cache_regs[guest_regs[r].sreg].locked &&
!(rsp_d & cache_regs[guest_regs[r].sreg].gregs)) {
dst = guest_regs[r].sreg;
rcache_evict_vreg(dst);
} else if (dst < 0) {
// allocate a cache register
if ((dst = rcache_allocate_vreg(rsp_d & (1 << r))) < 0) {
printf("no registers to evict, aborting\n");
exit(1);
}
}
tr = &cache_regs[dst];
tr->stamp = rcache_counter;
// remove r from src
if (src >= 0 && src != dst)
rcache_remove_vreg_alias(src, r);
rcache_unlock_vreg(src);
// if r has a constant it may have aliases
if (mode != RC_GR_WRITE && gconst_try_read(dst, r))
src = dst;
// if r will be modified, check for aliases being needed rsn
ali = tr->gregs & ~(1 << r);
if (mode != RC_GR_READ && src == dst && ali) {
int x = -1;
if (rsp_d & ali) {
if ((guest_regs[r].flags & (GRF_STATIC|GRF_PINNED)) &&
guest_regs[r].sreg == dst && !tr->locked) {
// split aliases if r is STATIC in sreg and dst isn't already locked
rcache_lock_vreg(dst); // lock to avoid evicting dst
x = rcache_allocate_vreg(rsp_d & ali);
rcache_unlock_vreg(dst);
if (x >= 0) {
src = x;
rcache_move_vreg(src, dst);
}
} else {
// split r
rcache_lock_vreg(src); // lock to avoid evicting src
x = rcache_allocate_vreg(rsp_d & (1 << r));
rcache_unlock_vreg(src);
if (x >= 0) {
dst = x;
tr = &cache_regs[dst];
tr->stamp = rcache_counter;
}
}
}
if (x < 0)
// aliases not needed or no vreg available, remove them
rcache_evict_vreg_aliases(dst, r);
else if (src != dst)
rcache_remove_vreg_alias(src, r);
}
// assign r to dst
rcache_add_vreg_alias(dst, r);
// handle dst register transfer
if (src < 0 && mode != RC_GR_WRITE)
emith_ctx_read(tr->hreg, r * 4);
if (hr) {
*hr = (src >= 0 ? cache_regs[src].hreg : tr->hreg);
rcache_lock_vreg(src >= 0 ? src : dst);
} else if (src >= 0 && mode != RC_GR_WRITE && cache_regs[src].hreg != tr->hreg)
emith_move_r_r(tr->hreg, cache_regs[src].hreg);
// housekeeping
if (do_locking)
rcache_lock_vreg(dst);
if (mode != RC_GR_READ) {
tr->flags |= HRF_DIRTY;
guest_regs[r].flags |= GRF_DIRTY;
gconst_kill(r);
}
#if DRC_DEBUG & 64
RCACHE_CHECK("after getreg");
#endif
return tr->hreg;
}
static int rcache_get_reg(sh2_reg_e r, rc_gr_mode mode, int *hr)
{
return rcache_get_reg_(r, mode, 1, hr);
}
static void rcache_pin_reg(sh2_reg_e r)
{
int hr, x;
// don't pin if static or already pinned
if (guest_regs[r].flags & (GRF_STATIC|GRF_PINNED))
return;
rcache_regs_soon |= (1 << r); // kludge to prevent allocation of a temp
hr = rcache_get_reg_(r, RC_GR_RMW, 0, NULL);
x = reg_map_host[hr];
// can only pin non-TEMPs
if (!(cache_regs[x].htype & HRT_TEMP)) {
guest_regs[r].flags |= GRF_PINNED;
cache_regs[x].flags |= HRF_PINNED;
guest_regs[r].sreg = x;
rcache_regs_pinned |= (1 << r);
}
#if DRC_DEBUG & 64
RCACHE_CHECK("after pin");
#endif
}
static int rcache_get_tmp(void)
{
int i;
i = rcache_allocate_temp();
if (i < 0) {
printf("cannot allocate temp\n");
exit(1);
}
cache_regs[i].type = HR_TEMP;
rcache_lock_vreg(i);
return cache_regs[i].hreg;
}
static int rcache_get_vreg_hr(int hr)
{
int i;
i = reg_map_host[hr];
if (i < 0 || cache_regs[i].locked) {
printf("host register %d is locked\n", hr);
exit(1);
}
if (cache_regs[i].type == HR_CACHED)
rcache_evict_vreg(i);
else if (cache_regs[i].type == HR_TEMP && cache_regs[i].locked) {
printf("host reg %d already used, aborting\n", hr);
exit(1);
}
return i;
}
static int rcache_get_vreg_arg(int arg)
{
int hr = 0;
host_arg2reg(hr, arg);
return rcache_get_vreg_hr(hr);
}
// get a reg to be used as function arg
static int rcache_get_tmp_arg(int arg)
{
int x = rcache_get_vreg_arg(arg);
cache_regs[x].type = HR_TEMP;
rcache_lock_vreg(x);
return cache_regs[x].hreg;
}
// ... as return value after a call
static int rcache_get_tmp_ret(void)
{
int x = rcache_get_vreg_hr(RET_REG);
cache_regs[x].type = HR_TEMP;
rcache_lock_vreg(x);
return cache_regs[x].hreg;
}
// same but caches a reg if access is readonly (announced by hr being NULL)
static int rcache_get_reg_arg(int arg, sh2_reg_e r, int *hr)
{
int i, srcr, dstr, dstid, keep;
u32 val;
host_arg2reg(dstr, arg);
i = guest_regs[r].vreg;
if (i >= 0 && cache_regs[i].type == HR_CACHED && cache_regs[i].hreg == dstr)
// r is already in arg, avoid evicting
dstid = i;
else
dstid = rcache_get_vreg_arg(arg);
dstr = cache_regs[dstid].hreg;
if (rcache_is_cached(r)) {
// r is needed later on anyway
srcr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
keep = 1;
} else if ((guest_regs[r].flags & GRF_CDIRTY) && gconst_get(r, &val)) {
// r has an uncomitted const - load into arg, but keep constant uncomitted
srcr = dstr;
emith_move_r_imm(srcr, val);
keep = 0;
} else {
// must read from ctx
srcr = dstr;
emith_ctx_read(srcr, r * 4);
keep = 1;
}
if (cache_regs[dstid].type == HR_CACHED)
rcache_evict_vreg(dstid);
cache_regs[dstid].type = HR_TEMP;
if (hr == NULL) {
if (dstr != srcr)
// arg is a copy of cached r
emith_move_r_r(dstr, srcr);
else if (keep && guest_regs[r].vreg < 0)
// keep arg as vreg for r
rcache_add_vreg_alias(dstid, r);
} else {
*hr = srcr;
if (dstr != srcr) // must lock srcr if not copied here
rcache_lock_vreg(reg_map_host[srcr]);
}
cache_regs[dstid].stamp = ++rcache_counter;
rcache_lock_vreg(dstid);
#if DRC_DEBUG & 64
RCACHE_CHECK("after getarg");
#endif
return dstr;
}
static void rcache_free_tmp(int hr)
{
int i = reg_map_host[hr];
if (i < 0 || cache_regs[i].type != HR_TEMP) {
printf("rcache_free_tmp fail: #%i hr %d, type %d\n", i, hr, cache_regs[i].type);
exit(1);
}
rcache_unlock_vreg(i);
}
// saves temporary result either in REG or in drctmp
static int rcache_save_tmp(int hr)
{
int i;
// find REG, either free or unlocked temp or oldest non-hinted cached
i = rcache_allocate_nontemp();
if (i < 0) {
// if none is available, store in drctmp
emith_ctx_write(hr, offsetof(SH2, drc_tmp));
rcache_free_tmp(hr);
return -1;
}
cache_regs[i].type = HR_CACHED;
cache_regs[i].gregs = 0; // not storing any guest register
cache_regs[i].flags &= HRF_PINNED;
cache_regs[i].locked = 0;
cache_regs[i].stamp = ++rcache_counter;
rcache_lock_vreg(i);
emith_move_r_r(cache_regs[i].hreg, hr);
rcache_free_tmp(hr);
return i;
}
static int rcache_restore_tmp(int x)
{
int hr;
// find REG with tmp store: cached but with no gregs
if (x >= 0) {
if (cache_regs[x].type != HR_CACHED || cache_regs[x].gregs) {
printf("invalid tmp storage %d\n", x);
exit(1);
}
// found, transform to a TEMP
cache_regs[x].type = HR_TEMP;
return cache_regs[x].hreg;
}
// if not available, create a TEMP store and fetch from drctmp
hr = rcache_get_tmp();
emith_ctx_read(hr, offsetof(SH2, drc_tmp));
return hr;
}
static void rcache_free(int hr)
{
int x = reg_map_host[hr];
rcache_unlock_vreg(x);
}
static void rcache_unlock(int x)
{
if (x >= 0)
cache_regs[x].locked = 0;
}
static void rcache_unlock_all(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
cache_regs[i].locked = 0;
}
static void rcache_unpin_all(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if (guest_regs[i].flags & GRF_PINNED) {
guest_regs[i].flags &= ~GRF_PINNED;
cache_regs[guest_regs[i].sreg].flags &= ~HRF_PINNED;
guest_regs[i].sreg = -1;
rcache_regs_pinned &= ~(1 << i);
}
}
#if DRC_DEBUG & 64
RCACHE_CHECK("after unpin");
#endif
}
static void rcache_save_pinned(void)
{
int i;
// save pinned regs to context
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if ((guest_regs[i].flags & GRF_PINNED) && guest_regs[i].vreg >= 0)
emith_ctx_write(cache_regs[guest_regs[i].vreg].hreg, i * 4);
}
static inline void rcache_set_usage_now(u32 mask)
{
rcache_regs_now = mask;
}
static inline void rcache_set_usage_soon(u32 mask)
{
rcache_regs_soon = mask;
}
static inline void rcache_set_usage_late(u32 mask)
{
rcache_regs_late = mask;
}
static inline void rcache_set_usage_discard(u32 mask)
{
rcache_regs_discard = mask;
}
static inline int rcache_is_cached(sh2_reg_e r)
{
// is r in cache or needed RSN?
u32 rsc = rcache_regs_soon | rcache_regs_clean;
return (guest_regs[r].vreg >= 0 || (rsc & (1 << r)));
}
static inline int rcache_is_hreg_used(int hr)
{
int x = reg_map_host[hr];
// is hr in use?
return cache_regs[x].type != HR_FREE &&
(cache_regs[x].type != HR_TEMP || cache_regs[x].locked);
}
static inline u32 rcache_used_hregs_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if ((cache_regs[i].htype & HRT_TEMP) && cache_regs[i].type != HR_FREE &&
(cache_regs[i].type != HR_TEMP || cache_regs[i].locked))
mask |= 1 << cache_regs[i].hreg;
return mask;
}
static inline u32 rcache_dirty_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_DIRTY)
mask |= 1 << i;
mask |= gconst_dirty_mask();
return mask;
}
static inline u32 rcache_cached_mask(void)
{
u32 mask = 0;
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED)
mask |= cache_regs[i].gregs;
return mask;
}
static void rcache_clean_tmp(void)
{
int i;
rcache_regs_clean = (1 << ARRAY_SIZE(guest_regs)) - 1;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED && (cache_regs[i].htype & HRT_TEMP)) {
rcache_unlock(i);
#if REMAP_REGISTER
rcache_remap_vreg(i);
#else
rcache_clean_vreg(i);
#endif
}
rcache_regs_clean = 0;
}
static void rcache_clean_masked(u32 mask)
{
int i, r, hr;
rcache_regs_clean |= mask;
mask = rcache_regs_clean;
// clean constants where all aliases are covered by the mask
for (i = 0; i < ARRAY_SIZE(gconsts); i++)
if ((gconsts[i].gregs & mask) && !(gconsts[i].gregs & ~mask)) {
FOR_ALL_BITS_SET_DO(gconsts[i].gregs, r,
if (guest_regs[r].flags & GRF_CDIRTY) {
hr = rcache_get_reg_(r, RC_GR_READ, 0, NULL);
rcache_clean_vreg(reg_map_host[hr]);
break;
});
}
// clean vregs where all aliases are covered by the mask
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
if (cache_regs[i].type == HR_CACHED &&
(cache_regs[i].gregs & mask) && !(cache_regs[i].gregs & ~mask))
rcache_clean_vreg(i);
}
static void rcache_clean(void)
{
int i;
gconst_clean();
rcache_regs_clean = (1 << ARRAY_SIZE(guest_regs)) - 1;
for (i = ARRAY_SIZE(cache_regs)-1; i >= 0; i--)
if (cache_regs[i].type == HR_CACHED)
rcache_clean_vreg(i);
// relocate statics to their sregs (necessary before conditional jumps)
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if ((guest_regs[i].flags & (GRF_STATIC|GRF_PINNED)) &&
guest_regs[i].vreg != guest_regs[i].sreg) {
rcache_lock_vreg(guest_regs[i].vreg);
rcache_evict_vreg(guest_regs[i].sreg);
rcache_unlock_vreg(guest_regs[i].vreg);
if (guest_regs[i].vreg < 0)
emith_ctx_read(cache_regs[guest_regs[i].sreg].hreg, i*4);
else {
emith_move_r_r(cache_regs[guest_regs[i].sreg].hreg,
cache_regs[guest_regs[i].vreg].hreg);
rcache_remove_vreg_alias(guest_regs[i].vreg, i);
}
cache_regs[guest_regs[i].sreg].gregs = 1 << i;
cache_regs[guest_regs[i].sreg].type = HR_CACHED;
cache_regs[guest_regs[i].sreg].flags |= HRF_DIRTY|HRF_PINNED;
guest_regs[i].flags |= GRF_DIRTY;
guest_regs[i].vreg = guest_regs[i].sreg;
}
}
rcache_regs_clean = 0;
}
static void rcache_invalidate_tmp(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
if (cache_regs[i].htype & HRT_TEMP) {
rcache_unlock(i);
if (cache_regs[i].type == HR_CACHED)
rcache_evict_vreg(i);
else
rcache_free_vreg(i);
}
}
}
static void rcache_invalidate(void)
{
int i;
gconst_invalidate();
rcache_unlock_all();
for (i = 0; i < ARRAY_SIZE(cache_regs); i++)
rcache_free_vreg(i);
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
guest_regs[i].flags &= GRF_STATIC;
if (!(guest_regs[i].flags & GRF_STATIC))
guest_regs[i].vreg = -1;
else {
cache_regs[guest_regs[i].sreg].gregs = 1 << i;
cache_regs[guest_regs[i].sreg].type = HR_CACHED;
cache_regs[guest_regs[i].sreg].flags |= HRF_DIRTY|HRF_PINNED;
guest_regs[i].flags |= GRF_DIRTY;
guest_regs[i].vreg = guest_regs[i].sreg;
}
}
rcache_counter = 0;
rcache_regs_now = rcache_regs_soon = rcache_regs_late = 0;
rcache_regs_discard = rcache_regs_clean = 0;
}
static void rcache_flush(void)
{
rcache_clean();
rcache_invalidate();
}
static void rcache_init(void)
{
static int once = 1;
int i;
// init is executed on every rom load, but this must only be executed once...
if (once) {
memset(reg_map_host, -1, sizeof(reg_map_host));
for (i = 0; i < ARRAY_SIZE(cache_regs); i++) {
reg_map_host[cache_regs[i].hreg] = i;
if (cache_regs[i].htype == HRT_REG)
rcache_hregs_reg |= (1 << i);
}
for (i = 0; i < ARRAY_SIZE(guest_regs); i++)
if (guest_regs[i].flags & GRF_STATIC) {
rcache_regs_static |= (1 << i);
guest_regs[i].sreg = reg_map_host[guest_regs[i].sreg];
rcache_hregs_reg &= ~(1 << guest_regs[i].sreg);
} else
guest_regs[i].sreg = -1;
once = 0;
}
rcache_invalidate();
#if DRC_DEBUG & 64
RCACHE_CHECK("after init");
#endif
}
// ---------------------------------------------------------------
// NB may return either REG or TEMP
static int emit_get_rbase_and_offs(SH2 *sh2, sh2_reg_e r, int rmode, u32 *offs)
{
uptr omask = emith_rw_offs_max(); // offset mask
u32 mask = 0;
u32 a;
int poffs;
int hr, hr2;
uptr la;
// is r constant and points to a memory region?
if (! gconst_get(r, &a))
return -1;
poffs = dr_ctx_get_mem_ptr(sh2, a, &mask);
if (poffs == -1)
return -1;
if (mask < 0x20000) {
// data array, BIOS, DRAM, can't safely access directly since host addr may
// change (BIOS,da code may run on either core, DRAM may be switched)
hr = rcache_get_tmp();
a = (a + *offs) & mask;
if (poffs == offsetof(SH2, p_da)) {
// access sh2->data_array directly
a += offsetof(SH2, data_array);
emith_add_r_r_ptr_imm(hr, CONTEXT_REG, a & ~omask);
} else {
emith_ctx_read_ptr(hr, poffs);
if (a & ~omask)
emith_add_r_r_ptr_imm(hr, hr, a & ~omask);
}
*offs = a & omask;
return hr;
}
// ROM, SDRAM. Host address should be mmapped to be equal to SH2 address.
