mirror of
https://github.com/RaySollium99/picodrive.git
synced 2025-09-05 15:27:46 -04:00
1163 lines
36 KiB
C
1163 lines
36 KiB
C
/*
|
|
* PicoDrive
|
|
* (c) Copyright Dave, 2004
|
|
* (C) notaz, 2006-2009
|
|
* (C) kub, 2020,2021
|
|
*
|
|
* This work is licensed under the terms of MAME license.
|
|
* See COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "pico_int.h"
|
|
#define NEED_DMA_SOURCE
|
|
#include "memory.h"
|
|
|
|
|
|
enum { clkdiv = 2 }; // CPU clock granularity: one of 1,2,4,8
|
|
|
|
// VDP Slot timing, taken from http://gendev.spritesmind.net/
|
|
// forum/viewtopic.php?f=22&t=851&sid=d5701a71396ee7f700c74fb7cd85cb09
|
|
// Thank you very much for the great work, Nemesis!
|
|
|
|
// Slot clock is sysclock/20 for h32 and sysclock/16 for h40.
|
|
// One scanline is 63.7us/63.5us (h32/h40) long which is 488.6/487.4 68k cycles.
|
|
// Assume 488 for everything.
|
|
// 1 slot is 488/171 = 2.8538 68k cycles in h32, and 488/210 = 2.3238 in h40.
|
|
enum { slcpu = 488 };
|
|
|
|
// VDP has a slot counter running from 0x00 to 0xff every scanline, but it has
|
|
// a gap depending on the video mode. The slot in which a horizontal interrupt
|
|
// is generated also depends on the video mode.
|
|
enum { hint32 = 0x85, gapstart32 = 0x94, gapend32 = 0xe9};
|
|
enum { hint40 = 0xa5, gapstart40 = 0xb7, gapend40 = 0xe5};
|
|
|
|
// The horizontal sync period (HBLANK) is 30/37 slots (h32/h40):
|
|
// h32: 4 slots front porch (1.49us), 13 HSYNC (4.84us), 13 back porch (4.84us)
|
|
// h40: 5 slots front porch (1.49us), 16 HSYNC (4.77us), 16 back porch (4.77us)
|
|
// HBLANK starts in slot 0x93/0xb4, according to Nemesis' measurements.
|
|
enum { hboff32 = 0x93-hint32, hblen32 = 0xf8-(gapend32-gapstart32)-hint32};//30
|
|
enum { hboff40 = 0xb4-hint40, hblen40 = 0xf8-(gapend40-gapstart40)-hint40};//37
|
|
|
|
// number of slots in a scanline
|
|
#define slots32 (0x100-(gapend32-gapstart32)) // 171
|
|
#define slots40 (0x100-(gapend40-gapstart40)) // 210
|
|
|
|
// In blanked display, all slots but the refresh slots are usable for transfers,
|
|
// in active display only 16(h32) / 18(h40) slots can be used.
|
|
|
|
// dma and refresh slots for active display, 16 for H32
|
|
static u8 dmaslots32[] =
|
|
{ 145,243, 2,10,18, 34,42,50, 66,74,82, 98,106,114, 129,130 };
|
|
static u8 refslots32[] =
|
|
{ 250, 26, 58, 90, 122 };
|
|
// dma and refresh slots for active display, 18 for H40
|
|
static u8 dmaslots40[] =
|
|
{ 232, 2,10,18, 34,42,50, 66,74,82, 98,106,114, 130,138,146, 161,162 };
|
|
static u8 refslots40[] =
|
|
{ 250, 26, 58, 90, 122, 154 };
|
|
|
|
// table sizes
|
|
enum { cycsz = slcpu/clkdiv };
|
|
enum { sl32blsz=slots32-sizeof(refslots32)+1, sl32acsz=sizeof(dmaslots32)+1 };
|
|
enum { sl40blsz=slots40-sizeof(refslots40)+1, sl40acsz=sizeof(dmaslots40)+1 };
|
|
|
|
// Tables must be considerably larger than one scanline, since 68k emulation
|
|
// isn't stopping in the middle of an operation. If the last op is a 32 bit
|
|
// VDP access 2 slots may need to be taken from the next scanline, which can be
|
|
// more than 100 CPU cycles. For safety just cover 2 scanlines.
|
|
|
|
// table for hvcounter mapping. check: Sonic 3D Blast bonus, Cannon Fodder,
|
|
// Chase HQ II, 3 Ninjas kick back, Road Rash 3, Skitchin', Wheel of Fortune
|
|
static u8 hcounts_32[2*cycsz], hcounts_40[2*cycsz];
|
|
// tables mapping cycles to slots
|
|
static u16 vdpcyc2sl_32_bl[2*cycsz],vdpcyc2sl_40_bl[2*cycsz];
|
|
static u16 vdpcyc2sl_32_ac[2*cycsz],vdpcyc2sl_40_ac[2*cycsz];
|
|
// tables mapping slots to cycles
|
|
// NB the sl2cyc tables must cover all slots present in the cyc2sl tables.
