picodrive/pico/misc.c
notaz af37bca858 new memory handling, but asm and mappers need update.
Some cleanup and magic bit removal as a bonus.


git-svn-id: file:///home/notaz/opt/svn/PicoDrive@768 be3aeb3a-fb24-0410-a615-afba39da0efa
2009-09-02 16:05:54 +00:00

340 lines
13 KiB
C

// This is part of Pico Library
// (c) Copyright 2006 notaz, All rights reserved.
// Free for non-commercial use.
// For commercial use, separate licencing terms must be obtained.
#include "pico_int.h"
// H-counter table for hvcounter reads in 40col mode
// based on Gens code
const unsigned char hcounts_40[] = {
0x07,0x07,0x08,0x08,0x08,0x09,0x09,0x0a,0x0a,0x0b,0x0b,0x0b,0x0c,0x0c,0x0d,0x0d,
0x0e,0x0e,0x0e,0x0f,0x0f,0x10,0x10,0x10,0x11,0x11,0x12,0x12,0x13,0x13,0x13,0x14,
0x14,0x15,0x15,0x15,0x16,0x16,0x17,0x17,0x18,0x18,0x18,0x19,0x19,0x1a,0x1a,0x1b,
0x1b,0x1b,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,0x1f,0x1f,0x20,0x20,0x20,0x21,0x21,
0x22,0x22,0x23,0x23,0x23,0x24,0x24,0x25,0x25,0x25,0x26,0x26,0x27,0x27,0x28,0x28,
0x28,0x29,0x29,0x2a,0x2a,0x2a,0x2b,0x2b,0x2c,0x2c,0x2d,0x2d,0x2d,0x2e,0x2e,0x2f,
0x2f,0x30,0x30,0x30,0x31,0x31,0x32,0x32,0x32,0x33,0x33,0x34,0x34,0x35,0x35,0x35,
0x36,0x36,0x37,0x37,0x38,0x38,0x38,0x39,0x39,0x3a,0x3a,0x3a,0x3b,0x3b,0x3c,0x3c,
0x3d,0x3d,0x3d,0x3e,0x3e,0x3f,0x3f,0x3f,0x40,0x40,0x41,0x41,0x42,0x42,0x42,0x43,
0x43,0x44,0x44,0x45,0x45,0x45,0x46,0x46,0x47,0x47,0x47,0x48,0x48,0x49,0x49,0x4a,
0x4a,0x4a,0x4b,0x4b,0x4c,0x4c,0x4d,0x4d,0x4d,0x4e,0x4e,0x4f,0x4f,0x4f,0x50,0x50,
0x51,0x51,0x52,0x52,0x52,0x53,0x53,0x54,0x54,0x55,0x55,0x55,0x56,0x56,0x57,0x57,
0x57,0x58,0x58,0x59,0x59,0x5a,0x5a,0x5a,0x5b,0x5b,0x5c,0x5c,0x5c,0x5d,0x5d,0x5e,
0x5e,0x5f,0x5f,0x5f,0x60,0x60,0x61,0x61,0x62,0x62,0x62,0x63,0x63,0x64,0x64,0x64,
0x65,0x65,0x66,0x66,0x67,0x67,0x67,0x68,0x68,0x69,0x69,0x6a,0x6a,0x6a,0x6b,0x6b,
0x6c,0x6c,0x6c,0x6d,0x6d,0x6e,0x6e,0x6f,0x6f,0x6f,0x70,0x70,0x71,0x71,0x71,0x72,
0x72,0x73,0x73,0x74,0x74,0x74,0x75,0x75,0x76,0x76,0x77,0x77,0x77,0x78,0x78,0x79,
0x79,0x79,0x7a,0x7a,0x7b,0x7b,0x7c,0x7c,0x7c,0x7d,0x7d,0x7e,0x7e,0x7f,0x7f,0x7f,
0x80,0x80,0x81,0x81,0x81,0x82,0x82,0x83,0x83,0x84,0x84,0x84,0x85,0x85,0x86,0x86,
0x86,0x87,0x87,0x88,0x88,0x89,0x89,0x89,0x8a,0x8a,0x8b,0x8b,0x8c,0x8c,0x8c,0x8d,