la = (uptr)*(void **)((char *)sh2 + poffs);
// if r is in rcache or needed soon anyway, and offs is relative to region,
// and address translation fits in add_ptr_imm (s32), then use rcached const
if (la == (s32)la && !(*offs & ~mask) && rcache_is_cached(r)) {
u32 odd = a & 1; // need to fix odd address for correct byte addressing
la -= (s32)((a & ~mask) - *offs - odd); // diff between reg and memory
hr = hr2 = rcache_get_reg(r, rmode, NULL);
if ((la & ~omask) - odd) {
hr = rcache_get_tmp();
emith_add_r_r_ptr_imm(hr, hr2, (la & ~omask) - odd);
rcache_free(hr2);
}
*offs = (la & omask);
} else {
// known fixed host address
la += (a + *offs) & mask;
hr = rcache_get_tmp();
emith_move_r_ptr_imm(hr, la & ~omask);
*offs = la & omask;
}
return hr;
}
// read const data from const ROM address
static int emit_get_rom_data(SH2 *sh2, sh2_reg_e r, u32 offs, int size, u32 *val)
{
u32 a, mask;
*val = 0;
if (gconst_get(r, &a)) {
a += offs;
// check if rom is memory mapped (not bank switched), and address is in rom
if (dr_is_rom(a) && p32x_sh2_get_mem_ptr(a, &mask, sh2) == sh2->p_rom) {
switch (size & MF_SIZEMASK) {
case 0: *val = (s8)p32x_sh2_read8(a, sh2s); break; // 8
case 1: *val = (s16)p32x_sh2_read16(a, sh2s); break; // 16
case 2: *val = p32x_sh2_read32(a, sh2s); break; // 32
}
return 1;
}
}
return 0;
}
static void emit_move_r_imm32(sh2_reg_e dst, u32 imm)
{
#if PROPAGATE_CONSTANTS
gconst_new(dst, imm);
#else
int hr = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_move_r_imm(hr, imm);
#endif
}
static void emit_move_r_r(sh2_reg_e dst, sh2_reg_e src)
{
if (gconst_check(src) || rcache_is_cached(src)) {
#if ALIAS_REGISTERS
rcache_alias_vreg(dst, src);
#else
int hr_s = rcache_get_reg(src, RC_GR_READ, NULL);
int hr_d = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_move_r_r(hr_d, hr_s);
gconst_copy(dst, src);
#endif
} else {
int hr_d = rcache_get_reg(dst, RC_GR_WRITE, NULL);
emith_ctx_read(hr_d, src * 4);
}
}
static void emit_add_r_imm(sh2_reg_e r, u32 imm)
{
u32 val;
int isgc = gconst_get(r, &val);
int hr, hr2;
if (!isgc || rcache_is_cached(r)) {
// not constant, or r is already in cache
hr = rcache_get_reg(r, RC_GR_RMW, &hr2);
emith_add_r_r_imm(hr, hr2, imm);
rcache_free(hr2);
if (isgc)
gconst_set(r, val + imm);
} else
gconst_new(r, val + imm);
}
static void emit_sub_r_imm(sh2_reg_e r, u32 imm)
{
u32 val;
int isgc = gconst_get(r, &val);
int hr, hr2;
if (!isgc || rcache_is_cached(r)) {
// not constant, or r is already in cache
hr = rcache_get_reg(r, RC_GR_RMW, &hr2);
emith_sub_r_r_imm(hr, hr2, imm);
rcache_free(hr2);
if (isgc)
gconst_set(r, val - imm);
} else
gconst_new(r, val - imm);
}
static void emit_sync_t_to_sr(void)
{
// avoid reloading SR from context if there's nothing to do
if (emith_get_t_cond() >= 0) {
int sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
}
}
// rd = @(arg0)
static int emit_memhandler_read(int size)
{
emit_sync_t_to_sr();
rcache_clean_tmp();
#ifndef DRC_SR_REG
// must writeback cycles for poll detection stuff
if (guest_regs[SHR_SR].vreg != -1)
rcache_unmap_vreg(guest_regs[SHR_SR].vreg);
#endif
rcache_invalidate_tmp();
if (size & MF_POLLING)
switch (size & MF_SIZEMASK) {
case 0: emith_call(sh2_drc_read8_poll); break; // 8
case 1: emith_call(sh2_drc_read16_poll); break; // 16
case 2: emith_call(sh2_drc_read32_poll); break; // 32
}
else
switch (size & MF_SIZEMASK) {
case 0: emith_call(sh2_drc_read8); break; // 8
case 1: emith_call(sh2_drc_read16); break; // 16
case 2: emith_call(sh2_drc_read32); break; // 32
}
return rcache_get_tmp_ret();
}
// @(arg0) = arg1
static void emit_memhandler_write(int size)
{
emit_sync_t_to_sr();
rcache_clean_tmp();
#ifndef DRC_SR_REG
if (guest_regs[SHR_SR].vreg != -1)
rcache_unmap_vreg(guest_regs[SHR_SR].vreg);
#endif
rcache_invalidate_tmp();
switch (size & MF_SIZEMASK) {
case 0: emith_call(sh2_drc_write8); break; // 8
case 1: emith_call(sh2_drc_write16); break; // 16
case 2: emith_call(sh2_drc_write32); break; // 32
}
}
// rd = @(Rs,#offs); rd < 0 -> return a temp
static int emit_memhandler_read_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, u32 offs, int size)
{
int hr, hr2;
u32 val;
#if PROPAGATE_CONSTANTS
if (emit_get_rom_data(sh2, rs, offs, size, &val)) {
if (rd == SHR_TMP) {
hr2 = rcache_get_tmp();
emith_move_r_imm(hr2, val);
} else {
emit_move_r_imm32(rd, val);
hr2 = rcache_get_reg(rd, RC_GR_RMW, NULL);
}
if (size & MF_POSTINCR)
emit_add_r_imm(rs, 1 << (size & MF_SIZEMASK));
return hr2;
}
val = size & MF_POSTINCR;
hr = emit_get_rbase_and_offs(sh2, rs, val ? RC_GR_RMW : RC_GR_READ, &offs);
if (hr != -1) {
if (rd == SHR_TMP)
hr2 = rcache_get_tmp();
else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
switch (size & MF_SIZEMASK) {
case 0: emith_read8s_r_r_offs(hr2, hr, offs ^ 1); break; // 8
case 1: emith_read16s_r_r_offs(hr2, hr, offs); break; // 16
case 2: emith_read_r_r_offs(hr2, hr, offs); emith_ror(hr2, hr2, 16); break;
}
rcache_free(hr);
if (size & MF_POSTINCR)
emit_add_r_imm(rs, 1 << (size & MF_SIZEMASK));
return hr2;
}
#endif
if (gconst_get(rs, &val) && !rcache_is_cached(rs)) {
hr = rcache_get_tmp_arg(0);
emith_move_r_imm(hr, val + offs);
if (size & MF_POSTINCR)
gconst_new(rs, val + (1 << (size & MF_SIZEMASK)));
} else if (size & MF_POSTINCR) {
hr = rcache_get_tmp_arg(0);
hr2 = rcache_get_reg(rs, RC_GR_RMW, NULL);
emith_add_r_r_imm(hr, hr2, offs);
emith_add_r_imm(hr2, 1 << (size & MF_SIZEMASK));
if (gconst_get(rs, &val))
gconst_set(rs, val + (1 << (size & MF_SIZEMASK)));
} else {
hr = rcache_get_reg_arg(0, rs, &hr2);
if (offs || hr != hr2)
emith_add_r_r_imm(hr, hr2, offs);
}
hr = emit_memhandler_read(size);
size &= MF_SIZEMASK;
if (rd == SHR_TMP)
hr2 = hr;
else
#if REMAP_REGISTER
hr2 = rcache_map_reg(rd, hr, RC_GR_WRITE);
#else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
#endif
if (hr != hr2) {
emith_move_r_r(hr2, hr);
rcache_free_tmp(hr);
}
return hr2;
}
// @(Rs,#offs) = rd; rd < 0 -> write arg1
static void emit_memhandler_write_rr(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rs, u32 offs, int size)
{
int hr, hr2;
u32 val;
if (rd == SHR_TMP) {
host_arg2reg(hr2, 1); // already locked and prepared by caller
} else if ((size & MF_PREDECR) && rd == rs) { // must avoid caching rd in arg1
hr2 = rcache_get_reg_arg(1, rd, &hr);
if (hr != hr2) {
emith_move_r_r(hr2, hr);
rcache_free(hr2);
}
} else
hr2 = rcache_get_reg_arg(1, rd, NULL);
if (rd != SHR_TMP)
rcache_unlock(guest_regs[rd].vreg); // unlock in case rd is in arg0
if (gconst_get(rs, &val) && !rcache_is_cached(rs)) {
hr = rcache_get_tmp_arg(0);
if (size & MF_PREDECR) {
val -= 1 << (size & MF_SIZEMASK);
gconst_new(rs, val);
}
emith_move_r_imm(hr, val + offs);
} else if (offs || (size & MF_PREDECR)) {
if (size & MF_PREDECR)
emit_sub_r_imm(rs, 1 << (size & MF_SIZEMASK));
rcache_unlock(guest_regs[rs].vreg); // unlock in case rs is in arg0
hr = rcache_get_reg_arg(0, rs, &hr2);
if (offs || hr != hr2)
emith_add_r_r_imm(hr, hr2, offs);
} else
hr = rcache_get_reg_arg(0, rs, NULL);
emit_memhandler_write(size);
}
// rd = @(Rx,Ry); rd < 0 -> return a temp
static int emit_indirect_indexed_read(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
{
int hr, hr2;
int tx, ty;
#if PROPAGATE_CONSTANTS
u32 offs;
// if offs is larger than 0x01000000, it's most probably the base address part
if (gconst_get(ry, &offs) && offs < 0x01000000)
return emit_memhandler_read_rr(sh2, rd, rx, offs, size);
if (gconst_get(rx, &offs) && offs < 0x01000000)
return emit_memhandler_read_rr(sh2, rd, ry, offs, size);
#endif
hr = rcache_get_reg_arg(0, rx, &tx);
ty = rcache_get_reg(ry, RC_GR_READ, NULL);
emith_add_r_r_r(hr, tx, ty);
hr = emit_memhandler_read(size);
size &= MF_SIZEMASK;
if (rd == SHR_TMP)
hr2 = hr;
else
#if REMAP_REGISTER
hr2 = rcache_map_reg(rd, hr, RC_GR_WRITE);
#else
hr2 = rcache_get_reg(rd, RC_GR_WRITE, NULL);
#endif
if (hr != hr2) {
emith_move_r_r(hr2, hr);
rcache_free_tmp(hr);
}
return hr2;
}
// @(Rx,Ry) = rd; rd < 0 -> write arg1
static void emit_indirect_indexed_write(SH2 *sh2, sh2_reg_e rd, sh2_reg_e rx, sh2_reg_e ry, int size)
{
int hr, tx, ty;
#if PROPAGATE_CONSTANTS
u32 offs;
// if offs is larger than 0x01000000, it's most probably the base address part
if (gconst_get(ry, &offs) && offs < 0x01000000)
return emit_memhandler_write_rr(sh2, rd, rx, offs, size);
if (gconst_get(rx, &offs) && offs < 0x01000000)
return emit_memhandler_write_rr(sh2, rd, ry, offs, size);
#endif
if (rd != SHR_TMP)
rcache_get_reg_arg(1, rd, NULL);
hr = rcache_get_reg_arg(0, rx, &tx);
ty = rcache_get_reg(ry, RC_GR_READ, NULL);
emith_add_r_r_r(hr, tx, ty);
emit_memhandler_write(size);
}
// @Rn+,@Rm+
static void emit_indirect_read_double(SH2 *sh2, int *rnr, int *rmr, sh2_reg_e rn, sh2_reg_e rm, int size)
{
int tmp;
// unlock rn, rm here to avoid REG shortage in MAC operation
tmp = emit_memhandler_read_rr(sh2, SHR_TMP, rn, 0, size | MF_POSTINCR);
rcache_unlock(guest_regs[rn].vreg);
tmp = rcache_save_tmp(tmp);
*rmr = emit_memhandler_read_rr(sh2, SHR_TMP, rm, 0, size | MF_POSTINCR);
rcache_unlock(guest_regs[rm].vreg);
*rnr = rcache_restore_tmp(tmp);
}
static void emit_do_static_regs(int is_write, int tmpr)
{
int i, r, count;
for (i = 0; i < ARRAY_SIZE(guest_regs); i++) {
if (guest_regs[i].flags & (GRF_STATIC|GRF_PINNED))
r = cache_regs[guest_regs[i].vreg].hreg;
else
continue;
for (count = 1; i < ARRAY_SIZE(guest_regs) - 1; i++, r++) {
if ((guest_regs[i + 1].flags & (GRF_STATIC|GRF_PINNED)) &&
cache_regs[guest_regs[i + 1].vreg].hreg == r + 1)
count++;
else
break;
}
if (count > 1) {
// i, r point to last item
if (is_write)
emith_ctx_write_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
else
emith_ctx_read_multiple(r - count + 1, (i - count + 1) * 4, count, tmpr);
} else {
if (is_write)
emith_ctx_write(r, i * 4);
else
emith_ctx_read(r, i * 4);
}
}
}
#define DELAY_SAVE_T(sr) { \
emith_bic_r_imm(sr, T_save); \
emith_tst_r_imm(sr, T); \
EMITH_SJMP_START(DCOND_EQ); \
emith_or_r_imm_c(DCOND_NE, sr, T_save); \
EMITH_SJMP_END(DCOND_EQ); \
}
#define FLUSH_CYCLES(sr) \
if (cycles > 0) { \
emith_sub_r_imm(sr, cycles << 12); \
cycles = 0; \
}
static void *dr_get_pc_base(u32 pc, SH2 *sh2);
static void REGPARM(2) *sh2_translate(SH2 *sh2, int tcache_id)
{
// branch targets in current block
u32 branch_target_pc[MAX_LOCAL_BRANCHES];
void *branch_target_ptr[MAX_LOCAL_BRANCHES];
int branch_target_count = 0;
// unresolved local forward branches, for fixup at block end
u32 branch_patch_pc[MAX_LOCAL_BRANCHES];
void *branch_patch_ptr[MAX_LOCAL_BRANCHES];
int branch_patch_count = 0;
// external branch targets with a block link/exit area
u32 blx_target_pc[MAX_LOCAL_BRANCHES];
void *blx_target_ptr[MAX_LOCAL_BRANCHES];
struct block_link *blx_target_bl[MAX_LOCAL_BRANCHES];
int blx_target_count = 0;
u8 op_flags[BLOCK_INSN_LIMIT];
struct drcf {
int delay_reg:8;
u32 loop_type:8;
u32 polling:8;
u32 test_irq:1;
u32 pending_branch_direct:1;
u32 pending_branch_indirect:1;
} drcf = { 0, };
#if LOOP_OPTIMIZER
// loops with pinned registers for optimzation
// pinned regs are like statics and don't need saving/restoring inside a loop
u32 pinned_loop_pc[MAX_LOCAL_BRANCHES/16];
void *pinned_loop_ptr[MAX_LOCAL_BRANCHES/16];
u32 pinned_loop_mask[MAX_LOCAL_BRANCHES/16];
int pinned_loop_count = 0;
#endif
// PC of current, first, last SH2 insn
u32 pc, base_pc, end_pc;
u32 base_literals, end_literals;
void *block_entry_ptr;
struct block_desc *block;
struct block_entry *entry;
struct block_link *bl;
u16 *dr_pc_base;
struct op_data *opd;
int blkid_main = 0;
int skip_op = 0;
int tmp, tmp2;
int cycles;
int i, v;
u32 u, m1, m2, m3, m4;
int op;
u16 crc;
base_pc = sh2->pc;
// get base/validate PC
dr_pc_base = dr_get_pc_base(base_pc, sh2);
if (dr_pc_base == (void *)-1) {
printf("invalid PC, aborting: %08x\n", base_pc);
// FIXME: be less destructive
exit(1);
}
// initial passes to disassemble and analyze the block
crc = scan_block(base_pc, sh2->is_slave, op_flags, &end_pc, &base_literals, &end_literals);
end_literals = dr_check_nolit(base_literals, end_literals, tcache_id);
if (base_literals == end_literals) // map empty lit section to end of code
base_literals = end_literals = end_pc;
// if there is already a translated but inactive block, reuse it
block = dr_find_inactive_block(tcache_id, crc, base_pc, end_pc - base_pc,
base_literals, end_literals - base_literals);
if (block) {
dbg(2, "== %csh2 reuse block %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
base_pc, end_pc, base_literals, end_literals, block->entryp->tcache_ptr);
dr_activate_block(block, tcache_id, sh2->is_slave);
emith_update_cache();
return block->entryp[0].tcache_ptr;
}
// collect branch_targets that don't land on delay slots
m1 = m2 = m3 = m4 = v = op = 0;
for (pc = base_pc, i = 0; pc < end_pc; i++, pc += 2) {
if (op_flags[i] & OF_DELAY_OP)
op_flags[i] &= ~OF_BTARGET;
if (op_flags[i] & OF_BTARGET)
ADD_TO_ARRAY(branch_target_pc, branch_target_count, pc, );
if (ops[i].op == OP_LDC && (ops[i].dest & BITMASK1(SHR_SR)) && pc+2 < end_pc)
op_flags[i+1] |= OF_BTARGET; // RTE entrypoint in case of SR.IMASK change
#if LOOP_DETECTION
// loop types detected:
// 1. target: ... BRA target -> idle loop
// 2. target: ... delay insn ... BF target -> delay loop
// 3. target: ... poll insn ... BF/BT target -> poll loop
// 4. target: ... poll insn ... BF/BT exit ... BRA target, exit: -> poll
// conditions:
// a. no further branch targets between target and back jump.
// b. no unconditional branch insn inside the loop.
