picodrive/Pico/sound/sound.c
notaz 88b3d7c16a psp snd output improved
git-svn-id: file:///home/notaz/opt/svn/PicoDrive@288 be3aeb3a-fb24-0410-a615-afba39da0efa
2007-11-01 09:39:56 +00:00

512 lines
13 KiB
C

// This is part of Pico Library
// (c) Copyright 2004 Dave, All rights reserved.
// (c) Copyright 2006 notaz, All rights reserved.
// Free for non-commercial use.
// For commercial use, separate licencing terms must be obtained.
#include <string.h>
#include "ym2612.h"
#include "sn76496.h"
#if defined(_USE_MZ80)
#include "../../cpu/mz80/mz80.h"
#elif defined(_USE_DRZ80)
#include "../../cpu/DrZ80/drz80.h"
#elif defined(_USE_CZ80)
#include "../../cpu/cz80/cz80.h"
#endif
#include "../PicoInt.h"
#include "../cd/pcm.h"
#include "mix.h"
// master int buffer to mix to
static int PsndBuffer[2*44100/50];
// dac
static unsigned short dac_info[312]; // pppppppp ppppllll, p - pos in buff, l - length to write for this sample
// for Pico
int PsndRate=0;
int PsndLen=0; // number of mono samples, multiply by 2 for stereo
int PsndLen_exc_add=0; // this is for non-integer sample counts per line, eg. 22050/60
int PsndLen_exc_cnt=0;
short *PsndOut=NULL; // PCM data buffer
// from ym2612.c
extern int *ym2612_dacen;
extern INT32 *ym2612_dacout;
void YM2612TimerHandler(int c,int cnt);
// sn76496
extern int *sn76496_regs;
static void dac_recalculate(void)
{
int i, dac_cnt, pos, len, lines = Pico.m.pal ? 312 : 262, mid = Pico.m.pal ? 68 : 93;
if(PsndLen <= lines) {
// shrinking algo
dac_cnt = -PsndLen;
len=1; pos=0;
dac_info[225] = 1;
for(i=226; i != 225; i++) {
if (i >= lines) i = 0;
len = 0;
if(dac_cnt < 0) {
len=1;
pos++;
dac_cnt += lines;
}
dac_cnt -= PsndLen;
dac_info[i] = (pos<<4)|len;
}
} else {
// stretching
dac_cnt = PsndLen;
pos=0;
for(i = 225; i != 224; i++) {
if (i >= lines) i = 0;
len=0;
while(dac_cnt >= 0) {
dac_cnt -= lines;
len++;
}
if (i == mid) // midpoint
while(pos+len < PsndLen/2) {
dac_cnt -= lines;
len++;
}
dac_cnt += PsndLen;
dac_info[i] = (pos<<4)|len;
pos+=len;
}
// last sample
for(len = 0, i = pos; i < PsndLen; i++) len++;
if (PsndLen_exc_add) len++;
dac_info[224] = (pos<<4)|len;
}
//for(i=len=0; i < lines; i++) {
// printf("%03i : %03i : %i\n", i, dac_info[i]>>4, dac_info[i]&0xf);
// len+=dac_info[i]&0xf;
//}
//printf("rate is %i, len %f\n", PsndRate, (double)PsndRate/(Pico.m.pal ? 50.0 : 60.0));
//printf("len total: %i, last pos: %i\n", len, pos);
//exit(8);
}
PICO_INTERNAL void PsndReset(void)
{
void *ym2612_regs;
// also clear the internal registers+addr line
ym2612_regs = YM2612GetRegs();
memset(ym2612_regs, 0, 0x200+4);
z80startCycle = z80stopCycle = 0;
PsndRerate(0);
}
// to be called after changing sound rate or chips
void PsndRerate(int preserve_state)
{
void *state = NULL;
int target_fps = Pico.m.pal ? 50 : 60;
// not all rates are supported in MCD mode due to mp3 decoder limitations
if (PicoMCD & 1) {
if (PsndRate != 11025 && PsndRate != 22050 && PsndRate != 44100) PsndRate = 22050;
PicoOpt |= 8; // force stereo
}
if (preserve_state) {
state = malloc(0x200);
if (state == NULL) return;
memcpy(state, YM2612GetRegs(), 0x200);