0x8d,0x8e,0x8e,0x8e,0x8f,0x8f,0x90,0x90,0x91,0x91,0x91,0x92,0x92,0x93,0x93,0x94,
0x94,0x94,0x95,0x95,0x96,0x96,0x96,0x97,0x97,0x98,0x98,0x99,0x99,0x99,0x9a,0x9a,
0x9b,0x9b,0x9b,0x9c,0x9c,0x9d,0x9d,0x9e,0x9e,0x9e,0x9f,0x9f,0xa0,0xa0,0xa1,0xa1,
0xa1,0xa2,0xa2,0xa3,0xa3,0xa3,0xa4,0xa4,0xa5,0xa5,0xa6,0xa6,0xa6,0xa7,0xa7,0xa8,
0xa8,0xa9,0xa9,0xa9,0xaa,0xaa,0xab,0xab,0xab,0xac,0xac,0xad,0xad,0xae,0xae,0xae,
0xaf,0xaf,0xb0,0xb0,
0xe4,0xe4,0xe4,0xe5,0xe5,0xe6,0xe6,0xe6,0xe7,0xe7,0xe8,0xe8,0xe9,0xe9,0xe9,0xea,
0xea,0xeb,0xeb,0xeb,0xec,0xec,0xed,0xed,0xee,0xee,0xee,0xef,0xef,0xf0,0xf0,0xf1,
0xf1,0xf1,0xf2,0xf2,0xf3,0xf3,0xf3,0xf4,0xf4,0xf5,0xf5,0xf6,0xf6,0xf6,0xf7,0xf7,
0xf8,0xf8,0xf9,0xf9,0xf9,0xfa,0xfa,0xfb,0xfb,0xfb,0xfc,0xfc,0xfd,0xfd,0xfe,0xfe,
0xfe,0xff,0xff,0x00,0x00,0x00,0x01,0x01,0x02,0x02,0x03,0x03,0x03,0x04,0x04,0x05,
0x05,0x06,0x06,0x06,
0x07,0x07,0x08,0x08,0x08,0x09,0x09,0x0a,0x0a,0x0b,0x0b,0x0b,0x0c,0x0c,0x0d,0x0d,
0x0e,0x0e,0x0e,0x0f,0x0f,0x10,0x10,0x10,
};
// H-counter table for hvcounter reads in 32col mode
const unsigned char hcounts_32[] = {
0x05,0x05,0x05,0x06,0x06,0x07,0x07,0x07,0x08,0x08,0x08,0x09,0x09,0x09,0x0a,0x0a,
0x0a,0x0b,0x0b,0x0b,0x0c,0x0c,0x0c,0x0d,0x0d,0x0d,0x0e,0x0e,0x0f,0x0f,0x0f,0x10,
0x10,0x10,0x11,0x11,0x11,0x12,0x12,0x12,0x13,0x13,0x13,0x14,0x14,0x14,0x15,0x15,
0x15,0x16,0x16,0x17,0x17,0x17,0x18,0x18,0x18,0x19,0x19,0x19,0x1a,0x1a,0x1a,0x1b,
0x1b,0x1b,0x1c,0x1c,0x1c,0x1d,0x1d,0x1d,0x1e,0x1e,0x1f,0x1f,0x1f,0x20,0x20,0x20,
0x21,0x21,0x21,0x22,0x22,0x22,0x23,0x23,0x23,0x24,0x24,0x24,0x25,0x25,0x26,0x26,
0x26,0x27,0x27,0x27,0x28,0x28,0x28,0x29,0x29,0x29,0x2a,0x2a,0x2a,0x2b,0x2b,0x2b,
0x2c,0x2c,0x2c,0x2d,0x2d,0x2e,0x2e,0x2e,0x2f,0x2f,0x2f,0x30,0x30,0x30,0x31,0x31,
0x31,0x32,0x32,0x32,0x33,0x33,0x33,0x34,0x34,0x34,0x35,0x35,0x36,0x36,0x36,0x37,
0x37,0x37,0x38,0x38,0x38,0x39,0x39,0x39,0x3a,0x3a,0x3a,0x3b,0x3b,0x3b,0x3c,0x3c,
0x3d,0x3d,0x3d,0x3e,0x3e,0x3e,0x3f,0x3f,0x3f,0x40,0x40,0x40,0x41,0x41,0x41,0x42,
0x42,0x42,0x43,0x43,0x43,0x44,0x44,0x45,0x45,0x45,0x46,0x46,0x46,0x47,0x47,0x47,
0x48,0x48,0x48,0x49,0x49,0x49,0x4a,0x4a,0x4a,0x4b,0x4b,0x4b,0x4c,0x4c,0x4d,0x4d,
0x4d,0x4e,0x4e,0x4e,0x4f,0x4f,0x4f,0x50,0x50,0x50,0x51,0x51,0x51,0x52,0x52,0x52,
0x53,0x53,0x53,0x54,0x54,0x55,0x55,0x55,0x56,0x56,0x56,0x57,0x57,0x57,0x58,0x58,