|
|
static u16 vdpsl2cyc_32_bl[2*sl32blsz],vdpsl2cyc_40_bl[2*sl40blsz];
|
|
static u16 vdpsl2cyc_32_ac[2*sl32acsz],vdpsl2cyc_40_ac[2*sl40acsz];
|
|
|
|
|
|
// calculate timing tables for one mode (H32 or H40)
|
|
// NB tables aligned to HINT, since the main loop uses HINT as synchronization
|
|
#define INITTABLES(s) { \
|
|
float factor = (float)slcpu/slots##s; \
|
|
int ax, bx, rx, ac, bc; \
|
|
int i, n; \
|
|
\
|
|
/* calculate internal VDP slot numbers */ \
|
|
for (i = 0; i < cycsz; i++) { \
|
|
n = hint##s + i*clkdiv/factor; \
|
|
if (n >= gapstart##s) n += gapend##s-gapstart##s; \
|
|
hcounts_##s[i] = n % 256; \
|
|
} \
|
|
\
|
|
ax = bx = ac = bc = rx = 0; \
|
|
for (i = 0; i < cycsz; i++) { \
|
|
n = hcounts_##s[i]; \
|
|
if (i == 0 || n != hcounts_##s[i-1]) { \
|
|
/* fill slt <=> cycle tables, active scanline */ \
|
|
if (ax < ARRAY_SIZE(dmaslots##s) && dmaslots##s[ax] == n) { \
|
|
vdpsl2cyc_##s##_ac[++ax]=i; \
|
|
while (ac < i) vdpcyc2sl_##s##_ac[ac++] = ax-1; \
|
|
} \
|
|
/* fill slt <=> cycle tables, scanline off */ \
|
|
if (rx >= ARRAY_SIZE(refslots##s) || refslots##s[rx] != n) { \
|
|
vdpsl2cyc_##s##_bl[++bx]=i; \
|
|
while (bc < i) vdpcyc2sl_##s##_bl[bc++] = bx-1; \
|
|
} else \
|
|
++rx; \
|
|
} \
|
|
} \
|
|
/* fill up cycle to slot mappings for last slot */ \
|
|
while (ac < cycsz) \
|
|
vdpcyc2sl_##s##_ac[ac] = ARRAY_SIZE(dmaslots##s), ac++; \
|
|
while (bc < cycsz) \
|
|
vdpcyc2sl_##s##_bl[bc] = slots##s-ARRAY_SIZE(refslots##s), bc++; \
|
|
\
|
|
/* extend tables for 2nd scanline */ \
|
|
memcpy(hcounts_##s+cycsz, hcounts_##s, ARRAY_SIZE(hcounts_##s)-cycsz);\
|
|
i = ARRAY_SIZE(dmaslots##s); \
|
|
while (ac < ARRAY_SIZE(vdpcyc2sl_##s##_ac)) \
|
|
vdpcyc2sl_##s##_ac[ac] = vdpcyc2sl_##s##_ac[ac-cycsz]+i, ac++; \
|
|
while (ax < ARRAY_SIZE(vdpsl2cyc_##s##_ac)-1) ax++, \
|
|
vdpsl2cyc_##s##_ac[ax] = vdpsl2cyc_##s##_ac[ax-i]+cycsz; \
|
|
i = slots##s - ARRAY_SIZE(refslots##s); \
|
|
while (bc < ARRAY_SIZE(vdpcyc2sl_##s##_bl)) \
|
|
vdpcyc2sl_##s##_bl[bc] = vdpcyc2sl_##s##_bl[bc-cycsz]+i, bc++; \
|
|
while (bx < ARRAY_SIZE(vdpsl2cyc_##s##_bl)-1) bx++, \
|
|
vdpsl2cyc_##s##_bl[bx] = vdpsl2cyc_##s##_bl[bx-i]+cycsz; \
|
|
}
|
|
|
|
|
|
// initialize VDP timing tables
|
|
void PicoVideoInit(void)
|
|
{
|
|
INITTABLES(32);
|
|
INITTABLES(40);
|
|
}
|
|
|
|
|
|
static int blankline; // display disabled for this line
|
|
|
|
u32 SATaddr, SATmask; // VRAM addr of sprite attribute table
|
|
|
|
int (*PicoDmaHook)(u32 source, int len, unsigned short **base, u32 *mask) = NULL;
|
|
|
|
|
|
/* VDP FIFO implementation
|
|
*
|
|
* fifo_slot: last slot executed in this scanline
|
|
* fifo_total: #total FIFO entries pending
|
|
* fifo_data: last values transferred through fifo
|
|
* fifo_queue: fifo transfer queue (#writes, flags)
|
|
*
|
|
* FIFO states: empty total=0
|
|
* inuse total>0 && total<4
|
|
* full total==4
|
|
* wait total>4
|
|
* Conditions:
|
|
* fifo_slot is normally behind slot2cyc[cycles]. Advancing it beyond cycles
|
|
* implies blocking the 68k up to that slot.
|
|
*
|
|
* A FIFO write goes to the end of the FIFO queue, but DMA running in background
|
|
* is always the last queue entry (transfers by CPU intervene and come 1st).
|
|
* There can be more pending writes than FIFO slots, but the CPU will be blocked
|
|
* until FIFO level (without background DMA) <= 4.
|
|
* This is only about correct timing, data xfer must be handled by the caller.
|
|
* Blocking the CPU means burning cycles via SekCyclesBurn*(), which is to be
|
|
* executed by the caller.
|
|
*
|
|
* FIFOSync "executes" FIFO write slots up to the given cycle in the current
|
|
* scanline. A queue entry completely executed is removed from the queue.
|
|
* FIFOWrite pushes writes to the transfer queue. If it's a blocking write, 68k
|
|
* is blocked if more than 4 FIFO writes are pending.
|
|
* FIFORead executes a 68k read. 68k is blocked until the next transfer slot.
|
|
*/
|
|
|
|
// NB code assumes fifo_* arrays have size 2^n
|
|
static struct VdpFIFO { // XXX this must go into save file!
|
|
// last transferred FIFO data, ...x = index XXX currently only CPU
|
|
u16 fifo_data[4], fifo_dx;
|
|
|
|
// queued FIFO transfers, ...x = index, ...l = queue length
|
|
// each entry has 2 values: [n]>>3 = #writes, [n]&7 = flags (FQ_*)
|
|
u32 fifo_queue[8], fifo_qx, fifo_ql;
|
|
int fifo_total; // total# of pending FIFO entries (w/o BGDMA)
|
|
|
|
unsigned short fifo_slot; // last executed slot in current scanline
|
|
unsigned short fifo_maxslot;// #slots in scanline
|
|
|
|
const unsigned short *fifo_cyc2sl;
|
|
const unsigned short *fifo_sl2cyc;
|
|
} VdpFIFO;
|
|
|
|
enum { FQ_BYTE = 1, FQ_BGDMA = 2, FQ_FGDMA = 4 }; // queue flags, NB: BYTE = 1!
|
|
|
|
|
|
// NB should limit cyc2sl to table size in case 68k overdraws its aim. That can
|
|
// happen if the last op is a blocking acess to VDP, or for exceptions (e.g.irq)
|
|
#define Cyc2Sl(vf,lc) (vf->fifo_cyc2sl[(lc)/clkdiv])
|
|
#define Sl2Cyc(vf,sl) (vf->fifo_sl2cyc[sl]*clkdiv)
|
|
|
|
// do the FIFO math
|
|
static int AdvanceFIFOEntry(struct VdpFIFO *vf, struct PicoVideo *pv, int slots)
|
|
{
|
|
u32 *qx = &vf->fifo_queue[vf->fifo_qx];
|
|
int l = slots, b = *qx & FQ_BYTE;
|
|
int cnt = *qx >> 3;
|
|
|
|
// advance currently active FIFO entry
|
|
if (l > cnt)
|
|
l = cnt;
|
|
if (!(*qx & FQ_BGDMA))
|
|
vf->fifo_total -= ((cnt & b) + l) >> b;
|
|
*qx -= l << 3;
|
|
|
|
// if entry has been processed...