// c. exactly one poll or delay insn is allowed inside a delay/poll loop
// (scan_block marks loops only if they meet conditions a through c)
// d. idle loops do not modify anything but PC,SR and contain no branches
// e. delay/poll loops do not modify anything but the concerned reg,PC,SR
// f. loading constants into registers inside the loop is allowed
// g. a delay/poll loop must have a conditional branch somewhere
// h. an idle loop must not have a conditional branch
if (op_flags[i] & OF_BTARGET) {
// possible loop entry point
drcf.loop_type = op_flags[i] & OF_LOOP;
drcf.pending_branch_direct = drcf.pending_branch_indirect = 0;
op = OF_IDLE_LOOP; // loop type
v = i;
m1 = m2 = m3 = m4 = 0;
if (!drcf.loop_type) // reset basic loop it it isn't recognized as loop
op_flags[i] &= ~OF_BASIC_LOOP;
}
if (drcf.loop_type) {
// calculate reg masks for loop pinning
m4 |= ops[i].source & ~m3;
m3 |= ops[i].dest;
// detect loop type, and store poll/delay register
if (op_flags[i] & OF_POLL_INSN) {
op = OF_POLL_LOOP;
m1 |= ops[i].dest; // loop poll/delay regs
} else if (op_flags[i] & OF_DELAY_INSN) {
op = OF_DELAY_LOOP;
m1 |= ops[i].dest;
} else if (ops[i].op != OP_LOAD_POOL && ops[i].op != OP_LOAD_CONST
&& (ops[i].op != OP_MOVE || op != OF_POLL_LOOP)) {
// not (MOV @(PC) or MOV # or (MOV reg and poll)), condition f
m2 |= ops[i].dest; // regs modified by other insns
}
// branch detector
if (OP_ISBRAIMM(ops[i].op)) {
if (ops[i].imm == base_pc + 2*v)
drcf.pending_branch_direct = 1; // backward branch detected
else
op_flags[v] &= ~OF_BASIC_LOOP; // no basic loop
}
if (OP_ISBRACND(ops[i].op))
drcf.pending_branch_indirect = 1; // conditions g,h - cond.branch
// poll/idle loops terminate with their backwards branch to the loop start
if (drcf.pending_branch_direct && !(op_flags[i+1] & OF_DELAY_OP)) {
m2 &= ~(m1 | BITMASK2(SHR_PC, SHR_SR)); // conditions d,e + g,h
if (m2 || ((op == OF_IDLE_LOOP) == (drcf.pending_branch_indirect)))
op = 0; // conditions not met
op_flags[v] = (op_flags[v] & ~OF_LOOP) | op; // set loop type
drcf.loop_type = 0;
#if LOOP_OPTIMIZER
if (op_flags[v] & OF_BASIC_LOOP) {
m3 &= ~rcache_regs_static & ~BITMASK4(SHR_PC, SHR_PR, SHR_SR, SHR_MEM);
if (m3 && count_bits(m3) < count_bits(rcache_hregs_reg) &&
pinned_loop_count < ARRAY_SIZE(pinned_loop_pc)-1) {
pinned_loop_mask[pinned_loop_count] = m3;
pinned_loop_pc[pinned_loop_count++] = base_pc + 2*v;
} else
op_flags[v] &= ~OF_BASIC_LOOP;
}
#endif
}
}
#endif
}
if (branch_target_count > 0) {
memset(branch_target_ptr, 0, sizeof(branch_target_ptr[0]) * branch_target_count);
}
tcache_ptr = dr_prepare_cache(tcache_id, (end_pc - base_pc) / 2);
#if (DRC_DEBUG & 4)
tcache_dsm_ptrs[tcache_id] = tcache_ptr;
#endif
block = dr_add_block(base_pc, end_pc - base_pc, base_literals,
end_literals - base_literals, crc, sh2->is_slave, &blkid_main);
if (block == NULL)
return NULL;
block_entry_ptr = tcache_ptr;
dbg(2, "== %csh2 block #%d,%d %08x-%08x,%08x-%08x -> %p", sh2->is_slave ? 's' : 'm',
tcache_id, blkid_main, base_pc, end_pc, base_literals, end_literals, block_entry_ptr);
// clear stale state after compile errors
rcache_invalidate();
emith_invalidate_t();
drcf = (struct drcf) { 0 };
#if LOOP_OPTIMIZER
pinned_loop_pc[pinned_loop_count] = -1;
pinned_loop_count = 0;
#endif
// -------------------------------------------------
// 3rd pass: actual compilation
pc = base_pc;
cycles = 0;
for (i = 0; pc < end_pc; i++)
{
u32 delay_dep_fw = 0, delay_dep_bk = 0;
int tmp3, tmp4;
int sr;
opd = &ops[i];
op = FETCH_OP(pc);
#if (DRC_DEBUG & 2)
insns_compiled++;
#endif
#if (DRC_DEBUG & 4)
DasmSH2(sh2dasm_buff, pc, op);
if (op_flags[i] & OF_BTARGET) {
if ((op_flags[i] & OF_LOOP) == OF_DELAY_LOOP) tmp3 = '+';
else if ((op_flags[i] & OF_LOOP) == OF_POLL_LOOP) tmp3 = '=';
else if ((op_flags[i] & OF_LOOP) == OF_IDLE_LOOP) tmp3 = '~';
else tmp3 = '*';
} else if (drcf.loop_type) tmp3 = '.';
else tmp3 = ' ';
printf("%c%08x %04x %s\n", tmp3, pc, op, sh2dasm_buff);
#endif
if (op_flags[i] & OF_BTARGET)
{
if (pc != base_pc)
{
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
emith_sync_t(sr);
rcache_flush();
emith_flush();
}
// make block entry
v = block->entry_count;
entry = &block->entryp[v];
if (v < ARRAY_SIZE(block->entryp))
{
entry = &block->entryp[v];
entry->pc = pc;
entry->tcache_ptr = tcache_ptr;
entry->links = entry->o_links = NULL;
#if (DRC_DEBUG & 2)
entry->block = block;
#endif
block->entry_count++;
dbg(2, "-- %csh2 block #%d,%d entry %08x -> %p",
sh2->is_slave ? 's' : 'm', tcache_id, blkid_main,
pc, tcache_ptr);
}
else {
dbg(1, "too many entryp for block #%d,%d pc=%08x",
tcache_id, blkid_main, pc);
break;
}
v = find_in_sorted_array(branch_target_pc, branch_target_count, pc);
if (v >= 0)
branch_target_ptr[v] = tcache_ptr;
#if LOOP_DETECTION
drcf.loop_type = op_flags[i] & OF_LOOP;
drcf.delay_reg = -1;
drcf.polling = (drcf.loop_type == OF_POLL_LOOP ? MF_POLLING : 0);
#endif
rcache_clean();
#if (DRC_DEBUG & 0x10)
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, pc);
tmp = emit_memhandler_read(1);
tmp2 = rcache_get_tmp();
tmp3 = rcache_get_tmp();
emith_move_r_imm(tmp2, (s16)FETCH_OP(pc));
emith_move_r_imm(tmp3, 0);
emith_cmp_r_r(tmp, tmp2);
EMITH_SJMP_START(DCOND_EQ);
emith_read_r_r_offs_c(DCOND_NE, tmp3, tmp3, 0); // crash
EMITH_SJMP_END(DCOND_EQ);
rcache_free_tmp(tmp);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp3);
#endif
#if LOOP_OPTIMIZER
if (op_flags[i] & OF_BASIC_LOOP) {
if (pinned_loop_pc[pinned_loop_count] == pc) {
// pin needed regs on loop entry
FOR_ALL_BITS_SET_DO(pinned_loop_mask[pinned_loop_count], v, rcache_pin_reg(v));
emith_flush();
pinned_loop_ptr[pinned_loop_count] = tcache_ptr;
} else
op_flags[i] &= ~OF_BASIC_LOOP;
}
#endif
// check cycles
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_cmp_r_imm(sr, 0);
#if LOOP_OPTIMIZER
void *jp = NULL;
if (op_flags[i] & OF_BASIC_LOOP) {
// if exiting a pinned loop pinned regs must be written back to ctx
// since they are reloaded in the loop entry code
jp = tcache_ptr;
emith_jump_cond_patchable(DCOND_GT, jp); // XXX need API for JMP_POS
rcache_save_pinned();
}
#endif
if (blx_target_count < ARRAY_SIZE(blx_target_pc)) {
// exit via stub in blx table (saves some 1-3 insns in the main flow)
blx_target_pc[blx_target_count] = pc|1;
blx_target_bl[blx_target_count] = NULL;
blx_target_ptr[blx_target_count++] = tcache_ptr;
} else {
// blx table full, must inline exit code
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm_c(DCOND_LE, tmp, pc);
rcache_free_tmp(tmp);
}
emith_jump_cond_patchable(DCOND_LE, tcache_ptr);
#if LOOP_OPTIMIZER
if (op_flags[i] & OF_BASIC_LOOP)
emith_jump_patch(jp, tcache_ptr, NULL);
#endif
#if (DRC_DEBUG & 32)
// block hit counter
tmp = rcache_get_tmp_arg(0);
tmp2 = rcache_get_tmp_arg(1);
emith_move_r_ptr_imm(tmp, (uptr)entry);
emith_read_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
emith_add_r_imm(tmp2, 1);
emith_write_r_r_offs(tmp2, tmp, offsetof(struct block_entry, entry_count));
rcache_free_tmp(tmp);
rcache_free_tmp(tmp2);
#endif
#if (DRC_DEBUG & (8|256|512|1024))
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
rcache_clean();
tmp = rcache_used_hregs_mask();
emith_save_caller_regs(tmp);
emit_do_static_regs(1, 0);
rcache_get_reg_arg(2, SHR_SR, NULL);
tmp2 = rcache_get_tmp_arg(0);
tmp3 = rcache_get_tmp_arg(1);
tmp4 = rcache_get_tmp_arg(3);
emith_move_r_ptr_imm(tmp2, tcache_ptr);
emith_move_r_r_ptr(tmp3, CONTEXT_REG);
emith_move_r_imm(tmp4, pc);
emith_ctx_write(tmp4, SHR_PC * 4);
rcache_invalidate_tmp();
emith_call(sh2_drc_log_entry);
emith_restore_caller_regs(tmp);
#endif
do_host_disasm(tcache_id);
rcache_unlock_all();
}
#ifdef DRC_CMP
if (!(op_flags[i] & OF_DELAY_OP)) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
emith_sync_t(sr);
emit_move_r_imm32(SHR_PC, pc);
rcache_clean();
tmp = rcache_used_hregs_mask();
emith_save_caller_regs(tmp);
emit_do_static_regs(1, 0);
emith_pass_arg_r(0, CONTEXT_REG);
emith_call(do_sh2_cmp);
emith_restore_caller_regs(tmp);
}
#endif
emith_pool_check();
pc += 2;
if (skip_op > 0) {
skip_op--;
continue;
}
if (op_flags[i] & OF_DELAY_OP)
{
// handle delay slot dependencies
delay_dep_fw = opd->dest & ops[i-1].source;
delay_dep_bk = opd->source & ops[i-1].dest;
if (delay_dep_fw & BITMASK1(SHR_T)) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
DELAY_SAVE_T(sr);
}
if (delay_dep_bk & BITMASK1(SHR_PC)) {
if (opd->op != OP_LOAD_POOL && opd->op != OP_MOVA) {
// can only be those 2 really..
elprintf_sh2(sh2, EL_ANOMALY,
"drc: illegal slot insn %04x @ %08x?", op, pc - 2);
}
// store PC for MOVA/MOV @PC address calculation
if (opd->imm != 0)
; // case OP_BRANCH - addr already resolved in scan_block
else {
switch (ops[i-1].op) {
case OP_BRANCH:
emit_move_r_imm32(SHR_PC, ops[i-1].imm);
break;
case OP_BRANCH_CT:
case OP_BRANCH_CF:
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
emith_move_r_imm(tmp, pc);
tmp2 = emith_tst_t(sr, (ops[i-1].op == OP_BRANCH_CT));
tmp3 = emith_invert_cond(tmp2);
EMITH_SJMP_START(tmp3);
emith_move_r_imm_c(tmp2, tmp, ops[i-1].imm);
EMITH_SJMP_END(tmp3);
break;
case OP_BRANCH_N: // BT/BF known not to be taken
// XXX could modify opd->imm instead?
emit_move_r_imm32(SHR_PC, pc);
break;
// case OP_BRANCH_R OP_BRANCH_RF - PC already loaded
}
}
}
//if (delay_dep_fw & ~BITMASK1(SHR_T))
// dbg(1, "unhandled delay_dep_fw: %x", delay_dep_fw & ~BITMASK1(SHR_T));
if (delay_dep_bk & ~BITMASK2(SHR_PC, SHR_PR))
dbg(1, "unhandled delay_dep_bk: %x", delay_dep_bk);
}
// inform cache about future register usage
u32 late = 0; // regs read by future ops
u32 write = 0; // regs written to (to detect write before read)
u32 soon = 0; // regs read soon
for (v = 1; v <= 9; v++) {
// no sense in looking any further than the next rcache flush
tmp = ((op_flags[i+v] & OF_BTARGET) || (op_flags[i+v-1] & OF_DELAY_OP) ||
(OP_ISBRACND(opd[v-1].op) && !(op_flags[i+v] & OF_DELAY_OP)));
if (pc + 2*v <= end_pc && !tmp) { // (pc already incremented above)
late |= opd[v].source & ~write;
// ignore source regs after they have been written to
write |= opd[v].dest;
// regs needed in the next few instructions
if (v <= 4)
soon = late;
} else
break;
}
rcache_set_usage_now(opd[0].source); // current insn
rcache_set_usage_soon(soon); // insns 1-4
rcache_set_usage_late(late & ~soon); // insns 5-9
rcache_set_usage_discard(write & ~(late|soon|opd[0].source));
if (v <= 9)
// upcoming rcache_flush, start writing back unused dirty stuff
rcache_clean_masked(rcache_dirty_mask() & ~(write|opd[0].dest));
switch (opd->op)
{
case OP_BRANCH_N:
// never taken, just use up cycles
goto end_op;
case OP_BRANCH:
case OP_BRANCH_CT:
case OP_BRANCH_CF:
if (opd->dest & BITMASK1(SHR_PR))
emit_move_r_imm32(SHR_PR, pc + 2);
drcf.pending_branch_direct = 1;
goto end_op;
case OP_BRANCH_R:
if (opd->dest & BITMASK1(SHR_PR))
emit_move_r_imm32(SHR_PR, pc + 2);
emit_move_r_r(SHR_PC, opd->rm);
drcf.pending_branch_indirect = 1;
goto end_op;
case OP_BRANCH_RF:
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_PC, RC_GR_WRITE, NULL);
emith_move_r_imm(tmp, pc + 2);
if (opd->dest & BITMASK1(SHR_PR)) {
tmp3 = rcache_get_reg(SHR_PR, RC_GR_WRITE, NULL);
emith_move_r_r(tmp3, tmp);
}
emith_add_r_r(tmp, tmp2);
if (gconst_get(GET_Rn(), &u))
gconst_set(SHR_PC, pc + 2 + u);
drcf.pending_branch_indirect = 1;
goto end_op;
case OP_SLEEP: // SLEEP 0000000000011011
printf("TODO sleep\n");
goto end_op;
case OP_RTE: // RTE 0000000000101011
emith_invalidate_t();
// pop PC
tmp = emit_memhandler_read_rr(sh2, SHR_PC, SHR_SP, 0, 2 | MF_POSTINCR);
rcache_free(tmp);
// pop SR
tmp = emit_memhandler_read_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_POSTINCR);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_write_sr(sr, tmp);
rcache_free_tmp(tmp);
drcf.test_irq = 1;
drcf.pending_branch_indirect = 1;
goto end_op;
case OP_UNDEFINED:
elprintf_sh2(sh2, EL_ANOMALY, "drc: unhandled op %04x @ %08x", op, pc-2);
opd->imm = (op_flags[i] & OF_B_IN_DS) ? 6 : 4;
// fallthrough
case OP_TRAPA: // TRAPA #imm 11000011iiiiiiii
// push SR
tmp = rcache_get_reg_arg(1, SHR_SR, &tmp2);
emith_sync_t(tmp2);
emith_clear_msb(tmp, tmp2, 22);
emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
// push PC
if (opd->op == OP_TRAPA) {
tmp = rcache_get_tmp_arg(1);
emith_move_r_imm(tmp, pc);
} else if (drcf.pending_branch_indirect) {
tmp = rcache_get_reg_arg(1, SHR_PC, NULL);
} else {
tmp = rcache_get_tmp_arg(1);
emith_move_r_imm(tmp, pc - 2);
}
emit_memhandler_write_rr(sh2, SHR_TMP, SHR_SP, 0, 2 | MF_PREDECR);
// obtain new PC
emit_memhandler_read_rr(sh2, SHR_PC, SHR_VBR, opd->imm * 4, 2);
// indirect jump -> back to dispatcher
drcf.pending_branch_indirect = 1;
goto end_op;
case OP_LOAD_POOL:
#if PROPAGATE_CONSTANTS
if ((opd->imm && opd->imm >= base_pc && opd->imm < end_literals) ||
dr_is_rom(opd->imm))
{
if (opd->size == 2)
u = FETCH32(opd->imm);
else
u = (s16)FETCH_OP(opd->imm);
// tweak for Blackthorne: avoid stack overwriting
if (GET_Rn() == SHR_SP && u == 0x0603f800) u = 0x0603f880;
gconst_new(GET_Rn(), u);
}
else
#endif
{
if (opd->imm != 0) {
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, opd->imm);
} else {
// have to calculate read addr from PC for delay slot
tmp = rcache_get_reg_arg(0, SHR_PC, &tmp2);
if (opd->size == 2) {
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
emith_bic_r_imm(tmp, 3);
}
else
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 2);
}
tmp2 = emit_memhandler_read(opd->size);
#if REMAP_REGISTER
tmp3 = rcache_map_reg(GET_Rn(), tmp2, RC_GR_WRITE);
#else
tmp3 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
#endif
if (tmp3 != tmp2) {
emith_move_r_r(tmp3, tmp2);
rcache_free_tmp(tmp2);
}
}
goto end_op;
case OP_MOVA: // MOVA @(disp,PC),R0 11000111dddddddd
if (opd->imm != 0)
emit_move_r_imm32(SHR_R0, opd->imm);
else {
// have to calculate addr from PC for delay slot
tmp2 = rcache_get_reg(SHR_PC, RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_R0, RC_GR_WRITE, NULL);
emith_add_r_r_imm(tmp, tmp2, 2 + (op & 0xff) * 4);
emith_bic_r_imm(tmp, 3);
}
goto end_op;
}
switch ((op >> 12) & 0x0f)
{
/////////////////////////////////////////////
case 0x00:
switch (op & 0x0f)
{
case 0x02:
switch (GET_Fx())
{
case 0: // STC SR,Rn 0000nnnn00000010
tmp2 = SHR_SR;
break;
case 1: // STC GBR,Rn 0000nnnn00010010
tmp2 = SHR_GBR;
break;
case 2: // STC VBR,Rn 0000nnnn00100010
tmp2 = SHR_VBR;
break;
default:
goto default_;
}
if (tmp2 == SHR_SR) {
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_sync_t(sr);
tmp = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
emith_clear_msb(tmp, sr, 22); // reserved bits defined by ISA as 0
} else
emit_move_r_r(GET_Rn(), tmp2);
goto end_op;
case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
emit_indirect_indexed_write(sh2, GET_Rm(), SHR_R0, GET_Rn(), op & 3);
goto end_op;
case 0x07: // MUL.L Rm,Rn 0000nnnnmmmm0111
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
emith_mul(tmp3, tmp2, tmp);
goto end_op;
case 0x08:
switch (GET_Fx())
{
case 0: // CLRT 0000000000001000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_set_t(sr, 0);
break;
case 1: // SETT 0000000000011000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_set_t(sr, 1);
break;
case 2: // CLRMAC 0000000000101000
emit_move_r_imm32(SHR_MACL, 0);
emit_move_r_imm32(SHR_MACH, 0);
break;
default:
goto default_;
}
goto end_op;
case 0x09:
switch (GET_Fx())
{
case 0: // NOP 0000000000001001
break;
case 1: // DIV0U 0000000000011001
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_invalidate_t();
emith_bic_r_imm(sr, M|Q|T);
break;
case 2: // MOVT Rn 0000nnnn00101001
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_sync_t(sr);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
emith_clear_msb(tmp2, sr, 31);
break;
default:
goto default_;
}
goto end_op;
case 0x0a:
switch (GET_Fx())
{
case 0: // STS MACH,Rn 0000nnnn00001010
tmp2 = SHR_MACH;
break;
case 1: // STS MACL,Rn 0000nnnn00011010
tmp2 = SHR_MACL;
break;
case 2: // STS PR,Rn 0000nnnn00101010
tmp2 = SHR_PR;
break;
default:
goto default_;
}
emit_move_r_r(GET_Rn(), tmp2);
goto end_op;
case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
emit_indirect_indexed_read(sh2, GET_Rn(), SHR_R0, GET_Rm(), (op & 3) | drcf.polling);
goto end_op;
case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 2);
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