0x58,0x59,0x59,0x59,0x5a,0x5a,0x5a,0x5b,0x5b,0x5c,0x5c,0x5c,0x5d,0x5d,0x5d,0x5e,
0x5e,0x5e,0x5f,0x5f,0x5f,0x60,0x60,0x60,0x61,0x61,0x61,0x62,0x62,0x62,0x63,0x63,
0x64,0x64,0x64,0x65,0x65,0x65,0x66,0x66,0x66,0x67,0x67,0x67,0x68,0x68,0x68,0x69,
0x69,0x69,0x6a,0x6a,0x6a,0x6b,0x6b,0x6c,0x6c,0x6c,0x6d,0x6d,0x6d,0x6e,0x6e,0x6e,
0x6f,0x6f,0x6f,0x70,0x70,0x70,0x71,0x71,0x71,0x72,0x72,0x72,0x73,0x73,0x74,0x74,
0x74,0x75,0x75,0x75,0x76,0x76,0x76,0x77,0x77,0x77,0x78,0x78,0x78,0x79,0x79,0x79,
0x7a,0x7a,0x7b,0x7b,0x7b,0x7c,0x7c,0x7c,0x7d,0x7d,0x7d,0x7e,0x7e,0x7e,0x7f,0x7f,
0x7f,0x80,0x80,0x80,0x81,0x81,0x81,0x82,0x82,0x83,0x83,0x83,0x84,0x84,0x84,0x85,
0x85,0x85,0x86,0x86,0x86,0x87,0x87,0x87,0x88,0x88,0x88,0x89,0x89,0x89,0x8a,0x8a,
0x8b,0x8b,0x8b,0x8c,0x8c,0x8c,0x8d,0x8d,0x8d,0x8e,0x8e,0x8e,0x8f,0x8f,0x8f,0x90,
0x90,0x90,0x91,0x91,
0xe8,0xe8,0xe8,0xe9,0xe9,0xe9,0xea,0xea,0xea,0xeb,0xeb,0xeb,0xec,0xec,0xec,0xed,
0xed,0xed,0xee,0xee,0xee,0xef,0xef,0xf0,0xf0,0xf0,0xf1,0xf1,0xf1,0xf2,0xf2,0xf2,
0xf3,0xf3,0xf3,0xf4,0xf4,0xf4,0xf5,0xf5,0xf5,0xf6,0xf6,0xf6,0xf7,0xf7,0xf8,0xf8,
0xf8,0xf9,0xf9,0xf9,0xfa,0xfa,0xfa,0xfb,0xfb,0xfb,0xfc,0xfc,0xfc,0xfd,0xfd,0xfd,
0xfe,0xfe,0xfe,0xff,0xff,0x00,0x00,0x00,0x01,0x01,0x01,0x02,0x02,0x02,0x03,0x03,
0x03,0x04,0x04,0x04,
0x05,0x05,0x05,0x06,0x06,0x07,0x07,0x07,0x08,0x08,0x08,0x09,0x09,0x09,0x0a,0x0a,
0x0a,0x0b,0x0b,0x0b,0x0c,0x0c,0x0c,0x0d,
};
// rarely used EEPROM SRAM code
// known games which use this:
// Wonder Boy in Monster World, Megaman - The Wily Wars (X24C01, 128 bytes)
// (see Genesis Plus for Wii/GC code and docs for info,
// full game list and better code).
unsigned int lastSSRamWrite = 0xffff0000;
// sram_status: LAtd sela (L=pending SCL, A=pending SDA, t=(unused),
// d=SRAM was detected (header or by access), s=started, e=save is EEPROM, l=old SCL, a=old SDA)
PICO_INTERNAL void EEPROM_write(unsigned int d) // ???? ??la (l=SCL, a=SDA)
{
unsigned int sreg = Pico.m.sram_status, saddr = Pico.m.eeprom_addr, scyc = Pico.m.eeprom_cycle, ssa = Pico.m.eeprom_slave;
elprintf(EL_EEPROM, "eeprom: scl/sda: %i/%i -> %i/%i, newtime=%i", (sreg&2)>>1, sreg&1,
(d&2)>>1, d&1, SekCyclesDoneT()-lastSSRamWrite);
saddr&=0x1fff;
if(sreg & d & 2) {
// SCL was and is still high..