|
|
if (cnt == l) {
|
|
// remove entry from FIFO
|
|
*qx = 0;
|
|
vf->fifo_qx = (vf->fifo_qx+1) & 7;
|
|
vf->fifo_ql --;
|
|
}
|
|
|
|
return l;
|
|
}
|
|
|
|
static void SetFIFOState(struct VdpFIFO *vf, struct PicoVideo *pv)
|
|
{
|
|
u32 st = pv->status, cmd = pv->command;
|
|
// release CPU and terminate DMA if FIFO isn't blocking the 68k anymore
|
|
if (vf->fifo_total <= 4) {
|
|
st &= ~PVS_CPUWR;
|
|
if (!(st & (PVS_DMABG|PVS_DMAFILL))) {
|
|
st &= ~SR_DMA;
|
|
cmd &= ~0x80;
|
|
}
|
|
}
|
|
if (vf->fifo_ql == 0) {
|
|
st &= ~PVS_CPURD;
|
|
// terminate DMA if applicable
|
|
if (!(st & PVS_DMAFILL)) {
|
|
st &= ~(SR_DMA|PVS_DMABG);
|
|
cmd &= ~0x80;
|
|
}
|
|
}
|
|
pv->status = st;
|
|
pv->command = cmd;
|
|
}
|
|
|
|
// sync FIFO to cycles
|
|
void PicoVideoFIFOSync(int cycles)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int slots, done;
|
|
|
|
// calculate #slots since last executed slot
|
|
slots = Cyc2Sl(vf, cycles) - vf->fifo_slot;
|
|
if (!slots || !vf->fifo_ql) return;
|
|
|
|
// advance FIFO queue by #done slots
|
|
done = slots;
|
|
while (done > 0 && vf->fifo_ql) {
|
|
int l = AdvanceFIFOEntry(vf, pv, done);
|
|
vf->fifo_slot += l;
|
|
done -= l;
|
|
}
|
|
|
|
if (done != slots)
|
|
SetFIFOState(vf, pv);
|
|
}
|
|
|
|
// drain FIFO, blocking 68k on the way. FIFO must be synced prior to drain.
|
|
static int PicoVideoFIFODrain(int level, int cycles, int bgdma)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
unsigned ocyc = cycles;
|
|
int bd = vf->fifo_queue[vf->fifo_qx] & bgdma;
|
|
int burn = 0;
|
|
|
|
if (!(vf->fifo_ql && ((vf->fifo_total > level) | bd))) return 0;
|
|
|
|
// process FIFO entries until low level is reached
|
|
while (vf->fifo_slot < vf->fifo_maxslot &&
|
|
vf->fifo_ql && ((vf->fifo_total > level) | bd)) {
|
|
int b = vf->fifo_queue[vf->fifo_qx] & FQ_BYTE;
|
|
int c = vf->fifo_queue[vf->fifo_qx] >> 3;
|
|
int cnt = bd ? c : ((vf->fifo_total-level)<<b) - (c&b);
|
|
int slot = (c < cnt ? c : cnt) + vf->fifo_slot;
|
|
|
|
if (slot > vf->fifo_maxslot) {
|
|
// target slot in later scanline, advance to eol
|
|
slot = vf->fifo_maxslot;
|
|
}
|
|
if (slot > vf->fifo_slot) {
|
|
// advance FIFO to target slot and CPU to cycles at that slot
|
|
vf->fifo_slot += AdvanceFIFOEntry(vf, pv, slot - vf->fifo_slot);
|
|
cycles = Sl2Cyc(vf, vf->fifo_slot);
|
|
bd = vf->fifo_queue[vf->fifo_qx] & bgdma;
|
|
}
|
|
}
|
|
if (vf->fifo_ql && ((vf->fifo_total > level) | bd))
|
|
cycles = 488; // not completed in this scanline
|
|
if (cycles > ocyc)
|
|
burn = cycles - ocyc;
|
|
|
|
SetFIFOState(vf, pv);
|
|
|
|
return burn;
|
|
}
|
|
|
|
// read VDP data port
|
|
static int PicoVideoFIFORead(void)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int lc = SekCyclesDone()-Pico.t.m68c_line_start;
|
|
int burn = 0;
|
|
|
|
if (vf->fifo_ql) {
|
|
// advance FIFO and CPU until FIFO is empty
|
|
burn = PicoVideoFIFODrain(0, lc, FQ_BGDMA);
|
|
lc += burn;
|
|
}
|
|
|
|
if (vf->fifo_ql)
|
|
pv->status |= PVS_CPURD; // target slot is in later scanline
|
|
else {
|
|
// use next VDP access slot for reading, block 68k until then
|
|
vf->fifo_slot = Cyc2Sl(vf, lc) + 1;
|
|
burn += Sl2Cyc(vf, vf->fifo_slot) - lc;
|
|
}
|
|
|
|
return burn;
|
|
}
|
|
|
|
// write VDP data port
|
|
int PicoVideoFIFOWrite(int count, int flags, unsigned sr_mask,unsigned sr_flags)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int lc = SekCyclesDone()-Pico.t.m68c_line_start;
|
|
int burn = 0, x;
|
|
|
|
// sync only needed if queue is too full or background dma might be deferred
|
|
if ((vf->fifo_ql >= 6) | (pv->status & PVS_DMABG))
|
|
PicoVideoFIFOSync(lc);
|
|
|
|
// determine last ent, ignoring bg dma (pushed back below if new ent created)
|
|
x = (vf->fifo_qx + vf->fifo_ql - 1 - !!(pv->status & PVS_DMABG)) & 7;
|
|
|
|
pv->status = (pv->status & ~sr_mask) | sr_flags;
|
|
vf->fifo_total += count * !(flags & FQ_BGDMA);
|
|
if (!vf->fifo_ql)
|
|
vf->fifo_slot = Cyc2Sl(vf, lc+7); // FIFO latency ~3 vdp slots
|
|
|
|
// determine queue position for entry
|
|
count <<= (flags & FQ_BYTE)+3;
|
|
if (vf->fifo_queue[x] && (vf->fifo_queue[x] & 7) == flags) {
|
|
// amalgamate entries if of same type and not empty (in case of bgdma)
|
|
vf->fifo_queue[x] += count;
|
|
} else {
|
|
// create new xfer queue entry
|
|
vf->fifo_ql ++;
|
|
x = (x+1) & 7;
|
|
vf->fifo_queue[(x+1)&7] = vf->fifo_queue[x]; // push back bg dma if exists
|
|
vf->fifo_queue[x] = count | flags;