emith_sh2_macl(tmp3, tmp4, tmp, tmp2, sr);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x01: // MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), (op & 0x0f) * 4, 2);
goto end_op;
case 0x02:
switch (op & 0x0f)
{
case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, op & 3);
goto end_op;
case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
emit_memhandler_write_rr(sh2, GET_Rm(), GET_Rn(), 0, (op & 3) | MF_PREDECR);
goto end_op;
case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_invalidate_t();
emith_bic_r_imm(sr, M|Q|T);
emith_tst_r_imm(tmp2, (1<<31));
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, Q);
EMITH_SJMP_END(DCOND_EQ);
emith_tst_r_imm(tmp3, (1<<31));
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, M);
EMITH_SJMP_END(DCOND_EQ);
emith_teq_r_r(tmp2, tmp3);
EMITH_SJMP_START(DCOND_PL);
emith_or_r_imm_c(DCOND_MI, sr, T);
EMITH_SJMP_END(DCOND_PL);
goto end_op;
case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_clr_t_cond(sr);
emith_tst_r_r(tmp2, tmp3);
emith_set_t_cond(sr, DCOND_EQ);
goto end_op;
case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
if (GET_Rm() != GET_Rn()) {
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_and_r_r_r(tmp, tmp3, tmp2);
}
goto end_op;
case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
#if PROPAGATE_CONSTANTS
if (GET_Rn() == GET_Rm()) {
gconst_new(GET_Rn(), 0);
goto end_op;
}
#endif
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_eor_r_r_r(tmp, tmp3, tmp2);
goto end_op;
case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
if (GET_Rm() != GET_Rn()) {
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_or_r_r_r(tmp, tmp3, tmp2);
}
goto end_op;
case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
tmp = rcache_get_tmp();
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_eor_r_r_r(tmp, tmp2, tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_tst_r_imm(tmp, 0x000000ff);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0x0000ff00);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0x00ff0000);
EMITH_SJMP_START(DCOND_EQ);
emith_tst_r_imm_c(DCOND_NE, tmp, 0xff000000);
EMITH_SJMP_END(DCOND_EQ);
EMITH_SJMP_END(DCOND_EQ);
EMITH_SJMP_END(DCOND_EQ);
emith_set_t_cond(sr, DCOND_EQ);
rcache_free_tmp(tmp);
goto end_op;
case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
emith_lsr(tmp, tmp3, 16);
emith_or_r_r_lsl(tmp, tmp2, 16);
goto end_op;
case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
if (op & 1) {
emith_sext(tmp, tmp2, 16);
} else
emith_clear_msb(tmp, tmp2, 16);
tmp2 = rcache_get_tmp();
if (op & 1) {
emith_sext(tmp2, tmp3, 16);
} else
emith_clear_msb(tmp2, tmp3, 16);
emith_mul(tmp, tmp, tmp2);
rcache_free_tmp(tmp2);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x03:
switch (op & 0x0f)
{
case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
emith_clr_t_cond(sr);
emith_cmp_r_r(tmp2, tmp3);
switch (op & 0x07)
{
case 0x00: // CMP/EQ
emith_set_t_cond(sr, DCOND_EQ);
break;
case 0x02: // CMP/HS
emith_set_t_cond(sr, DCOND_HS);
break;
case 0x03: // CMP/GE
emith_set_t_cond(sr, DCOND_GE);
break;
case 0x06: // CMP/HI
emith_set_t_cond(sr, DCOND_HI);
break;
case 0x07: // CMP/GT
emith_set_t_cond(sr, DCOND_GT);
break;
}
goto end_op;
case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
// Q1 = carry(Rn = (Rn << 1) | T)
// if Q ^ M
// Q2 = carry(Rn += Rm)
// else
// Q2 = carry(Rn -= Rm)
// Q = M ^ Q1 ^ Q2
// T = (Q == M) = !(Q ^ M) = !(Q1 ^ Q2)
tmp3 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
emith_tpop_carry(sr, 0);
emith_adcf_r_r_r(tmp2, tmp, tmp);
emith_tpush_carry(sr, 0); // keep Q1 in T for now
rcache_free(tmp);
tmp4 = rcache_get_tmp();
emith_and_r_r_imm(tmp4, sr, M);
emith_eor_r_r_lsr(sr, tmp4, M_SHIFT - Q_SHIFT); // Q ^= M
rcache_free_tmp(tmp4);
// add or sub, invert T if carry to get Q1 ^ Q2
// in: (Q ^ M) passed in Q, Q1 in T
emith_sh2_div1_step(tmp2, tmp3, sr);
emith_bic_r_imm(sr, Q);
emith_tst_r_imm(sr, M);
EMITH_SJMP_START(DCOND_EQ);
emith_or_r_imm_c(DCOND_NE, sr, Q); // Q = M
EMITH_SJMP_END(DCOND_EQ);
emith_tst_r_imm(sr, T);
EMITH_SJMP_START(DCOND_EQ);
emith_eor_r_imm_c(DCOND_NE, sr, Q); // Q = M ^ Q1 ^ Q2
EMITH_SJMP_END(DCOND_EQ);
emith_eor_r_imm(sr, T); // T = !(Q1 ^ Q2)
goto end_op;
case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
emith_mul_u64(tmp3, tmp4, tmp, tmp2);
goto end_op;
case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
#if PROPAGATE_CONSTANTS
if (GET_Rn() == GET_Rm()) {
gconst_new(GET_Rn(), 0);
goto end_op;
}
#endif
case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
if (op & 4) {
emith_add_r_r_r(tmp, tmp3, tmp2);
} else
emith_sub_r_r_r(tmp, tmp3, tmp2);
goto end_op;
case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
if (op & 4) { // adc
emith_tpop_carry(sr, 0);
emith_adcf_r_r_r(tmp, tmp3, tmp2);
emith_tpush_carry(sr, 0);
} else {
emith_tpop_carry(sr, 1);
emith_sbcf_r_r_r(tmp, tmp3, tmp2);
emith_tpush_carry(sr, 1);
}
goto end_op;
case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
if (op & 4) {
emith_addf_r_r_r(tmp, tmp3, tmp2);
} else
emith_subf_r_r_r(tmp, tmp3, tmp2);
emith_set_t_cond(sr, DCOND_VS);
goto end_op;
case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_WRITE, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_WRITE, NULL);
emith_mul_s64(tmp3, tmp4, tmp, tmp2);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x04:
switch (op & 0x0f)
{
case 0x00:
switch (GET_Fx())
{
case 0: // SHLL Rn 0100nnnn00000000
case 2: // SHAL Rn 0100nnnn00100000
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_invalidate_t();
emith_lslf(tmp, tmp2, 1);
emith_carry_to_t(sr, 0);
goto end_op;
case 1: // DT Rn 0100nnnn00010000
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
#if LOOP_DETECTION
if (drcf.loop_type == OF_DELAY_LOOP) {
if (drcf.delay_reg == -1)
drcf.delay_reg = GET_Rn();
else
drcf.polling = drcf.loop_type = 0;
}
#endif
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
emith_clr_t_cond(sr);
emith_subf_r_r_imm(tmp, tmp2, 1);
emith_set_t_cond(sr, DCOND_EQ);
goto end_op;
}
goto default_;
case 0x01:
switch (GET_Fx())
{
case 0: // SHLR Rn 0100nnnn00000001
case 2: // SHAR Rn 0100nnnn00100001
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_invalidate_t();
if (op & 0x20) {
emith_asrf(tmp, tmp2, 1);
} else
emith_lsrf(tmp, tmp2, 1);
emith_carry_to_t(sr, 0);
goto end_op;
case 1: // CMP/PZ Rn 0100nnnn00010001
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_cmp_r_imm(tmp, 0);
emith_set_t_cond(sr, DCOND_GE);
goto end_op;
}
goto default_;
case 0x02:
case 0x03:
switch (op & 0x3f)
{
case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
tmp = SHR_MACH;
break;
case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
tmp = SHR_MACL;
break;
case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
tmp = SHR_PR;
break;
case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
tmp = SHR_SR;
break;
case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
tmp = SHR_GBR;
break;
case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
tmp = SHR_VBR;
break;
default:
goto default_;
}
if (tmp == SHR_SR) {
tmp3 = rcache_get_reg_arg(1, tmp, &tmp4);
emith_sync_t(tmp4);
emith_clear_msb(tmp3, tmp4, 22); // reserved bits defined by ISA as 0
} else
tmp3 = rcache_get_reg_arg(1, tmp, NULL);
emit_memhandler_write_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_PREDECR);
goto end_op;
case 0x04:
case 0x05:
switch (op & 0x3f)
{
case 0x04: // ROTL Rn 0100nnnn00000100
case 0x05: // ROTR Rn 0100nnnn00000101
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp2);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_invalidate_t();
if (op & 1) {
emith_rorf(tmp, tmp2, 1);
} else
emith_rolf(tmp, tmp2, 1);
emith_carry_to_t(sr, 0);
goto end_op;
case 0x24: // ROTCL Rn 0100nnnn00100100
case 0x25: // ROTCR Rn 0100nnnn00100101
tmp = rcache_get_reg(GET_Rn(), RC_GR_RMW, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
emith_tpop_carry(sr, 0);
if (op & 1) {
emith_rorcf(tmp);
} else
emith_rolcf(tmp);
emith_tpush_carry(sr, 0);
goto end_op;
case 0x15: // CMP/PL Rn 0100nnnn00010101
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_cmp_r_imm(tmp, 0);
emith_set_t_cond(sr, DCOND_GT);
goto end_op;
}
goto default_;
case 0x06:
case 0x07:
switch (op & 0x3f)
{
case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
tmp = SHR_MACH;
break;
case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
tmp = SHR_MACL;
break;
case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
tmp = SHR_PR;
break;
case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
tmp = SHR_SR;
break;
case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
tmp = SHR_GBR;
break;
case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
tmp = SHR_VBR;
break;
default:
goto default_;
}
if (tmp == SHR_SR) {
emith_invalidate_t();
tmp2 = emit_memhandler_read_rr(sh2, SHR_TMP, GET_Rn(), 0, 2 | MF_POSTINCR);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_write_sr(sr, tmp2);
rcache_free_tmp(tmp2);
drcf.test_irq = 1;
} else
emit_memhandler_read_rr(sh2, tmp, GET_Rn(), 0, 2 | MF_POSTINCR);
goto end_op;
case 0x08:
case 0x09:
switch (GET_Fx())
{
case 0: // SHLL2 Rn 0100nnnn00001000
// SHLR2 Rn 0100nnnn00001001
tmp = 2;
break;
case 1: // SHLL8 Rn 0100nnnn00011000
// SHLR8 Rn 0100nnnn00011001
tmp = 8;
break;
case 2: // SHLL16 Rn 0100nnnn00101000
// SHLR16 Rn 0100nnnn00101001
tmp = 16;
break;
default:
goto default_;
}
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_RMW, &tmp3);
if (op & 1) {
emith_lsr(tmp2, tmp3, tmp);
} else
emith_lsl(tmp2, tmp3, tmp);
goto end_op;
case 0x0a:
switch (GET_Fx())
{
case 0: // LDS Rm,MACH 0100mmmm00001010
tmp2 = SHR_MACH;
break;
case 1: // LDS Rm,MACL 0100mmmm00011010
tmp2 = SHR_MACL;
break;
case 2: // LDS Rm,PR 0100mmmm00101010
tmp2 = SHR_PR;
break;
default:
goto default_;
}
emit_move_r_r(tmp2, GET_Rn());
goto end_op;
case 0x0b:
switch (GET_Fx())
{
case 1: // TAS.B @Rn 0100nnnn00011011
// XXX: is TAS working on 32X?
rcache_get_reg_arg(0, GET_Rn(), NULL);
tmp = emit_memhandler_read(0);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_cmp_r_imm(tmp, 0);
emith_set_t_cond(sr, DCOND_EQ);
emith_or_r_imm(tmp, 0x80);
tmp2 = rcache_get_tmp_arg(1); // assuming it differs to tmp
emith_move_r_r(tmp2, tmp);
rcache_free_tmp(tmp);
rcache_get_reg_arg(0, GET_Rn(), NULL);
emit_memhandler_write(0);
break;
default:
goto default_;
}
goto end_op;
case 0x0e:
switch (GET_Fx())
{
case 0: // LDC Rm,SR 0100mmmm00001110
tmp2 = SHR_SR;
break;
case 1: // LDC Rm,GBR 0100mmmm00011110
tmp2 = SHR_GBR;
break;
case 2: // LDC Rm,VBR 0100mmmm00101110
tmp2 = SHR_VBR;
break;
default:
goto default_;
}
if (tmp2 == SHR_SR) {
emith_invalidate_t();
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
tmp = rcache_get_reg(GET_Rn(), RC_GR_READ, NULL);
emith_write_sr(sr, tmp);
drcf.test_irq = 1;
} else
emit_move_r_r(tmp2, GET_Rn());
goto end_op;
case 0x0f: // MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
emit_indirect_read_double(sh2, &tmp, &tmp2, GET_Rn(), GET_Rm(), 1);
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
tmp3 = rcache_get_reg(SHR_MACL, RC_GR_RMW, NULL);
tmp4 = rcache_get_reg(SHR_MACH, RC_GR_RMW, NULL);
emith_sh2_macw(tmp3, tmp4, tmp, tmp2, sr);
rcache_free_tmp(tmp2);
rcache_free_tmp(tmp);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x05: // MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), (op & 0x0f) * 4, 2 | drcf.polling);
goto end_op;
/////////////////////////////////////////////
case 0x06:
switch (op & 0x0f)
{
case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
tmp = ((op & 7) >= 4 && GET_Rn() != GET_Rm()) ? MF_POSTINCR : drcf.polling;
emit_memhandler_read_rr(sh2, GET_Rn(), GET_Rm(), 0, (op & 3) | tmp);
goto end_op;
case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
emit_move_r_r(GET_Rn(), GET_Rm());
goto end_op;
case 0x07 ... 0x0f:
tmp = rcache_get_reg(GET_Rm(), RC_GR_READ, NULL);
tmp2 = rcache_get_reg(GET_Rn(), RC_GR_WRITE, NULL);
switch (op & 0x0f)
{
case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
emith_mvn_r_r(tmp2, tmp);
break;
case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
tmp3 = tmp2;
if (tmp == tmp2)
tmp3 = rcache_get_tmp();
tmp4 = rcache_get_tmp();
emith_lsr(tmp3, tmp, 16);
emith_or_r_r_lsl(tmp3, tmp, 24);
emith_and_r_r_imm(tmp4, tmp, 0xff00);
emith_or_r_r_lsl(tmp3, tmp4, 8);
emith_rol(tmp2, tmp3, 16);
rcache_free_tmp(tmp4);
if (tmp == tmp2)
rcache_free_tmp(tmp3);
break;
case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
emith_rol(tmp2, tmp, 16);
break;
case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_sync_t(sr);
emith_tpop_carry(sr, 1);
emith_negcf_r_r(tmp2, tmp);
emith_tpush_carry(sr, 1);
break;
case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
emith_neg_r_r(tmp2, tmp);
break;
case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
emith_clear_msb(tmp2, tmp, 24);
break;
case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
emith_clear_msb(tmp2, tmp, 16);
break;
case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
emith_sext(tmp2, tmp, 8);
break;
case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
emith_sext(tmp2, tmp, 16);
break;
}
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x07: // ADD #imm,Rn 0111nnnniiiiiiii
if (op & 0x80) // adding negative
emit_sub_r_imm(GET_Rn(), (u8)-op);
else
emit_add_r_imm(GET_Rn(), (u8)op);
goto end_op;
/////////////////////////////////////////////
case 0x08:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
tmp = (op & 0x100) >> 8;
emit_memhandler_write_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp);
goto end_op;
case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
tmp = (op & 0x100) >> 8;
emit_memhandler_read_rr(sh2, SHR_R0, GET_Rm(), (op & 0x0f) << tmp, tmp | drcf.polling);
goto end_op;
case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
tmp2 = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_cmp_r_imm(tmp2, (s8)(op & 0xff));
emith_set_t_cond(sr, DCOND_EQ);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x0c:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
tmp = (op & 0x300) >> 8;
emit_memhandler_write_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp);
goto end_op;
case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
tmp = (op & 0x300) >> 8;
emit_memhandler_read_rr(sh2, SHR_R0, SHR_GBR, (op & 0xff) << tmp, tmp | drcf.polling);
goto end_op;
case 0x0800: // TST #imm,R0 11001000iiiiiiii
tmp = rcache_get_reg(SHR_R0, RC_GR_READ, NULL);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_tst_r_imm(tmp, op & 0xff);
emith_set_t_cond(sr, DCOND_EQ);
goto end_op;
case 0x0900: // AND #imm,R0 11001001iiiiiiii
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_and_r_r_imm(tmp, tmp2, (op & 0xff));
goto end_op;
case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
if (op & 0xff) {
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_eor_r_r_imm(tmp, tmp2, (op & 0xff));
}
goto end_op;
case 0x0b00: // OR #imm,R0 11001011iiiiiiii
if (op & 0xff) {
tmp = rcache_get_reg(SHR_R0, RC_GR_RMW, &tmp2);
emith_or_r_r_imm(tmp, tmp2, (op & 0xff));
}
goto end_op;
case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0 | drcf.polling);
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_clr_t_cond(sr);
emith_tst_r_imm(tmp, op & 0xff);
emith_set_t_cond(sr, DCOND_EQ);
rcache_free_tmp(tmp);
goto end_op;
case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_and_r_r_imm(tmp2, tmp, (op & 0xff));
goto end_rmw_op;
case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_eor_r_r_imm(tmp2, tmp, (op & 0xff));
goto end_rmw_op;
case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
tmp = emit_indirect_indexed_read(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
tmp2 = rcache_get_tmp_arg(1);
emith_or_r_r_imm(tmp2, tmp, (op & 0xff));
end_rmw_op:
rcache_free_tmp(tmp);
emit_indirect_indexed_write(sh2, SHR_TMP, SHR_R0, SHR_GBR, 0);
goto end_op;
}
goto default_;
/////////////////////////////////////////////
case 0x0e: // MOV #imm,Rn 1110nnnniiiiiiii
emit_move_r_imm32(GET_Rn(), (s8)op);
goto end_op;
default:
default_:
if (!(op_flags[i] & OF_B_IN_DS)) {
elprintf_sh2(sh2, EL_ANOMALY,
"drc: illegal op %04x @ %08x", op, pc - 2);
exit(1);
}
}
end_op:
rcache_unlock_all();
rcache_set_usage_now(0);
#if DRC_DEBUG & 64
RCACHE_CHECK("after insn");
#endif
cycles += opd->cycles;
if (op_flags[i+1] & OF_DELAY_OP) {
do_host_disasm(tcache_id);
continue;
}
// test irq?