if ((PicoMCD & 1) && Pico_mcd->m.audio_track)
Pico_mcd->m.audio_offset = mp3_get_offset();
}
YM2612Init(Pico.m.pal ? OSC_PAL/7 : OSC_NTSC/7, PsndRate);
if (preserve_state) {
// feed it back it's own registers, just like after loading state
memcpy(YM2612GetRegs(), state, 0x200);
YM2612PicoStateLoad();
if ((PicoMCD & 1) && Pico_mcd->m.audio_track)
mp3_start_play(Pico_mcd->TOC.Tracks[Pico_mcd->m.audio_track].F, Pico_mcd->m.audio_offset);
}
if (preserve_state) memcpy(state, sn76496_regs, 28*4); // remember old state
SN76496_init(Pico.m.pal ? OSC_PAL/15 : OSC_NTSC/15, PsndRate);
if (preserve_state) memcpy(sn76496_regs, state, 28*4); // restore old state
if (state)
free(state);
// calculate PsndLen
PsndLen=PsndRate / target_fps;
PsndLen_exc_add=((PsndRate - PsndLen*target_fps)<<16) / target_fps;
PsndLen_exc_cnt=0;
// recalculate dac info
dac_recalculate();
if (PicoMCD & 1)
pcm_set_rate(PsndRate);
// clear all buffers
memset32(PsndBuffer, 0, sizeof(PsndBuffer)/4);
if (PsndOut)
PsndClear();
}
// This is called once per raster (aka line), but not necessarily for every line
PICO_INTERNAL void Psnd_timers_and_dac(int raster)
{
int pos, len;
int do_dac = PsndOut && (PicoOpt&1) && *ym2612_dacen;
// int do_pcm = PsndOut && (PicoMCD&1) && (PicoOpt&0x400);
// Our raster lasts 63.61323/64.102564 microseconds (NTSC/PAL)
YM2612PicoTick(1);
if (!do_dac /*&& !do_pcm*/) return;
pos=dac_info[raster], len=pos&0xf;
if (!len) return;
pos>>=4;
if (do_dac) {
short *d = PsndOut + pos*2;
int dout = *ym2612_dacout;
if(PicoOpt&8) {
// some manual loop unrolling here :)
d[0] = dout;
if (len > 1) {
d[2] = dout;
if (len > 2)
d[4] = dout;
}
} else {
short *d = PsndOut + pos;
d[0] = dout;
if (len > 1) {
d[1] = dout;
if (len > 2)
d[2] = dout;
}
}
}
#if 0
if (do_pcm) {
int *d = PsndBuffer;
d += (PicoOpt&8) ? pos*2 : pos;
pcm_update(d, len, 1);
}
#endif
}
PICO_INTERNAL void PsndClear(void)
{
int len = PsndLen;
if (PsndLen_exc_add) len++;
if (PicoOpt & 8)
memset32((int *) PsndOut, 0, len); // assume PsndOut to be aligned
else {
short *out = PsndOut;
if ((int)out & 2) { *out++ = 0; len--; }
memset32((int *) out, 0, len/2);
if (len & 1) out[len-1] = 0;
}
}
PICO_INTERNAL int PsndRender(int offset, int length)
{
int buf32_updated = 0;
int *buf32 = PsndBuffer+offset;
int stereo = (PicoOpt & 8) >> 3;
// emulating CD && PCM option enabled && PCM chip on && have enabled channels
int do_pcm = (PicoMCD&1) && (PicoOpt&0x400) && (Pico_mcd->pcm.control & 0x80) && Pico_mcd->pcm.enabled;
offset <<= stereo;
if (offset == 0) { // should happen once per frame
// compensate for float part of PsndLen
PsndLen_exc_cnt += PsndLen_exc_add;
if (PsndLen_exc_cnt >= 0x10000) {
PsndLen_exc_cnt -= 0x10000;
length++;
}
}
// PSG
if (PicoOpt & 2)
SN76496Update(PsndOut+offset, length, stereo);
// Add in the stereo FM buffer
if (PicoOpt & 1)
buf32_updated = YM2612UpdateOne(buf32, length, stereo, 1);
else
memset32(buf32, 0, length<<stereo);
//printf("active_chs: %02x\n", buf32_updated);
// CD: PCM sound
if (do_pcm) {
pcm_update(buf32, length, stereo);
//buf32_updated = 1;
}
// CD: CDDA audio
// CD mode, cdda enabled, not data track, CDC is reading