|
|
}
|
|
|
|
// if CPU is waiting for the bus, advance CPU and FIFO until bus is free
|
|
// do this only if it would exhaust the available slots since last sync
|
|
x = (Cyc2Sl(vf,lc) - vf->fifo_slot) / 2; // lower bound of FIFO ents
|
|
if ((pv->status & PVS_CPUWR) && vf->fifo_total > 4 + x)
|
|
burn = PicoVideoFIFODrain(4, lc, 0);
|
|
|
|
return burn;
|
|
}
|
|
|
|
// at HINT, advance FIFO to new scanline
|
|
int PicoVideoFIFOHint(void)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int lc = SekCyclesDone()-Pico.t.m68c_line_start;
|
|
int burn = 0;
|
|
|
|
// reset slot to start of scanline
|
|
vf->fifo_slot = 0;
|
|
|
|
// if CPU is waiting for the bus, advance CPU and FIFO until bus is free
|
|
if (pv->status & PVS_CPUWR)
|
|
burn = PicoVideoFIFODrain(4, lc, 0);
|
|
else if (pv->status & PVS_CPURD)
|
|
burn = PicoVideoFIFORead();
|
|
|
|
return burn;
|
|
}
|
|
|
|
// switch FIFO mode between active/inactive display
|
|
void PicoVideoFIFOMode(int active, int h40)
|
|
{
|
|
static const unsigned short *vdpcyc2sl[2][2] =
|
|
{ {vdpcyc2sl_32_bl, vdpcyc2sl_40_bl},{vdpcyc2sl_32_ac, vdpcyc2sl_40_ac} };
|
|
static const unsigned short *vdpsl2cyc[2][2] =
|
|
{ {vdpsl2cyc_32_bl, vdpsl2cyc_40_bl},{vdpsl2cyc_32_ac, vdpsl2cyc_40_ac} };
|
|
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int lc = SekCyclesDone() - Pico.t.m68c_line_start;
|
|
active = active && !(pv->status & PVS_VB2);
|
|
|
|
if (vf->fifo_maxslot)
|
|
PicoVideoFIFOSync(lc);
|
|
|
|
vf->fifo_cyc2sl = vdpcyc2sl[active][h40];
|
|
vf->fifo_sl2cyc = vdpsl2cyc[active][h40];
|
|
// recalculate FIFO slot for new mode
|
|
vf->fifo_slot = Cyc2Sl(vf, lc);
|
|
vf->fifo_maxslot = Cyc2Sl(vf, 488);
|
|
}
|
|
|
|
// VDP memory rd/wr
|
|
|
|
static __inline void AutoIncrement(void)
|
|
{
|
|
Pico.video.addr=(unsigned short)(Pico.video.addr+Pico.video.reg[0xf]);
|
|
if (Pico.video.addr < Pico.video.reg[0xf]) Pico.video.addr_u ^= 1;
|
|
}
|
|
|
|
static NOINLINE void VideoWriteVRAM128(u32 a, u16 d)
|
|
{
|
|
// nasty
|
|
u32 b = ((a & 2) >> 1) | ((a & 0x400) >> 9) | (a & 0x3FC) | ((a & 0x1F800) >> 1);
|
|
|
|
((u8 *)PicoMem.vram)[b] = d;
|
|
if (!(u16)((b^SATaddr) & SATmask))
|
|
Pico.est.rendstatus |= PDRAW_DIRTY_SPRITES;
|
|
|
|
if (((a^SATaddr) & SATmask) == 0)
|
|
UpdateSAT(a, d);
|
|
}
|
|
|
|
static void VideoWrite(u16 d)
|
|
{
|
|
unsigned int a = Pico.video.addr;
|
|
|
|
switch (Pico.video.type)
|
|
{
|
|
case 1: if (a & 1)
|
|
d = (u16)((d << 8) | (d >> 8));
|
|
a |= Pico.video.addr_u << 16;
|
|
VideoWriteVRAM(a, d);
|
|
break;
|
|
case 3: if (PicoMem.cram [(a >> 1) & 0x3f] != d) Pico.m.dirtyPal = 1;
|
|
PicoMem.cram [(a >> 1) & 0x3f] = d & 0xeee; break;
|
|
case 5: PicoMem.vsram[(a >> 1) & 0x3f] = d & 0x7ff; break;
|
|
case 0x81:
|
|
a |= Pico.video.addr_u << 16;
|
|
VideoWriteVRAM128(a, d);
|
|
break;
|
|
//default:elprintf(EL_ANOMALY, "VDP write %04x with bad type %i", d, Pico.video.type); break;
|
|
}
|
|
|
|
AutoIncrement();
|
|
}
|
|
|
|
static unsigned int VideoRead(int is_from_z80)
|
|
{
|
|
unsigned int a, d = VdpFIFO.fifo_data[(VdpFIFO.fifo_dx+1)&3];
|
|
|
|
a=Pico.video.addr; a>>=1;
|
|
|
|
if (!is_from_z80)
|
|
SekCyclesBurnRun(PicoVideoFIFORead());
|
|
switch (Pico.video.type)
|
|
{
|
|
case 0: d=PicoMem.vram [a & 0x7fff]; break;
|
|
case 8: d=PicoMem.cram [a & 0x003f] | (d & ~0x0eee); break;
|
|
case 4: if ((a & 0x3f) >= 0x28) a = 0;
|
|
d=PicoMem.vsram [a & 0x003f] | (d & ~0x07ff); break;
|
|
case 12:a=PicoMem.vram [a & 0x7fff]; if (Pico.video.addr&1) a >>= 8;
|
|
d=(a & 0x00ff) | (d & ~0x00ff); break;
|
|
default:elprintf(EL_ANOMALY, "VDP read with bad type %i", Pico.video.type); break;
|
|
}
|
|
|
|
AutoIncrement();
|
|
return d;
|
|
}
|
|
|
|
// VDP DMA
|
|
|
|
static int GetDmaLength(void)
|
|
{
|
|
struct PicoVideo *pvid=&Pico.video;
|
|
int len=0;
|
|
// 16-bit words to transfer:
|
|
len =pvid->reg[0x13];
|
|
len|=pvid->reg[0x14]<<8;
|
|
len = ((len - 1) & 0xffff) + 1;
|
|
return len;
|
|
}
|
|
|
|
static void DmaSlow(int len, u32 source)
|
|
{
|
|
u32 inc = Pico.video.reg[0xf];
|
|
u32 a = Pico.video.addr | (Pico.video.addr_u << 16);
|
|
u16 *r, *base = NULL;
|
|
u32 mask = 0x1ffff;
|
|
|
|
elprintf(EL_VDPDMA, "DmaSlow[%i] %06x->%04x len %i inc=%i blank %i [%u] @ %06x",
|
|
Pico.video.type, source, a, len, inc, (Pico.video.status&SR_VB)||!(Pico.video.reg[1]&0x40),
|
|
SekCyclesDone(), SekPc);
|
|
|
|
SekCyclesBurnRun(PicoVideoFIFOWrite(len, FQ_FGDMA | (Pico.video.type == 1),