if((sreg & 1) && !(d&1)) {
// ..and SDA went low, means it's a start command, so clear internal addr reg and clock counter
elprintf(EL_EEPROM, "eeprom: -start-");
//saddr = 0;
scyc = 0;
sreg |= 8;
} else if(!(sreg & 1) && (d&1)) {
// SDA went high == stop command
elprintf(EL_EEPROM, "eeprom: -stop-");
sreg &= ~8;
}
}
else if((sreg & 8) && !(sreg & 2) && (d&2))
{
// we are started and SCL went high - next cycle
scyc++; // pre-increment
if(SRam.eeprom_type) {
// X24C02+
if((ssa&1) && scyc == 18) {
scyc = 9;
saddr++; // next address in read mode
/*if(SRam.eeprom_type==2) saddr&=0xff; else*/ saddr&=0x1fff; // mask
}
else if(SRam.eeprom_type == 2 && scyc == 27) scyc = 18;
else if(scyc == 36) scyc = 27;
} else {
// X24C01
if(scyc == 18) {
scyc = 9; // wrap
if(saddr&1) { saddr+=2; saddr&=0xff; } // next addr in read mode
}
}
elprintf(EL_EEPROM, "eeprom: scyc: %i", scyc);
}
else if((sreg & 8) && (sreg & 2) && !(d&2))
{
// we are started and SCL went low (falling edge)
if(SRam.eeprom_type) {
// X24C02+
if(scyc == 9 || scyc == 18 || scyc == 27); // ACK cycles
else if( (SRam.eeprom_type == 3 && scyc > 27) || (SRam.eeprom_type == 2 && scyc > 18) ) {
if(!(ssa&1)) {
// data write
unsigned char *pm=SRam.data+saddr;
*pm <<= 1; *pm |= d&1;
if(scyc == 26 || scyc == 35) {
saddr=(saddr&~0xf)|((saddr+1)&0xf); // only 4 (?) lowest bits are incremented
elprintf(EL_EEPROM, "eeprom: write done, addr inc to: %x, last byte=%02x", saddr, *pm);
}
SRam.changed = 1;
}
} else if(scyc > 9) {
if(!(ssa&1)) {
// we latch another addr bit
saddr<<=1;
if(SRam.eeprom_type == 2) saddr&=0xff; else saddr&=0x1fff; // mask
saddr|=d&1;
if(scyc==17||scyc==26) {
elprintf(EL_EEPROM, "eeprom: addr reg done: %x", saddr);
if(scyc==17&&SRam.eeprom_type==2) { saddr&=0xff; saddr|=(ssa<<7)&0x700; } // add device bits too
}
}
} else {
// slave address
ssa<<=1; ssa|=d&1;
if(scyc==8) elprintf(EL_EEPROM, "eeprom: slave done: %x", ssa);
}
} else {
// X24C01
if(scyc == 9); // ACK cycle, do nothing
else if(scyc > 9) {
if(!(saddr&1)) {
// data write
unsigned char *pm=SRam.data+(saddr>>1);
*pm <<= 1; *pm |= d&1;
if(scyc == 17) {
saddr=(saddr&0xf9)|((saddr+2)&6); // only 2 lowest bits are incremented
elprintf(EL_EEPROM, "eeprom: write done, addr inc to: %x, last byte=%02x", saddr>>1, *pm);
}
SRam.changed = 1;
}
} else {
// we latch another addr bit
saddr<<=1; saddr|=d&1; saddr&=0xff;
if(scyc==8) elprintf(EL_EEPROM, "eeprom: addr done: %x", saddr>>1);
}
}
}
sreg &= ~3; sreg |= d&3; // remember SCL and SDA
Pico.m.sram_status = (unsigned char) sreg;
Pico.m.eeprom_cycle= (unsigned char) scyc;
Pico.m.eeprom_slave= (unsigned char) ssa;
Pico.m.eeprom_addr = (unsigned short)saddr;
}
PICO_INTERNAL_ASM unsigned int EEPROM_read(void)
{
unsigned int shift, d;
unsigned int sreg, saddr, scyc, ssa, interval;
// flush last pending write
EEPROM_write(Pico.m.sram_status>>6);
sreg = Pico.m.sram_status; saddr = Pico.m.eeprom_addr&0x1fff; scyc = Pico.m.eeprom_cycle; ssa = Pico.m.eeprom_slave;
interval = SekCyclesDoneT()-lastSSRamWrite;
d = (sreg>>6)&1; // use SDA as "open bus"
// NBA Jam is nasty enough to read <before> raising the SCL and starting the new cycle.