if (drcf.test_irq && !drcf.pending_branch_direct) {
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
emith_sync_t(sr);
if (!drcf.pending_branch_indirect)
emit_move_r_imm32(SHR_PC, pc);
rcache_flush();
emith_call(sh2_drc_test_irq);
drcf.test_irq = 0;
}
// branch handling
if (drcf.pending_branch_direct)
{
struct op_data *opd_b = (op_flags[i] & OF_DELAY_OP) ? opd-1 : opd;
u32 target_pc = opd_b->imm;
int cond = -1;
int ctaken = 0;
void *target = NULL;
if (OP_ISBRACND(opd_b->op))
ctaken = (op_flags[i] & OF_DELAY_OP) ? 1 : 2;
cycles += ctaken; // assume branch taken
#if LOOP_OPTIMIZER
if ((drcf.loop_type == OF_IDLE_LOOP ||
(drcf.loop_type == OF_DELAY_LOOP && drcf.delay_reg >= 0)))
{
// idle or delay loop
emit_sync_t_to_sr();
emith_sh2_delay_loop(cycles, drcf.delay_reg);
rcache_unlock_all(); // may lock delay_reg
drcf.polling = drcf.loop_type = 0;
}
#endif
#if CALL_STACK
void *rtsadd = NULL, *rtsret = NULL;
if ((opd_b->dest & BITMASK1(SHR_PR)) && pc+2 < end_pc) {
// BSR - save rts data
tmp = rcache_get_tmp_arg(1);
rtsadd = tcache_ptr;
emith_move_r_imm_s8_patchable(tmp, 0);
rcache_clean_tmp();
rcache_invalidate_tmp();
emith_call(sh2_drc_dispatcher_call);
rtsret = tcache_ptr;
}
#endif
// XXX move below cond test if not changing host cond (MIPS delay slot)?
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
rcache_clean();
if (OP_ISBRACND(opd_b->op)) {
// BT[S], BF[S] - emit condition test
cond = (opd_b->op == OP_BRANCH_CF) ? DCOND_EQ : DCOND_NE;
if (delay_dep_fw & BITMASK1(SHR_T)) {
emith_sync_t(sr);
emith_tst_r_imm(sr, T_save);
} else {
cond = emith_tst_t(sr, (opd_b->op == OP_BRANCH_CT));
if (emith_get_t_cond() >= 0) {
if (opd_b->op == OP_BRANCH_CT)
emith_or_r_imm_c(cond, sr, T);
else
emith_bic_r_imm_c(cond, sr, T);
}
}
} else
emith_sync_t(sr);
// no modification of host status/flags between here and branching!
v = find_in_sorted_array(branch_target_pc, branch_target_count, target_pc);
if (v >= 0)
{
// local branch
if (branch_target_ptr[v]) {
// local backward jump, link here now since host PC is already known
target = branch_target_ptr[v];
#if LOOP_OPTIMIZER
if (pinned_loop_pc[pinned_loop_count] == target_pc) {
// backward jump at end of optimized loop
rcache_unpin_all();
target = pinned_loop_ptr[pinned_loop_count];
pinned_loop_count ++;
}
#endif
if (cond != -1)
emith_jump_cond(cond, target);
else {
emith_jump(target);
rcache_invalidate();
}
} else if (branch_patch_count < MAX_LOCAL_BRANCHES) {
// local forward jump
target = tcache_ptr;
branch_patch_pc[branch_patch_count] = target_pc;
branch_patch_ptr[branch_patch_count] = target;
branch_patch_count++;
if (cond != -1)
emith_jump_cond_patchable(cond, target);
else {
emith_jump_patchable(target);
rcache_invalidate();
}
} else
dbg(1, "warning: too many local branches");
}
if (target == NULL)
{
// can't resolve branch locally, make a block exit
bl = dr_prepare_ext_branch(block->entryp, target_pc, sh2->is_slave, tcache_id);
if (cond != -1) {
#if 1
if (bl && blx_target_count < ARRAY_SIZE(blx_target_pc)) {
// conditional jumps get a blx stub for the far jump
blx_target_pc[blx_target_count] = target_pc;
blx_target_bl[blx_target_count] = bl;
blx_target_ptr[blx_target_count++] = tcache_ptr;
bl->type = BL_JCCBLX;
target = tcache_ptr;
emith_jump_cond_patchable(cond, target);
} else {
// not linkable, or blx table full; inline jump @dispatcher
EMITH_JMP_START(emith_invert_cond(cond));
if (bl) {
bl->jump = tcache_ptr;
bl->type = BL_LDJMP;
}
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, target_pc);
rcache_free_tmp(tmp);
target = sh2_drc_dispatcher;
emith_jump_patchable(target);
EMITH_JMP_END(emith_invert_cond(cond));
}
#else
// jump @dispatcher - ARM 32bit version with conditional execution
EMITH_SJMP_START(emith_invert_cond(cond));
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm_c(cond, tmp, target_pc);
rcache_free_tmp(tmp);
target = sh2_drc_dispatcher;
if (bl) {
bl->jump = tcache_ptr;
bl->type = BL_JMP;
}
emith_jump_cond_patchable(cond, target);
EMITH_SJMP_END(emith_invert_cond(cond));
#endif
} else {
// unconditional, has the far jump inlined
if (bl) {
emith_flush(); // flush to inhibit insn swapping
bl->type = BL_LDJMP;
}
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, target_pc);
rcache_free_tmp(tmp);
target = sh2_drc_dispatcher;
emith_jump_patchable(target);
rcache_invalidate();
}
}
#if CALL_STACK
if (rtsadd)
emith_move_r_imm_s8_patch(rtsadd, tcache_ptr - (u8 *)rtsret);
#endif
// branch not taken, correct cycle count
if (ctaken)
emith_add_r_imm(sr, ctaken << 12);
// set T bit to reflect branch not taken for OP_BRANCH_CT/CF
if (emith_get_t_cond() >= 0) // T is synced for all other cases
emith_set_t(sr, opd_b->op == OP_BRANCH_CF);
drcf.pending_branch_direct = 0;
if (target_pc >= base_pc && target_pc < pc)
drcf.polling = drcf.loop_type = 0;
}
else if (drcf.pending_branch_indirect) {
u32 target_pc;
tmp = rcache_get_reg_arg(0, SHR_PC, NULL);
#if CALL_STACK
struct op_data *opd_b = (op_flags[i] & OF_DELAY_OP) ? opd-1 : opd;
void *rtsadd = NULL, *rtsret = NULL;
if ((opd_b->dest & BITMASK1(SHR_PR)) && pc+2 < end_pc) {
// JSR, BSRF - save rts data
tmp = rcache_get_tmp_arg(1);
rtsadd = tcache_ptr;
emith_move_r_imm_s8_patchable(tmp, 0);
rcache_clean_tmp();
rcache_invalidate_tmp();
emith_call(sh2_drc_dispatcher_call);
rtsret = tcache_ptr;
}
#endif
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(sr);
emith_sync_t(sr);
rcache_clean();
#if CALL_STACK
if (opd_b->rm == SHR_PR) {
// RTS - restore rts data, else jump to dispatcher
emith_jump(sh2_drc_dispatcher_return);
} else
#endif
if (gconst_get(SHR_PC, &target_pc)) {
// JMP, JSR, BRAF, BSRF const - treat like unconditional direct branch
bl = dr_prepare_ext_branch(block->entryp, target_pc, sh2->is_slave, tcache_id);
if (bl) // pc already loaded somewhere else, can patch jump only
bl->type = BL_JMP;
emith_jump_patchable(sh2_drc_dispatcher);
} else {
// JMP, JSR, BRAF, BSRF not const
emith_jump(sh2_drc_dispatcher);
}
rcache_invalidate();
#if CALL_STACK
if (rtsadd)
emith_move_r_imm_s8_patch(rtsadd, tcache_ptr - (u8 *)rtsret);
#endif
drcf.pending_branch_indirect = 0;
drcf.polling = drcf.loop_type = 0;
}
rcache_unlock_all();
do_host_disasm(tcache_id);
}
// check the last op
if (op_flags[i-1] & OF_DELAY_OP)
opd = &ops[i-2];
else
opd = &ops[i-1];
if (! OP_ISBRAUC(opd->op))
{
tmp = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
FLUSH_CYCLES(tmp);
emith_sync_t(tmp);
rcache_clean();
bl = dr_prepare_ext_branch(block->entryp, pc, sh2->is_slave, tcache_id);
if (bl) {
emith_flush(); // flush to inhibit insn swapping
bl->type = BL_LDJMP;
}
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, pc);
emith_jump_patchable(sh2_drc_dispatcher);
rcache_invalidate();
} else
rcache_flush();
// emit blx area
for (i = 0; i < blx_target_count; i++) {
void *target = (blx_target_pc[i] & 1 ? sh2_drc_exit : sh2_drc_dispatcher);
emith_pool_check();
bl = blx_target_bl[i];
if (bl)
bl->blx = tcache_ptr;
emith_jump_patch(blx_target_ptr[i], tcache_ptr, NULL);
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, blx_target_pc[i] & ~1);
emith_jump(target);
rcache_invalidate();
}
emith_flush();
do_host_disasm(tcache_id);
emith_pool_commit(0);
// link local branches
for (i = 0; i < branch_patch_count; i++) {
void *target;
int t;
t = find_in_sorted_array(branch_target_pc, branch_target_count, branch_patch_pc[i]);
target = branch_target_ptr[t];
if (target == NULL) {
// flush pc and go back to dispatcher (this should no longer happen)
dbg(1, "stray branch to %08x %p", branch_patch_pc[i], tcache_ptr);
target = tcache_ptr;
tmp = rcache_get_tmp_arg(0);
emith_move_r_imm(tmp, branch_patch_pc[i]);
emith_jump(sh2_drc_dispatcher);
rcache_flush();
}
emith_jump_patch(branch_patch_ptr[i], target, NULL);
}
// fill blx backup; do this last to backup final patched code
for (i = 0; i < block->entry_count; i++)
for (bl = block->entryp[i].o_links; bl; bl = bl->o_next)
memcpy(bl->jdisp, bl->blx ?: bl->jump, emith_jump_at_size());
tcache_ptrs[tcache_id] = tcache_ptr;
host_instructions_updated(block_entry_ptr, tcache_ptr);
dr_activate_block(block, tcache_id, sh2->is_slave);
emith_update_cache();
do_host_disasm(tcache_id);
dbg(2, " block #%d,%d -> %p tcache %d/%d, insns %d -> %d %.3f",
tcache_id, blkid_main, tcache_ptr,
tcache_ptr - tcache_bases[tcache_id], tcache_sizes[tcache_id],
insns_compiled, host_insn_count, (float)host_insn_count / insns_compiled);
if ((sh2->pc & 0xc6000000) == 0x02000000) { // ROM
dbg(2, " hash collisions %d/%d", hash_collisions, block_counts[tcache_id]);
Pico32x.emu_flags |= P32XF_DRC_ROM_C;
}
/*
printf("~~~\n");
tcache_dsm_ptrs[tcache_id] = block_entry_ptr;
do_host_disasm(tcache_id);
printf("~~~\n");
*/
#if (DRC_DEBUG)
fflush(stdout);
#endif
return block_entry_ptr;
}
static void sh2_generate_utils(void)
{
int arg0, arg1, arg2, arg3, sr, tmp, tmp2;
#if DRC_DEBUG
int hic = host_insn_count; // don't count utils for insn statistics
#endif
host_arg2reg(arg0, 0);
host_arg2reg(arg1, 1);
host_arg2reg(arg2, 2);
host_arg2reg(arg3, 3);
emith_move_r_r(arg0, arg0); // nop
emith_move_r_r(arg1, arg1); // nop
emith_move_r_r(arg2, arg2); // nop
emith_move_r_r(arg3, arg3); // nop
emith_flush();
// sh2_drc_write8(u32 a, u32 d)
sh2_drc_write8 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write8_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
emith_flush();
// sh2_drc_write16(u32 a, u32 d)
sh2_drc_write16 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write16_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
emith_flush();
// sh2_drc_write32(u32 a, u32 d)
sh2_drc_write32 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg2, offsetof(SH2, write32_tab));
emith_sh2_wcall(arg0, arg1, arg2, arg3);
emith_flush();
// d = sh2_drc_read8(u32 a)
sh2_drc_read8 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read8_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_eor_r_imm_ptr_c(DCOND_CC, arg0, 1);
emith_read8s_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
emith_flush();
// d = sh2_drc_read16(u32 a)
sh2_drc_read16 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read16_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_read16s_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
emith_flush();
// d = sh2_drc_read32(u32 a)
sh2_drc_read32 = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read32_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CS);
emith_and_r_r_c(DCOND_CC, arg0, arg3);
emith_read_r_r_r_c(DCOND_CC, RET_REG, arg2, arg0);
emith_ror_c(DCOND_CC, RET_REG, RET_REG, 16);
emith_ret_c(DCOND_CC);
EMITH_SJMP_END(DCOND_CS);
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_jump_reg(arg2);
emith_flush();
// d = sh2_drc_read8_poll(u32 a)
sh2_drc_read8_poll = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read8_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CC);
emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
emith_jump_reg_c(DCOND_CS, arg2);
EMITH_SJMP_END(DCOND_CC);
emith_and_r_r_r(arg1, arg0, arg3);
emith_eor_r_imm_ptr(arg1, 1);
emith_read8s_r_r_r(arg1, arg2, arg1);
emith_push_ret(arg1);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
emith_call(p32x_sh2_poll_memory8);
emith_pop_and_ret(arg1);
emith_flush();
// d = sh2_drc_read16_poll(u32 a)
sh2_drc_read16_poll = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read16_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CC);
emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
emith_jump_reg_c(DCOND_CS, arg2);
EMITH_SJMP_END(DCOND_CC);
emith_and_r_r_r(arg1, arg0, arg3);
emith_read16s_r_r_r(arg1, arg2, arg1);
emith_push_ret(arg1);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
emith_call(p32x_sh2_poll_memory16);
emith_pop_and_ret(arg1);
emith_flush();
// d = sh2_drc_read32_poll(u32 a)
sh2_drc_read32_poll = (void *)tcache_ptr;
emith_ctx_read_ptr(arg1, offsetof(SH2, read32_map));
emith_sh2_rcall(arg0, arg1, arg2, arg3);
EMITH_SJMP_START(DCOND_CC);
emith_move_r_r_ptr_c(DCOND_CS, arg1, CONTEXT_REG);
emith_jump_reg_c(DCOND_CS, arg2);
EMITH_SJMP_END(DCOND_CC);
emith_and_r_r_r(arg1, arg0, arg3);
emith_read_r_r_r(arg1, arg2, arg1);
emith_ror(arg1, arg1, 16);
emith_push_ret(arg1);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
emith_call(p32x_sh2_poll_memory32);
emith_pop_and_ret(arg1);
emith_flush();
// sh2_drc_exit(u32 pc)
sh2_drc_exit = (void *)tcache_ptr;
emith_ctx_write(arg0, SHR_PC * 4);
emit_do_static_regs(1, arg2);
emith_sh2_drc_exit();
emith_flush();
// sh2_drc_dispatcher(u32 pc)
sh2_drc_dispatcher = (void *)tcache_ptr;
emith_ctx_write(arg0, SHR_PC * 4);
#if BRANCH_CACHE
// check if PC is in branch target cache
emith_and_r_r_imm(arg1, arg0, (ARRAY_SIZE(sh2s->branch_cache)-1)*8);
emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 1 : 0);
emith_read_r_r_offs(arg2, arg1, offsetof(SH2, branch_cache));
emith_cmp_r_r(arg2, arg0);
EMITH_SJMP_START(DCOND_NE);
#if (DRC_DEBUG & 128)
emith_move_r_ptr_imm(arg2, (uptr)&bchit);
emith_read_r_r_offs_c(DCOND_EQ, arg3, arg2, 0);
emith_add_r_imm_c(DCOND_EQ, arg3, 1);
emith_write_r_r_offs_c(DCOND_EQ, arg3, arg2, 0);
#endif
emith_read_r_r_offs_ptr_c(DCOND_EQ, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
emith_jump_reg_c(DCOND_EQ, RET_REG);
EMITH_SJMP_END(DCOND_NE);
#endif
emith_move_r_r_ptr(arg1, CONTEXT_REG);
emith_add_r_r_ptr_imm(arg2, CONTEXT_REG, offsetof(SH2, drc_tmp));
emith_call(dr_lookup_block);
// store PC and block entry ptr (in arg0) in branch target cache
emith_tst_r_r_ptr(RET_REG, RET_REG);
EMITH_SJMP_START(DCOND_EQ);
#if BRANCH_CACHE
#if (DRC_DEBUG & 128)
emith_move_r_ptr_imm(arg2, (uptr)&bcmiss);
emith_read_r_r_offs_c(DCOND_NE, arg3, arg2, 0);
emith_add_r_imm_c(DCOND_NE, arg3, 1);
emith_write_r_r_offs_c(DCOND_NE, arg3, arg2, 0);
#endif
emith_ctx_read_c(DCOND_NE, arg2, SHR_PC * 4);
emith_and_r_r_imm(arg1, arg2, (ARRAY_SIZE(sh2s->branch_cache)-1)*8);
emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg1, sizeof(void *) == 8 ? 1 : 0);
emith_write_r_r_offs_c(DCOND_NE, arg2, arg1, offsetof(SH2, branch_cache));
emith_write_r_r_offs_ptr_c(DCOND_NE, RET_REG, arg1, offsetof(SH2, branch_cache) + sizeof(void *));
#endif
emith_jump_reg_c(DCOND_NE, RET_REG);
EMITH_SJMP_END(DCOND_EQ);
// lookup failed, call sh2_translate()
emith_move_r_r_ptr(arg0, CONTEXT_REG);
emith_ctx_read(arg1, offsetof(SH2, drc_tmp)); // tcache_id
emith_call(sh2_translate);
/* just after lookup function, jump to address returned */
emith_tst_r_r_ptr(RET_REG, RET_REG);
EMITH_SJMP_START(DCOND_EQ);
emith_jump_reg_c(DCOND_NE, RET_REG);
EMITH_SJMP_END(DCOND_EQ);
// XXX: can't translate, fail
emith_call(dr_failure);
emith_flush();
#if CALL_STACK
// pc = sh2_drc_dispatcher_call(u32 pc)
sh2_drc_dispatcher_call = (void *)tcache_ptr;
emith_ctx_read(arg2, offsetof(SH2, rts_cache_idx));
emith_add_r_imm(arg2, 2*sizeof(void *));
emith_and_r_imm(arg2, (ARRAY_SIZE(sh2s->rts_cache)-1) * 2*sizeof(void *));
emith_ctx_write(arg2, offsetof(SH2, rts_cache_idx));
emith_add_r_r_r_lsl_ptr(arg2, CONTEXT_REG, arg2, 0);
emith_ctx_read(arg3, SHR_PR * 4);
emith_add_r_ret(arg1);
emith_write_r_r_offs_ptr(arg1, arg2, offsetof(SH2, rts_cache)+sizeof(void *));
emith_write_r_r_offs(arg3, arg2, offsetof(SH2, rts_cache));
emith_ret();
emith_flush();
// sh2_drc_dispatcher_return(u32 pc)
sh2_drc_dispatcher_return = (void *)tcache_ptr;
emith_ctx_read(arg2, offsetof(SH2, rts_cache_idx));
emith_add_r_r_r_lsl_ptr(arg1, CONTEXT_REG, arg2, 0);
emith_read_r_r_offs(arg3, arg1, offsetof(SH2, rts_cache));
emith_cmp_r_r(arg0, arg3);
#if (DRC_DEBUG & 128)
EMITH_SJMP_START(DCOND_EQ);
emith_move_r_ptr_imm(arg3, (uptr)&rcmiss);
emith_read_r_r_offs_c(DCOND_NE, arg1, arg3, 0);
emith_add_r_imm_c(DCOND_NE, arg1, 1);
emith_write_r_r_offs_c(DCOND_NE, arg1, arg3, 0);
EMITH_SJMP_END(DCOND_EQ);
#endif
emith_jump_cond(DCOND_NE, sh2_drc_dispatcher);
emith_read_r_r_offs_ptr(arg0, arg1, offsetof(SH2, rts_cache) + sizeof(void *));
emith_sub_r_imm(arg2, 2*sizeof(void *));
emith_and_r_imm(arg2, (ARRAY_SIZE(sh2s->rts_cache)-1) * 2*sizeof(void *));
emith_ctx_write(arg2, offsetof(SH2, rts_cache_idx));
#if (DRC_DEBUG & 128)
emith_move_r_ptr_imm(arg3, (uptr)&rchit);
emith_read_r_r_offs(arg1, arg3, 0);
emith_add_r_imm(arg1, 1);
emith_write_r_r_offs(arg1, arg3, 0);
#endif
emith_jump_reg(arg0);
emith_flush();
#endif
// sh2_drc_test_irq(void)
// assumes it's called from main function (may jump to dispatcher)
sh2_drc_test_irq = (void *)tcache_ptr;
emith_ctx_read(arg1, offsetof(SH2, pending_level));
sr = rcache_get_reg(SHR_SR, RC_GR_READ, NULL);
emith_lsr(arg0, sr, I_SHIFT);
emith_and_r_imm(arg0, 0x0f);
emith_cmp_r_r(arg1, arg0); // pending_level > ((sr >> 4) & 0x0f)?