|
|
PVS_DMABG, SR_DMA | PVS_CPUWR));
|
|
|
|
if ((source & 0xe00000) == 0xe00000) { // Ram
|
|
base = (u16 *)PicoMem.ram;
|
|
mask = 0xffff;
|
|
}
|
|
else if (PicoIn.AHW & PAHW_MCD)
|
|
{
|
|
u8 r3 = Pico_mcd->s68k_regs[3];
|
|
elprintf(EL_VDPDMA, "DmaSlow CD, r3=%02x", r3);
|
|
if (source < 0x20000) { // Bios area
|
|
base = (u16 *)Pico_mcd->bios;
|
|
} else if ((source & 0xfc0000) == 0x200000) { // Word Ram
|
|
if (!(r3 & 4)) { // 2M mode
|
|
base = (u16 *)(Pico_mcd->word_ram2M + (source & 0x20000));
|
|
} else {
|
|
if (source < 0x220000) { // 1M mode
|
|
int bank = r3 & 1;
|
|
base = (u16 *)(Pico_mcd->word_ram1M[bank]);
|
|
} else {
|
|
DmaSlowCell(source - 2, a, len, inc);
|
|
return;
|
|
}
|
|
}
|
|
source -= 2;
|
|
} else if ((source & 0xfe0000) == 0x020000) { // Prg Ram
|
|
base = (u16 *)Pico_mcd->prg_ram_b[r3 >> 6];
|
|
source -= 2; // XXX: test
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// if we have DmaHook, let it handle ROM because of possible DMA delay
|
|
u32 source2;
|
|
if (PicoDmaHook && (source2 = PicoDmaHook(source, len, &base, &mask)))
|
|
source = source2;
|
|
else // Rom
|
|
base = m68k_dma_source(source);
|
|
}
|
|
if (!base) {
|
|
elprintf(EL_VDPDMA|EL_ANOMALY, "DmaSlow[%i] %06x->%04x: invalid src", Pico.video.type, source, a);
|
|
return;
|
|
}
|
|
|
|
// operate in words
|
|
source >>= 1;
|
|
mask >>= 1;
|
|
|
|
switch (Pico.video.type)
|
|
{
|
|
case 1: // vram
|
|
r = PicoMem.vram;
|
|
if (inc == 2 && !(a & 1) && (a & ~0xffff) == ((a + len*2-1) & ~0xffff) &&
|
|
((a >= SATaddr+0x280) | ((a + len*2-1) < SATaddr)) &&
|
|
(source & ~mask) == ((source + len-1) & ~mask))
|
|
{
|
|
// most used DMA mode
|
|
memcpy((char *)r + a, base + (source & mask), len * 2);
|
|
a += len * 2;
|
|
break;
|
|
}
|
|
for(; len; len--)
|
|
{
|
|
u16 d = base[source++ & mask];
|
|
if(a & 1) d=(d<<8)|(d>>8);
|
|
VideoWriteVRAM(a, d);
|
|
// AutoIncrement
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
|
|
case 3: // cram
|
|
Pico.m.dirtyPal = 1;
|
|
r = PicoMem.cram;
|
|
for (; len; len--)
|
|
{
|
|
r[(a / 2) & 0x3f] = base[source++ & mask] & 0xeee;
|
|
// AutoIncrement
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
|
|
case 5: // vsram
|
|
r = PicoMem.vsram;
|
|
for (; len; len--)
|
|
{
|
|
r[(a / 2) & 0x3f] = base[source++ & mask] & 0x7ff;
|
|
// AutoIncrement
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
|
|
case 0x81: // vram 128k
|
|
for(; len; len--)
|
|
{
|
|
u16 d = base[source++ & mask];
|
|
VideoWriteVRAM128(a, d);
|
|
// AutoIncrement
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
if (Pico.video.type != 0 || (EL_LOGMASK & EL_VDPDMA))
|
|
elprintf(EL_VDPDMA|EL_ANOMALY, "DMA with bad type %i", Pico.video.type);
|
|
break;
|
|
}
|
|
// remember addr
|
|
Pico.video.addr = a;
|
|
Pico.video.addr_u = a >> 16;
|
|
}
|
|
|
|
static void DmaCopy(int len)
|
|
{
|
|
u32 a = Pico.video.addr | (Pico.video.addr_u << 16);
|
|
u8 *vr = (u8 *)PicoMem.vram;
|
|
u8 inc = Pico.video.reg[0xf];
|
|
int source;
|
|
elprintf(EL_VDPDMA, "DmaCopy len %i [%u]", len, SekCyclesDone());
|
|
|
|
// XXX implement VRAM 128k? Is this even working? xfer/count still in bytes?
|
|
SekCyclesBurnRun(PicoVideoFIFOWrite(2*len, FQ_BGDMA, // 2 slots each (rd+wr)
|
|
PVS_CPUWR, SR_DMA | PVS_DMABG));
|
|
|
|
source =Pico.video.reg[0x15];
|
|
source|=Pico.video.reg[0x16]<<8;
|
|
|
|
for (; len; len--)
|
|
{
|
|
vr[(u16)a] = vr[(u16)(source++)];
|
|
if (((a^SATaddr) & SATmask) == 0)
|
|
UpdateSAT(a, ((u16 *)vr)[(u16)a >> 1]);
|
|
// AutoIncrement
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
// remember addr
|
|
Pico.video.addr = a;
|
|
Pico.video.addr_u = a >> 16;
|
|
}
|
|
|
|
static NOINLINE void DmaFill(int data)
|
|
{
|
|
u32 a = Pico.video.addr | (Pico.video.addr_u << 16);
|
|
u8 *vr = (u8 *)PicoMem.vram;
|
|
u8 high = (u8)(data >> 8);
|
|
u8 inc = Pico.video.reg[0xf];
|
|
int source;
|
|
int len, l;
|
|
|
|
len = GetDmaLength();
|
|
elprintf(EL_VDPDMA, "DmaFill len %i inc %i [%u]", len, inc, SekCyclesDone());
|
|
|
|
SekCyclesBurnRun(PicoVideoFIFOWrite(len, FQ_BGDMA, // 1 slot each (wr)
|
|
PVS_CPUWR | PVS_DMAFILL, SR_DMA | PVS_DMABG));
|
|
|
|
switch (Pico.video.type)
|
|
{
|
|
case 1: // vram
|
|
if (inc == 1 && (a & ~0xffff) == ((a + len-1) & ~0xffff) &&
|
|
((a >= SATaddr+0x280) | ((a + len-1) < SATaddr)))
|
|
{
|
|
// most used DMA mode
|
|
memset(vr + (u16)a, high, len);
|
|
a += len;
|
|