// this is probably valid because data changes occur while SCL is low and data can be read
// before it's actual cycle begins.
if (!(sreg&0x80) && interval >= 24) {
elprintf(EL_EEPROM, "eeprom: early read, cycles=%i", interval);
scyc++;
}
if (!(sreg & 8)); // not started, use open bus
else if (scyc == 9 || scyc == 18 || scyc == 27) {
elprintf(EL_EEPROM, "eeprom: r ack");
d = 0;
} else if (scyc > 9 && scyc < 18) {
// started and first command word received
shift = 17-scyc;
if (SRam.eeprom_type) {
// X24C02+
if (ssa&1) {
elprintf(EL_EEPROM, "eeprom: read: addr %02x, cycle %i, reg %02x", saddr, scyc, sreg);
if (shift==0) elprintf(EL_EEPROM, "eeprom: read done, byte %02x", SRam.data[saddr]);
d = (SRam.data[saddr]>>shift)&1;
}
} else {
// X24C01
if (saddr&1) {
elprintf(EL_EEPROM, "eeprom: read: addr %02x, cycle %i, reg %02x", saddr>>1, scyc, sreg);
if (shift==0) elprintf(EL_EEPROM, "eeprom: read done, byte %02x", SRam.data[saddr>>1]);
d = (SRam.data[saddr>>1]>>shift)&1;
}
}
}
return (d << SRam.eeprom_bit_out);
}
PICO_INTERNAL void EEPROM_upd_pending(unsigned int a, unsigned int d)
{
unsigned int d1, sreg = Pico.m.sram_status;
if (!((SRam.eeprom_abits^a)&1))
{
// SCL
sreg &= ~0x80;
d1 = (d >> SRam.eeprom_bit_cl) & 1;
sreg |= d1<<7;
}
if (!(((SRam.eeprom_abits>>1)^a)&1))
{
// SDA in
sreg &= ~0x40;
d1 = (d >> SRam.eeprom_bit_in) & 1;
sreg |= d1<<6;
}
Pico.m.sram_status = (unsigned char) sreg;
}
#ifndef _ASM_MISC_C
typedef struct
{
int b0;
int b1;
int b2;
int b3;
int b4;
int b5;
int b6;
int b7;
} intblock;
PICO_INTERNAL_ASM void memcpy16(unsigned short *dest, unsigned short *src, int count)
{
if ((((int)dest | (int)src) & 3) == 0)
{
if (count >= 32) {
memcpy32((int *)dest, (int *)src, count/2);
count&=1;
} else {
for (; count >= 2; count -= 2, dest+=2, src+=2)
*(int *)dest = *(int *)src;
}
}
while (count--)
*dest++ = *src++;
}
PICO_INTERNAL_ASM void memcpy16bswap(unsigned short *dest, void *src, int count)
{
unsigned char *src_ = src;
for (; count; count--, src_ += 2)
*dest++ = (src_[0] << 8) | src_[1];
}
#ifndef _ASM_MISC_C_AMIPS
PICO_INTERNAL_ASM void memcpy32(int *dest, int *src, int count)
{
intblock *bd = (intblock *) dest, *bs = (intblock *) src;
for (; count >= sizeof(*bd)/4; count -= sizeof(*bd)/4)
*bd++ = *bs++;
dest = (int *)bd; src = (int *)bs;
while (count--)
*dest++ = *src++;
}
PICO_INTERNAL_ASM void memset32(int *dest, int c, int count)
{
for (; count >= 8; count -= 8, dest += 8)
dest[0] = dest[1] = dest[2] = dest[3] =
dest[4] = dest[5] = dest[6] = dest[7] = c;
while (count--)
*dest++ = c;
}
void memset32_uncached(int *dest, int c, int count) { memset32(dest, c, count); }
#endif
#endif