EMITH_SJMP_START(DCOND_GT);
emith_ret_c(DCOND_LE); // nope, return
EMITH_SJMP_END(DCOND_GT);
// adjust SP
tmp = rcache_get_reg(SHR_SP, RC_GR_RMW, NULL);
emith_sub_r_imm(tmp, 4*2);
rcache_clean();
// push SR
tmp = rcache_get_reg_arg(0, SHR_SP,&tmp2);
emith_add_r_r_imm(tmp, tmp2, 4);
tmp = rcache_get_reg_arg(1, SHR_SR, NULL);
emith_clear_msb(tmp, tmp, 22);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
rcache_invalidate_tmp();
emith_call(p32x_sh2_write32); // XXX: use sh2_drc_write32?
// push PC
rcache_get_reg_arg(0, SHR_SP, NULL);
emith_ctx_read(arg1, SHR_PC * 4);
emith_move_r_r_ptr(arg2, CONTEXT_REG);
rcache_invalidate_tmp();
emith_call(p32x_sh2_write32);
// update I, cycles, do callback
emith_ctx_read(arg1, offsetof(SH2, pending_level));
sr = rcache_get_reg(SHR_SR, RC_GR_RMW, NULL);
emith_bic_r_imm(sr, I);
emith_or_r_r_lsl(sr, arg1, I_SHIFT);
emith_sub_r_imm(sr, 13 << 12); // at least 13 cycles
rcache_flush();
emith_move_r_r_ptr(arg0, CONTEXT_REG);
emith_call_ctx(offsetof(SH2, irq_callback)); // vector = sh2->irq_callback(sh2, level);
// obtain new PC
emith_ctx_read(arg1, SHR_VBR * 4);
emith_add_r_r_r_lsl(arg0, arg1, RET_REG, 2);
emith_call(sh2_drc_read32);
if (arg0 != RET_REG)
emith_move_r_r(arg0, RET_REG);
emith_call_cleanup();
rcache_invalidate();
emith_jump(sh2_drc_dispatcher);
emith_flush();
// sh2_drc_entry(SH2 *sh2)
sh2_drc_entry = (void *)tcache_ptr;
emith_sh2_drc_entry();
emith_move_r_r_ptr(CONTEXT_REG, arg0); // move ctx, arg0
emit_do_static_regs(0, arg2);
emith_call(sh2_drc_test_irq);
emith_ctx_read(arg0, SHR_PC * 4);
emith_jump(sh2_drc_dispatcher);
emith_flush();
#ifdef PDB_NET
// debug
#define MAKE_READ_WRAPPER(func) { \
void *tmp = (void *)tcache_ptr; \
emith_push_ret(); \
emith_call(func); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_addf_r_r(arg2, arg0); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_adc_r_imm(arg2, 0x01000000); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_pop_and_ret(); \
emith_flush(); \
func = tmp; \
}
#define MAKE_WRITE_WRAPPER(func) { \
void *tmp = (void *)tcache_ptr; \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_addf_r_r(arg2, arg1); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[0])); \
emith_ctx_read(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_adc_r_imm(arg2, 0x01000000); \
emith_ctx_write(arg2, offsetof(SH2, pdb_io_csum[1])); \
emith_move_r_r_ptr(arg2, CONTEXT_REG); \
emith_jump(func); \
emith_flush(); \
func = tmp; \
}
MAKE_READ_WRAPPER(sh2_drc_read8);
MAKE_READ_WRAPPER(sh2_drc_read16);
MAKE_READ_WRAPPER(sh2_drc_read32);
MAKE_WRITE_WRAPPER(sh2_drc_write8);
MAKE_WRITE_WRAPPER(sh2_drc_write16);
MAKE_WRITE_WRAPPER(sh2_drc_write32);
MAKE_READ_WRAPPER(sh2_drc_read8_poll);
MAKE_READ_WRAPPER(sh2_drc_read16_poll);
MAKE_READ_WRAPPER(sh2_drc_read32_poll);
#endif
emith_pool_commit(0);
rcache_invalidate();
#if (DRC_DEBUG & 4)
host_dasm_new_symbol(sh2_drc_entry);
host_dasm_new_symbol(sh2_drc_dispatcher);
#if CALL_STACK
host_dasm_new_symbol(sh2_drc_dispatcher_call);
host_dasm_new_symbol(sh2_drc_dispatcher_return);
#endif
host_dasm_new_symbol(sh2_drc_exit);
host_dasm_new_symbol(sh2_drc_test_irq);
host_dasm_new_symbol(sh2_drc_write8);
host_dasm_new_symbol(sh2_drc_write16);
host_dasm_new_symbol(sh2_drc_write32);
host_dasm_new_symbol(sh2_drc_read8);
host_dasm_new_symbol(sh2_drc_read16);
host_dasm_new_symbol(sh2_drc_read32);
host_dasm_new_symbol(sh2_drc_read8_poll);
host_dasm_new_symbol(sh2_drc_read16_poll);
host_dasm_new_symbol(sh2_drc_read32_poll);
#endif
#if DRC_DEBUG
host_insn_count = hic;
#endif
}
static void sh2_smc_rm_block_entry(struct block_desc *bd, int tcache_id, u32 nolit, int free)
{
struct block_link *bl;
u32 i;
free = free || nolit; // block is invalid if literals are overwritten
dbg(2," %sing block %08x-%08x,%08x-%08x, blkid %d,%d", free?"delet":"disabl",
bd->addr, bd->addr + bd->size, bd->addr_lit, bd->addr_lit + bd->size_lit,
tcache_id, bd - block_tables[tcache_id]);
if (bd->addr == 0 || bd->entry_count == 0) {
dbg(1, " killing dead block!? %08x", bd->addr);
return;
}
#if LINK_BRANCHES
// remove from hash table, make incoming links unresolved
if (bd->active) {
for (i = 0; i < bd->entry_count; i++) {
rm_from_hashlist(&bd->entryp[i], tcache_id);
while ((bl = bd->entryp[i].links) != NULL) {
dr_block_unlink(bl, 1);
add_to_hashlist_unresolved(bl, tcache_id);
}
}
dr_mark_memory(-1, bd, tcache_id, nolit);
add_to_block_list(&inactive_blocks[tcache_id], bd);
}
bd->active = 0;
#endif
if (free) {
#if LINK_BRANCHES
// revoke outgoing links
for (bl = bd->entryp[0].o_links; bl != NULL; bl = bl->o_next) {
if (bl->target)
dr_block_unlink(bl, 0);
else
rm_from_hashlist_unresolved(bl, tcache_id);
bl->jump = NULL;
bl->next = blink_free[bl->tcache_id];
blink_free[bl->tcache_id] = bl;
}
bd->entryp[0].o_links = NULL;
#endif
// invalidate block
rm_from_block_lists(bd);
bd->addr = bd->size = bd->addr_lit = bd->size_lit = 0;
bd->entry_count = 0;
}
emith_update_cache();
}
static void sh2_smc_rm_blocks(u32 a, int tcache_id, u32 shift)
{
struct block_list **blist, *entry, *next;
u32 mask = RAM_SIZE(tcache_id) - 1;
u32 wtmask = ~0x20000000; // writethrough area mask
u32 start_addr, end_addr;
u32 start_lit, end_lit;
struct block_desc *block;
#if (DRC_DEBUG & 2)
int removed = 0;
#endif
// ignore cache-through
a &= wtmask;
blist = &inval_lookup[tcache_id][(a & mask) / INVAL_PAGE_SIZE];
entry = *blist;
// go through the block list for this range
while (entry != NULL) {
next = entry->next;
block = entry->block;
start_addr = block->addr & wtmask;
end_addr = start_addr + block->size;
start_lit = block->addr_lit & wtmask;
end_lit = start_lit + block->size_lit;
// disable/delete block if it covers the modified address
if ((start_addr <= a && a < end_addr) ||
(start_lit <= a && a < end_lit))
{
dbg(2, "smc remove @%08x", a);
end_addr = (start_lit <= a && block->size_lit ? a : 0);
sh2_smc_rm_block_entry(block, tcache_id, end_addr, 0);
#if (DRC_DEBUG & 2)
removed = 1;
#endif
}
entry = next;
}
#if (DRC_DEBUG & 2)
if (!removed)
dbg(2, "rm_blocks called @%08x, no work?", a);
#endif
#if BRANCH_CACHE
if (tcache_id)
memset32(sh2s[tcache_id-1].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
else {
memset32(sh2s[0].branch_cache, -1, sizeof(sh2s[0].branch_cache)/4);
memset32(sh2s[1].branch_cache, -1, sizeof(sh2s[1].branch_cache)/4);
}
#endif
#if CALL_STACK
if (tcache_id) {
memset32(sh2s[tcache_id-1].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
sh2s[tcache_id-1].rts_cache_idx = 0;
} else {
memset32(sh2s[0].rts_cache, -1, sizeof(sh2s[0].rts_cache)/4);
memset32(sh2s[1].rts_cache, -1, sizeof(sh2s[1].rts_cache)/4);
sh2s[0].rts_cache_idx = sh2s[1].rts_cache_idx = 0;
}
#endif
}
void sh2_drc_wcheck_ram(unsigned int a, int val, SH2 *sh2)
{
dbg(2, "%csh2 smc check @%08x v=%d", sh2->is_slave ? 's' : 'm', a, val);
sh2_smc_rm_blocks(a, 0, SH2_DRCBLK_RAM_SHIFT);
}
void sh2_drc_wcheck_da(unsigned int a, int val, SH2 *sh2)
{
int cpuid = sh2->is_slave;
dbg(2, "%csh2 smc check @%08x v=%d", cpuid ? 's' : 'm', a, val);
sh2_smc_rm_blocks(a, 1 + cpuid, SH2_DRCBLK_DA_SHIFT);
}
int sh2_execute_drc(SH2 *sh2c, int cycles)
{
int ret_cycles;
// cycles are kept in SHR_SR unused bits (upper 20)
// bit11 contains T saved for delay slot
// others are usual SH2 flags
sh2c->sr &= 0x3f3;
sh2c->sr |= cycles << 12;
sh2_drc_entry(sh2c);
// TODO: irq cycles
ret_cycles = (signed int)sh2c->sr >> 12;
if (ret_cycles > 0)
dbg(1, "warning: drc returned with cycles: %d", ret_cycles);
sh2c->sr &= 0x3f3;
return ret_cycles;
}
static void block_stats(void)
{
#if (DRC_DEBUG & 2)
int c, b, i;
long total = 0;
printf("block stats:\n");
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
if (block_tables[b][i].addr != 0)
total += block_tables[b][i].refcount;
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++)
if (block_tables[b][i].addr != 0)
total += block_tables[b][i].refcount;
}
printf("total: %ld\n",total);
for (c = 0; c < 20; c++) {
struct block_desc *blk, *maxb = NULL;
int max = 0;
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++) {
blk = &block_tables[b][i];
if (blk->addr != 0 && blk->refcount > max) {
max = blk->refcount;
maxb = blk;
}
}
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++) {
blk = &block_tables[b][i];
if (blk->addr != 0 && blk->refcount > max) {
max = blk->refcount;
maxb = blk;
}
}
}
if (maxb == NULL)
break;
printf("%08x %p %9d %2.3f%%\n", maxb->addr, maxb->tcache_ptr, maxb->refcount,
(double)maxb->refcount / total * 100.0);
maxb->refcount = 0;
}
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
block_tables[b][i].refcount = 0;
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++)
block_tables[b][i].refcount = 0;
}
#endif
}
void entry_stats(void)
{
#if (DRC_DEBUG & 32)
int c, b, i, j;
long total = 0;
printf("block entry stats:\n");
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
total += block_tables[b][i].entryp[j].entry_count;
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
total += block_tables[b][i].entryp[j].entry_count;
}
printf("total: %ld\n",total);
for (c = 0; c < 20; c++) {
struct block_desc *blk;
struct block_entry *maxb = NULL;
int max = 0;
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++) {
blk = &block_tables[b][i];
for (j = 0; j < blk->entry_count; j++)
if (blk->entryp[j].entry_count > max) {
max = blk->entryp[j].entry_count;
maxb = &blk->entryp[j];
}
}
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++) {
blk = &block_tables[b][i];
for (j = 0; j < blk->entry_count; j++)
if (blk->entryp[j].entry_count > max) {
max = blk->entryp[j].entry_count;
maxb = &blk->entryp[j];
}
}
}
if (maxb == NULL)
break;
printf("%08x %p %9d %2.3f%%\n", maxb->pc, maxb->tcache_ptr, maxb->entry_count,
(double)100 * maxb->entry_count / total);
maxb->entry_count = 0;
}
for (b = 0; b < ARRAY_SIZE(block_tables); b++) {
for (i = 0; i < block_counts[b]; i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
block_tables[b][i].entryp[j].entry_count = 0;
for (i = block_limit[b]; i < BLOCK_MAX_COUNT(b); i++)
for (j = 0; j < block_tables[b][i].entry_count; j++)
block_tables[b][i].entryp[j].entry_count = 0;
}
#endif
}
static void backtrace(void)
{
#if (DRC_DEBUG & 1024)
int i;
printf("backtrace master:\n");
for (i = 0; i < ARRAY_SIZE(csh2[0]); i++)
SH2_DUMP(&csh2[0][i], "bt msh2");
printf("backtrace slave:\n");
for (i = 0; i < ARRAY_SIZE(csh2[1]); i++)
SH2_DUMP(&csh2[1][i], "bt ssh2");
#endif
}
static void state_dump(void)
{
#if (DRC_DEBUG & 2048)
int i;
SH2_DUMP(&sh2s[0], "master");
printf("VBR msh2: %x\n", sh2s[0].vbr);
for (i = 0; i < 0x60; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[0].vbr + i*4, &sh2s[0]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("stack msh2: %x\n", sh2s[0].r[15]);
for (i = -0x30; i < 0x30; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[0].r[15] + i*4, &sh2s[0]));
if ((i+1) % 8 == 0) printf("\n");
}
SH2_DUMP(&sh2s[1], "slave");
printf("VBR ssh2: %x\n", sh2s[1].vbr);
for (i = 0; i < 0x60; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[1].vbr + i*4, &sh2s[1]));
if ((i+1) % 8 == 0) printf("\n");
}
printf("stack ssh2: %x\n", sh2s[1].r[15]);
for (i = -0x30; i < 0x30; i++) {
printf("%08x ",p32x_sh2_read32(sh2s[1].r[15] + i*4, &sh2s[1]));
if ((i+1) % 8 == 0) printf("\n");
}
#endif
}
static void bcache_stats(void)
{
#if (DRC_DEBUG & 128)
int i;
#if CALL_STACK
for (i = 1; i < ARRAY_SIZE(sh2s->rts_cache); i++)
if (sh2s[0].rts_cache[i].pc == -1 && sh2s[1].rts_cache[i].pc == -1) break;
printf("return cache hits:%d misses:%d depth: %d index: %d/%d\n", rchit, rcmiss, i,sh2s[0].rts_cache_idx,sh2s[1].rts_cache_idx);
for (i = 0; i < ARRAY_SIZE(sh2s[0].rts_cache); i++) {
printf("%08x ",sh2s[0].rts_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
for (i = 0; i < ARRAY_SIZE(sh2s[1].rts_cache); i++) {
printf("%08x ",sh2s[1].rts_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
#endif
#if BRANCH_CACHE
printf("branch cache hits:%d misses:%d\n", bchit, bcmiss);
printf("branch cache master:\n");
for (i = 0; i < ARRAY_SIZE(sh2s[0].branch_cache); i++) {
printf("%08x ",sh2s[0].branch_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
printf("branch cache slave:\n");
for (i = 0; i < ARRAY_SIZE(sh2s[1].branch_cache); i++) {
printf("%08x ",sh2s[1].branch_cache[i].pc);
if ((i+1) % 8 == 0) printf("\n");
}
#endif
#endif
}
void sh2_drc_flush_all(void)
{
backtrace();
state_dump();
block_stats();
entry_stats();
bcache_stats();
flush_tcache(0);
flush_tcache(1);
flush_tcache(2);
Pico32x.emu_flags &= ~P32XF_DRC_ROM_C;
}
void sh2_drc_mem_setup(SH2 *sh2)
{
// fill the DRC-only convenience pointers
sh2->p_drcblk_da = Pico32xMem->drcblk_da[!!sh2->is_slave];
sh2->p_drcblk_ram = Pico32xMem->drcblk_ram;
}
void sh2_drc_frame(void)
{
}
int sh2_drc_init(SH2 *sh2)
{
int i;
if (block_tables[0] == NULL)
{
for (i = 0; i < TCACHE_BUFFERS; i++) {
block_tables[i] = calloc(BLOCK_MAX_COUNT(i), sizeof(*block_tables[0]));