break;
|
|
}
|
|
for (l = len; l; l--) {
|
|
// Write upper byte to adjacent address
|
|
// (here we are byteswapped, so address is already 'adjacent')
|
|
vr[(u16)a] = high;
|
|
if (((a^SATaddr) & SATmask) == 0)
|
|
UpdateSAT(a, ((u16 *)vr)[(u16)a >> 1]);
|
|
|
|
// Increment address register
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
case 3: // cram
|
|
Pico.m.dirtyPal = 1;
|
|
data &= 0xeee;
|
|
for (l = len; l; l--) {
|
|
PicoMem.cram[(a/2) & 0x3f] = data;
|
|
|
|
// Increment address register
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
case 5: { // vsram
|
|
data &= 0x7ff;
|
|
for (l = len; l; l--) {
|
|
PicoMem.vsram[(a/2) & 0x3f] = data;
|
|
|
|
// Increment address register
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
}
|
|
case 0x81: // vram 128k
|
|
for (l = len; l; l--) {
|
|
VideoWriteVRAM128(a, data);
|
|
|
|
// Increment address register
|
|
a = (a+inc) & ~0x20000;
|
|
}
|
|
break;
|
|
default:
|
|
a += len * inc;
|
|
break;
|
|
}
|
|
|
|
// remember addr
|
|
Pico.video.addr = a;
|
|
Pico.video.addr_u = a >> 16;
|
|
// register update
|
|
Pico.video.reg[0x13] = Pico.video.reg[0x14] = 0;
|
|
source = Pico.video.reg[0x15];
|
|
source |= Pico.video.reg[0x16] << 8;
|
|
source += len;
|
|
Pico.video.reg[0x15] = source;
|
|
Pico.video.reg[0x16] = source >> 8;
|
|
|
|
}
|
|
|
|
// VDP command handling
|
|
|
|
static NOINLINE void CommandDma(void)
|
|
{
|
|
struct PicoVideo *pvid = &Pico.video;
|
|
u32 len, method;
|
|
u32 source;
|
|
|
|
PicoVideoFIFOSync(SekCyclesDone()-Pico.t.m68c_line_start);
|
|
if (pvid->status & SR_DMA) {
|
|
elprintf(EL_VDPDMA, "Dma overlap, left=%d @ %06x",
|
|
VdpFIFO.fifo_total, SekPc);
|
|
VdpFIFO.fifo_total = VdpFIFO.fifo_ql = 0;
|
|
pvid->status &= ~PVS_DMAFILL;
|
|
}
|
|
|
|
len = GetDmaLength();
|
|
source =Pico.video.reg[0x15];
|
|
source|=Pico.video.reg[0x16] << 8;
|
|
source|=Pico.video.reg[0x17] << 16;
|
|
|
|
method=pvid->reg[0x17]>>6;
|
|
if (method < 2)
|
|
DmaSlow(len, source << 1); // 68000 to VDP
|
|
else if (method == 3)
|
|
DmaCopy(len); // VRAM Copy
|
|
else {
|
|
pvid->status |= SR_DMA|PVS_DMAFILL;
|
|
return;
|
|
}
|
|
source += len;
|
|
Pico.video.reg[0x13] = Pico.video.reg[0x14] = 0;
|
|
Pico.video.reg[0x15] = source;
|
|
Pico.video.reg[0x16] = source >> 8;
|
|
}
|
|
|
|
static NOINLINE void CommandChange(struct PicoVideo *pvid)
|
|
{
|
|
unsigned int cmd, addr;
|
|
|
|
cmd = pvid->command;
|
|
|
|
// Get type of transfer 0xc0000030 (v/c/vsram read/write)
|
|
pvid->type = (u8)(((cmd >> 2) & 0xc) | (cmd >> 30));
|
|
if (pvid->type == 1) // vram
|
|
pvid->type |= pvid->reg[1] & 0x80; // 128k
|
|
|
|
// Get address 0x3fff0003
|
|
addr = (cmd >> 16) & 0x3fff;
|
|
addr |= (cmd << 14) & 0xc000;
|
|
pvid->addr = (u16)addr;
|
|
pvid->addr_u = (u8)((cmd >> 2) & 1);
|
|
}
|
|
|
|
// VDP interface
|
|
|
|
static void DrawSync(int skip)
|
|
{
|
|
int lines = Pico.video.reg[1]&0x08 ? 240 : 224;
|
|
int last = Pico.m.scanline - (skip || blankline == Pico.m.scanline);
|
|
|
|
if (last < lines && !(PicoIn.opt & POPT_ALT_RENDERER) &&
|
|
!PicoIn.skipFrame && Pico.est.DrawScanline <= last) {
|
|
//elprintf(EL_ANOMALY, "sync");
|
|
if (blankline >= 0 && blankline < last) {
|
|
PicoDrawSync(blankline, 1);
|
|
blankline = -1;
|
|
}
|
|
PicoDrawSync(last, 0);
|
|
}
|
|
}
|
|
|
|
PICO_INTERNAL_ASM void PicoVideoWrite(u32 a,unsigned short d)
|
|
{
|
|
struct PicoVideo *pvid=&Pico.video;
|
|
|
|
//elprintf(EL_STATUS, "PicoVideoWrite [%06x] %04x [%u] @ %06x",
|
|
// a, d, SekCyclesDone(), SekPc);
|
|
|
|
a &= 0x1c;
|
|
switch (a)
|
|
{
|
|
case 0x00: // Data port 0 or 2
|
|
// try avoiding the sync..
|
|
if (Pico.m.scanline < (pvid->reg[1]&0x08 ? 240 : 224) && (pvid->reg[1]&0x40) &&
|
|
!(!pvid->pending && ((pvid->command & 0xc00000f0) == 0x40000010 &&
|
|
PicoMem.vsram[(pvid->addr>>1) & 0x3f] == (d & 0x7ff)))
|
|
)
|
|
DrawSync(0); // XXX it's unclear when vscroll data is fetched from vsram?
|
|
|
|
if (pvid->pending) {
|
|
CommandChange(pvid);
|
|
pvid->pending=0;
|
|
}
|
|
|
|
if (!(PicoIn.opt&POPT_DIS_VDP_FIFO))
|
|
{
|
|
VdpFIFO.fifo_data[++VdpFIFO.fifo_dx&3] = d;
|
|
SekCyclesBurnRun(PicoVideoFIFOWrite(1, pvid->type == 1, 0, PVS_CPUWR));
|
|
|
|
elprintf(EL_ASVDP, "VDP data write: [%04x] %04x [%u] {%i} @ %06x",
|
|
Pico.video.addr, d, SekCyclesDone(), Pico.video.type, SekPc);
|
|
}
|
|
VideoWrite(d);
|
|
|
|
// start DMA fill on write. NB VSRAM and CRAM fills use wrong FIFO data.