if ((PicoMCD & 1) && (PicoOpt & 0x800) && !(Pico_mcd->s68k_regs[0x36] & 1) && (Pico_mcd->scd.Status_CDC & 1))
mp3_update(buf32, length, stereo);
// convert + limit to normal 16bit output
if (stereo)
mix_32_to_16l_stereo(PsndOut+offset, buf32, length);
else mix_32_to_16_mono (PsndOut+offset, buf32, length);
return length;
}
#if defined(_USE_MZ80)
// memhandlers for mz80 core
unsigned char mz80_read(UINT32 a, struct MemoryReadByte *w) { return z80_read(a); }
void mz80_write(UINT32 a, UINT8 d, struct MemoryWriteByte *w) { z80_write(d, a); }
// structures for mz80 core
static struct MemoryReadByte mz80_mem_read[]=
{
{0x0000,0xffff,mz80_read},
{(UINT32) -1,(UINT32) -1,NULL}
};
static struct MemoryWriteByte mz80_mem_write[]=
{
{0x0000,0xffff,mz80_write},
{(UINT32) -1,(UINT32) -1,NULL}
};
static struct z80PortRead mz80_io_read[] ={
{(UINT16) -1,(UINT16) -1,NULL}
};
static struct z80PortWrite mz80_io_write[]={
{(UINT16) -1,(UINT16) -1,NULL}
};
#elif defined(_USE_DRZ80)
static struct DrZ80 drZ80;
static unsigned int DrZ80_rebasePC(unsigned short a)
{
drZ80.Z80PC_BASE = (unsigned int) Pico.zram;
return drZ80.Z80PC_BASE + a;
}
static unsigned int DrZ80_rebaseSP(unsigned short a)
{
drZ80.Z80SP_BASE = (unsigned int) Pico.zram;
return drZ80.Z80SP_BASE + a;
}
static void DrZ80_irq_callback()
{
drZ80.Z80_IRQ = 0; // lower irq when accepted
}
#endif
#if defined(_USE_DRZ80) || defined(_USE_CZ80)
static unsigned char z80_in(unsigned short p)
{
elprintf(EL_ANOMALY, "Z80 port %04x read", p);
return 0xff;
}
static void z80_out(unsigned short p,unsigned char d)
{
elprintf(EL_ANOMALY, "Z80 port %04x write %02x", p, d);
}
#endif
// z80 functionality wrappers
PICO_INTERNAL void z80_init(void)
{
#if defined(_USE_MZ80)
struct mz80context z80;
// z80
mz80init();
// Modify the default context
mz80GetContext(&z80);
// point mz80 stuff
z80.z80Base=Pico.zram;
z80.z80MemRead=mz80_mem_read;
z80.z80MemWrite=mz80_mem_write;
z80.z80IoRead=mz80_io_read;
z80.z80IoWrite=mz80_io_write;
mz80SetContext(&z80);
#elif defined(_USE_DRZ80)
memset(&drZ80, 0, sizeof(struct DrZ80));
drZ80.z80_rebasePC=DrZ80_rebasePC;
drZ80.z80_rebaseSP=DrZ80_rebaseSP;
drZ80.z80_read8 =z80_read;
drZ80.z80_read16 =z80_read16;
drZ80.z80_write8 =z80_write;
drZ80.z80_write16 =z80_write16;
drZ80.z80_in =z80_in;
drZ80.z80_out =z80_out;
drZ80.z80_irq_callback=DrZ80_irq_callback;
#elif defined(_USE_CZ80)
memset(&CZ80, 0, sizeof(CZ80));
Cz80_Init(&CZ80);
Cz80_Set_Fetch(&CZ80, 0x0000, 0x1fff, (UINT32)Pico.zram); // main RAM
Cz80_Set_Fetch(&CZ80, 0x2000, 0x3fff, (UINT32)Pico.zram - 0x2000); // mirror
Cz80_Set_ReadB(&CZ80, (UINT8 (*)(UINT32 address))z80_read);
Cz80_Set_WriteB(&CZ80, z80_write);
Cz80_Set_INPort(&CZ80, z80_in);
Cz80_Set_OUTPort(&CZ80, z80_out);
#endif
}
PICO_INTERNAL void z80_reset(void)
{
#if defined(_USE_MZ80)
mz80reset();
#elif defined(_USE_DRZ80)
memset(&drZ80, 0, 0x54);
drZ80.Z80F = (1<<2); // set ZFlag
drZ80.Z80F2 = (1<<2); // set ZFlag
drZ80.Z80IX = 0xFFFF << 16;
drZ80.Z80IY = 0xFFFF << 16;
drZ80.Z80IM = 0; // 1?
drZ80.Z80PC = drZ80.z80_rebasePC(0);
drZ80.Z80SP = drZ80.z80_rebaseSP(0x2000); // 0xf000 ?