if (block_tables[i] == NULL)
goto fail;
block_link_pool[i] = calloc(BLOCK_LINK_MAX_COUNT(i),
sizeof(*block_link_pool[0]));
if (block_link_pool[i] == NULL)
goto fail;
inval_lookup[i] = calloc(RAM_SIZE(i) / INVAL_PAGE_SIZE,
sizeof(inval_lookup[0]));
if (inval_lookup[i] == NULL)
goto fail;
hash_tables[i] = calloc(HASH_TABLE_SIZE(i), sizeof(*hash_tables[0]));
if (hash_tables[i] == NULL)
goto fail;
unresolved_links[i] = calloc(HASH_TABLE_SIZE(i), sizeof(*unresolved_links[0]));
if (unresolved_links[i] == NULL)
goto fail;
}
memset(block_counts, 0, sizeof(block_counts));
for (i = 0; i < ARRAY_SIZE(block_counts); i++) {
block_limit[i] = BLOCK_MAX_COUNT(i) - 1;
}
memset(block_link_pool_counts, 0, sizeof(block_link_pool_counts));
for (i = 0; i < ARRAY_SIZE(blink_free); i++) {
blink_free[i] = NULL;
}
drc_cmn_init();
rcache_init();
tcache_ptr = tcache;
sh2_generate_utils();
host_instructions_updated(tcache, tcache_ptr);
emith_update_cache();
tcache_bases[0] = tcache_ptrs[0] = tcache_ptr;
tcache_limit[0] = tcache_bases[0] + tcache_sizes[0] - (tcache_ptr-tcache);
for (i = 1; i < ARRAY_SIZE(tcache_bases); i++) {
tcache_bases[i] = tcache_ptrs[i] = tcache_bases[i - 1] + tcache_sizes[i - 1];
tcache_limit[i] = tcache_bases[i] + tcache_sizes[i];
}
#if (DRC_DEBUG & 4)
for (i = 0; i < ARRAY_SIZE(block_tables); i++)
tcache_dsm_ptrs[i] = tcache_bases[i];
// disasm the utils
tcache_dsm_ptrs[0] = tcache;
do_host_disasm(0);
fflush(stdout);
#endif
#if (DRC_DEBUG & 1)
hash_collisions = 0;
#endif
}
memset(sh2->branch_cache, -1, sizeof(sh2->branch_cache));
memset(sh2->rts_cache, -1, sizeof(sh2->rts_cache));
sh2->rts_cache_idx = 0;
return 0;
fail:
sh2_drc_finish(sh2);
return -1;
}
void sh2_drc_finish(SH2 *sh2)
{
struct block_list *bl, *bn;
int i;
if (block_tables[0] == NULL)
return;
#if (DRC_DEBUG & (256|512))
if (trace[0]) fclose(trace[0]);
if (trace[1]) fclose(trace[1]);
trace[0] = trace[1] = NULL;
#endif
#if (DRC_DEBUG & 4)
for (i = 0; i < TCACHE_BUFFERS; i++) {
printf("~~~ tcache %d\n", i);
#if 0
tcache_dsm_ptrs[i] = tcache_bases[i];
tcache_ptr = tcache_ptrs[i];
do_host_disasm(i);
if (tcache_limit[i] < tcache_bases[i] + tcache_sizes[i]) {
tcache_dsm_ptrs[i] = tcache_limit[i];
tcache_ptr = tcache_bases[i] + tcache_sizes[i];
do_host_disasm(i);
}
#endif
printf("max links: %d\n", block_link_pool_counts[i]);
}
#endif
sh2_drc_flush_all();
for (i = 0; i < TCACHE_BUFFERS; i++) {
if (block_tables[i] != NULL)
free(block_tables[i]);
block_tables[i] = NULL;
if (block_link_pool[i] != NULL)
free(block_link_pool[i]);
block_link_pool[i] = NULL;
blink_free[i] = NULL;
if (inval_lookup[i] != NULL)
free(inval_lookup[i]);
inval_lookup[i] = NULL;
if (hash_tables[i] != NULL) {
free(hash_tables[i]);
hash_tables[i] = NULL;
}
}
for (bl = blist_free; bl; bl = bn) {
bn = bl->next;
free(bl);
}
blist_free = NULL;
drc_cmn_cleanup();
}
#endif /* DRC_SH2 */
static void *dr_get_pc_base(u32 pc, SH2 *sh2)
{
void *ret;
u32 mask = 0;
ret = p32x_sh2_get_mem_ptr(pc, &mask, sh2);
if (ret == (void *)-1)
return ret;
return (char *)ret - (pc & ~mask);
}
u16 scan_block(u32 base_pc, int is_slave, u8 *op_flags, u32 *end_pc_out,
u32 *base_literals_out, u32 *end_literals_out)
{
u16 *dr_pc_base;
u32 pc, op, tmp;
u32 end_pc, end_literals = 0;
u32 lowest_literal = 0;
u32 lowest_mova = 0;
struct op_data *opd;
int next_is_delay = 0;
int end_block = 0;
int i, i_end;
u32 crc = 0;
// 2nd pass stuff
int last_btarget; // loop detector
enum { T_UNKNOWN, T_CLEAR, T_SET } t; // T propagation state
memset(op_flags, 0, sizeof(*op_flags) * BLOCK_INSN_LIMIT);
op_flags[0] |= OF_BTARGET; // block start is always a target
dr_pc_base = dr_get_pc_base(base_pc, &sh2s[!!is_slave]);
// 1st pass: disassemble
for (i = 0, pc = base_pc; ; i++, pc += 2) {
// we need an ops[] entry after the last one initialized,
// so do it before end_block checks
opd = &ops[i];
opd->op = OP_UNHANDLED;
opd->rm = -1;
opd->source = opd->dest = 0;
opd->cycles = 1;
opd->imm = 0;
if (next_is_delay) {
op_flags[i] |= OF_DELAY_OP;
next_is_delay = 0;
}
else if (end_block || i >= BLOCK_INSN_LIMIT - 2)
break;
else if ((lowest_mova && lowest_mova <= pc) ||
(lowest_literal && lowest_literal <= pc))
break; // text area collides with data area
op = FETCH_OP(pc);
switch ((op & 0xf000) >> 12)
{
/////////////////////////////////////////////
case 0x00:
switch (op & 0x0f)
{
case 0x02:
switch (GET_Fx())
{
case 0: // STC SR,Rn 0000nnnn00000010
tmp = SHR_SR;
break;
case 1: // STC GBR,Rn 0000nnnn00010010
tmp = SHR_GBR;
break;
case 2: // STC VBR,Rn 0000nnnn00100010
tmp = SHR_VBR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(tmp);
opd->dest = BITMASK1(GET_Rn());
break;
case 0x03:
CHECK_UNHANDLED_BITS(0xd0, undefined);
// BRAF Rm 0000mmmm00100011
// BSRF Rm 0000mmmm00000011
opd->op = OP_BRANCH_RF;
opd->rm = GET_Rn();
opd->source = BITMASK2(SHR_PC, opd->rm);
opd->dest = BITMASK1(SHR_PC);
if (!(op & 0x20))
opd->dest |= BITMASK1(SHR_PR);
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR)))
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
case 0x04: // MOV.B Rm,@(R0,Rn) 0000nnnnmmmm0100
case 0x05: // MOV.W Rm,@(R0,Rn) 0000nnnnmmmm0101
case 0x06: // MOV.L Rm,@(R0,Rn) 0000nnnnmmmm0110
opd->source = BITMASK3(GET_Rm(), SHR_R0, GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
break;
case 0x07:
// MUL.L Rm,Rn 0000nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MACL);
opd->cycles = 2;
break;
case 0x08:
CHECK_UNHANDLED_BITS(0xf00, undefined);
switch (GET_Fx())
{
case 0: // CLRT 0000000000001000
opd->op = OP_SETCLRT;
opd->dest = BITMASK1(SHR_T);
opd->imm = 0;
break;
case 1: // SETT 0000000000011000
opd->op = OP_SETCLRT;
opd->dest = BITMASK1(SHR_T);
opd->imm = 1;
break;
case 2: // CLRMAC 0000000000101000
opd->dest = BITMASK3(SHR_T, SHR_MACL, SHR_MACH);
break;
default:
goto undefined;
}
break;
case 0x09:
switch (GET_Fx())
{
case 0: // NOP 0000000000001001
CHECK_UNHANDLED_BITS(0xf00, undefined);
break;
case 1: // DIV0U 0000000000011001
CHECK_UNHANDLED_BITS(0xf00, undefined);
opd->dest = BITMASK2(SHR_SR, SHR_T);
break;
case 2: // MOVT Rn 0000nnnn00101001
opd->source = BITMASK1(SHR_T);
opd->dest = BITMASK1(GET_Rn());
break;
default:
goto undefined;
}
break;
case 0x0a:
switch (GET_Fx())
{
case 0: // STS MACH,Rn 0000nnnn00001010
tmp = SHR_MACH;
break;
case 1: // STS MACL,Rn 0000nnnn00011010
tmp = SHR_MACL;
break;
case 2: // STS PR,Rn 0000nnnn00101010
tmp = SHR_PR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(tmp);
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0b:
CHECK_UNHANDLED_BITS(0xf00, undefined);
switch (GET_Fx())
{
case 0: // RTS 0000000000001011
opd->op = OP_BRANCH_R;
opd->rm = SHR_PR;
opd->source = BITMASK1(opd->rm);
opd->dest = BITMASK1(SHR_PC);
opd->cycles = 2;
next_is_delay = 1;
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
break;
case 1: // SLEEP 0000000000011011
opd->op = OP_SLEEP;
end_block = 1;
break;
case 2: // RTE 0000000000101011
opd->op = OP_RTE;
opd->source = BITMASK1(SHR_SP);
opd->dest = BITMASK3(SHR_SP, SHR_SR, SHR_PC);
opd->cycles = 4;
next_is_delay = 1;
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
break;
default:
goto undefined;
}
break;
case 0x0c: // MOV.B @(R0,Rm),Rn 0000nnnnmmmm1100
case 0x0d: // MOV.W @(R0,Rm),Rn 0000nnnnmmmm1101
case 0x0e: // MOV.L @(R0,Rm),Rn 0000nnnnmmmm1110
opd->source = BITMASK3(GET_Rm(), SHR_R0, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
op_flags[i] |= OF_POLL_INSN;
break;
case 0x0f: // MAC.L @Rm+,@Rn+ 0000nnnnmmmm1111
opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x01:
// MOV.L Rm,@(disp,Rn) 0001nnnnmmmmdddd
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f) * 4;
break;
/////////////////////////////////////////////
case 0x02:
switch (op & 0x0f)
{
case 0x00: // MOV.B Rm,@Rn 0010nnnnmmmm0000
case 0x01: // MOV.W Rm,@Rn 0010nnnnmmmm0001
case 0x02: // MOV.L Rm,@Rn 0010nnnnmmmm0010
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MEM);
break;
case 0x04: // MOV.B Rm,@-Rn 0010nnnnmmmm0100
case 0x05: // MOV.W Rm,@-Rn 0010nnnnmmmm0101
case 0x06: // MOV.L Rm,@-Rn 0010nnnnmmmm0110
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
break;
case 0x07: // DIV0S Rm,Rn 0010nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_SR);
break;
case 0x08: // TST Rm,Rn 0010nnnnmmmm1000
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x09: // AND Rm,Rn 0010nnnnmmmm1001
case 0x0a: // XOR Rm,Rn 0010nnnnmmmm1010
case 0x0b: // OR Rm,Rn 0010nnnnmmmm1011
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0c: // CMP/STR Rm,Rn 0010nnnnmmmm1100
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x0d: // XTRCT Rm,Rn 0010nnnnmmmm1101
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0e: // MULU.W Rm,Rn 0010nnnnmmmm1110
case 0x0f: // MULS.W Rm,Rn 0010nnnnmmmm1111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_MACL);
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x03:
switch (op & 0x0f)
{
case 0x00: // CMP/EQ Rm,Rn 0011nnnnmmmm0000
case 0x02: // CMP/HS Rm,Rn 0011nnnnmmmm0010
case 0x03: // CMP/GE Rm,Rn 0011nnnnmmmm0011
case 0x06: // CMP/HI Rm,Rn 0011nnnnmmmm0110
case 0x07: // CMP/GT Rm,Rn 0011nnnnmmmm0111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
case 0x04: // DIV1 Rm,Rn 0011nnnnmmmm0100
opd->source = BITMASK3(GET_Rm(), GET_Rn(), SHR_SR);
opd->dest = BITMASK2(GET_Rn(), SHR_SR);
break;
case 0x05: // DMULU.L Rm,Rn 0011nnnnmmmm0101
case 0x0d: // DMULS.L Rm,Rn 0011nnnnmmmm1101
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(SHR_MACL, SHR_MACH);
opd->cycles = 2;
break;
case 0x08: // SUB Rm,Rn 0011nnnnmmmm1000
case 0x0c: // ADD Rm,Rn 0011nnnnmmmm1100
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0a: // SUBC Rm,Rn 0011nnnnmmmm1010
case 0x0e: // ADDC Rm,Rn 0011nnnnmmmm1110
opd->source = BITMASK3(GET_Rm(), GET_Rn(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x0b: // SUBV Rm,Rn 0011nnnnmmmm1011
case 0x0f: // ADDV Rm,Rn 0011nnnnmmmm1111
opd->source = BITMASK2(GET_Rm(), GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x04:
switch (op & 0x0f)
{
case 0x00:
switch (GET_Fx())
{
case 0: // SHLL Rn 0100nnnn00000000
case 2: // SHAL Rn 0100nnnn00100000
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 1: // DT Rn 0100nnnn00010000
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
op_flags[i] |= OF_DELAY_INSN;
break;
default:
goto undefined;
}
break;
case 0x01:
switch (GET_Fx())
{
case 0: // SHLR Rn 0100nnnn00000001
case 2: // SHAR Rn 0100nnnn00100001
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 1: // CMP/PZ Rn 0100nnnn00010001
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
default:
goto undefined;
}
break;
case 0x02:
case 0x03:
switch (op & 0x3f)
{
case 0x02: // STS.L MACH,@-Rn 0100nnnn00000010
tmp = SHR_MACH;
break;
case 0x12: // STS.L MACL,@-Rn 0100nnnn00010010
tmp = SHR_MACL;
break;
case 0x22: // STS.L PR,@-Rn 0100nnnn00100010
tmp = SHR_PR;
break;
case 0x03: // STC.L SR,@-Rn 0100nnnn00000011
tmp = SHR_SR;
opd->cycles = 2;
break;
case 0x13: // STC.L GBR,@-Rn 0100nnnn00010011
tmp = SHR_GBR;
opd->cycles = 2;
break;
case 0x23: // STC.L VBR,@-Rn 0100nnnn00100011
tmp = SHR_VBR;
opd->cycles = 2;
break;
default:
goto undefined;
}
opd->source = BITMASK2(GET_Rn(), tmp);
opd->dest = BITMASK2(GET_Rn(), SHR_MEM);
break;
case 0x04:
case 0x05:
switch (op & 0x3f)
{
case 0x04: // ROTL Rn 0100nnnn00000100
case 0x05: // ROTR Rn 0100nnnn00000101
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x24: // ROTCL Rn 0100nnnn00100100
case 0x25: // ROTCR Rn 0100nnnn00100101
opd->source = BITMASK2(GET_Rn(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x15: // CMP/PL Rn 0100nnnn00010101
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(SHR_T);
break;
default:
goto undefined;
}
break;
case 0x06:
case 0x07:
switch (op & 0x3f)
{
case 0x06: // LDS.L @Rm+,MACH 0100mmmm00000110
tmp = SHR_MACH;
break;
case 0x16: // LDS.L @Rm+,MACL 0100mmmm00010110
tmp = SHR_MACL;
break;
case 0x26: // LDS.L @Rm+,PR 0100mmmm00100110
tmp = SHR_PR;
break;
case 0x07: // LDC.L @Rm+,SR 0100mmmm00000111
tmp = SHR_SR;
opd->op = OP_LDC;
opd->cycles = 3;
break;
case 0x17: // LDC.L @Rm+,GBR 0100mmmm00010111
tmp = SHR_GBR;
opd->op = OP_LDC;
opd->cycles = 3;
break;
case 0x27: // LDC.L @Rm+,VBR 0100mmmm00100111
tmp = SHR_VBR;
opd->op = OP_LDC;
opd->cycles = 3;
break;
default:
goto undefined;
}
opd->source = BITMASK2(GET_Rn(), SHR_MEM);
opd->dest = BITMASK2(GET_Rn(), tmp);
break;
case 0x08:
case 0x09:
switch (GET_Fx())
{
case 0:
// SHLL2 Rn 0100nnnn00001000
// SHLR2 Rn 0100nnnn00001001
break;
case 1:
// SHLL8 Rn 0100nnnn00011000
// SHLR8 Rn 0100nnnn00011001
break;
case 2:
// SHLL16 Rn 0100nnnn00101000
// SHLR16 Rn 0100nnnn00101001
break;
default:
goto undefined;
}
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(GET_Rn());
break;
case 0x0a:
switch (GET_Fx())
{
case 0: // LDS Rm,MACH 0100mmmm00001010
tmp = SHR_MACH;
break;
case 1: // LDS Rm,MACL 0100mmmm00011010
tmp = SHR_MACL;
break;
case 2: // LDS Rm,PR 0100mmmm00101010
tmp = SHR_PR;
break;