|
|
if (pvid->status & PVS_DMAFILL)
|
|
DmaFill(VdpFIFO.fifo_data[(VdpFIFO.fifo_dx + !!(pvid->type&~0x81))&3]);
|
|
|
|
break;
|
|
|
|
case 0x04: // Control (command) port 4 or 6
|
|
if (pvid->status & SR_DMA)
|
|
SekCyclesBurnRun(PicoVideoFIFORead()); // kludge, flush out running DMA
|
|
if (pvid->pending)
|
|
{
|
|
// Low word of command:
|
|
if (!(pvid->reg[1]&0x10))
|
|
d = (d&~0x80)|(pvid->command&0x80);
|
|
pvid->command &= 0xffff0000;
|
|
pvid->command |= d;
|
|
pvid->pending = 0;
|
|
CommandChange(pvid);
|
|
// Check for dma:
|
|
if (d & 0x80) {
|
|
DrawSync(SekCyclesDone() - Pico.t.m68c_line_start <= 488-390);
|
|
CommandDma();
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if ((d&0xc000)==0x8000)
|
|
{
|
|
// Register write:
|
|
int num=(d>>8)&0x1f;
|
|
int dold=pvid->reg[num];
|
|
pvid->type=0; // register writes clear command (else no Sega logo in Golden Axe II)
|
|
if (num > 0x0a && !(pvid->reg[1]&4)) {
|
|
elprintf(EL_ANOMALY, "%02x written to reg %02x in SMS mode @ %06x", d, num, SekPc);
|
|
return;
|
|
}
|
|
|
|
if (num == 0 && !(pvid->reg[0]&2) && (d&2))
|
|
pvid->hv_latch = PicoVideoRead(0x08);
|
|
if (num == 1 && ((pvid->reg[1]^d)&0x40)) {
|
|
PicoVideoFIFOMode(d & 0x40, pvid->reg[12]&1);
|
|
// handle line blanking before line rendering
|
|
if (SekCyclesDone() - Pico.t.m68c_line_start <= 488-390)
|
|
blankline = d&0x40 ? -1 : Pico.m.scanline;
|
|
}
|
|
if (num == 12 && ((pvid->reg[12]^d)&0x01))
|
|
PicoVideoFIFOMode(pvid->reg[1]&0x40, d & 1);
|
|
DrawSync(SekCyclesDone() - Pico.t.m68c_line_start <= 488-390);
|
|
d &= 0xff;
|
|
pvid->reg[num]=(unsigned char)d;
|
|
switch (num)
|
|
{
|
|
case 0x00:
|
|
elprintf(EL_INTSW, "hint_onoff: %i->%i [%u] pend=%i @ %06x", (dold&0x10)>>4,
|
|
(d&0x10)>>4, SekCyclesDone(), (pvid->pending_ints&0x10)>>4, SekPc);
|
|
goto update_irq;
|
|
case 0x01:
|
|
elprintf(EL_INTSW, "vint_onoff: %i->%i [%u] pend=%i @ %06x", (dold&0x20)>>5,
|
|
(d&0x20)>>5, SekCyclesDone(), (pvid->pending_ints&0x20)>>5, SekPc);
|
|
if (!(pvid->status & PVS_VB2))
|
|
pvid->status &= ~SR_VB;
|
|
pvid->status |= ((d >> 3) ^ SR_VB) & SR_VB; // forced blanking
|
|
goto update_irq;
|
|
case 0x05:
|
|
case 0x06:
|
|
if (d^dold) Pico.est.rendstatus |= PDRAW_SPRITES_MOVED;
|
|
break;
|
|
case 0x0c:
|
|
// renderers should update their palettes if sh/hi mode is changed
|
|
if ((d^dold)&8) Pico.m.dirtyPal = 1;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
SATaddr = ((pvid->reg[5]&0x7f) << 9) | ((pvid->reg[6]&0x20) << 11);
|
|
SATmask = ~0x1ff;
|
|
if (Pico.video.reg[12]&1)
|
|
SATaddr &= ~0x200, SATmask &= ~0x200; // H40, zero lowest SAT bit
|
|
//elprintf(EL_STATUS, "spritep moved to %04x", SATaddr);
|
|
return;
|
|
|
|
update_irq:
|
|
#ifndef EMU_CORE_DEBUG
|
|
// update IRQ level
|
|
if (!SekShouldInterrupt()) // hack
|
|
{
|
|
int lines, pints, irq = 0;
|
|
lines = (pvid->reg[1] & 0x20) | (pvid->reg[0] & 0x10);
|
|
pints = pvid->pending_ints & lines;
|
|
if (pints & 0x20) irq = 6;
|
|
else if (pints & 0x10) irq = 4;
|
|
SekInterrupt(irq); // update line
|
|
|
|
// this is broken because cost of current insn isn't known here
|
|
if (irq) SekEndRun(21); // make it delayed
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
// High word of command:
|
|
pvid->command&=0x0000ffff;
|
|
pvid->command|=d<<16;
|
|
pvid->pending=1;
|
|
}
|
|
}
|
|
break;
|
|
|
|
// case 0x08: // 08 0a - HV counter - lock up
|
|
// case 0x0c: // 0c 0e - HV counter - lock up
|
|
// case 0x10: // 10 12 - PSG - handled by caller
|
|
// case 0x14: // 14 16 - PSG - handled by caller
|
|
// case 0x18: // 18 1a - no effect?
|
|
case 0x1c: // 1c 1e - debug
|
|
pvid->debug = d;
|
|
pvid->debug_p = 0;
|
|
if (d & (1 << 6)) {
|
|
pvid->debug_p |= PVD_KILL_A | PVD_KILL_B;
|
|
pvid->debug_p |= PVD_KILL_S_LO | PVD_KILL_S_HI;
|
|
}
|
|
switch ((d >> 7) & 3) {
|
|
case 1:
|
|
pvid->debug_p &= ~(PVD_KILL_S_LO | PVD_KILL_S_HI);
|
|
pvid->debug_p |= PVD_FORCE_S;
|
|
break;
|
|
case 2:
|
|
pvid->debug_p &= ~PVD_KILL_A;
|
|
pvid->debug_p |= PVD_FORCE_A;
|
|
break;
|
|
case 3:
|
|
pvid->debug_p &= ~PVD_KILL_B;
|
|
pvid->debug_p |= PVD_FORCE_B;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static u32 VideoSr(const struct PicoVideo *pv)
|
|
{
|
|
unsigned int hp = pv->reg[12]&1 ? hboff40*488/slots40 : hboff32*488/slots32;
|
|
unsigned int hl = pv->reg[12]&1 ? hblen40*488/slots40 : hblen32*488/slots32;
|
|
unsigned int c;
|
|
u32 d = (u16)pv->status;
|
|
|
|
c = SekCyclesDone() - Pico.t.m68c_line_start;
|
|
if (c - hp < hl)
|