#elif defined(_USE_CZ80)
Cz80_Reset(&CZ80);
#endif
Pico.m.z80_fakeval = 0; // for faking when Z80 is disabled
}
PICO_INTERNAL void z80_resetCycles(void)
{
#if defined(_USE_MZ80)
mz80GetElapsedTicks(1);
#endif
}
PICO_INTERNAL void z80_int(void)
{
#if defined(_USE_MZ80)
mz80int(0);
#elif defined(_USE_DRZ80)
drZ80.z80irqvector = 0xFF; // default IRQ vector RST opcode
drZ80.Z80_IRQ = 1;
#elif defined(_USE_CZ80)
Cz80_Set_IRQ(&CZ80, 0, HOLD_LINE);
#endif
}
// returns number of cycles actually executed
PICO_INTERNAL int z80_run(int cycles)
{
#if defined(_USE_MZ80)
int ticks_pre = mz80GetElapsedTicks(0);
mz80exec(cycles);
return mz80GetElapsedTicks(0) - ticks_pre;
#elif defined(_USE_DRZ80)
return cycles - DrZ80Run(&drZ80, cycles);
#elif defined(_USE_CZ80)
return Cz80_Exec(&CZ80, cycles);
#else
return cycles;
#endif
}
PICO_INTERNAL void z80_pack(unsigned char *data)
{
#if defined(_USE_MZ80)
struct mz80context mz80;
*(int *)data = 0x00005A6D; // "mZ"
mz80GetContext(&mz80);
memcpy(data+4, &mz80.z80clockticks, sizeof(mz80)-5*4); // don't save base&memhandlers
#elif defined(_USE_DRZ80)
*(int *)data = 0x015A7244; // "DrZ" v1
drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE);
drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE);
memcpy(data+4, &drZ80, 0x54);
#elif defined(_USE_CZ80)
*(int *)data = 0x00007a43; // "Cz"
*(int *)(data+4) = Cz80_Get_Reg(&CZ80, CZ80_PC);
memcpy(data+8, &CZ80, (INT32)&CZ80.BasePC - (INT32)&CZ80);
#endif
}
PICO_INTERNAL void z80_unpack(unsigned char *data)
{
#if defined(_USE_MZ80)
if (*(int *)data == 0x00005A6D) { // "mZ" save?
struct mz80context mz80;
mz80GetContext(&mz80);
memcpy(&mz80.z80clockticks, data+4, sizeof(mz80)-5*4);
mz80SetContext(&mz80);
} else {
z80_reset();
z80_int();
}
#elif defined(_USE_DRZ80)
if (*(int *)data == 0x015A7244) { // "DrZ" v1 save?
memcpy(&drZ80, data+4, 0x54);
// update bases
drZ80.Z80PC = drZ80.z80_rebasePC(drZ80.Z80PC-drZ80.Z80PC_BASE);
drZ80.Z80SP = drZ80.z80_rebaseSP(drZ80.Z80SP-drZ80.Z80SP_BASE);
} else {
z80_reset();
drZ80.Z80IM = 1;
z80_int(); // try to goto int handler, maybe we won't execute trash there?
}
#elif defined(_USE_CZ80)
if (*(int *)data == 0x00007a43) { // "Cz" save?
memcpy(&CZ80, data+8, (INT32)&CZ80.BasePC - (INT32)&CZ80);
Cz80_Set_Reg(&CZ80, CZ80_PC, *(int *)(data+4));
} else {
z80_reset();
z80_int();
}
#endif
}
PICO_INTERNAL void z80_exit(void)
{
#if defined(_USE_MZ80)
mz80shutdown();
#endif
}
#if 1 // defined(__DEBUG_PRINT) || defined(__GP2X__) || defined(__GIZ__)
PICO_INTERNAL void z80_debug(char *dstr)
{
#if defined(_USE_DRZ80)
sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", drZ80.Z80PC-drZ80.Z80PC_BASE, drZ80.Z80SP-drZ80.Z80SP_BASE);
#elif defined(_USE_CZ80)
sprintf(dstr, "Z80 state: PC: %04x SP: %04x\n", CZ80.PC - CZ80.BasePC, CZ80.SP.W);
#endif
}
#endif