default:
goto undefined;
}
opd->op = OP_MOVE;
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(tmp);
break;
case 0x0b:
switch (GET_Fx())
{
case 0: // JSR @Rm 0100mmmm00001011
opd->dest = BITMASK1(SHR_PR);
case 2: // JMP @Rm 0100mmmm00101011
opd->op = OP_BRANCH_R;
opd->rm = GET_Rn();
opd->source = BITMASK1(opd->rm);
opd->dest |= BITMASK1(SHR_PC);
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR)))
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
case 1: // TAS.B @Rn 0100nnnn00011011
opd->source = BITMASK2(GET_Rn(), SHR_MEM);
opd->dest = BITMASK2(SHR_T, SHR_MEM);
opd->cycles = 4;
break;
default:
goto undefined;
}
break;
case 0x0e:
switch (GET_Fx())
{
case 0: // LDC Rm,SR 0100mmmm00001110
tmp = SHR_SR;
break;
case 1: // LDC Rm,GBR 0100mmmm00011110
tmp = SHR_GBR;
break;
case 2: // LDC Rm,VBR 0100mmmm00101110
tmp = SHR_VBR;
break;
default:
goto undefined;
}
opd->op = OP_LDC;
opd->source = BITMASK1(GET_Rn());
opd->dest = BITMASK1(tmp);
break;
case 0x0f:
// MAC.W @Rm+,@Rn+ 0100nnnnmmmm1111
opd->source = BITMASK6(GET_Rm(), GET_Rn(), SHR_SR, SHR_MACL, SHR_MACH, SHR_MEM);
opd->dest = BITMASK4(GET_Rm(), GET_Rn(), SHR_MACL, SHR_MACH);
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x05:
// MOV.L @(disp,Rm),Rn 0101nnnnmmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
opd->imm = (op & 0x0f) * 4;
op_flags[i] |= OF_POLL_INSN;
break;
/////////////////////////////////////////////
case 0x06:
switch (op & 0x0f)
{
case 0x04: // MOV.B @Rm+,Rn 0110nnnnmmmm0100
case 0x05: // MOV.W @Rm+,Rn 0110nnnnmmmm0101
case 0x06: // MOV.L @Rm+,Rn 0110nnnnmmmm0110
opd->dest = BITMASK2(GET_Rm(), GET_Rn());
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
break;
case 0x00: // MOV.B @Rm,Rn 0110nnnnmmmm0000
case 0x01: // MOV.W @Rm,Rn 0110nnnnmmmm0001
case 0x02: // MOV.L @Rm,Rn 0110nnnnmmmm0010
opd->dest = BITMASK1(GET_Rn());
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
op_flags[i] |= OF_POLL_INSN;
break;
case 0x0a: // NEGC Rm,Rn 0110nnnnmmmm1010
opd->source = BITMASK2(GET_Rm(), SHR_T);
opd->dest = BITMASK2(GET_Rn(), SHR_T);
break;
case 0x03: // MOV Rm,Rn 0110nnnnmmmm0011
opd->op = OP_MOVE;
goto arith_rmrn;
case 0x07: // NOT Rm,Rn 0110nnnnmmmm0111
case 0x08: // SWAP.B Rm,Rn 0110nnnnmmmm1000
case 0x09: // SWAP.W Rm,Rn 0110nnnnmmmm1001
case 0x0b: // NEG Rm,Rn 0110nnnnmmmm1011
case 0x0c: // EXTU.B Rm,Rn 0110nnnnmmmm1100
case 0x0d: // EXTU.W Rm,Rn 0110nnnnmmmm1101
case 0x0e: // EXTS.B Rm,Rn 0110nnnnmmmm1110
case 0x0f: // EXTS.W Rm,Rn 0110nnnnmmmm1111
arith_rmrn:
opd->source = BITMASK1(GET_Rm());
opd->dest = BITMASK1(GET_Rn());
break;
}
break;
/////////////////////////////////////////////
case 0x07:
// ADD #imm,Rn 0111nnnniiiiiiii
opd->source = opd->dest = BITMASK1(GET_Rn());
opd->imm = (s8)op;
break;
/////////////////////////////////////////////
case 0x08:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,Rn) 10000000nnnndddd
opd->source = BITMASK2(GET_Rm(), SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f);
break;
case 0x0100: // MOV.W R0,@(disp,Rn) 10000001nnnndddd
opd->source = BITMASK2(GET_Rm(), SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = (op & 0x0f) * 2;
break;
case 0x0400: // MOV.B @(disp,Rm),R0 10000100mmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->imm = (op & 0x0f);
op_flags[i] |= OF_POLL_INSN;
break;
case 0x0500: // MOV.W @(disp,Rm),R0 10000101mmmmdddd
opd->source = BITMASK2(GET_Rm(), SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->imm = (op & 0x0f) * 2;
op_flags[i] |= OF_POLL_INSN;
break;
case 0x0800: // CMP/EQ #imm,R0 10001000iiiiiiii
opd->source = BITMASK1(SHR_R0);
opd->dest = BITMASK1(SHR_T);
opd->imm = (s8)op;
break;
case 0x0d00: // BT/S label 10001101dddddddd
case 0x0f00: // BF/S label 10001111dddddddd
next_is_delay = 1;
// fallthrough
case 0x0900: // BT label 10001001dddddddd
case 0x0b00: // BF label 10001011dddddddd
opd->op = (op & 0x0200) ? OP_BRANCH_CF : OP_BRANCH_CT;
opd->source = BITMASK2(SHR_PC, SHR_T);
opd->dest = BITMASK1(SHR_PC);
opd->imm = ((signed int)(op << 24) >> 23);
opd->imm += pc + 4;
if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2)
op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x09:
// MOV.W @(disp,PC),Rn 1001nnnndddddddd
opd->op = OP_LOAD_POOL;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->source = BITMASK2(SHR_PC, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
if (tmp) {
opd->imm = tmp + 2 + (op & 0xff) * 2;
if (lowest_literal == 0 || opd->imm < lowest_literal)
lowest_literal = opd->imm;
}
opd->size = 1;
break;
/////////////////////////////////////////////
case 0x0b:
// BSR label 1011dddddddddddd
opd->dest = BITMASK1(SHR_PR);
case 0x0a:
// BRA label 1010dddddddddddd
opd->op = OP_BRANCH;
opd->source = BITMASK1(SHR_PC);
opd->dest |= BITMASK1(SHR_PC);
opd->imm = ((signed int)(op << 20) >> 19);
opd->imm += pc + 4;
opd->cycles = 2;
next_is_delay = 1;
if (!(opd->dest & BITMASK1(SHR_PR))) {
if (base_pc <= opd->imm && opd->imm < base_pc + BLOCK_INSN_LIMIT * 2) {
op_flags[(opd->imm - base_pc) / 2] |= OF_BTARGET;
if (opd->imm <= pc)
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
} else
end_block = !(op_flags[i+1+next_is_delay] & OF_BTARGET);
} else
op_flags[i+1+next_is_delay] |= OF_BTARGET;
break;
/////////////////////////////////////////////
case 0x0c:
switch (op & 0x0f00)
{
case 0x0000: // MOV.B R0,@(disp,GBR) 11000000dddddddd
case 0x0100: // MOV.W R0,@(disp,GBR) 11000001dddddddd
case 0x0200: // MOV.L R0,@(disp,GBR) 11000010dddddddd
opd->source = BITMASK2(SHR_GBR, SHR_R0);
opd->dest = BITMASK1(SHR_MEM);
opd->size = (op & 0x300) >> 8;
opd->imm = (op & 0xff) << opd->size;
break;
case 0x0400: // MOV.B @(disp,GBR),R0 11000100dddddddd
case 0x0500: // MOV.W @(disp,GBR),R0 11000101dddddddd
case 0x0600: // MOV.L @(disp,GBR),R0 11000110dddddddd
opd->source = BITMASK2(SHR_GBR, SHR_MEM);
opd->dest = BITMASK1(SHR_R0);
opd->size = (op & 0x300) >> 8;
opd->imm = (op & 0xff) << opd->size;
op_flags[i] |= OF_POLL_INSN;
break;
case 0x0300: // TRAPA #imm 11000011iiiiiiii
opd->op = OP_TRAPA;
opd->source = BITMASK3(SHR_SP, SHR_PC, SHR_SR);
opd->dest = BITMASK2(SHR_SP, SHR_PC);
opd->imm = (op & 0xff);
opd->cycles = 8;
op_flags[i+1] |= OF_BTARGET;
break;
case 0x0700: // MOVA @(disp,PC),R0 11000111dddddddd
opd->op = OP_MOVA;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->dest = BITMASK1(SHR_R0);
if (tmp) {
opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
if (opd->imm >= base_pc) {
if (lowest_mova == 0 || opd->imm < lowest_mova)
lowest_mova = opd->imm;
}
}
break;
case 0x0800: // TST #imm,R0 11001000iiiiiiii
opd->source = BITMASK1(SHR_R0);
opd->dest = BITMASK1(SHR_T);
opd->imm = op & 0xff;
break;
case 0x0900: // AND #imm,R0 11001001iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0a00: // XOR #imm,R0 11001010iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0b00: // OR #imm,R0 11001011iiiiiiii
opd->source = opd->dest = BITMASK1(SHR_R0);
opd->imm = op & 0xff;
break;
case 0x0c00: // TST.B #imm,@(R0,GBR) 11001100iiiiiiii
opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
opd->dest = BITMASK1(SHR_T);
opd->imm = op & 0xff;
op_flags[i] |= OF_POLL_INSN;
opd->cycles = 3;
break;
case 0x0d00: // AND.B #imm,@(R0,GBR) 11001101iiiiiiii
case 0x0e00: // XOR.B #imm,@(R0,GBR) 11001110iiiiiiii
case 0x0f00: // OR.B #imm,@(R0,GBR) 11001111iiiiiiii
opd->source = BITMASK3(SHR_GBR, SHR_R0, SHR_MEM);
opd->dest = BITMASK1(SHR_MEM);
opd->imm = op & 0xff;
opd->cycles = 3;
break;
default:
goto undefined;
}
break;
/////////////////////////////////////////////
case 0x0d:
// MOV.L @(disp,PC),Rn 1101nnnndddddddd
opd->op = OP_LOAD_POOL;
tmp = pc + 2;
if (op_flags[i] & OF_DELAY_OP) {
if (ops[i-1].op == OP_BRANCH)
tmp = ops[i-1].imm;
else if (ops[i-1].op != OP_BRANCH_N)
tmp = 0;
}
opd->source = BITMASK2(SHR_PC, SHR_MEM);
opd->dest = BITMASK1(GET_Rn());
if (tmp) {
opd->imm = (tmp + 2 + (op & 0xff) * 4) & ~3;
if (lowest_literal == 0 || opd->imm < lowest_literal)
lowest_literal = opd->imm;
}
opd->size = 2;
break;
/////////////////////////////////////////////
case 0x0e:
// MOV #imm,Rn 1110nnnniiiiiiii
opd->op = OP_LOAD_CONST;
opd->dest = BITMASK1(GET_Rn());
opd->imm = (s8)op;
break;
default:
undefined:
opd->op = OP_UNDEFINED;
// an unhandled instruction is probably not code if it's not the 1st insn
if (!(op_flags[i] & OF_DELAY_OP) && pc != base_pc)
goto end;
break;
}
if (op_flags[i] & OF_DELAY_OP) {
switch (opd->op) {
case OP_BRANCH:
case OP_BRANCH_N:
case OP_BRANCH_CT:
case OP_BRANCH_CF:
case OP_BRANCH_R:
case OP_BRANCH_RF:
elprintf(EL_ANOMALY, "%csh2 drc: branch in DS @ %08x",
is_slave ? 's' : 'm', pc);
opd->op = OP_UNDEFINED;
op_flags[i] |= OF_B_IN_DS;
next_is_delay = 0;
break;
}
}
}
end:
i_end = i;
end_pc = pc;
// 2nd pass: some analysis
lowest_literal = end_literals = lowest_mova = 0;
t = T_UNKNOWN;
last_btarget = 0;
op = 0; // delay/poll insns counter
for (i = 0, pc = base_pc; i < i_end; i++, pc += 2) {
opd = &ops[i];
crc += FETCH_OP(pc);
// propagate T (TODO: DIV0U)
if ((op_flags[i] & OF_BTARGET) || (opd->dest & BITMASK1(SHR_T)))
t = T_UNKNOWN;
if ((opd->op == OP_BRANCH_CT && t == T_SET) ||
(opd->op == OP_BRANCH_CF && t == T_CLEAR)) {
opd->op = OP_BRANCH;
opd->cycles = (op_flags[i + 1] & OF_DELAY_OP) ? 2 : 3;
} else if ((opd->op == OP_BRANCH_CT && t == T_CLEAR) ||
(opd->op == OP_BRANCH_CF && t == T_SET))
opd->op = OP_BRANCH_N;
else if ((opd->op == OP_SETCLRT && !opd->imm) || opd->op == OP_BRANCH_CT)
t = T_CLEAR;
else if ((opd->op == OP_SETCLRT && opd->imm) || opd->op == OP_BRANCH_CF)
t = T_SET;
// "overscan" detection: unreachable code after unconditional branch
// this can happen if the insn after a forward branch isn't a local target
if (OP_ISBRAUC(opd->op)) {
if (op_flags[i + 1] & OF_DELAY_OP) {
if (i_end > i + 2 && !(op_flags[i + 2] & OF_BTARGET))
i_end = i + 2;
} else {
if (i_end > i + 1 && !(op_flags[i + 1] & OF_BTARGET))
i_end = i + 1;
}
}
// literal pool size detection
if (opd->op == OP_MOVA && opd->imm >= base_pc)
if (lowest_mova == 0 || opd->imm < lowest_mova)
lowest_mova = opd->imm;
if (opd->op == OP_LOAD_POOL) {
if (opd->imm >= base_pc && opd->imm < end_pc + MAX_LITERAL_OFFSET) {
if (end_literals < opd->imm + opd->size * 2)
end_literals = opd->imm + opd->size * 2;
if (lowest_literal == 0 || lowest_literal > opd->imm)
lowest_literal = opd->imm;
if (opd->size == 2) {
// tweak for NFL: treat a 32bit literal as an address and check if it
// points to the literal space. In that case handle it like MOVA.
tmp = FETCH32(opd->imm) & ~0x20000000; // MUST ignore wt bit here
if (tmp >= end_pc && tmp < end_pc + MAX_LITERAL_OFFSET)
if (lowest_mova == 0 || tmp < lowest_mova)
lowest_mova = tmp;
}
}
}
#if LOOP_DETECTION
// inner loop detection
// 1. a loop always starts with a branch target (for the backwards jump)
// 2. it doesn't contain more than one polling and/or delaying insn
// 3. it doesn't contain unconditional jumps
// 4. no overlapping of loops
if (op_flags[i] & OF_BTARGET) {
last_btarget = i; // possible loop starting point
op = 0;
}
// XXX let's hope nobody is putting a delay or poll insn in a delay slot :-/
if (OP_ISBRAIMM(opd->op)) {
// BSR, BRA, BT, BF with immediate target
int i_tmp = (opd->imm - base_pc) / 2; // branch target, index in ops
if (i_tmp == last_btarget) // candidate for basic loop optimizer
op_flags[i_tmp] |= OF_BASIC_LOOP;
if (i_tmp == last_btarget && op <= 1) {
op_flags[i_tmp] |= OF_LOOP; // conditions met -> mark loop
last_btarget = i+1; // condition 4
} else if (opd->op == OP_BRANCH)
last_btarget = i+1; // condition 3
}
else if (OP_ISBRAIND(opd->op))
// BRAF, BSRF, JMP, JSR, register indirect. treat it as off-limits jump
last_btarget = i+1; // condition 3
else if (op_flags[i] & (OF_POLL_INSN|OF_DELAY_INSN))
op ++; // condition 2
#endif
}
end_pc = base_pc + i_end * 2;
// end_literals is used to decide to inline a literal or not
// XXX: need better detection if this actually is used in write
if (lowest_literal >= base_pc) {
if (lowest_literal < end_pc) {
dbg(1, "warning: lowest_literal=%08x < end_pc=%08x", lowest_literal, end_pc);
// TODO: does this always mean end_pc covers data?
}
}
if (lowest_mova >= base_pc) {
if (lowest_mova < end_literals) {
dbg(1, "warning: mova=%08x < end_literals=%08x", lowest_mova, end_literals);
end_literals = lowest_mova;
}
if (lowest_mova < end_pc) {
dbg(1, "warning: mova=%08x < end_pc=%08x", lowest_mova, end_pc);
end_literals = end_pc;
}
}
if (lowest_literal >= end_literals)
lowest_literal = end_literals;
if (lowest_literal && end_literals)
for (pc = lowest_literal; pc < end_literals; pc += 2)
crc += FETCH_OP(pc);
*end_pc_out = end_pc;
if (base_literals_out != NULL)
*base_literals_out = (lowest_literal ?: end_pc);
if (end_literals_out != NULL)
*end_literals_out = (end_literals ?: end_pc);
// crc overflow handling, twice to collect all overflows
crc = (crc & 0xffff) + (crc >> 16);
crc = (crc & 0xffff) + (crc >> 16);
return crc;
}
// vim:shiftwidth=2:ts=2:expandtab