|
d |= SR_HB;
|
|
|
|
PicoVideoFIFOSync(c);
|
|
if (VdpFIFO.fifo_total >= 4)
|
|
d |= SR_FULL;
|
|
else if (!VdpFIFO.fifo_total)
|
|
d |= SR_EMPT;
|
|
return d;
|
|
}
|
|
|
|
PICO_INTERNAL_ASM u32 PicoVideoRead(u32 a)
|
|
{
|
|
a &= 0x1c;
|
|
|
|
if (a == 0x04) // control port
|
|
{
|
|
struct PicoVideo *pv = &Pico.video;
|
|
u32 d = VideoSr(pv);
|
|
if (pv->pending) {
|
|
CommandChange(pv);
|
|
pv->pending = 0;
|
|
}
|
|
elprintf(EL_SR, "SR read: %04x [%u] @ %06x", d, SekCyclesDone(), SekPc);
|
|
return d;
|
|
}
|
|
|
|
if ((a&0x1c)==0x08)
|
|
{
|
|
unsigned int c;
|
|
u32 d;
|
|
|
|
c = SekCyclesDone() - Pico.t.m68c_line_start;
|
|
if (Pico.video.reg[0]&2)
|
|
d = Pico.video.hv_latch;
|
|
else if (Pico.video.reg[12]&1)
|
|
d = hcounts_40[c/clkdiv] | (Pico.video.v_counter << 8);
|
|
else d = hcounts_32[c/clkdiv] | (Pico.video.v_counter << 8);
|
|
|
|
elprintf(EL_HVCNT, "hv: %02x %02x [%u] @ %06x", d, Pico.video.v_counter, SekCyclesDone(), SekPc);
|
|
return d;
|
|
}
|
|
|
|
if (a==0x00) // data port
|
|
{
|
|
return VideoRead(0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
unsigned char PicoVideoRead8DataH(int is_from_z80)
|
|
{
|
|
return VideoRead(is_from_z80) >> 8;
|
|
}
|
|
|
|
unsigned char PicoVideoRead8DataL(int is_from_z80)
|
|
{
|
|
return VideoRead(is_from_z80);
|
|
}
|
|
|
|
unsigned char PicoVideoRead8CtlH(int is_from_z80)
|
|
{
|
|
struct PicoVideo *pv = &Pico.video;
|
|
u8 d = VideoSr(pv) >> 8;
|
|
if (pv->pending) {
|
|
CommandChange(pv);
|
|
pv->pending = 0;
|
|
}
|
|
elprintf(EL_SR, "SR read (h): %02x @ %06x", d, SekPc);
|
|
return d;
|
|
}
|
|
|
|
unsigned char PicoVideoRead8CtlL(int is_from_z80)
|
|
{
|
|
struct PicoVideo *pv = &Pico.video;
|
|
u8 d = VideoSr(pv);
|
|
if (pv->pending) {
|
|
CommandChange(pv);
|
|
pv->pending = 0;
|
|
}
|
|
elprintf(EL_SR, "SR read (l): %02x @ %06x", d, SekPc);
|
|
return d;
|
|
}
|
|
|
|
unsigned char PicoVideoRead8HV_H(int is_from_z80)
|
|
{
|
|
elprintf(EL_HVCNT, "vcounter: %02x [%u] @ %06x", Pico.video.v_counter, SekCyclesDone(), SekPc);
|
|
return Pico.video.v_counter;
|
|
}
|
|
|
|
// FIXME: broken
|
|
unsigned char PicoVideoRead8HV_L(int is_from_z80)
|
|
{
|
|
u32 d = SekCyclesDone() - Pico.t.m68c_line_start;
|
|
if (Pico.video.reg[0]&2)
|
|
d = Pico.video.hv_latch;
|
|
else if (Pico.video.reg[12]&1)
|
|
d = hcounts_40[d/clkdiv];
|
|
else d = hcounts_32[d/clkdiv];
|
|
elprintf(EL_HVCNT, "hcounter: %02x [%u] @ %06x", d, SekCyclesDone(), SekPc);
|
|
return d;
|
|
}
|
|
|
|
void PicoVideoCacheSAT(int load)
|
|
{
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int l;
|
|
|
|
SATaddr = ((pv->reg[5]&0x7f) << 9) | ((pv->reg[6]&0x20) << 11);
|
|
SATmask = ~0x1ff;
|
|
if (pv->reg[12]&1)
|
|
SATaddr &= ~0x200, SATmask &= ~0x200; // H40, zero lowest SAT bit
|
|
|
|
// rebuild SAT cache XXX wrong since cache and memory can differ
|
|
for (l = 0; load && l < 80; l++) {
|
|
((u16 *)VdpSATCache)[l*2 ] = PicoMem.vram[(SATaddr>>1) + l*4 ];
|
|
((u16 *)VdpSATCache)[l*2 + 1] = PicoMem.vram[(SATaddr>>1) + l*4 + 1];
|
|
}
|
|
|
|
Pico.est.rendstatus |= PDRAW_SPRITES_MOVED;
|
|
}
|
|
|
|
void PicoVideoSave(void)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int l, x;
|
|
|
|
// account for all outstanding xfers XXX kludge, entry attr's not saved
|
|
pv->fifo_cnt = pv->fifo_bgcnt = 0;
|
|
for (l = vf->fifo_ql, x = vf->fifo_qx + l-1; l > 0; l--, x--) {
|
|
int cnt = (vf->fifo_queue[x&7] >> 3);
|
|
if (vf->fifo_queue[x&7] & FQ_BGDMA)
|
|
pv->fifo_bgcnt += cnt;
|
|
else
|
|
pv->fifo_cnt += cnt;
|
|
}
|
|
}
|
|
|
|
void PicoVideoLoad(void)
|
|
{
|
|
struct VdpFIFO *vf = &VdpFIFO;
|
|
struct PicoVideo *pv = &Pico.video;
|
|
int b = pv->type == 1;
|
|
|
|
// convert former dma_xfers (why was this in PicoMisc anyway?)
|
|
if (Pico.m.dma_xfers) {
|
|
pv->fifo_cnt = Pico.m.dma_xfers << b;
|
|
Pico.m.dma_xfers = 0;
|
|
}
|
|
|
|
// fake entries in the FIFO if there are outstanding transfers
|
|
vf->fifo_ql = vf->fifo_qx = vf->fifo_total = 0;
|
|
if (pv->fifo_cnt) {
|
|
int wc = pv->fifo_cnt;
|
|
pv->status |= PVS_CPUWR;
|
|
vf->fifo_total = (wc+b) >> b;
|
|
vf->fifo_queue[vf->fifo_qx + vf->fifo_ql] = (wc << 3) | b | FQ_FGDMA;
|
|
vf->fifo_ql ++;
|
|
}
|
|
if (pv->fifo_bgcnt) {
|
|
int wc = pv->fifo_bgcnt;
|
|
if (!vf->fifo_ql)
|
|
pv->status |= PVS_DMABG;
|
|
vf->fifo_queue[vf->fifo_qx + vf->fifo_ql] = (wc << 3) | FQ_BGDMA;
|
|
vf->fifo_ql ++;
|
|
}
|
|
if (vf->fifo_ql)
|
|
pv->status |= SR_DMA;
|
|
PicoVideoCacheSAT(1);
|
|
}
|
|
// vim:shiftwidth=2:ts=2:expandtab
|